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Fifth forces arising from hidden sector scalar operator exchange, as probed in a variety of present and
planned experiments, can be captured by a general dispersion relation involving one real, positive, spectral
density function. Previously considered scalar fifth forces, from tree-level to more exotic loop-level
possibilities, are derived in this formalism, without explicitly performing conventional loop calculations. A
variety of experimental observables commonly used in fifth force searches are also presented in the same
formalism, allowing the straightforward extraction of limits on any specific model. The speculative
possibility of probing hidden sector violations of unitarity, causality, or locality, manifested as a breakdown
of the positivity of the spectral density, is also discussed.
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I. INTRODUCTION

It has taken decades to explore the dark side of the
Standard Model (SM), and there is still much left to
uncover. For example, although they harbor just a fraction
of the cosmological SM energy quota, neutrinos provide a
unique window through which to study the Universe.
Similarly, light states from dark sectors may also have
much to tell us. The exchange of new light particles by
ordinary nucleons would generate an additional, and
potentially observable, “fifth” force between them. A
plethora of experimental searches have been initiated in this
vein, looking for newweakly coupleddark sector states.With
current and near-future advances in quantum sensing tech-
nologies unlocking a host of new search avenues at the
precision frontier (see, for example, Refs. [1–4]), the hunt has
entered a new and exciting chapter.
Any search for new states requires direction, otherwise

experimental effort may be spent in unpromising phenom-
enological corners. Often that direction comes from con-
sidering toy theoretical models which are simple enough to
provide concrete predictions while, one hopes, still captur-
ing the relevant phenomenological characteristics of more
complex, realistic constructions. Interpretations of fifth
force experiments to date have primarily focused on the

simplest such model: tree-level exchange, although some
theoretical attention has been given to more exotic pos-
sibilities. In Ref. [5], spin-independent forces arising from
double pseudoscalar exchange were considered using a
dispersion technique [6]. More recently, the spin-indepen-
dent internucleon potentials generated by the exchange of a
sample of scalar and vector composite operators compris-
ing pairs of dark scalars, fermions, and vectors, have been
calculated within an effective field theory framework [7].
Experimental constraints on those involving scalar fields
were determined in Ref. [8] using the results from a number
of recent fifth force experiments. Some of the potentials
and exclusion limits computed in these works will be
reexamined in this paper through a new lens. A number of
possibilities for spin-dependent forces arising from various
theoretical scenarios have also been presented in Refs. [9–
11]. The variety in force properties revealed in these
examples motivates a broader study of the fifth force land-
scape, which to date remains scantly explored. Indeed, very
recently itwas argued that newquantum forcesmay be linked
to some muonic puzzles [12], providing further motivation
for a systematic exploration of theoretical possibilities.
Ideally, to escape the inherent limitations of model-by-

model investigations, one seeks a completely general
description that would encapsulate the broadest possible
set of features. While this appears, from a theoretical
perspective, too cumbersome to be useful, there are some
scenarios in which the basic properties of quantum field
theories (QFTs) are sufficient to delineate a broad swatch of
possibilities, without needing to resort to a significant
number of toy models.
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Consider the case where some SM states, contained
within the gauge-invariant scalar composite operator OSM,
are very weakly coupled to some new dark sector (DS)
states within the scalar composite operator ODS. If suffi-
ciently light, these states may generate miniscule forces in
terrestrial experiments. By “force” we mean a process in
which both the initial and final states contain only SM
particles, i.e., SM → SM scattering. We assume that the
dark sector states are not cosmologically abundant and that
scattering of the form SMþ DS → SMþ DS is not phe-
nomenologically relevant. We may write such an inter-
action as

Lint ¼ cOSMODS; ð1Þ

where c is a small coupling. At OðcÞ, the only corrections
to SM physics are through the renormalization of SM
operators, which can be absorbed into their parametric
definition. At Oðc2Þ however, as depicted in Fig. 1, new
forces arise whenever the dark sector states (whatever they
may be) are integrated out. Since we have not specified any
details of the dark sector, this scenario seems too general to
be predictive. The goal of this work is to show that this is
not the case. The reason is that the nature of the force is
determined by the correlation function

hODSðxÞODSðyÞi; ð2Þ

which, thanks to insightfulwork in the early days of quantum
field theory, admits a general representation in terms of a
single integral: the Källén-Lehmann representation.1 As a
result, any new scalar force arising from the exchange of dark
sector states may be characterized in a simple, minimal
manner. In this work we exploit this to propose a new
approach to parametrizing dark sector forces, underpinned

by the Källén-Lehmann representation, as a unified, general
language for organizing the exploration of dark fifth forces.
To demonstrate the power of this approach, after deriving

the main results in Sec. II, we show in Sec. III that many of
the predictions of toy models previously considered in the
literature concerning weakly coupled fifth forces, from
tree-level to loop-level particle exchange, may be obtained
without resorting to conventional loop calculations. Such
models apply to dark sectors whose internal dynamics can
be treated perturbatively. It is equally plausible, however,
that dark sectors may involve strongly coupled dynamics.
In this case, perturbative models will fail and only general
nonperturbative tools such as the Källén-Lehmann repre-
sentation can be trusted to faithfully describe the under-
lying processes. In Sec. V we map a sample of interesting
possibilities for dark sector–mediated forces by calculating
present experimental bounds on a handful of example
scenarios. Importantly, the relevant experimental observ-
ables for spin-independent fifth force searches, presented in
Sec. IV, are expressed in general terms, such that bounds
may be cast for any dark sector fifth forces with ease.
We may also use this formalism to look beyond QFT.2

It is possible that some concepts fundamental to quantum
field theory such as locality, unitarity, and causality may
break down at ultramicroscopic scales in the deep UV,
perhaps related in some way to the UV completion of
quantum gravity. However, it is also possible, but perhaps
not so plausible, that these fundamentals may be violated in
the IR at scales accessible to experiment, having been
hidden thus far due to an extremely weak coupling rather
than an inaccessibly high energy scale. Were this the case,
one would wish to be able to identify not only the presence
of some new sector of states beyond the SM, but also
whether there are any telltale signs of the breakdown of
these fundamentals in experimental observables. To this
end we note that the Källén-Lehmann representation has
these properties hardwired into one feature: positivity of the
integrand. This leads to forces that are a monotonic
function of distance. The general framework proposed
here thus allows one, at least in principle, to diagnose
when some fundamental property of QFT is potentially
being violated. However, this is only under some important
assumptions. The first is the assumption of scalar operator
exchange. Since different spin operators can generate
forces of different signs, a nonmonotonic force profile
could also arise from the interference of different spin
operators. If it could be experimentally determined that the
operator is scalar, then this assumption would not be
necessary. A second is the assumption that the hidden
sector states are all positive norm. This may seem a
relatively safe assumption, however, hidden sector gauge
groups could, in principle, contribute negatively through

FIG. 1. Factorization of iM for SM fermion scattering into the
external SM states and the mediating hidden sector ones in ΔðqÞ,
represented by the shaded circle.

1The generality of the Källén-Lehmann spectral representation
has previously been exploited to make model-independent state-
ments in a variety of contexts. See Ref. [13] for an example of its
application to self-tuning and the cosmological constant problem.

2QFT constraints on light states have been previously consid-
ered in Refs. [14,15].
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intermediate negative norm states [16]. Finally, we empha-
size that even under the assumption of scalar operator
exchange, breakdown of positivity may not reveal precisely
which fundamental concept is breaking down. Nonetheless,
with these caveats in mind, by employing the simple
mapping from the general Källén-Lehmann representation
to experimental observables presented in Sec. IV, we
explore in Sec. V some potential experimental features
that may not only reveal the existence of a hidden sector but
also potentially place interesting experimental limits on the
presence of nontrivial dynamics which could signify a
breakdown of QFT itself within the dark sector.

II. FROM QFT AMPLITUDES TO POTENTIALS

We first review how particle exchange generates a poten-
tial within the framework of QFT. Consider the scattering of
two distinguishable fermionsΨ, of equalmass,M, and initial
4-momenta p1 and p2 to states of 4-momenta p0

1 and p0
2,

respectively.We denote theQFTamplitude for this process to
be iM. To extract the force felt by each fermion, we turn to
the description of scattering in nonrelativistic quantum
mechanics. In Born’s approximation, the leading order
amplitude ANR for a particle of 3-momentum p to scatter
in a potential VðrÞ to a momentum p0 is

ANR ¼ −i
Z

d3re−iððp0−pÞ·rÞVðrÞ: ð3Þ

The amplitude iM can be compared with ANR on taking the
nonrelativistic limit, and dividing by a factor of 4M2 to
account for the implicit use of relativistically normalized
states. The interfermion potential can thus be identified as

VðrÞ ¼ −
1

4M2

Z
d3q

MNR

ð2πÞ3 e
iq·r; ð4Þ

where q ¼ p0 − p is the momentum transfer between the
fermions, and the superscript NR indicates evaluation in the
nonrelativistic limit.

A. The Yukawa potential

Consider the case where the fermion interaction is
mediated by the tree-level exchange of a single scalar,
ϕ, of mass m and Yukawa coupling λ. In the nonrelativistic
limit, M ≫ p, the amplitude becomes

iMNR ¼ −4iλ2M2δs1s
0
1δs2s

0
2ΔNR

F ; ð5Þ

where

ΔNR
F ¼ −

1

m2 þ jqj2 ð6Þ

is the (nonrelativistic) propagator for ϕ and s1;2 (s01;2)
denote the spin polarizations of each of the incoming

(outgoing) fermions. Inserting this into Eq. (4), converting
to polar coordinates and using a contour integral to evaluate
the integral over jqj in the complex plane yields the familiar
Yukawa potential:

VðrÞ ¼ −
λ2

4π

e−mr

r
: ð7Þ

We now employ this textbook result to generalize beyond
Yukawa forces.

B. Generalized potentials

We seek to develop a prescription capable of describing
the potential generated by any possible scalar operator
exchange. Assuming that the hidden sector couples only
weakly to the SM, the amplitude for SM scattering will also
take the form of Eq. (5) for some ΔðqÞ which encapsulates
the mediating dark sector dynamics. The factorization of
the amplitude into the external SM, and internal hidden
sector states in this way is shown schematically in Fig. 1.
In direct analogy with the Yukawa interaction, we can

think of this as being a tree-level exchange generated from
an effective ∼λΨ̄ΨΦ term in the Lagrangian, for some
scalar operator Φ, which is itself a function of the
elementary hidden sector fields. In this picture, Δ plays
the role of an effective scalar propagator forΦ. As with any
scalar two-point function, it is therefore possible to express
Δ in Källén-Lehmann spectral form as

ΔðqÞ ¼ 2

Z
∞

0

μdμ
ρðμ2Þ

q2 − μ2 þ iϵ
; ð8Þ

for some real and positive-definite spectral density ρðμ2Þ
[17]. Inserting the nonrelativistic limit of Eq. (8) into
Eq. (4) yields

VðrÞ ¼ −
λ2

2πr

Z
∞

0

μdμρðμ2Þe−μr: ð9Þ

This is the most general form of the potential generated
from scalar operator exchange allowed within the general
postulates of QFT.

III. EXTRACTING THE SPECTRAL DENSITY

To find ρðμ2Þ for a specific interaction, we note that

ρðq2Þ ¼ −
1

π
ImfΔðqÞg: ð10Þ

It is clear that for tree-level scalar exchange,
ρðμ2Þ ¼ δðμ2 −m2Þ. Indeed, inserting this into Eq. (9)
recovers the Yukawa potential. As we shall see, computing
the scattering potential directly from ρðμ2Þ offers consid-
erable advantage in the case of loop exchange, since only
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the imaginary part of iM is required, bypassing the need
for conventional loop calculations.

A. One-loop exchange

To illustrate the utility of this spectral representation to
describe scalar-mediated scattering, we first consider a set
of specific toy hidden sector models, each comprising a
single dark field coupled bilinearly to SM fermions.
Denoting a generic spin 0, spin 1=2, and spin 1 hidden
field of mass m by ϕ, ψ , and Vμ, respectively, we consider,
in turn, the following extensions to the SM Lagrangian:

ðAÞ 1

Λ
OSMjϕj2; ðBÞ 1

Λ2
OSMψ̄ψ ;

ðCÞ m2

Λ3
OSMjVj2; ðDÞ 1

Λ3
OSM∂μϕ

�∂μϕ; ð11Þ

where OSM is the bilinear SM fermionic operator Ψ̄Ψ
evaluated below the QCD scale. For practical purposes this
will be a bilinear of nucleons, N̄N. The potentials generated
by these operators were calculated in Ref. [7], and exper-
imental bounds on (A) and (D) were placed in Ref. [8]. We
write the generic nucleon–hidden sector coupling constant in
terms of appropriate powers of a coupling scale Λ.
Note that for this effective description to be valid we

require the UV completion of each interaction to lie beyond
the energy scale being probed by the experiment, which, in
this case, does not typically exceed theOðMeVÞ level. This
does not, however, imply that the effective theory descrip-
tion holds at accelerator energy scales, or even that it
holds with equivalent validity at different fifth force
experiments. For instance, consider generating the inter-
action in (B) by integrating out anOðkeVÞmass scalar with
Oð10−3Þ couplings to OSM and Ψ̄Ψ. This will generate
Λ ∼OðMeVÞ. The effective theory description breaks
down at the OðkeVÞ level, well before accelerator energy
scales, and even at wavelengths longer than those probed
by some fifth force experiments. As a result, bounds on this
type of model would have to be computed for this specific
scenario with the mediating field included where necessary.
With this in mind, we will not attempt to determine high
energy constraints on these couplings which, for certain
UV completions, may be very stringent and potentially
invalidate large regions of parameter space. Instead we
emphasize that it is necessary to remember throughout that
the validity of the effective field theory description of the
interactions may break down if the UV completion enters at
energies below those being probed experimentally.
A further UV consideration is that of naturalness. The

operators (A)–(C) explicitly break any symmetries that
could have kept the dark sector states light. As a result,
depending on the magnitude of Λ and the relevant UV
cutoff in the SM and/or dark sector, additional tuning or
stabilization mechanisms may be required. Since this also
depends on the microscopic physics, we will not attempt a

discussion of any fine-tuning considerations, but emphasize
that such aspects should be considered for complete
models.
As the coupling is bilinear, the leading order contribution

to the potential from these interactions is at the one-loop
level. In the notation of Sec. II, the “effective” propagators,
ΔðqÞ, for these interactions are the negative of the bubble
diagrams in Fig. 2. In order to make use of Eq. (9), we need
the imaginary part of these loops. These are most simply
computed via cuts according to the optical theorem for
forward scattering:

2ImfMðA → AÞg ¼
X
X

Z
dΠXð2πÞ4δ4ðpA − pXÞ

× jMðA → XÞj2; ð12Þ

where dΠX is the Lorentz-invariant phase-space factor for
the state X. If MðA → AÞ is a one-loop amplitude then
MðA → XÞ corresponds to the tree-level cut, illustrated
in Fig. 3.
Noting the resemblance of the rhs of Eq. (12) to the

structure of usual cross-section and decay rate calculations,
it is natural to interpret this as the 4-momentum conserving
decay of an (external) source of momentum q, to a final
state of two equal mass hidden sector particles. The form of
ρðμ2Þ and corresponding potentials calculated in this way
are given in Table I. Some additional details on the
calculation of ρ can be found in Appendix A. We note
that the potentials extracted here agree with those found in
Ref. [7], with the exception of (C), for which we find a
different functional form. The potentials are all attractive,
as expected for scalar operator exchange, and behave as
r−3, r−5, r−7, and r−7, respectively, in the short-distance
limit.

FIG. 2. Feynman diagrams representing −ΔðqÞ for interactions
(a) A and D, (b) B, and (c) C.

FIG. 3. The cut of the bubble diagram in Fig 2(b).
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B. Multiple-loop exchange

To further highlight the utility of this approach we
consider the following generalization of interaction (A):

1

Λn−1OSMϕ
n; ð13Þ

where n is a positive integer and ϕ is explicitly real. At
lowest order, SM-SM scattering proceeds via (n − 1)-loop
exchange. The Feynman diagram in the case in which n ¼
3 is shown in Fig. 4. The cut diagram, as required to use the
optical theorem, is a tree-level process, as illustrated in
Fig. 5, and can be interpreted as the decay of an external
momentum source q into a final state X consisting of n
equal mass particles of momentum ki, for i ∈ f1;…; ng.
The amplitudes for such processes are constants, leading to
spectral densities

ρnðμ2Þ ¼
n!
2π

InðμÞ; ð14Þ

which are proportional to the integral over the Lorentz-
invariant phase space of the final n-body state3

InðμÞ ¼
Z

dΠXð2πÞ4δ4
�
μ −

Xn
i

ki

�
: ð15Þ

We note that μ must exceed the sum of the masses of the
final state particles: nm. Each In is thus implicitly accom-
panied by a Heaviside step function Θðμ2 − n2m2Þ. The In
can be computed recursively using the relations given in
Appendix B. For the case n ¼ 3 we find that

ρ3ðμ2Þ ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμ −mÞðμþ 3mÞp
128μ2π4

×

�ðμ −mÞðμ2 þ 3m2Þ
2

Eðk̃Þ − 4m2μKðk̃Þ
�

× Θðμ2 − 9m2Þ; ð16Þ

whereK and E are the complete elliptic integrals of the first
and second kinds and

k̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþmÞ3ðμ − 3mÞ
ðμ −mÞ3ðμþ 3mÞ

s
: ð17Þ

To obtain the corresponding potential we use numerical
integration. Figure 6 shows the potential VðrÞ for the case
where the hidden scalars each have a mass of 1 eV. At short
distances, the potential scales as r−5, as dictated by
dimensional analysis.

C. Beyond QFT

Given that it encodes, under a reasonable set of assump-
tions, fundamental principles such as unitary, causality,
locality, etc., it is tempting to consider what happens if the
constraint ρ ≥ 0 is relaxed. As a crude first step in this
direction we may consider, solely for illustrative purposes,
a spectral density function of the form

TABLE I. ρðμ2Þ and VðrÞ for the interactions in Eq. (11) as computed via the optical theorem. Kn is the nth modified Bessel function
of the second kind, Θ is the Heaviside step function, and η takes a value of 1 if the field is self-conjugate and 1=2 if not.

Operator ρðμ2Þ VðrÞ
(A) η

8π2
ð1 − 4m2

μ2
Þ12Θðμ2 − 4m2Þ − ηm

8Λ2π3r2 K1ð2mrÞ
(B) μ2η

4π2
ð1 − 4m2

μ2
Þ32Θðμ2 − 4m2Þ − 3ηm2

2Λ4π3r3 K2ð2mrÞ
(C) μ4η

32m4π2
ð1þ 12m4

μ4
− 4m2

μ2
Þð1 − 4m2

μ2
Þ12Θðμ2 − 4m2Þ − 3m3ηð5þm2r2Þ

8Λ6π3r4
K3ð2mrÞ

(D) μ4η
32π2

ð1 − 4m2

μ2
þ 4m4

μ4
Þð1 − 4m2

μ2
Þ12Θðμ2 − 4m2Þ − η

8Λ6π3
ð15m3

r4 þ m5

r2 ÞK1ð2mrÞ − η
4Λ6π3

ð15m2

r5
þ 3m4

r3 ÞK2ð2mrÞ

FIG. 4. Feynman diagram representing -ΔðqÞ for lowest order
SM-SM scattering generated by the operator 1

Λ2 OSMϕ
3.

FIG. 5. The cut of the bubble diagram in Fig. 4.

3Note that the factor of 1=ðn!Þ needed to account for the fact
that the final state particles are identical is not included in In as
defined here but is instead absorbed into the prefactor. See
Appendix B for further details.
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ρvðμ2Þ ¼ Θðμ2 − μ20 þ aμ20ÞΘðμ20 − μ2Þ
− Θðμ2 − μ20ÞΘðμ20 þ bμ20 − μ2Þ; ð18Þ

for constants 0 < a < 1 and b > 0, which set the respective
widths of the positive and negative regions as illustrated in
Fig. 7. The corresponding potential generated is

VðrÞ ¼ −λ2
fðaÞ þ fð−bÞ − 2e−μ0rð1þ μ0rÞ

2πr3
; ð19Þ

where

fðxÞ ¼ e−μ0r
ffiffiffiffiffiffiffiffiffi
ð1−xÞ

p
ð1þ μ0r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ

p
Þ; ð20Þ

and λ denotes the nucleon–hidden sector coupling constant.

If a ¼ b the potential becomes “screened,” tending to a
finite value in the short-distance limit. More interestingly,
we note that for b > a, the potential develops a turning
point. It is clear from Eq. (9), that this could not happen if
ρ ≥ 0 everywhere, demonstrating that turning points in the
potential are a possible probe for the presence of different
spin operators or, more speculatively, under the assumption
that the interaction is generated by scalar operator
exchange, violations of some fundamental postulates.

IV. EXPERIMENTAL SEARCHES

In this section we review several of the main exper-
imental approaches to searching for spin-independent fifth
forces. Extensively using the mappings from internucleon
potentials presented in Ref. [8], we recast the primary
observables in terms of ρðμ2Þ. We then use these in
conjunction with recent experimental results to place
exclusion bounds on the models considered above, and
investigate how the landscape of constraints varies for
different forms of ρðμ2Þ.

A. Molecular spectroscopy

Simple molecular systems, for which both precision
measurements and theoretical predictions of the energy
spectra exist, can be used to probe anomalous forces with
ranges on the order of the internuclear separation [18,19].
“Exotic” systems, such as the antiprotonic helium ion,
p̄4Heþ, and muonic molecular deuterium ion, ddμþ, in
which an electron is replaced by a heavier particle (p̄ and
μ−, respectively) are of particular interest, as the reduction
in internuclear separation affords the means to probe
shorter-range forces.
To first order in perturbation theory, the presence of an

additional internucleon interaction with potential VðrÞ
would induce a shift to the energy of a given molecular
state ψ by an amount

ΔEψ ¼
Z

d3rψ�ðrÞVðrÞψðrÞ: ð21Þ

In terms of the spectral density function this becomes

ΔEψ ¼−
λ2

2π

Z
d3rψ�ðrÞ1

r

�Z
∞

0

dμμρðμ2Þe−μr
�
ψðrÞ: ð22Þ

In practice, it is typically the energy to transition between a
pair of states ψ1 and ψ2 that is measured experimentally. The
modification to such an observable is thus ΔEψ1

−
ΔEψ2

≡ ΔE. If the experimentally measured energy of a
transition is consistent with its theoretical prediction from
QED, bounds on anomalous forces can be obtained by
demanding that the combined theoretical and experimental

uncertainty, δE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δE2

th þ δE2
exp

q
, exceeds the anomalous

shift ΔE [8].

FIG. 6. The potential VðrÞ generated by the operator 1
Λ2 OSMϕ

3

for m ¼ 1 eV.

FIG. 7. Sketch of the form of ρvðμ2Þ as defined in Eq. (18).
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We perform this procedure for the transitions between
the ðν ¼ 1; J ¼ 0Þ − ðν ¼ 0; J ¼ 0Þ states of molecular
hydrogen, H2; the ðν ¼ 4; J ¼ 3Þ − ðν ¼ 0; J ¼ 2Þ states
of the hydrogen-deuterium ion, HDþ; the ðn ¼ 33; l ¼
32Þ − ðn ¼ 31; l ¼ 30Þ states of p̄4Heþ; and the binding
energy of the ðν ¼ 1; J ¼ 0Þ state of ddμþ. Here ν, J, n,
and l denote the rotational, vibrational, principal, and
azimuthal quantum numbers of the state, respectively.
The integration over r is completed numerically using
the wave functions in Refs. [18,20]. The values of the
combined theoretical and experimental uncertainty used to
impose the bounds are quoted in Table II. In the small r
limit, the wave functions of all the states considered here,
except that of ddμþ, are constant, and assume such small
values that they can be neglected. In contrast, the wave
function of the (ν ¼ 1, J ¼ 0) state of ddμþ scales as ∼r
[8], such that the tail at small r is non-negligible. We thus
adopt the practice used in Ref. [8] of imposing a UV cutoff
in the integration at ruv ¼ 2 fm, the approximate radius of
the deuteron.

B. Bouncing neutrons

Another approach is to bounce “ultracold” neutrons froma
plane mirror [21–24]. For sub–∼10 μm bouncing heights,
the neutronverticalmotion is quantized due to the interaction
with the terrestrial gravitational field [24]. At a vertical
distance z above the mirror, the neutrons experience a
gravitational potential of strength VðzÞ ¼ mngz, with mn
the mass of the neutron, and g the local gravitational
acceleration. The wave functions of allowed states are
Airy functions

ψkðzÞ ¼ ckAi

�
z
z0

− ϵk

�
; ð23Þ

where ϵk denotes the sequence of negative zeros of the Airy
function, i.e., Aið−ϵkÞ ¼ 0; z0 ¼ ðℏ2=ð2m2

ngÞÞ13; and ck is a
normalization constant [21]. The corresponding energies are
Ek ¼ mngz0ϵk. In the presence of an anomalous internucleon
force, the neutron experiences an additional potential due to
its interactions with nucleons in the mirror. Assuming the
nucleon density in the mirror to be constant, the additional
potential at a height z is

δVðzÞ ¼ 2π
ρglass
mn

Z
∞

z
dz0

Z
∞

0

dρ̃ ρ̃VðrÞ ð24Þ

¼ 2π
ρglass
mn

Z
∞

z
drrðr − zÞVðrÞ; ð25Þ

where VðrÞ is potential between the neutron and a single
nucleon at a distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02 þ ρ̃2

p
. The integration is over

the bulk of the mirror, which is taken to be semi-infinite in
extent. In terms of the spectral density function this becomes

δVðzÞ ¼ −λ2ρglass
mn

Z
∞

0

dμ
ρðμ2Þe−μz

μ
: ð26Þ

To first order in perturbation theory, this induces a shift in the
kth energy level of

δEk ¼
Z

∞

0

dzjψkðzÞj2δVðzÞ: ð27Þ

The energy differenceE3 − E1 has been measured by means
of gravity resonance spectroscopy at the Institut Laue
Langevin [25]. The value was found to be consistent with
the theoretical prediction of the unperturbed spectrum.
Bounds on anomalous forces can thus be placed by demand-
ing that the theorized anomalous shift δðE3 − E1Þ ¼ δE3 −
δE1 is less than 10−14 eV, the experimental precision of the
measurement [25].

C. Experiments with effective planar geometry

A further class of experiments designed to search for
fifth forces are those which measure the force of attraction
between two objects, typically either spherical or planar in
shape, at submillimeter separations [26–30]. For parallel
plate configurations, it is straightforward to compute the
anomalous interplate potential analytically by integrating
the pairwise potential over the plate volumes. Where the
overall geometry is not planar, as in sphere-plane or sphere-
sphere cases, this is considerably more involved. If the
object separation is small relative to their sizes, however,
such systems can be treated under the proximity force
approximation (PFA). This connects the force FðsÞ
between two objects of finite curvature at separation s,
to the potential per unit area between two infinite parallel
plates of the same composition and spacing, VppðsÞ, via a
constant of proportionality Reff [31]

FðsÞ ¼ 2πReffVppðsÞ: ð28Þ

TABLE II. The values of the combined theoretical and experimental uncertainty, δE, for the molecular
spectroscopy experiments used to constrain anomalous forces in this work.

System H2 HDþ p̄4Heþ ddμþ

δE 3.9 neV [18,19] 0.33 neV [18,19] 24.81 neV [20] 0.7 meV [20]

CHARTING THE FIFTH FORCE LANDSCAPE PHYS. REV. D 103, 075018 (2021)

075018-7



For plate-sphere configurations Reff assumes the value of
the sphere radius, and for two spheres of radii R1 and
R2, Reff ¼

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
.

In computingVpp, it is important to account for the fact that
the objects used are typically coated with several layers of
different materials. Following Ref. [8], we characterize an
object of bulk density σ coated in n successive layers
of density σn and thickness Δn by a piecewise density
profile, γðzÞ:

γðzÞ ¼

8>>>>><
>>>>>:

σn 0 < z < Δn

σn−1 Δn < z < Δn þ Δn−1

..

.

σ z >
P

n
i Δi

:

Denoting the anomalous potential between a single pair of
nucleons as VðrÞ, it follows that the potential per unit area
Vpp between plates with density profiles γ1ðzÞ and γ2ðzÞ
separated by a distance s is

VppðsÞ ¼
2π

m2
n

Z
∞

0

dρ̃ ρ̃
Z

∞

0

dz1γ1ðz1Þ
Z

∞

0

dz2γ2ðz2ÞVðrÞ;

ð29Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̃2 þ ðsþ z1 þ z2Þ2

p
. In terms of the spectral

function this becomes

Vpp ¼ −
λ2

m2
n

Z
∞

0

dμ
ρðμ2Þ
μ2

e−μsJ1n1ðμÞJ2n2ðμÞ; ð30Þ

where

JiniðμÞ ¼ σn þ
Xni
l¼1

ðσl−1 − σlÞ exp
�
−μ

Xni
i¼l

Δi

�
: ð31Þ

In this work we follow the treatment of Ref. [27] in
interpreting the results of force measurements between a
polystyrene sphere of radius R ¼ 95.65 μm and a flat
sapphire disk made using atomic force microscopy (AFM)
by Harris et al. [32]. Measurements were recorded for
sphere-plate separations in the range 62–350 nm. The sphere
and disk had bulk densities of ρpol ¼ 1.06 g cm−3 and
ρsap ¼ 3.98 g cm−3, respectively, and were each coated in
aΔ ¼ 86.3 nm layer of gold of density ρAu ¼ 18.88 g cm−3.
According to the PFA, the anomalous force between the
bodies when at a separation s is

FðsÞ ¼ −
2πRλ2

m2
n

Z
∞

0

dμ
ρðμ2Þe−μs

μ2

× ðρAu þ ðρsap − ρAuÞe−μΔÞ
× ðρAu þ ðρpol − ρAuÞe−μΔÞ: ð32Þ

From this expression it is clear that the largest forces and
hence strongest constraints will come from the smallest
value of s. The rms deviation of the measured force Fexp,
from the theoretical prediction of the sum of established
(Casimir and electrostatic) forces, Fth, for the N ¼ 2583
measurements made across all separations,

σrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðFexp − FthÞ2

N

s
; ð33Þ

was determined to be 3.8 pN. As this exceeds the quoted
experimental uncertainty on the measurement at s ¼ 62 nm
of 3.5 pN, we cast (conservative) bounds on anomalous
forces by demanding that jFðs ¼ 62 nmÞj ≤ σrms.

D. Cold neutron scattering

The scattering of nonrelativistic neutrons from nuclei can
be used to constrain anomalous forces [33–36]. In the SM,
low-energy neutron scattering can be treated as a four-
fermion interaction with a scattering amplitude, fðqÞ, that
is both isotropic and independent of the 3-momentum
transfer, q [33]. New physics could, in general, generate
both contact and long-ranged contributions to fðqÞ.
Scattering is typically described by introduction of a
coherent scattering length, lðqÞ, which we define as

lðqÞ ¼ lSM þ lBSMðqÞ ¼ −fðqÞ ¼
ffiffiffiffiffiffiffiffiffi
σðqÞ
4π

r
: ð34Þ

Nuclear scattering lengths have been measured for nearly
all stable nuclei, using a variety of experimental methods
[37]. These can be broadly classified into two categories
according to whether they measure at zero or nonzero
scattering angle. While the former, collectively referred to
as “optical” techniques, are only sensitive to contact
interactions, those in the latter measure both contact and
noncontact contributions. Such techniques include Bragg
diffraction, which measures at q ¼ qBD, and the trans-
mission method, which measures the total cross section
over all angles for high energy neutrons of momentum
kin ∼ 1 eV. The scattering length extracted in this case is an
angular average

l̄trðkinÞ ¼
1

2

Z
π

0

dθ sinðθÞlð4k2insin2ðθ=2ÞÞ: ð35Þ

The constructions loptð0Þ − lBraggðqBDÞ and l̄optð0Þ −
ltrðkinÞ eliminate the contact terms and thus provide a
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direct measure of the long-ranged contributions to lBSM. By
the Born approximation, lBSM is related to the momentum
space scattering potential, VðqÞ, via

lBSMðqÞ ¼ 2mNVðqÞ ¼ −2mNλ
2

Z
∞

0

dμ2
ρðμ2Þ

jqj2 þ μ2
: ð36Þ

Note that for the toy loop exchange interactions considered
above, VðqÞ is formally infinite. It can be regularized by
making an appropriate subtraction (see [17]), with the
penalty that the result becomes dependent on the arbitrarily
chosen subtraction point. Since this subtraction implies
sensitivity to details of the UV and hence model depend-
ence, we will not include these limits in the exclusion plots
to follow.

E. Lunar perihelion precession

On an astrophysical scale, fifth forces can be probed by a
search for anomalous orbital precession [38]. For the
Moon, high precision measurements of this have been
made by means of lunar laser ranging [39]. Deviations of
the measured precession from that expected from under-
stood sources, such as Earth’s quadrupole moment, could
be indicative of a fifth force. Denoting the anomalous
potential between a pair of nucleons of mass mn at a
separation r to be VðrÞ, the macroscopic potential between
Earth and the Moon is MMME

m2
n

VðrÞ. The additional force in
the radial direction is thus FðrÞ ¼ −MMME

m2
n

∂rVðrÞ.
Assuming this to be considerably smaller than the gravi-
tational attraction, it can be treated as a perturbation to the
Earth-Moon orbit equation, which at second order modifies
the orbital frequency. The precession angle between two
successive perihelions can be shown to be

δθ ¼ −
πa3

Gm2
nð1 − ϵ2Þ ∂

2
rVðrÞj

r¼a
; ð37Þ

where a and ϵ are the semimajor axis and eccentricity,
respectively, of the unperturbed orbit [8]. Recasting this in
terms of the spectral density function yields

δθ ¼ λ2

Gm2
nð1 − ϵ2Þ

Z
∞

0

dμμρðμ2Þe−μa
�
1þ μaþ ðμaÞ2

2

�
:

ð38Þ

Lunar laser ranging measurements give

δθ < 10−10; ð39Þ
which can be used to set limits on anomalous forces [8].

V. THE FIFTH FORCE LANDSCAPE

The plots in Figs. 8(a)–8(e) show the results of applying
the above limit-setting procedures to the Yukawa potential

and each of the one-loop interactions considered in Table I
in turn. We assume that the hidden scalar in interactions (A)
and (D) is self-conjugate (real), while the dark fermion and
dark vector in interactions (B) and (C) are not. Figure 8(f)
shows the bounds on two-loop real scalar exchange, which
we shall henceforth refer to as interaction (E). For both
interaction (A) and the Yukawa interaction, the experimen-
tal reach improves for lighter states. The strongest bounds
come from bouncing neutrons and planar experiments
which probe the longest distance scales. Conversely, for
interactions (B)–(E), the constraint landscapes are domi-
nated by the bound from the shortest-distance experiment:
ddμþ. This reversal in constraint hierarchy arises from the
short-distance behavior of these potentials which scale as
r−5, r−7, r−7, and r−5, respectively, parametrically favoring
experiments sensitive to shorter distance scales. As a result,
the bounds from these experiments gain weight in carving
out the exclusion regions for these potentials compared to
those of interaction (A) and the Yukawa interaction, which
scale as r−3 and r−1, respectively, in the short-distance
limit. Bounds from lunar laser ranging are subdominant to
those from shorter-range experiments for interactions (A)–
(E) and are thus not plotted. Given their reliance on the
form of the subtraction used, and hence the details of the
UV physics, the bounds from cold neutron scattering are
less robust than those from the other experimental probes
where no such regularization is required. We therefore omit
these from our plots also. The limits for (A) and (D) match
the published results in Ref. [8].
We further note that for all of the loop interactions

considered here, the effective coupling scale is well below
collider scales, and in some cases as low as theOð10 MeVÞ
scale. As a result, the UV completion of these operators
must enter, and be phenomenologically relevant, before
reaching collider energies, and possibly even below the
scales probed by some of the shortest-distance fifth force
experiments. Whether or not the UV completion is in
tension with observations is model dependent. For instance,
if a fifth force experiment is probing below the eV scale,
then states with extremely small couplings, almost as light
as this scale, could be responsible for UV completing the
interaction. Such states may alter cosmological and astro-
physical observables, as well as being potentially observ-
able in intensity frontier experiments, such as beam dump,
missing energy, or rare meson decay searches. They could
also modify the limits from fifth force experiments that
probe shorter distances. We emphasize that, for any given
UV completion, all of these possibilities should be con-
sidered. However, since it is beyond the scope of this paper
to map out the landscape of possible UV completions of the
interactions themselves, we present the fifth force results in
terms of the effective coupling scale alone and keep in mind
that a low-scale UV completion is required. Finally, let us
turn to the constraint landscape for the spectral function ρv
defined in Eq. (18) which, for scalar operator exchange,
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FIG. 8. Experimental bounds on the parameter spaces of the various hidden sector models considered in this work. All dark scalar
fields are assumed to be real. The shaded regions are excluded at the 95% C.L.
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very crudely models the type of scenario that could arise if
a fundamental principle such as unitarity, causality, or
locality is violated. For illustration, we take the values
a ¼ 0.1, b ¼ 0.2. The width of the negative region is
chosen to be twice that of the positive region such that the
potential exhibits a turning point in accordance with the
analysis in Sec. III C. The experimental bounds on this
potential are shown in Fig. 9. We note that in contrast to the
spectral functions considered previously, the constraints
coming from both the bouncing neutron experiments and
molecular spectroscopy become more stringent as the scale
μ0 is increased, before decreasing again. Being the exper-
imental arrangement most similar to the simple picture of
two interacting pointlike particles, this behavior is most
clearly understood in the case of molecular spectroscopy.
We consider the force between two nucleons, as obtained
from the derivative of the nucleon-nucleon potential, at the
average internuclear distance. As μ0 is increased the
relative sensitivity of the experiment to positive and
negative norm states varies and the force increases in
magnitude before decreasing again, eventually changing
sign. The value of μ0 at which the maximum magnitude
occurs corresponds to the gross turning points occurring in
Fig. 9. This behavior is a manifestation of the fact that the
experimental force as a function of distance has a turning
point whose location depends on the scale μ0. By differ-
entiating Eq. (9) it is clear that this cannot occur if
ρðμ2Þ ≥ 0. The picture is more nuanced in the case of
the AFM and bouncing neutron experiments as it is the
force between extended objects which the experiments
probe. When the internucleon potential is summed over
these objects one finds interference from different regions
with varying magnitudes.
These simple examples illustrate the breadth of pos-

sibilities for probing hidden sectors with fifth force

experiments. Analyses assuming a simple Yukawa force
are very well justified as a standard candle by which to
begin exploring the hidden sector. However, analysis
techniques optimized specifically toward this form of force
may miss more exotic possibilities for hidden sectors.
Indeed, we see that for generic loop-level exchange,
corresponding to a continuum of states in ρðμ2Þ, due to
the higher dimension of the operator, the force becomes
increasingly short ranged and thus experiments probing the
shortest distances begin to dominate sensitivity. We have
also briefly considered more exotic possibilities, such as
nonmonotonic force profiles which change sign over some
distance scale. Discovery of an interaction of this kind
could indicate the simultaneous presence of operators of
different spin, for instance, an attractive scalar channel
which interferes with a repulsive vector channel, or some
nontrivial role played by hidden gauge sector ghosts.
Alternatively, such an observation could be the harbinger
of something much more exotic, such as very weakly
coupled unitarity, causality, or locality violating sectors in
nature. Clearly, with such a rich and varied phenomenology
possible, it is important that, much as at high energies, no
stone is left unturned in the search for the influence of light
weakly coupled hidden sectors.

VI. CONCLUSIONS

In recent years particle physics research has undergone
somewhat of a phase transition, looking increasingly
toward hidden sectors and the feebly interacting frontier.
When new hidden states mediate long-range forces one
cannot appeal to decoupling and effective field theory to
generalize their effects on low-energy observables. As a
result, the historically popular approach has been to
consider specific models. In this work we have attempted
to counter this model-dependent approach by showing that,
under reasonable assumptions, the experimental effects of
general scalar fifth forces may, using the Källén-Lehmann
representation, be captured by a single positive-definite
function ρðμ2Þ.
Using this prescription, accompanied by the optical

theorem, a number of known results in the literature,
obtained by other means, have been reproduced straight-
forwardly. Furthermore, a number of commonly considered
experimental observables have been recast in a general
form, allowing a straightforward application to more
complex hidden sectors.
Current experimental constraints reveal a hierarchy of

sensitivity depending on the nature of the hidden sector
operator, suggesting that comparison of experiments only
for the assumption of a single scalar Yukawa force can be
misleading since, in terms of the density of states, this
represents an extreme limit, ρðμ2Þ ∝ δðμ2 −m2Þ, whereas
much richer scenarios are possible. Indeed, as expected,
when more states participate in mediation the coupling
dimension grows and the force becomes increasingly short

FIG. 9. Bounds on the (μ0, λ) plane for the interaction generated
by ρv, as defined in Eq. (18), for the case a ¼ 0.1, b ¼ 0.2. The
shaded regions are excluded at the 95% C.L.
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range, giving greater weight to experiments probing these
scales. This serves to illustrate that a variety of comple-
mentary searches are needed to fully explore hidden sector
forces and echoes similar conclusions made in Ref. [8].
Finally, the breakdown of positivity of ρðμ2Þ could be the

first tentative signal of something more interesting than
simply a fifth force. In this respect, the Källén-Lehmann
representation presents a rare nonperturbative tool with
which to begin considering more speculative scenarios. It is
impossible to make completely general statements, how-
ever, we have shown that in certain circumstances non-
monotonic force profiles can occur. This profile could
imply the presence of different spin operators which
interfere or, much more speculatively, under the assumption
of scalar operator exchange, a departure from some
fundamentals of QFT. On this aspect we have barely
scratched the surface.
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APPENDIX A: CALCULATION OF ρ FOR
ONE-LOOP INTERACTIONS

For completeness, we provide further details on the
computation of the spectral densities for the loop interactions
(A)–(D) considered in this work. To find the imaginary part
ofΔðqÞ via the optical theorem,we seek themodulus squared
of the cut amplitude, which we will henceforth denote as
jMðq → XÞj2. The Feynman diagrams for the negative4 of
ΔðqÞ are shown in Fig. 2. The required result for
jMðq → XÞj2 will thus be the negative of the squared
amplitude of the cut of these diagrams, as shown in
Fig. 3. As noted above, it is natural to interpret such diagrams
as the decay of an external source ofmomentum q into a final
state X consisting of a pair of equal mass hidden sector
particles. In Table III, we present expressions for
jMðq → XÞj2 for both the case where the hidden sector
particles are identical (self-conjugate) and the case where
they are distinct (conjugate). For interactions (B) and (C), the
given result is the sum over all possible spin and polarization
states, respectively, of the final state hidden sector particles.
The factor of 4 difference between the self-conjugate and
conjugate cases arises from the fact that we have not included
an explicit symmetry factor in the couplings in our definition
of these operators in Eq. (11).
As each of these results is independent of the momentum

assigned to the final state particles k1 and k2, they can be
factored out of the phase-space integral on the rhs of

Eq. (12). The desired result is thus the product of the results
in Table III, with the integral over the Lorentz-invariant
phase space of the final state:

Z
d3k1d3k2

ð2πÞ62k012k02
ð2πÞ4δ4ðq−k1−k2Þ¼

κ

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

q2

s
; ðA1Þ

where κ ¼ 1=2 if the particles are identical (self-conjugate),
and 1 if distinct. ρðμ2Þ then follows trivially as per Eq. (10).

APPENDIX B: CALCULATION OF ρ FOR
EXCHANGE OF n REAL SCALARS

The spectral density for n − 1 scalar loop exchange,
ρnðμ2Þ, can be calculated by an analogous procedure to that
employed for the one-loop case. The cut of ΔðqÞ in this
instance can be thought of as the decay of a momentum
source q to a final state X consisting of n hidden sector
scalars each of mass m and momentum ki, i ∈ f1;…; ng.
The amplitude squared of this process is −ðn!Þ2. To obtain
the rhs of the optical theorem we multiply this by the
integral over the Lorentz-invariant phase space (LIPS) of
the final state.
For a generic state with n distinct particles of mass mi

and 4-momentum ki the integral over the LIPS is

Inðq;m1;m2;…;mnÞ¼
Z

dΠð2πÞ4δ4
�
q−

Xn
i

ki

�
; ðB1Þ

where

dΠ ¼
�Yn

i¼1

d3ki
ð2πÞ32k0i

�
: ðB2Þ

This result should be implicitly associated with a Θðq2 −
ðPn

i miÞ2Þ function. We use the compact notation InðqÞ to
denote the specific case of equal masses. The required
integral over the LIPS of the state X in this notation is thus

InðqÞ
n!

;

TABLE III. jMðq → XÞj2 where Mðq → XÞ corresponds to
the cut of ΔðqÞ for the case where the hidden particles in X are
identical (self-conjugate) and distinct (conjugate). (B) and (C) are
the sum over all possible spin, and polarization states, of the
hidden sector particles in X, respectively.

Model Identical Distinct

(A) −4 −1
(B) −8ðq2 − 4m2Þ −2ðq2 − 4m2Þ
(C) − q4

m4 ð1þ 12m4

q4 − 4m2

q2 Þ − q4

4m4 ð1þ 12m4

q4 − 4m2

q2 Þ
(D) −q4ð1 − 4m2

q2 þ 4m4

q4 Þ − q4

4
ð1 − 4m2

q2 þ 4m4

q4 Þ

4This sign follows from our definition of Δ as a factor of the
full scattering amplitude in Eq. (5).
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where the factor of n! accounts for the fact that the final
state particles are real and thus identical.
While such integrals are generally cumbersome, they can

be evaluated recursively by performing just a single integral
using the relation

Inðq;m1; m2;…; mnÞ ¼
1

2π

Z
dsI2ðq;

ffiffiffi
s

p
; mnÞ

× In−1ð
ffiffiffi
s

p
;m1;…; mn−1Þ: ðB3Þ

The Θ functions associated with the In restrict the
integration over s to the range ðPn−1

i¼1 miÞ2 to ðq −mnÞ2 [40].
We note that

I2ðq;m1; m2Þ≡ 1

8πq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðq2; m2

1; m
2
2

q
Þ; ðB4Þ

where

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz ðB5Þ

is the generalization of the result given in Eq. (A1).
For a state of three equal mass particles one obtains

I3ðqÞ¼
1

128π3q2

Z
sb

sa

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs−saÞðs−sbÞðs−scÞ
p

ffiffiffi
s

p ; ðB6Þ

where sa ¼ 4m2, sb ¼ ðq −mÞ2, and sc ¼ ðqþmÞ2. This
can be expressed in terms of the complete elliptic integrals
of the first and second kind, K and E, as

I3ðqÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq−mÞðqþ3mÞp

128π3q2

×

�ðq−mÞðq2þ3m2ÞEðk̃Þ
2

−4m2qKðk̃Þ
�
; ðB7Þ

where k̃ is given by Eq. (17).
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