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The decays Bf — B,fv, and Bf — Bi(— B,y)fvy, with a =s, d and £ = e, p, are studied in the
Standard Model (SM) and in the extension based on the low-energy Hamiltonian comprising the full set of
dimension-6 semileptonic ¢ — s, d operators with left-handed neutrinos. Tests of /e universality are
investigated using such modes. The heavy quark spin symmetry is applied to relate the relevant hadronic
matrix elements and to exploit lattice QCD results on B, form factors. Optimized observables are selected,
and the pattern of their correlations is studied to identify the effects of the various operators in the extended

low-energy Hamiltonian.

DOI: 10.1103/PhysRevD.103.075019

I. INTRODUCTION

The B, meson, first observed by the CDF Collaboration
[1], is interesting since it has the structure of the heavy
quarkonium but it decays weakly. Therefore, this meson is
well suited to study both quarkonium and weak interaction
features within the same hadronic system. As for weak
interactions, in addition to the purely leptonic mode which
proceeds through the weak annihilation of the constituent
quarks, the B, decays occur through the transitions of both
the charm and beauty quark. The decays induced by the
charm transition represent the dominant contribution to the
full width despite the smaller available phase-space [2-5].
In our study we focus on the exclusive semileptonic modes
BY — B, fv, and B} — B;dz?yf induced at the quark
level by ¢ — (s, d)fv,, with £ = e, u (the tauonic mode is
phase-space forbidden). There are various reasons for such
a choice.

The first one is the possibility of exploiting the heavy
quark spin symmetry [6], which allows us to relate the
observables in the modes with final pseudoscalar and
vector meson, as well as the different observables in the
vector channel. The relatively small phase-space justifies
the extrapolation to the full kinematical range of the spin

fpietro.colangelo @ba.infn.it
"fulvia.defazio@ba.infn.it
*francesco.loparcol @ba.infn.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021,/103(7)/075019(15)

075019-1

symmetry relations, that strictly hold close to the zero-
recoil point where the produced meson is at rest in the B,
rest frame [7]. Invoking the heavy quark spin symmetry the
relevant hadronic matrix elements can be expressed in
terms of two independent functions, that can be derived
from the B, — B, and B. — B, form factors (FF) precisely
determined by lattice QCD [8].

The second reason is the possibility to scrutinize the
sensitivity of such processes to beyond the Standard Model
(BSM) effects of the kind emerging in B decays, where
hints of violation of lepton flavor universality (LFU) are
found." The measurement of B(B, — J/w7v,) is also
important in this regard [11]. Such effects can be analyzed
in an effective theory framework extending the low-energy
SM Hamiltonian that governs the ¢ — (s, d)£v, transitions
with the inclusion of the full set of semileptonic dimension-
6 operators with lepton flavour dependent Wilson
coefficients. The impact of the new operators on the
experimental B, observables can be assessed. The D and
D, semileptonic decay modes have been recently studied in
this context, and the Wilson coefficients of the new
operators in the extended Hamiltonian have been con-
strained using the available experimental data [12-16].
The study of the sensitivity of this class of B, decays to
extensions of the Standard Model (the new physics—NP) is
timely, as these channels are accessible at the present
facilities. The hadronic matrix elements of the new oper-
ators can also be given in terms of the same independent
functions entering in the SM ones, invoking the heavy
quark spin symmetry. Since the produced B; and B}

1 .
For recent overviews see [9,10].
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mesons decay radiatively, we shall provide the expressions
of the fully differential BY — B! ,(— B ,7)¢v, decay
distribution for the extended low-energy Hamiltonian: such
general expressions can also be used for different
processes.

In Sec. II we introduce the effective semileptonic
Hamiltonian comprising the full set of dimension-6 oper-
ators with left-handed neutrinos, that generalizes the SM
low-energy Hamiltonian. In Sec. III we provide the decay
distributions of B, — B, ;,fv, and B, — B (= By ay)tve
obtained from the extended Hamiltonian. In Sec. IV we
discuss the heavy quark spin symmetry relations connect-
ing the SM and NP operator matrix elements. Section V
contains the numerical analysis in SM and a discussion of
the effects of the new operators on the B, decay observ-
ables. The summary and the outlook are presented in the
last section. The appendixes contain the relations among
the hadronic form factors obtained by the heavy quark spin
symmetry (Appendix A), and the coefficient functions of
the full angular distribution of the four-body radiative
modes B, — B! ,(— B, 4v)¢v, (Appendix B).

II. EFFECTIVE ¢ — s, d SEMILEPTONIC
HAMILTONIAN

We consider the low-energy Hamiltonian comprising the
full set of dimension-6 semileptonic Q — g operators with
left-handed neutrinos:

~qzv _ GF
HE A
X [(1+€0)(qru(1 =75)Q) (e (1 +75)r"¢)
+ €4 (qr, (1 +75)Q) (D (1 + 75)1#¢)
§(20) ([ (1 +75)¢)
5(arsQ)(vs(1 +ys)¢)
7(a(1

+75) ;wQ)(Uf( +75)6ﬂvl/ﬁ>]v (1)

+ €5
+€p
+€7(q
with Q = ¢, and g either the s or the d quark. Vcgm
is the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element V. or V.. In addition to the SM operator
Osm = 4(qr* Q1) ([Dpry,€1) and to the operators Og =
(@Q)@e(1+75)¢),  Op=(qrsQ)(Ds(1+75)¢) and
Or = (q(1 +75)0,,0)(T(1 +75)0"¢), the operator
O = 4(ggr"Qr)(Dpry, €1 ) is included in Eq. (1). It is
worth remarking that in the Standard Model effective field
theory the only dimension-6 operator with the right-handed
quark current is nonlinear in the Higgs field [17-19], and its
role has been the subject of several discussions [19-24].
The complex coefficients e‘f}’ rspr in the low-energy
Hamiltonian (1) are lepton-flavor dependent.

Generalized Hamiltonians as in Eq. (1) have been
studied for b — ¢ transitions in connection with the

anomalies in semileptonic B — D")zu, decays, obtaining
information on the various operators [25-32]. Modes
induced by the b — u induced transition have also been
analyzed in such an effective theory approach [33]. For
both classes of b-quark transitions, suitable observables
testing the Standard Model and challenging LFU have been
identified. Observables in baryon decays, in particular in
inclusive modes, have also been studied [34]. Here we
focus on the B, decays governed by the Hamiltonian (1), to
study the SM phenomenology and to assess the sensitivity
of such channels to deviations from the SM.

III. MODES B, — Pfv, AND B, — V(- Py)¢v,

The ¢ distribution of the B, = PZv, decay, with P a
pseudoscalar meson, governed by the low-energy
Hamiltonian (1) reads:

dr'(B. — Ptv,)

dq?
:G12r|VCKM|2/11/2 l—m—%; :
128m3, 7r3 2 q*
¢ q2€§ : 2 2\242(,2
X {‘mf(] ey +eg) + (mg_—mp)*fo(q”)
mgo—my
Mmoot et e r (@) 42—t )|
—|m e +e — ¢
3| v TER)+\4q cherPTTCI
24> my 2
1 7z ‘ 2 4 4 2 .
3 (1+ey +er)f+(q) + FBC_’_mPeTfT(‘I)
(2)

Gp is the Fermi constant, ¢*> the squared momentum
transferred to the lepton pair and A = /l(sz[,m%,qz) is
the triangular function. The form factors f, f, and f7 are
defined in Appendix A. The SM expression is recovered
setting to zero all couplings €7 .

In the case of a final vector meson V decaying to Py,
namely Bj , the four-body kinematics of B, — V(—
Py)¢v, is shown in Fig. 1. The fully differential decay
width is expressed in terms of ¢? and of the angles 6y,  and
¢ defined in the figure:

FIG. 1. Kinematics of the B, — B%(B,y)¢fv, decay.
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d‘T(B, —» V(= Py)? - 2\?
(B > V(> Pr)tvy) :Nyl’v|<1_m_;> {1,,8in*0y +1,.(3 + cos 26y)
q

dq*d cos 0yd cos Odg

+ (I548in%0y + I.(3 + cos 20y)) cos 20

+ I3sin?@ysin®0 cos 2¢) + 1, sin 20y, sin 26 cos ¢

+ I5sin 20y, sin @ cos ¢ + (I4,5in%0y + I4.(3 + cos 26y)) cos @

+ 17 sin 26y, sin @sin ¢ + I sin 26y, sin 26 sin ¢

+ Iosin?@ysin®@ sin 2}, (3)
with | py| = |/A(mg . my, ¢*)/2mp, . The distribution (3) is obtained in the narrow width approximation for the meson V,
3G%|Vekm|*B(V—Py)

128(2ﬂ)4méc

encode the dynamics and the SM and of NP described by the Hamiltonian (1). We provide them for the full set of operators,
generalizing the results obtained in [30] for the tensor operator:

and the factor y = comprises the V — Py branching fraction. The angular coefficient functions /,(¢?)

I =1+ €v|2]l.SM =+ |€R|2I?IP.R + |€P|2I£_\IP,P + |€T|2I£_\IP,T + 2Refeg(1 + 6;)}I£NT,R
+ 2Relep(1 + €5)]INT 4 2Reler (1 + € ) INTT

+ 2Re[ege INTRT 4 2Re[epes | INTFT 4 2Re[epe INTPR )
fori=1,...6,
Iy = 2Imleg(1 +€)17 % + 2Imlep(1+ )17 " + 2Imler (1 + €p)]17 "
+ 2Im[ege; ] IV TRT 4 2Im[epes ] INTFT 4 20m[epe] INTFR, 5)
and
I; = 2Imleg(1 + )| INTR (6)

for i =8, 9. In SM the angular coefficient functions are given in terms of the helicity amplitudes

1
HO =
2my(mp + my)y 7

. (mp, +my)?Ai(q*) F \/A(mg ,m3, q*)V(g?)
-

mBC + my

((mp, + my)*(my_—m, — ¢*)Ai(q*) = A(mg_,m. ¢*)As(q%))

For the NP operators the following amplitudes are also introduced:

1
—— { <m%€ . q2)> (T\+T2) + A(Ty - u)}
Ve

PANEC U P RS
o

TO + 2 =

T, +4myT, ». 8
my (mpg, + my)? nmy L 2} ®)

The form factors V, A;, and T; are defined in Appendix A. The coefficient functions in Egs. (4), (5), and (6), expressed in
terms of the amplitudes (7) and (8), are collected in Appendix B. With such expressions the various observables can be
computed by suitable integrations of the distribution in Eq. (3).
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IV. HEAVY QUARK SPIN SYMMETRY AND
RELATIONS AMONG FORM FACTORS

In the infinite heavy quark mass limit my > Aqcp the
QCD Lagrangian exhibits a heavy quark (HQ) spin
symmetry, with the decoupling of the heavy quark
spin from gluons [35]. This produces the decoupling
of the spins of the heavy quarks in B.: the spin-spin
interaction vanishes in this limit. Important con-
sequences of the HQ spin symmetry are the relations
among the form factors parametrizing the weak current
matrix elements of B, and mesons comprising a single
heavy quark (Bg*),BEI*),D(*),...) or two heavy quarks
(1c.J/w.w(2S),...) [6].

In the semileptonic B, — B(a*) (a = s, d) decays induced
by the ¢ — s,d transition, since m,. < m,; the energy
released to the final hadronic system is much smaller than
m,,. The b quark remains almost unaffected, so that the final
meson keeps the same B, four-velocity ». Denoting the
initial and final meson four-momenta as p = mp v and
p' =mpg v =mg v+ k, with k a small residual momen-
tum, the four-momentum transferred to the leptons is
q=p-—p = (mp —mp )v—k with v-k=0O(1/m,).

The relations stemming from the HQ spin symmetry can
be worked out using the trace formalism [36]. The heavy
pseudoscalar and vector mesons are collected in doublets,
the two components of which represent states differing only
for the orientation of the heavy quark spins. The B and
B:* doublet comprising the heavy ¢ and b quarks is
described by the effective fields

ch 1+’5 * 1_?5
H”:T[Bc”n—chS] > 9)

The B, and B}, doublet (a an SU(3) index) with the single
heavy antiquark b is described by the effective fields

A * 1- 75
H" = By, = Bays|——

(10)
B and B* are operators that include a factor ,/mg and \/mj;
and have dimension 3/2. The equations yH = H¢,
HY = —H®, JyH" = H’, H’§ = —H" are satisfied.
Under the heavy quark spin transformations and light
quark SU(3) transformations the doublets transform as

Heb SCHCESZ
H. — (UHP),S}. (11)

The matrix elements of the quark current gI'Q between B,

and BE,*), with I" a generic product of Dirac matrices, can be
written as

(B (0. 0)aT Q|B.(v))
= — it i el Q, (v, agk)THP)], - (12)

with H, = y°H},y° and are invariant under rotations of the
b spin. The most general matrix depending on » and k is

Q,(v, agk) = Qy, + ¥apQy,. (13)

It involves two dimensionless nonperturbative functions,
the form factors Q,, and Q,,. The dimensionful parameter
ag can be identified with the length scale of the process,
typically the Bohr radius of the mesons. At odds with the
weak matrix elements of mesons comprising a single heavy
quark, that are expressed in terms of a single universal
function (the Isgur-Wise function [37,38]) normalized to 1
at the zero-recoil point v - v/ = 1 due to the heavy quark
flavour symmetry, no normalization is fixed for Q; and Q,.
Such form factors encode the QCD dynamics and must be
determined by nonperturbative methods.

The SM matrix elements relevant for BY — B,/ v,

involve the form factors %<~ and o< defined in (A1).
On the other hand, four form factors are needed in SM for
each B, — B:¢v, mode, VB~Va and Aﬁ"zfav“ defined in
(A2). They parametrize the hadronic matrix elements of the
SM operator in the low-energy Hamiltonian (1). The matrix
elements of the operators with a scalar and pseudoscalar
quark current in Eq. (1) do not involve new form factors:
the scalar operator contributes only to B, — B,£v, and its

hadronic matrix element is given in terms of fg B4 and of
the masses of the quarks involved in the transitions. The
pseudoscalar operator contributes only to B, — B;,/D, and
its matrix element can be expressed in terms of Ag 7B and
the quark masses (Appendix A). The matrix elements of the
tensor operator in (1) require the form factors f° ?"_)B” for
Bl — B,/ v, and Tf“QBBZ for Bf — B;¢"v, defined in
Appendix A.

Exploiting the HQ spin symmetry all the form factors
fo.fo.fr and V A, T; can be given in terms of the
functions €;, in (13). Such relations can be inverted to
express ; and Q, in terms of £ and f, Eq. (A6), and can
be used once such functions are determined in a non-
perturbative way. All relations are in Appendix A. The
result is that f, and f,, accompanied with the relations
from the HQ spin symmetry, provide enough information to
study the full phenomenology of the B, — B’
leptonic modes in SM and beyond.

The relations among the form factors are valid close to
the zero-recoil point, at maximum momentum squared
transferred to the lepton pair g2, = (mp— mBm)z.

However, since the phase space for B, — BS*) is small,

such relations can be extrapolated to the full kinematical g°
range. The assumption can be checked once other form

semi-

075019-4



ROLE OF B; — B'")7v, IN THE STANDARD MODEL AND ...

PHYS. REV. D 103, 075019 (2021)

1.0 1.0
08 '\A i |
0.6,\< 06,\‘
= =
=] (=]
04} 04} ]
0.2+ 0.2} 4
1.0 1.0 T T T T T T T
0.8 0.8
n T
E 06} E 06f
& 04} S 04f
=] =]
§ §
0.2t 0.2 K

1.000 1.002 1.004 1.006 1.008 1.010 1.012
y

1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014
y

FIG. 2. Universal functions Q(y) (top) and a¢Q,(y) (bottom panels) obtained using Eq. (A6) and the form factors f, and f,

computed in Ref. [8] for B, — B, (left) and B, — B, matrix elements (right panels), with y =

factors are available, by a comparison with the expressions
in the heavy quark limit.

V. NUMERICAL ANALYSIS

We describe several observables in B — B, ;¢"v, and
BY — B; (= B, 47)¢ v, in the Standard Model. We also
study their sensitivity to the BSM operators in the low-
energy Hamiltonian.

For the hadronic matrix elements of the various operators
in Eq. (1) we exploit the HQ spin symmetry and express all
form factors in terms of the universal functions Q) and
() using the relations in Appendix A. Q) and Q)
are determined from the form factors 75" and f%< ;%
computed by lattice QCD in Ref. [8]. In such computation
the form factors are evaluated in the full ¢ range, by a
chain fit of the results obtained by a nonrelativistic
QCD treatment of the b quark and by using the highly
improved staggered quark method. The variable ¢ = g2,

. . . 2 2 .
with kinematical bound m; <t <t_ = (mp — mp, d)) , is
mapped into the variable z(t) = F;v?—;\\/[? with 7. =

+= +

(mp, +mp, )% chosen to be larger than the lowest thresh-
old for hadron production in the ¢ channel, the DK and Dz
threshold. To optimize the calculation, a rescaled variable
z2,(1) = 2(1)/2(M?,) is defined, with M,,, a suitably
chosen mass parameter. Each form factor f(¢) is expressed
(in the continuum limit of the lattice discretization) as a
truncated power series of z,,:

F(6)=P(0) Y Az, ()", (14)

/
p-p
mpg,mp,"

with P(¢) a function chosen to describe the main computed
t-dependence. As a result, each form factor is determined
by the set of coefficients A,, together with their errors and
error correlation matrices. The functions Q(y) and
apQ,(y) obtained for the ¢ — s and ¢ — d transitions
are depicted in Fig. 2 together with their uncertainties. They

. . . /
are expressed in terms of the variable y = -2 =
Mp.Mp,

my +mi —q* . . .
iy 10 the range [1, Yax)» With y., corresponding
to ¢2.. = m2. The numerical values of the other parame-
ters, taken from the Particle Data Group [39], are listed in
Table 1.

The analysis of the sensitivity to the BSM operators in
Eq. (1) requires a set of input values for the coefficients €7 .
There are experimental constraints, in particular from the

purely leptonic D, and D* decay widths, from the

TABLE 1. Parameters, from Ref. [39].

mg, 6274.9 + 0.8 MeV

7B, (0.510 +0.009) x 10712 5
mg, 5366.88 +0.14 MeV
mpg: 5415.8 + 1.5 MeV

B(B* - B,y) 1

mg, 5279.63 + 0.20 MeV
mp. 5324.7 4+ 0.21 MeV
B(B; — Bay) 1

[Vl 0.987 £ 0.011
[Vedl 0.221 4 0.004
mS(2 GeV) 4677018 MeVv
m¥5(2 GeV) 931" MeV

1.67 £0.07 GeV

mg

075019-5
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semileptonic D) decays to K~(0, K*=(0) and 7=, p=(0),
and from the semileptonic D, — ¢ transitions [12,13,
15,16]. Ranges of values have been determined upon the
assumption that all €/ are real [16]: €}, = (1.65 £ 2.02)x
1072, & = (-1.35£2.02) x 1072, €5 = (-1.0£2.0) x 1072,
€p = (094 1.4)x 1073, and €} = (1.2 £+ 1.8) x 1072 for
the ¢ — s transition, and €}, = (5.0 £2.1) x 1072, & =
(20£2.0)x 1072, € =(-9.0+£7.0)x 1072, ¢ =
(=2.6 £1.3) x 1073, and € =(-2.04+1.4)x 107! for the
¢ — d transition. Interestingly, the allowed range for €7 in
the ¢ — d transition is wide. We vary the couplings in these
intervals with the purpose of describing the effects of the
various NP operators. Assuming a hierarchy in LFU viola-
tion, all couplings for the electron operators €y, p ¢ p y are
kept to zero, hence such modes are only described in SM.

A.B, - B¢ U, and B, — Bi(— Byy)f Uy
The semileptonic B, decays induced by the ¢ — s

transition are expected to constitute the largest fraction
of semileptonic modes [7,40-50]. The prediction in SM

N o Ve )2
B(Bf = Butv,) = 0.0125(4) (0.987 (15)
follows from the use of form factors in [8]. The quoted error
refers only to the form factor uncertainties, the errors from
the CKM matrix element and from the B,. lifetime in Table I
can be simply added, the error from the mass parameters is
small. For the electron mode the result is

2
B(B* — Byety,) = 0.0131(4) (%) . (16)

In the case of u we describe below how the branching
fraction changes due to the NP operators, studying also the
correlation with other observables. We notice that the ¢>
spectrum in Fig. 3 is modified with respect to the Standard
Model when the additional operators in (1) are considered.
The SM prediction including the FF uncertainty is enlarged
if the NP operators are considered, varying the couplings ¢/
in their quoted ranges. However, the shape of the spectrum
is unchanged.

For B — Byu"v, (a =s, d), the SM helicity ampli-
tudes (7) can be expressed in terms of €, and Q,,:

g, (mp, —mp. —q*) - Mmp my,.q%)

+
2\/ mp Mp:- qz

mB*‘
H,= m—l,:(sz"Qla F A2 (my  my. . q*)agQs,)

/11/2<m%6’m%§’q2)

2\/ mpg mp- 612

+(mp —mp. +q°)aa), (17)

apSd,

H=-

(2mBFQIa

0.05 —

- SM
0.04 — NP

0.03 -

0.02

—[GeV~2]

dsB
dq?

0.011

0.00 1 1 1
0.0 0.2 0.4 0.6 0.8

7*[GeV?]
0.10 — T

0.08 -

0.06 -

0.04 -

—[GeV~?]

dB
dq?

0.02 -

0.00 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

7*[GeV?]

FIG. 3. ¢ spectrum of the modes Bf — Byu*v, (top) and
Bf — Biu*v, (bottom). The Standard Model result (red SM
band) includes the uncertainty on the form factors. The result for
the full Hamiltonian Eq. (1) is obtained varying the effective
couplings in the quoted ranges (gray NP band). For B —
Biu'y, the spectrum obtained omitting the tensor operator T
is also displayed (dashed cyan lines).

while the NP amplitudes (8) read:

mBZ
——5[(mp, —mp. +q* £ \[A(mp_ mp.. q7))Q,
mp 4

+ ((mg, +mp:)((mp, —mp:)* —q?)

HYP =2

+ (mg, —mp;)\/A(mp_ mp..q*))ao€]

16
L 7’"&’”3; [(mB( +my. —q )
- mBZ((mB( - mBj,)z - q2)0092]- (18)

For a = s the SM predictions

2
B(Bf — Biutv,) = 0.030(1) (0”;—8»

\% 2
B(Bf — Bretv,) = 0.032(1) <(|)9€§|7> (19)

include only the error on the form factors. For y channel,
the ¢? distribution in Fig. 3 is affected by a small FF
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[GeV~2]

ds;,
dq?

[GeV~2?]

dB7r
dq?

0.0 041 02 03 04 05 06 0.7

¢*[GeV?]

FIG. 4. g? distribution for longitudinally (top) and transversely
polarized B} meson (bottom) in Bf — Biu'v,. The color codes
are the same as in Fig. 3.

uncertainty. In the NP extension the tensor operator has a
visible effect on the spectrum. Moreover, the spectra of
longitudinally and transversely polarized B in Fig. 4 show
that NP mainly affects the longitudinal B} polarization in the
small ¢? region. The ratio F; = %, with 'y, the decay
widths to transversely and longitudinally polarized Bj, is
predicted in the SM: Fr = 0.413 £0.004, and remains
smaller than 1/2 when the NP operators are included, with
the main effect due to the T operator, as shown in Fig. 5.
The ¢>-dependent forward-backward (FB) lepton asym-

metry

dr\-17 1 &
Ars(®) = (& / deosf—
rpd’) <dq2> {0 S g cos 0

0 2
— / dcos de—r] (20)
-1 dg~dcos 6
NP-All
~— NP-P
— NP-V
NP-R
R— — NP-T
0.400 0.405 0.410 0.415 0.420 — SM
Fr

FIG. 5. Fraction of transversely polarized Bj. The lines
correspond to SM, to the NP operators in Eq. (1) separately
considered, and to the full set of NP operators.

Ars(q?)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

7*[GeV?]

FIG. 6. g*-dependent forward-backward lepton asymmetry in
B! — Biu'v,. The red band corresponds to SM, the gray band to
the full Hamiltonian (1). The region obtained excluding the tensor
operator T is indicated by the dashed cyan lines.

is affected by a small uncertainty in the SM (Fig. 6).
The asymmetry has a zero precisely determined at g3 ~
0.1905(5) GeV?. This observable is particular sensitive to
the tensor operator: indeed, as shown in Fig. 6, excluding
this operator the asymmetry in NP practically coincides
with SM. When all the operators in the extended
Hamiltonian are considered the position of the zero is in
the range g3 € [0.149,0.208] GeV>.

The effects of the new operators can also be observed in
the coefficients ¢ ; , defined in the expression [51,52]

dB(Bf — B§ﬂ+yﬂ)
dg*dcos @

=co+cicosf+cyco8?6,  (21)

as shown in Fig. 7.

Interesting information is encoded in the correlations
between the various observables in the decay modes to the
pseudoscalar and vector meson. We analyze them in turn,
neglecting the common FF uncertainties, considering the
SM, each NP operator and all operators together. Since the
scalar and pseudoscalar operators have a minor impact on
the results, we do not discuss them individually.

Figure 8 shows the correlation between the branching
fractions of the pseudoscalar and vector modes B(B} —
Byuty,) and B(BY — Biu"v,). The SM point corresponds
to the central values in Egs. (15) and (19). When all NP
operators are considered the enlarged (pink) region is
obtained. Anticorrelation between the branching fractions
is found when the R operator is considered. Increasing €/,
produces a positive correlation between the two observ-
ables. The tensor operator 7 can allow a reduction of
B(Bf — Biu'*v,) with respect to SM. Structured patterns
are found in the correlations of the branching fractions
B(Bf = B,u*v,) and B(Bf — Byuty,) with the inte-
grated FB lepton asymmetry in the B} mode

075019-7
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FIG. 7. Coefficients ¢(;, in Eq. (21) for B, — Biu*v,. The
color codes are the same as in Fig. 6.

0.040

~
< 00351 NP - All
+
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FIG. 8. Correlation between the branching fractions

B(B! = Bu'y,) and B(Bl = Biu'v,) in SM (black dot)
and for the NP operators in Eq. (1). The regions labeled VR,
V., R, and T are obtained varying separately the coefficients of the
corresponding operators in their quoted ranges. The NP-All
region refers to the full set of operators in (1).

Thax
App = /2 dquFB(qz)v (22)

Dmin

as shown in Fig. 9. Varying the R and V coefficients
produces anticorrelations in case of the B, channel, same
sign correlation in case of B. The tensor operator results in
a mild anticorrelation in the B} case. The combined
analysis of all observables can allow to isolate the signature
of the different NP operators.

B.B - B,f*v, and B} — Bj;(— By)C" v,

The ¢ — d semileptonic B, modes also give access to
relevant information. The SM expectations

Vol \2
B - Bytv,) = 8. 1074 Veal

2
B(Bf — Bye*v,) = 8.7(5) x 1074 ((')szd|1> (23)

derive from the form factors in [8]. The quoted errors are
only due to the FF uncertainty. The corresponding pre-
dictions for B — B¢v, in SM are

£ — |Vcd| 2
B(Bg_ g Bd/’l+yﬂ) = 20(1) x 10 4(@

\% 2
B(Bf — Bietv,) = 21(1) x 10~ (%) . (24)

0.005

~ 0000
>=.
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Q
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fo NP -R
-0.015F
8
] ® NP-T
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= ® su
0,025 . . . . .
0.010 0.011 0.012 0.013 0.014 0.015 0.016
+ +
BB} - Bs p*vy)
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~ 0000
-~
¥ NP - All
N, -0.005F
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_
N -0.010F ] ® NPV
to NP -R
-0.015F
8
2 ® NP-T
-0.020F
= ® s
-0.025

0.025 0.030 0.035 0.040
BB} - By ptv,)

FIG. 9. Correlations between the integrated forward-backward
lepton asymmetry Agp in Bl — Bju'*y,, defined in Eq. (22),
with B(Bf — B,u*v,) (top) and B(B! — Biu*v,) (bottom
panel). The color codes are the same as in Fig. 8.
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FIG. 10. ¢? spectrum of the modes B} — Bd/ﬁy,, (top) and
Bf — Biu*uv, (bottom). The Standard Model results (green SM
band) include the uncertainty on the form factors. The spectra for
the full Hamiltonian in Eq. (1) are obtained varying the effective
couplings in their quoted ranges (gray NP band). For B —
Byt v, the spectrum obtained omitting the tensor operator T is
also shown (dashed orange lines).

For the u channel, the impact of the NP operators in the
decay distributions is shown in Fig. 10. The spectra in SM
are affected by a small FF uncertainty. Including the NP

1 1 1

0.0 0.2 0.4 0.6 0.8 1.0
7*[GeV?]

FIG. 11. g*-dependent forward-backward lepton asymmetry in
Bf — B,u"v,. The green line corresponds to SM, the gray band
is obtained for the Hamiltonian (1). The dashed orange lines are
obtained excluding the tensor operator 7.
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0.0 0.2

FIG. 12. ¢4 distribution of longitudinally (top) and transversely
polarized B, (bottom) in B — Bju*v,. The color codes are as

in Fig. 10.

operators sizably enlarges the spectrum of the pseudoscalar
mode. The forward-backward asymmetry Eq. (20) for the
pseudoscalar mode shows deviations from the SM expect-
ation mainly due to the tensor operator, Fig. 11.

Large effects are allowed in Bf — B (— Bgy)¢tv,: this
is due to the contribution of the tensor operator, that over-
whelms the other ones if the coefficient ¢/ is varied in the
parameter space bound in [16] using D meson decays.

The distributions of longitudinally and transversely
polarized BY, Fig. 12, show that the tensor operator can
sizably affect the transverse distribution. In SM the
integrated width to longitudinal B}, is larger than to the
transverse one, as shown in Fig. 13. The tensor operator can
reverse such a hierarchy.

NP-All
o
. —— NP-P
— NP-V
NP-R
hand — NP-T
0.40 0.45 0.50 0.55 0.60 0.65 0.70 — SM

Fr

FIG. 13. Fraction of transversely polarized Bj;. The lines
correspond to the SM, to the NP operators in Eq. (1) separately
considered, and to the full set of NP operators.
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FIG. 14. g*-dependent forward-backward lepton asymmetry in
Bf — Bju*v,. The green band corresponds to SM, the gray one
is obtained for the Hamiltonian (1). The region obtained
excluding the tensor operator 7' (dashed orange lines) is also
displayed.
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FIG. 15. Coefficients ¢ , in Eq. (21) for B, — Bju*v,. The
color codes are as in Fig. 14.
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FIG. 16. Correlation between the branching fractions
B(Bf = Byu*v,) and B(Bf — Bju*vy,) in SM (black dot)
and considering the NP operators in Eq. (1). The regions labeled
VR, V, R and T are obtained varying separately the coefficients of
the corresponding operators in their quoted ranges. The NP-All
region refers to the full set of operators in (1).

Also the g?>-dependent forward-backward lepton asym-
metry shows this effect, as seen in Fig. 14. The inclusion of
the tensor operator produces a zero for the Ay distribution
in the range ¢3 € [0.27 GeV?, g2,.], while in the SM ¢} =
0.188(1) GeV? is expected. The position of the zero of
App(g?) has a remarkable discriminating power of NP
operators. The effects of the new operators on the coef-
ficients defined in (21) are shown in Fig. 15.
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0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 17. Correlations between the integrated forward-backward
lepton asymmetry App in Bf — Bju*v,, defined in Eq. (22),
with B(Bf — Byu*v,) (top) and B(Bf — Bju*v,) (bottom
panel). The color codes are the same as in Fig. 16.
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The correlation plots in Figs. 16 and 17 give access to
other information. The branching factions B(B; — Bju*v,)
and B(BY — Byu*v,) are sizably affected by the NP
contributions. The R operator anticorrelates the decay
widths of the pseudoscalar and vector modes, while the V
contribution results in a positive correlation. In particular,
B(Bf — Byu"v,) increases with respect to SM if R is
included, and decreases considering only V. However, the
main effect is due to the tensor operator that strongly
enhances B(B! — Byu'ty,) if its coefficient is varied in
the range quoted in [16]. Such a macroscopic effect on the
one hand requires to further scrutinize the bounds from the D
meson decays, on the other hand shows the relevance of the
B. modes in the search of BSM signals. This is confirmed by
the correlations between the integrated forward-backward
lepton asymmetry Arp and the branching fractions of the
pseudoscalar and vector modes. As shown in Fig. 17, the
integrated Arp, that in SM is predicted to be negative, is
anticorrelated with B(B/ — B,u"v,) mainly due to the
tensor operator. App can become positive in the allowed
range for the coefficient of such an operator, an interesting
experimental signature. On the other hand, A 3 and B(B} —
Buty,) are positively correlated, and the enhancement of
the branching fraction closely follows the enhancement of
App obtained varying the coefficient of the tensor operator.

VI. CONCLUSIONS

The semileptonic B, decays induced by the ¢ — s,d
transitions play an interesting role in SM and in the search
of BSM effects analogous to the ones emerging in B
decays. The heavy quark spin symmetry has allowed to
analyze the full phenomenology of such decays using two
nonperturbative form factors obtained by lattice QCD. The
assessment of the role of the symmetry-breaking terms
requires additional nonperturbative information, namely
|

P08 dp) = @) (="

(P(P)aQIBc(p)) = f5 " (42,

B,.~P, 2
(P(p)|G0,, Q1B (p)) = —i T4

some other form factor in few points of the kinematical
range. We have studied several significant observables in
these decay modes, together with the effects and their
correlations of the SM extension involving dimension-6
operators and left-handed neutrinos.

On the basis of the available information on semileptonic
D decays we have found that sizable deviations from SM are
allowed in B — Bju*v,. Of particular interest are the
correlations of the effects of the NP operators in the various
observables, that can be used to pin down the single
contributions. For example, the branching fractions of the
pseudoscalar and vector modes are positively or negatively
correlated if the R or V contributions are considered. Other
correlations involve the integrated FB lepton asymmetry, in
particular the effect of the tensor operator in the Bf —
Bju*v, mode correlated to the branching fraction. The
position of the zero in the FB lepton distribution, as well
as the fraction of longitudinally vs transversely polarized
final vector mesons constitute other observables worth to
measure.
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APPENDIX A: HADRONIC MATRIX ELEMENTS
AND FORM FACTORS IN SM AND NP

We use the standard parametrization of the hadronic
B. — P,V matrix elements in terms of form factors, with P
a pseudoscalar and V a vector meson. The B. — P matrix
elements of the vector gy, Q current, of the scalar density
gQ, and of the tensor go,,Q and go,,ysQ currents are
parametrized as:

2 2 2
My, —Mp B,—P mp —mp
qﬂ) + fO (qz) 2 q;,N

c

(PuPl = PPl

mg ~+mp
, 21N
(P(P)|g0ursQ|B.(p)) = - " mp wa?” r”. (A1)
2 2
with €123 = 41, The condition f57"(0) = f5<7"(0) holds. Moreover, one has 5" (%) = V:;B;_Z” foe7"(g?) in terms of
q

the quark masses my and m,.
The B, — V matrix elements are parametrized as:

(V(p'.€)lar,Q|B.(p)) =

2VEY (g?)

. KU O ),
le,uya/ie pp ﬂv
mBC + my
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V(P )ararsQIBo(p)) = (my, +my) ( —%qﬂ)/&?ﬁﬁqa

(e - q) ( / my_ — my > B>V, 2 2my v, 5
A + — c A c + €* . A c ,
mp_+ my (p+p )ll qz qu ) A2 (q7) +( q) q2 9,0 (q7)

va

(V(p',€)|arsQ|B.(p)) = - (€ - A" (g%).

mQ—l—mq

*

B -V € ? B~V . B~V o
< (p €)|q0ﬂyQ|B (p)> (q2) (m +m )2 emxaﬁp( p/ﬁ + T] (qz)eﬂv(t/}p( € 4 + T2 (q2)€;wa/ip/( € ﬂ,
B, 1%
- B, -V € - .B.—V " .
V(P €)goursQIB.(p)) = iTy " (%) ny T o) (PPl = Pupy) + Ty 7 (@) (Pues = €up0)
+iT3 Y (4?) (Phes — €;p)) (A2)

with the condition

mg — My p_y
— —A° . A
A (0) (A3)

mg +my p_y

Ay (0) = APY(0) -

2mV

The relations among the form factors and the universal functions Q;(y) and Q,(y) are obtained using Eq. (12) [6]:
(P(v. k)|gr, Q1B (v)) = 2\/mp mp(L (y)v, + o (y)k,).
(P(v.k)|gQ|B.(v)) = 2\/mp mp(Q(y) + agx(y)v - k).

<P(7j7 k) éGﬂUQ|BC(/U>> _21\/ mBCmPaOQZ<y)(U/4kv - Ul/kﬂ)’ (A4)

with P = B, 4, p = mg v, and p’ = mpv + k,

(V(v. k. €)|gr,Q|B.(v)) = Zi\/chmVaOQZ(y)eﬂuaﬁe*ykavﬁ’

(V(v. k. €)|gqr,rsb|B.(v)) = 2\/mp my (6}2(91 () + v - kayQs(y)) - <UM - ,]:l—”v € - kaon(y)>,
<V(1) k, €)|6_16;41/Q|B (U)> = _2\/ mB(.mV(euyaﬁe*avﬁQl (y) + euuaﬁe*akﬁaOQZ(y))’
(V(v. k. €)|go,,rsQ|B.(v)) = 2i\/mp my (€, (v, (y) + k,aoQ(y)) — €:(v,2:(y) + k,ap€2(y))). (A5)

where V =B, and y = 1 +n;Tf‘v Invoking the HQ spin symmetry and comparing the first equation in (Al) to the

corresponding one in (A4), the form factors €, and €, are obtained from f, and f:

+
= e (s, = me P = S )+ )
1
aofd = W ((mp, = mp)(fy = fo) + ) (A6)

with g> = mj_+ mp — 2mp mpy. These correspond to the results in Fig. 2. Further comparing (A1) to (A4), as well as (A2)
to (AS), the relations of all form factors in terms of €, can be derived. For B, — P one has:

N m
fﬁ” F= y/i(gl + (mg, —mp)ap,),

mp 1

B.—P
PO = [ (4 g7 = mE)R () (g, = m)? = 6)ag)
B( B(,‘ - P
B.—P _ |[Mp
fro = P (mp, +mp)ag,. (A7)
B

c
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For B, — V one has:

VBL-_’V — —V(mB —|— mv>a092,
B,
Ag“_)v = _ (2mp Q) + (mf —my + g*)ap€y).
2,/mg Tty '
AB=V 2, /iy my ! Q
1 B( Vv mB( + mv 1s
AZBL—>V I 73(me" + mV)aOQZ’
N m
Tf” V—» ﬁ(gl — myap€),
Ty ™" = 2/mig myagy,
75" = 0. (48)

Eqgs. (A7)—(A8) are obtained for v - k = 0. Only Ay, are modified if this condition is not imposed, the other relations
remain unaffected.

APPENDIX B: COEFFICIENT FUNCTIONS IN THE B, — V(- Py)¢v, FULL
ANGULAR DISTRIBUTION

In Tables II-VI we collect the functions /; in Eq. (3) for all operators in the Hamiltonian (1), with H, H,, H, and
HYP  HY? defined in Egs. (7), (8).

TABLE II. Angular coefficient functions in the decay distribution Eq. (3) for the Standard Model.

i ™
L 2m3HG + Hi(m3 + ¢°)
Iy § (H% + H?)(m7 +3¢°)
Iy, Hi(m3 — %)
Ly —H(H3 + H2)(m2 — ¢P)
15 H H_ (¢ —m})
1y —3Ho(H, +H_)(m; - ¢*)
Is H,(H, +H_)m%+Hy(H, - H_)q?
Iy —4H,Hym>
Tse J(HY —H2)q?
I789 0

TABLEIII.  Angular coefficient functions in NP with the operator Oy and interference SM-R terms. The functions
I¥ are obtained from the corresponding SM functions replacing H, <> H_.

i IIR I%NT.R
Iy 2mpH7 + Hi(m7 + ¢°) —2myH} — Hi(m3 + ¢°)
I g (HY + H2)(m7 +3¢°) —HH_(m} +34%)
B Hi(m}, — q°) —H{(m? - ¢%)
I, ~L(H2 + H2)(m2 - ) iH H_(m} - q°)

I3 H H_(q* —m?) L(HA + H2)(m2 - ¢%)
1y —3Ho(Hy +H_)(m3 - ¢*) sHo(H +H_)(m; - ¢*)
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TABLE III. (Continued)

i 1% IR
Is H,H,+H_)m> -Hy(H, —H_)q* -H,(H, +H_ )m>
I, —4H Hym? 4H,Hym>
I6c _%(H%r_H%)qz 0
I 0 —-H,(H, —H_)m>
Ig 0 sHo(H = H_)(m; - q°)

b 0 L(H - H2)(m} — )

TABLE IV. Angular coefficient functions for NP with the pseudoscalar P operator, and interference SM-P terms.

i I?IP,P IﬁNT‘ P
1 2 4t 2 my
Is 2Ht (mg+mq)2 ZH, mQ;mq
Lic2500603489 0 0
, I; Y 0 H.(H H m(,qz
‘ (Hoe 4 Ho) oty
m 2
I6S 0 _ZH’HO mQqu
1 myq?
7 0 H,(H,-H_) 2(mQ[zm,,)

TABLE V. Angular coefficient functions for NP with the tensor 7" operator and interference SM-T terms.

i 1{,‘“’1 I%NT.T
Ly 16 (H)")*(m7 + ¢°) ~LENHom, /¢
he  IHSR + G0 + ) _HH, § HH Ymo
L, LR~ ) 0
Le R+ (BRI - ) 0
2 AN (g7 — ) 0
Iy -3 HiP(HY + HYP) (g% — m3) 0
Is P HY'(HY — HZ)mg —L[HYP(H, — H_) + 8H\F(H, + Hy) + 8HYY(H, — H)lmo/
Ig, 0 LTHYP H mo\/q?
Ig. 2[(1—[111))2 - (HI:]P)Z]m% _(HIiPHJr - HI:IPH—)mf\/q-i
b 0 ~V[HNP(H, + H_) — 8HNP(H, + Hy) + 8HNP(H, — Ho)lms\/ ¢
Iso 0 0

TABLE VI. P-R, R-T and P-T interference terms in the angular coefficient functions.

; I}NT,PR I%NT,RT IENTA,PT
2
Iy —2H? o LHHY /4 0
Iy, 0 (HNPH_ + HNPH Ymy+/ ¢? 0
Iysnc3489 0 0 0
myq® 213/2
Is ~H((H, + H_) gt §[HYT(H_ = H.) + 8HYT(H, + Hy) +8HY"(H, = Ho)lm\/q* —H,(HYF + HYP) Mo
I, myq> 1 NP Vo) 2132
6s ZH’HO #‘qu‘, 2 H’HL mev 4 HTHEP Z(Erlqgl»m,,)
Io. 0 (HNPH_ — HNPH Ymgv/ ¢ 0
P 243/2
17 Hz(H+ _H—)z(n::#mq) _%[H§P(H— +H+) _SHIIP(Hr‘i‘HO) +8H1:]P(Ht—H0)]me ‘]2 —Ht(HEP—HIjP)’iZlmq
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