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We propose and experimentally demonstrate a method for detection of a light scalar dark matter (DM)
field through probing temporal oscillations of fundamental constants in an atomic optical transition.
Utilizing the quantum information notion of dynamic decoupling (DD) in a tabletop setting, we are able
to obtain model-independent bounds on variations of α and me at frequencies up to the MHz scale.
We interpret our results to constrain the parameter space of light scalar DM field models. We consider the
generic case, where the couplings of the DM field to the photon and the electron are independent, as well as
the case of a relaxion DM model, including the scenario of a DM boson star centered around Earth. Given
the particular nature of DD, allowing one to directly observe the oscillatory behavior of coherent DM and
considering future experimental improvements, we conclude that our proposed method could be
complimentary to, and possibly competitive with, gravitational probes of light scalar DM.
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I. INTRODUCTION

The missing mass problem is one of the most funda-
mental questions in modern physics [1]. Although particle
dark matter (DM) at the electroweak scale is a highly
motivated solution [2], no discovery of such DM was made
to date [3–5]. Another intriguing possibility is that of a
sub-eV scalarDM field, coherently oscillating to account for
the observed DM density (e.g., [6–8]). A coupling between
the coherent DM candidate and the Standard Model (SM)
particles would result in temporal oscillations of fundamen-
tal constants, such as the fine-structure constant and the
electron’s mass [6,8–14]. Here, we propose and experimen-
tally demonstrate a method probing this DM signature in an
atomic optical transition at a bandwidth ranging from a few
Hz to the MHz range. This range, corresponding to a light
scalar DM field which is coherently oscillating at these
frequencies, has been a blind spot for current experimental
measurements of time variations of fundamental constants
(e.g., [15–17]), despite being theoretically motivated (e.g.,
[7,18]). Our proposal uses a tabletop setting and utilizes the
quantum information notion of dynamic decoupling (DD)
[19,20] to amplify the desired signal within this uncovered
bandwidth in a noisy environment [21].

For a scalar field ϕ, which couples to the electromagnetic
field strength Fμν and to the electron e as [15,22]

Lint ⊃
gϕγ
4

ϕFμνFμν − gϕeϕēe; ð1Þ

the mass of the electronme and the fine-structure constant α
will be modified with respect to their SM values as

me ¼ mSM
e þ δme; δme ¼ gϕehϕðt; x⃗Þi;

α ¼ αSM þ δα; δα ¼ gϕγhϕðt; x⃗ÞiαSM: ð2Þ

If ϕ is a DM candidate lighter than ∼0.1 eV, it is expected
to have a large occupation number and is thus described as
a classical field [8]. Therefore, ϕ will coherently oscillate
with a frequency related to its mass mϕ and an amplitude
that is determined by mϕ and the DM density ρDM as [15]

hϕðt; x⃗Þi ≃
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
mϕ

cosðmϕðt − v⃗ · x⃗þ…ÞÞ; ð3Þ

where v⃗ is the DM velocity. As a result, α and me would
undergo time-dependent modulations, which could be
experimentally observed as will be explained below.
Given experimental bounds on the variations of α and
me at a temporal modulation frequency ν ½Hz� ¼ mϕ c2=h,

denoted by dme
≡ ðδme

me
ÞUB and dα ≡ ðδαα ÞUB, we can set

upper limits on the couplings of a DM candidate of the
corresponding mass as
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gϕeðmϕÞ ≤ dme
ðmϕÞmϕ

meffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p ; ð4Þ

gϕγðmϕÞ ≤ dαðmϕÞmϕ
1ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p : ð5Þ

For a generic DM candidate, gϕe and gϕγ are independent.
Experimental bounds for dme

and dα at a specific
frequency can be obtained by monitoring oscillations of
an atomic optical transition frequency that depends on α
and on me, when compared to a frequency reference that
depends differently on these parameters. However, these
oscillations might be overshadowed by the noisy exper-
imental environment. In order to amplify the desired signal
while mitigating undesired noise, we propose to use
DD [19].

II. MEASURING TEMPORAL OSCILLATIONS OF
FUNDAMENTAL CONSTANTS USING DD

DD is a notion that utilizes the application of a known
time-dependent Hamiltonian HðtÞ on an open quantum
system in order to alter the effect of the environment on a
specific subsystem. From a metrological point of view,
HðtÞ functions as a spectral filter, screening the evolution
of this subsystem outside of, and enhancing it in, an
engineered spectral window.
Our experimental proposal relies on the comparison of

the optical frequency of a trapped ion’s optical clock
transition to a narrow-linewidth laser locked to an ultra-
stable cavity and placing bounds on the amplitude of the
ion-laser relative AC frequency shift at frequency ν,
denoted as ΔfðνÞ. The experimental sequence is illustrated
in Fig. 1. First, an optical π

2
laser pulse creates an equal

superposition 1ffiffi
2

p ðjgi þ jeiÞ between the ion’s ground state

jgi and excited state jei. Next, laser π pulses periodically
rotate the ion’s state around some equatorial axis on the
Bloch sphere, flipping jgi and jei at frequency of 2νm. The
resulting state is 1ffiffi

2
p ðjgi þ eiψ jeiÞ, where ψ is the super-

position phase that depends on ΔfðνÞ, the modulation at
frequency νm, and their relative phase ξ (the function ψ can
be found in Appendix A). Information about ψ can be
obtained by applying a second interrogation laser π

2
pulse

and scanning its phase relative to the initial π
2
pulse. This

results in a Ramsey fringe. When ν ¼ νm, the superposition
phase acquired at each oscillation cycle is accumulated
with experimental interrogation time, and the resulting
Ramsey fringe exhibits a phase shift, which is maximal
when ξ ¼ 0. This phase accumulation is possible under the
assumption of a coherent DM field ϕ, inducing a coherent
oscillation of α and me. When ν ≠ νm, the phase is not
accumulated and is averaged to zero with experimental
interrogation time, and therefore, the Ramsey fringe shows
full contrast and negligible phase shift. When ν ¼ νm, but ξ
is uniformly distributed between realizations, the resulting
fringe is averaged over phase shifted Ramsey fringes, and

ΔfðνÞ can be inferred from the fringe contrast reduction
(right most fringe in Fig. 1). For a quantitative phase
analysis, see Appendix A and [23]. By measuring either the
Ramsey fringe phase ψ in the synchronous case or the
Ramsey fringe amplitude in the asynchronous case, for
different νm values, bounds can be placed on the frequency
oscillations amplitude ΔfðνmÞ at each νm value. A detailed
description of the above method can be found in [23].
The ion’s transition frequency shift is proportional to the

change in the Rydberg constant R∞ ∝ α2me, and therefore,
the relative frequency change of the ion due to variations in
α and me is [24,25]

δfionðνÞ
fion

¼ 2
δαðνÞ
α

þ δmeðνÞ
me

: ð6Þ

In contrast, the laser’s frequency shift is inversely propor-
tional to the distance between the cavity mirrors r0, which
is proportional to the Bohr radius a0 ∝ ðαmeÞ−1 [9,17].
Therefore, the relative frequency change of the laser would
depend on α and me as

δflaserðνÞ
flaser

¼
�
δαðνÞ
α

þ δmeðνÞ
me

�
× FðνÞ: ð7Þ

Here, FðνÞ denotes a frequency-dependent response of the
laser frequency to the change in a0 at a specific signal

FIG. 1. Experimental sequence and form of measurements
results. An example for a DD experimental sequence including
four modulation π pulses is illustrated at the bottom. The three
time sequences above it show the ion superposition phase
evolution at a single experimental realization for three cases,
along with the corresponding Ramsey fringes. The dashed-line
fringe corresponds to no fundamental constants oscillation, and
the solid line fringe corresponds to the measured Ramsey fringe
of the specific case. The time sequences show the ion super-
position’s rotation frequency (brown solid line) and phase
accumulation (area under the function—yellow marks positive
phase, and green marks negative phase) under fundamental
constants oscillation at amplitude ΔfðνÞ, frequency ν, and phase
relative to the pulse sequence of ξ.
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frequency ν. At frequencies much lower than the cavity’s
lowest mechanical mode and optical linewidth, r0 follows
the change in a0, and the laser changes its frequency
accordingly, meaning Fðν ¼ lowÞ → 1. At frequencies
much higher than the cavity’s linewidth and the ratio
between the speed of sound in the cavity vsound and r, the
cavity’s mechanical response to the variations in a0 is low-
pass filtered, and, in addition, the laser cannot follow the
cavity’s instantaneous frequency due to the finite lifetime of
a photon in the cavity. Therefore, the laser frequency
response to variations in a0 is further reduced, and
Fðν ¼ highÞ → 0. Assuming fcavity ≈ fion ¼ f0, we obtain

ΔfðνÞ
f0

¼ δfionðνÞ − δflaserðνÞ
f0

¼ ð2 − FðνÞÞ δα
α
þ ð1 − FðνÞÞ δme

me
; ð8Þ

leading to the conclusion that at low frequencies, only α
variation is detectable, whereas at high frequencies, varia-
tions in both constants may be observed.
Below, we present bounds on DM obtained from a proof-

of-principle measurement, in which we used a laser at
674 nm locked to a r ¼ 0.1 m long, high-finesse (300,000)
ultralow expansion (ULE) optical Fabri-Pérot cavity, with a
4.5 kHz linewidth. This laser frequency matched the clock
dipole-transition 5S1

2
↔4D5

2
of a single 88Srþ ion, on which,

the DD sequence was applied. Here, νm¼1013Hz was
chosen. The difference between the superposition phase ϕ
and the laser phase was mapped onto the populations of the
ground and excited states by applying a final interrogation π

2

laser pulse at pulse phase χ, with respect to the initial π
2

pulse, and scanning χ between 0 and 2π (see Fig. 1).
Assuming no synchronization between the control optical
pulses modulation phase and the optical frequency oscil-
lation at νm, a bound for the transition frequency modu-
lation amplitude was readily inferred from the deviation of
the resulting Ramsey fringe amplitude from 0.5 (see Fig. 1
and Appendix A). More details about the experimental
parameters and setup can be found in [23].
The upper bound for the relative frequency modulation

amplitude at different values of ν is given in Fig. 2. The
sharp peaks appear at frequencies where the experimental
DD sequence loses sensitivity (see Appendix A). The best
sensitivity is obtained for ν ¼ νm and, by scanning this
frequency high sensitivity, can be maintained for the entire
scan range. The dash-dotted line in Fig. 2 is the expected
bound obtained from performing the experiment proposed
above for different values of νm and assuming one measures
the same Ramsey fringe amplitude as for νm ¼ 1013 Hz.
The bound on Δf=f0 corresponds to bounds on dα or
2dα þ dme

, as explained above and shown in the plot.
While stricter constraints on these parameters already exist
in the literature [16,26–28], our bound is the first one

directly, and model independently, constraining temporal
oscillations of α andme in the 10 Hz-MHz frequency range.
The current bound is mostly limited by experimental

imperfections and can be improved by at least 3 orders of
magnitude. We estimate the future-projected bound taking
into account only fundamental effects, i.e., ion decay time and
quantum projection noise, and considering an averaging time
of 30 days per frequency scan point. The future-projected
bound is shown as a dashed line in Fig. 2.We also note that in
the current setup, the signal was encoded in the coherence of
the ion’s superposition or, alternatively, the amplitude of the
Ramsey fringe [23]. Since both the signal and the exper-
imental imperfections (e.g., π pulse fidelity) tend to decrease
the fringe amplitude, the bound would be ultimately limited
by the experimental apparatus. However, in the case of large
enough quality factor of the δme and δα oscillations, it would
be useful to synchronize different experiment realizations
via an external clock, such that, for a specific νm, different
experimental realizations would measure signal oscillations
with the same ξ [29,30]. This would allow one to infer the
signal amplitude from the final superposition phase, separat-
ing it from the coherence of our atom (see Fig. 1).

III. BOUNDS ON LIGHT SCALAR DARK
MATTER FROM DD EXPERIMENTS

We are interested in the implications of our measure-
ments to models of light scalar DM. Using the results
shown in Fig. 2, we obtain upper limits on the values of
gϕγ and gϕe at 95% C.L. and present them in Fig. 3(a)

FIG. 2. Bounds on the relative modulation of the transition
frequency from a DD experiment, placed at 95% C.L. The solid
black line marks the current bound, obtained by a measurement at
a single modulation frequency point νm ¼ 1013 Hz. The dashed-
dotted line marks the current sensitivity reach, corresponding to
scanning over νm. The dashed line marks the future-projected
sensitivity, considering fundamental effects and an averaging
time of 30 days per frequency point. The inset is a magnified view
of mϕ ∼ 10−8 eV.
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and Fig. 3(b), respectively. The background DM density is
assumed to be ρDM ¼ ρDM⊙

¼ 3.1 × 10−6 eV4, which is
the local DM density around the Sun [31]. For our analysis,
we assumed a sharp transition between dα sensitivity and
dme

þ 2dα sensitivity at νstep ¼ 50 kHz, namely FðνÞ ¼
Θðν − 50 kHzÞ, where Θ is the Heaviside step function.
The step frequency was chosen to be the ratio between the
speed of sound in our cavity spacer vsound ≈ 5 km

s and the
cavity length r ≈ 0.1 m. The optical linewidth is an order
of magnitude lower. The black dashed line represents the
future-projected sensitivity for the proposed method, cor-
responding to scanning the experimental modulation fre-
quency νm. We compare our results with the current bounds
obtained from experimental tests of free fall universality.
We also highlight the boundary of the region favored
by Naturalness criteria (see, e.g., [8,15,32,33]). Both are
explained below.
We further interpret our results in accordance to the

relaxion [34] model, which was recently shown to be a
viable DM candidate [7]. The interactions of a relaxion DM
with the SM fields are mediated through its mixing with the
Higgs, and thus, the corresponding couplings are no longer
independent. The couplings of the relaxion to the electron
and the photon are given by [22]

gϕe ¼ Ye sin θ;

gϕγ ¼ −
α0 sin θ
2πv

����AWðτWÞ þ
X

fermions

Nc;fQ2
fAFðτfÞ

����; ð9Þ

where Ye is the Yukawa coupling of the electron to the
Higgs (h), θ is the mixing angle between the relaxion
and the Higgs, and τx ¼ m2

h=4m
2
x. AFðτÞ and AWðτÞ are

defined in [22] and calculated accordingly. The upper
bound on Δf=f0 can then be used to exclude the region
in the mϕ − sinðθÞ parameter space corresponding to

sin θ ≤
�
Δf
f0

�
UB

×…

mϕffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρDM⊙

p ð
ffiffi
2

p
κe
v ð1 − FÞ − 1.12 × 10−14ð2 − FÞÞ

;

ð10Þ
where κe ≡ Ye=YSM

e . Analyzing the results in Fig. 2 for
relaxion DM, we obtain the appropriate upper limit on
sin θ, assuming κe ¼ 1, and present it in Fig. 3c. Note that
the current upper bound on κe is at 610 [35], which would
yield a stronger constraint. The analysis presented here
can also be modified to apply to other Higgs portal DM
scenarios [36].
Moreover, relaxions can form what are known as boson

stars [37], which could be bound to the Earth’s gravitational
potential [38]. Although the formation process of such
objects is still an open question, if formed—they should be
stable as they are the ground state of the gravitational

10-9 10

(a)

(b)

(c)

-8
10-25

10-15

10-5

105

FIG. 3. Bounds on the parameter space of light scalar DM
corresponding to the observed DM density near the Sun. The
bounds on the couplings of a generic DM candidates are shown in
(a) and (b). The bounds on the mixing angle of a relaxion DM are
presented in (c). Black: current and projected bounds from DD
experiments at 95% C.L. Magenta: EP-test bounds taken from
[26]. Blue and cyan dash-dotted: Naturalness criteria.
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system [38]. The presence of the DM star will increase the
DM density around Earth at all times and, accordingly, the
signal measured in our proposed experiment. The mass of
the relaxion star is constrained by local measurements
of gravitational acceleration [39] and should satisfy
M⋆ ≲ 4 × 10−9 M⊕, where M⊕ is the mass of the Earth.
Using the star density profile presented in [38] as the DM
density, combined with the bounds shown in Fig. 2, we
obtain an upper limit on sin θ and present it in Fig. 4.
The allowed parameter region for relaxion DM is also
indicated [7]. A corresponding bound on gϕγ can be found
in Appendix B.
A new light scalar coupled to SM fields would introduce

a potential between otherwise neutral test masses (see, e.g.,
[40,41]). Therefore, another constraint on the parameter
space of a light scalar DM arises from experiments testing
the equivalence principle (EP), designated to detect devia-
tions from gravity. The bounds related to EP tests presented
here are based on those given in [26]. The most stringent
constraint on the relaxion model, in this context, is coming
from its coupling to the gluon via gϕg ∼ αs sin θ=3πv, as
given in [22,42]. Although the bounds we obtain from DD
are currently weaker than those set by the experimental
tests of gravity, they are different in essence. The con-
straints resulting from DD experiments are precisely related
to the temporal variations of α andme, whereas EP tests are
unable to directly measure time-dependent phenomena.
This difference would be important in the case of a
discovery of a rapidly oscillating scalar DM. While
gravitational tests could only indicate a possible candidate,
our proposed method could also immediately observe its
oscillatory nature and thus, positively identify it as a

coherent DM field. In addition, it can be seen that for
some region of the parameter space, our future-projected
bounds could become competitive with those of gravita-
tional tests for the scenario of a DM star, even before
fully exhausting the experimental improvements suggested
above. Finally, it should be noted that, unlike EP tests, our
experiment is sensitive to the DM density close to earth,
and so combining it with gravitational tests could probe the
three-dimensional parameter space mϕ − sin θ − ρ⊕DM.
Since ϕ is a scalar field, its mass parameter is sensitive

to radiative corrections resulting from its interactions. To
maintain naturalness, its quantum corrections should be
small compared to the bare mass δm2

ϕ1−loop
≪ m2

ϕbare
. For a

scalar field with the interaction terms describes above, this
would imply [8,15,32]

jgϕej ≪
4πmϕ

Λ
; jgϕγj ≪

16πmϕ

Λ2
: ð11Þ

For a relaxion DM, the condition is sin θ ≤ mϕ

v [33].

IV. CONCLUSION

Rapidly oscillating scalar DM field is a well-motivated
scenario but currently lies in a blind spot of existing
experimental searches sensitive to coherent oscillations
of fundamental constants. In this paper, we have proposed
a new experimental probe of light scalar DM, utilizing the
method of DD in a tabletop setting. Using a proof-of-
concept experimental measurement, we have obtained
model-independent bounds on the temporal oscillations
of both me and α at frequencies up to the MHz scale.
Consequently, we were able to set upper limits on the
couplings of a generic coherent DM candidate. We have
also interpreted the results for the case of relaxion DM, for
which, our constraints are significantly tightened. As an
experimental outlook, we believe that the bounds presented
here can be improved significantly in two ways. First, the
modulation frequency νm can be scanned, and therefore, a
lower bound can be achieved for a range of frequencies.
Second, instead of the superposition coherence, its phase
shift can be measured by synchronizing different exper-
imental realizations, separating the desired signal from
unwanted experimental imperfections. Therefore, our pro-
posed method could be an important tool for studying light
scalar DM, not only directly probing its oscillatory nature,
but also possibly setting constraints that would be com-
petitive with EP tests and that would probe the theoretically
motivated parameter space of a relaxion DM. Additional
measurements covering complementary parts of the spec-
trum have been recently concluded, and their reports were
in preparation at the time this manuscript was being
considered for publication [43,44].

10 14 10 13 10 12 10 11 10 10 10 9 10 8

10 23

10 18

10 13

10 8

m eV

si
n

FIG. 4. Bounds for a DM star centered around Earth, along with
the theoretically motivated region for a relaxion DM given in [7].
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APPENDIX A: SENSITIVITY AND FILTER
FUNCTION

Applying optical π pulses in a repeating unit cell of

½wait time τ� − ½π pulse� − ½wait time τ�
results in a phase modulation kernel of the form,

fðt; τ; nÞ ¼ rect
�

t
2nτ

�

×

�
ΘðtÞ þ 2

X∞
k¼1

ð−1ÞkΘðt − ð2k − 1ÞτÞ
�
;

ðA1Þ
where Θ is the Heaviside step function, n is the number of
pulses, and rect is a rectangular window function nulling
the modulation at t < 0 and t > 2nτ. τ defines the frequ-
ency νm from the main text by τ ¼ 1

4νm
. We assume an osci-

llating atomic angular frequency detuning in the form of

δðt; ξÞ ¼ 2πΔf sin ð2πνtþ ξÞ; ðA2Þ
attributed, for instance, to an oscillating DM field. Here,Δf
is the detuning amplitude, namely the amplitude of the time
dependent atomic frequency shift, and ξ is the phase
mismatch between the signal and the pulse modulation.
The resulting superposition phase ψ accumulated over the
pulse modulation sequence is, therefore,

ψðτ;n;ξÞ¼
Z

∞

−∞
fðt;τ;nÞδðt;ξÞdt

¼4
Δf
ν
×…

cosð2πνnτþξþnπ
2
Þsinð2πνnτ−nπ

2
Þsin2ð2πντ

2
Þ

cosð2πντÞ :

ðA3Þ

This would be the signal corresponding to a phase
estimation experiment. In the experimental bound pre-
sented in this work, the theoretical fringe amplitude A
takes the form of

Aðτ; nÞ ¼ 0.5jhcos ðψðτ; n; ξÞÞiξj; ðA4Þ
where h·iξ denotes averaging over ξ’s sampled from a
uniform distribution between 0 and 2π. The resulting
contrast is given by

Aðτ; nÞ ¼ 0.5

����J0
�
4
Δf
ν

×
sin ð2πνnτÞsin2ð2πντ

2
Þ

cos ð2πντÞ
�����; ðA5Þ

where J0 is the zeroth Bessel function of the first kind. This
function was used to obtain the bounds on the detuning
amplitude Δf presented in Fig. 2. As temporal oscillations
of fundamental constants would result in the reduction of
the contrast, an upper limit on Δf corresponds to the
95% C.L. lower limit on A. Since the lower bound on Awas
found to be close to the global maximum of J0, Eq. (A5)
yields a unique solution for Δf for each frequency ν. The
functional behavior of this bound is then fully determined
by the argument of the Bessel function above.
In the presented experimental bound, we believe that

experimental imperfections, such as pulse time and phase
imperfections, are the limiting factors that set the lowest
DM bound. We now turn to present the analysis for the
projected bound of the experiment (dashed line in Fig. 2),
which is about 3 orders of magnitude stronger. We calculate
the expected bound on the frequency oscillation amplitude,
for a 390 ms Ramsey interrogation time, equal to our ion,
88Srþ, exponential decay constant. Here, we assume no
external noises, other than projection noise, and no reduc-
tion in contrast other than from the lifetime decay.
First, we analyze the parametric uncertainty of our

measurement, for DM frequency oscillation amplitude
Δf. We assume Ramsey time T ¼ 2nτ, decay time τdec,
and total experimental interrogation time of τtot. After the
Ramsey wait time, we get a spontaneous decay contrast
reduction of expf−T=τdecg, meaning we have p ¼ 1=2þ
expf−T=τdecg cosϕAðτ; nÞ as the Bernoulli parameter,
where ϕ is the angle difference between the two Ramsey
π=2 pulses, and Aðτ; nÞ is the contrast function (A5). From
now on, we will omit the phase ϕ because we can assume
that we measure at the point of highest contrast signal and
lowest noise (ϕ ¼ 0; π).
For ν → 1=4τ, which means we are using this contrast to

place bound on frequency oscillation with amplitude Δf
and frequency on resonance with our DD sequence, we get
the contrast expression,

jAðτ; nÞjν→1=4τ ¼
1

2
jJ0ð8ΔfTÞj; ðA6Þ

where J0 is the zeroth Bessel function. We can now
write

p ¼ 1

2
þ 1

2
e−

T
τdec jJ0ð8ΔfTÞj: ðA7Þ
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Next, we assume that, in reality, the DM effect is vanish-
ingly small (meaning Δf ¼ 0 → jJ0ð8ΔfTÞj ¼ 0), but we
have some statistical uncertainty for the contrast we
measure. For sufficiently large number of measurements
N, this uncertainty goes as

σp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞ

N

r
: ðA8Þ

We would like to place a bound on the deviation of our
averaged measured contrast from the expected contrast
resulting from the decay lifetime. Our measurement result
would fall within 95% confidence between 1 (full contrast)
and 2 standard deviations away:

1

2
þ 1

2
e−

T
τdec − 2σp ≤ result ≤

1

2
þ 1

2
e−

T
τdec þ 2σp: ðA9Þ

The lower bound defines the maximal frequency modula-
tion amplitude that might hide in the statistics. We, there-
fore, assume that any deviation from only spontaneous
decay in our measurement is due to DM oscillation and
write

1

2
þ 1

2
e−

T
τdec jJ0ð8ΔfubTÞj ¼

1

2
þ 1

2
e−

T
τdec − 2σp; ðA10Þ

where Δfub is the upper bound for the frequency modu-
lation. For small (even vanishing) Δfub, we get
jJ0ð8ΔfubTÞj ∼ 1–4ðΔfubTÞ2, where we used the Taylor
series of the zeroth order Bessel function. We can, there-
fore, write

Δfub ¼
1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−

T
τdecσp

q
¼ 1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
e−

T
τdec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð1 − e−

2T
τdecÞ

τtot

svuut
; ðA11Þ

where wewrite the number of measurements asN ¼ τtot=T.
From this expression, we can find the optimal value of T,

for which, Δfub is the smallest. Assuming 30 days of
averaging, which amounts to τtot ¼ 2592000 sec and using
τdec ¼ 0.39 sec, we get that the optimal T ¼ 0.55 sec∼ffiffiffi
2

p
τdec. The plot of Δfub as a function of the Ramsey time

T is presented in Fig. 5. The resulting expected bound is
calculated to be Δfub ¼ 0.039, which, in terms of relative
frequency, amounts to

Δfub=f ¼ 0.055=ð4.4 × 1014Þ ∼ 1.24 × 10−16: ðA12Þ

In addition to the demonstrated experiment, we proposed
a synchronized experiment, in which the modulation is
synchronized to an external clock, and instead of measuring
the Ramsey fringe contrast A corresponding to the super-
position coherence, one would measure the Ramsey fringe
phase ψ . The advantage of this scheme is that the signal
will scale linearly with T (as opposed to the quadratic
dependent in case of contrast reduction), and, in addition,
some of the experimental imperfections effects can be
separated from the desired signal. The phase after a single

DD experimental realization with interrogation time T
looking for signal at νm ¼ ν would have the form,

jψðT; ξÞj ¼ 4TΔf × j cosðξÞj: ðA13Þ
Within the DM oscillation coherence time, the phase ξ

can be scanned in different realizations. The maximal phase
4TΔf would be obtained for ξ ¼ 0. Therefore, the sensi-
tivity for measuring Δf scales as 1

T.

APPENDIX B: RELAXION STAR

A bound on the coupling of a DM candidate to
photons gϕγ is presented in Fig. 6 for a DM star bounded
to earth.

FIG. 5. The expected bound for the amplitude Δf as a function
of the Ramsey time T.
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FIG. 6. Bound on gϕγ for a relaxion star centered around Earth.
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