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In this paper we study the axial anomaly in very special relativity electrodynamics using Pauli-Villars
and dimensional regularization of ultraviolet divergences and Mandelstam-Leibbrandt regularization of
infrared divergences. We compute the anomaly in 2 and 4 dimensional space-time. We find that this
procedure preserves the vector Ward identity(charge conservation) and reproduce the standard axial
anomaly in 2 and 4 dimensions without corrections from VSR. Finally, we show how to obtain the anomaly

in the path integral approach.
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I. INTRODUCTION

The Standard Model of particle physics (SM) is a very
successful theory. With the discovery of the Higgs boson at
CERN, its particle composition was completed [1].

But the discovery of neutrino oscillations showed that
the neutrinos have mass whereas in the SM they are
massless [2].

One of the most important problems of particle physics is
to provide a mass for the neutrino without disturbing the
chiral nature of the SM, since neutrinos appear to be left
handed.

The seesaw mechanism is a popular mechanism to obtain
massive neutrinos [3]. However, it means to introduce new
particles and new interactions.

One possibility to have massive chiral neutrinos is very
special relativity(VSR) [4]

VSR assumes that the true symmetry of Nature is not the
full Lorentz group, but some of its subgroups. The most
interesting of these subgoups are Sim(2) and Hom(2).
Using these subgroups new terms are allowed such that the
neutrino get a mass [5].

Various applications of VSR have been considered, like
the inclusion of supersymmetry [6,7], curved spaces [8,9],
noncommutativity [10,11], dark matter [12], and also in
cosmology [13].

Some time ago, we proposed the SM with VSR [14]
(VSRSM). Its particle composition and interactions are the
same as in the SM, but neutrinos can have a VSR mass
without lepton number violation.
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Loop computations in VSR are nontrivial though. New
infrared divergences appear and they have to be regular-
ized. We studied how to do so using the calculation of
integrals in the Mandelstam-Leibbrandt (ML) prescription
[15,16] introduced in [17], in [18,19]. The Ward identities
corresponding to the gauge and the Sim(2) symmetry of the
model are preserved.

Last year, we applied these techniques to the Schwinger
model in VSR [20] and to the photon mass in VSR [21].

A very important test that the VSRSM has to pass is the
cancellation of axial anomalies. Being a chiral local gauge
symmetry model, the presence of chiral anomalies may kill
the model, because the gauge symmetry will be lost and
renormalizability and unitarity could not be simultaneously
satisfied.

In [20] we did a computation of the two dimensional
axial anomaly. We obtained that the vector current is
conserved and the axial anomaly get a correction from
VSR in the form of a multiplicative factor.

The authors of [22] tried to compute the axial anomaly
in four dimensions using the prescription to treat y°
introduced in [23]. They claim that there is an anomaly
in the vector current as well as in the axial vector current.
However their computation missed two important graphs.
(Please see Chap. IV).

In this paper we study the axial anomaly in two
and four dimensions using Pauli-Villars (PV) and
dimensional(DR) regularization of ultraviolet divergen-
ces and ML prescription for infrared divergences. We
show explicitly that the vector current is conserved and
that the axial anomaly is the same we get in Lorentz
invariant electrodynamics, without any correction from
VSR. Our result relies on two properties of the ML
prescription: First, it allows shifting of the loop momen-
tum variable (which implies gauge invariance) and
second, it respects naive power counting.
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According to this result, the VSRSM must be free from
anomalies and therefore consistent.

In the VSR gauge field action a very interesting
possibility opens up: A gauge invariant mass term for
the gauge field [14,24,25]. In the present work, we did not
include such a mass term for the photon because it will not
affect the axial anomaly, since the axial anomaly is due to a
loop of fermions.

The paper is written as follows. In Sec. II we define the
lagrangian of VSR electrodynamics and derive the
Feynman rules that will be used to compute the anomalies.
In Sec. III we compute the axial anomaly in two dimen-
sional space time. In Sec. IV we study the axial anomaly in
four dimensions. In Sec. V we study the axial anomaly in
2d using DR. In Sec. VI, we derive the axial anomaly in 4d,
using DR. In Sec. VII we present the derivation of the axial
anomaly using the path integral. Finally in Sec. VIII we
draw some conclusions.

II. THE MODEL

The electrodynamics sector of the VSRSM in the
Feynman gauge.
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The vector current (electric charge conservation) is
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Both currents are conserved at the classical level [20].
We are interested in computing expectation values of these
currents.
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FIG. 1. 1™ (Eq. (3) ).

FIG. 2.

i (Eq. (4) ).

To get the Feynman rules we use the expansion of
(n-D)~! both in the currents and the Lagrangian.

(n-D)™' = (1 +ie(n.0)"(n.A)
+ (ie)?(n.0)"'(n.A)(n.0)"'(n.A)
+ (ie)*(n.0)"'(n.A)(n.0)"' (n.A)
x (n.0)7'(n.A))(n.0)~" +

The Feynman rules are listed in Appendix A.

III. TWO DIMENSIONAL AXIAL ANOMALY

In this case we have to compute the expectation value of
the axial vector current in a background field A,. We use the
convention of [26], €?! = +1.

(P(a) = / d*x (" (x)) e = (—ie)~'iIP* (q)A,  (2)

The contribution to the two dimensional anomaly in VSR
electrodynamics is given by the two graphs (Figs. 1 and 2):
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To compute the axial anomaly we will use Pauli-Villars regularization and Mandelstam-Leibbrandt prescription to treat
infrared divergences. We will follow Ref. [27].

Notice that Eq. (3) is logarithmically divergent and Eq. (4) is finite.

It is easy to check that formally:

qﬂ (HIS;w + HZS;w) =0
if shift of the integration variable p — p + k is allowed. Here & is a constant vector. This would be true if the integral (3)
would be finite.
Introduce a Pauli-Villars particle of mass M and define the regularized amplitude:
HSRMV(M, M’ q) — HIS”D(M, q) + HZSMV(M, CI) _ 1’115;”/(]‘_47 q) _ HZS#D(M’ q)
Since IR (M, M, q) is finite, it satisfies the naive Ward identity(electric charge conservation):
CIMHSRW(M’ M, ‘1) =0

On the other hand, the axial Ward identity is, formally:

i(HISﬂI/ + H25ﬂ’/)qb = 2MA(Ma C])ﬂ

= —ie)? l 2 -1 -1 l(y_'—M_mTzﬁ 51((¢+¢)+M_m72n(];{+q))}
=2M(—ie) /der{ {}’/‘—G—Zn/‘(yi)m (n.(p+q))"(n.p) pz—Mz—mz—l—igy TPy v

(5)

if shift of the integration variable p — p + k is allowed.
Therefore the regularized amplitude satisfies:

TP (M. M. q)q, = 2MA(M. q)* = 2MA(M. q)".
Since the original amplitude is obtained formally as limy_ ., the axial anomaly is given by:
B* = limy_ ., (—2MA(M, q)*).

Now, we compute (5). First notice that after computing the trace, the integral is finite. A typical term containing the vector
n* is of the form:

1 1 1
CH = 2M?*m?(—ie 2g’“‘n,,/d o
(—ie) pp2_M2_m2+ie(p+q)2—M2—m2+i8”-P

Now we recall an important property of ML prescription. It preserves naive power counting. According to this, C* ~ M~!
for large M.

Following the same argument, we can easily check that all terms containing n* vanish when M — 0.

It remains the Lorentz invariant term:

1 1 2 » ()
= = =—i—¢
pP—M?—m?+ie(p+q)*—M>—m? +ie z. e

i (q)g, = limg o — 457, [ dp
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Equation (7) is the standard Lorentz invariant result [26].

We want to comment on a previous computation of the
anomaly in [20]. There and here, the vector current is
conserved, but a different axial anomaly is obtained. This
|

FIG. 5. TP,

7
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FIG. 6.

difference may be a result of different normalization
conditions [27] or the extra freedom we have when
Lorentz symmetry is broken [28].

It is clear though that the procedure used in [20] does not
respect naive power counting of the loop integrals.

IV. FOUR DIMENSIONAL AXTAL ANOMALY

We compute:

[ 5 (p.alir010) = @afo-r + p + @)@ (p) .

There are four graphs that contribute to the axial anomaly in four dimensions (Figs. 3—6). Notice that in [22] Figs. 5 and 6
are missing. They are fundamental to satisfy the Ward identity for the vector current(charge conservation) as well as the

right computation of the axial anomaly.
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i+ M-y
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i00 = (=1)(ie)*n’n l/dk(n‘k)_l("-(k —=p—q)"[(n.(k=q))™" + (n.(k = p))~']

=P f+M =ity - o — 5
xTr{%yim Ek_p_q) _M22 nffﬂ;) [yﬂ—l—%n”(ﬂ)m (n.k)~ (n.(k— p—q)) }y k(kL]f_mzﬁg}
)
T — (<1) (i)t [ k() .k = ) [k = g = ) + (.l + p)7]
1 M=) [, - I R v i)
xTr{EyimZPk 2 M? —m? +kze [7 o (hym? ()™ (. (k = ) 1} (k—q)* — M? —m? —|—l€}
+(p.0) = (q.v) (10)
s — ie)*n*n*n’i Lt ! ! ! !
e = (=1)(ie)n /dk{ kn k{ (k+p+q)n.(k+p)+n.(k+p+q)n.(k+q)
1 1 n 1 1 " 1 1 n 1 1 }}
nk—=p)n(k—p—-q) n(k—q)n(k+p) n(k—p)n(k+gq) n(k—gqg)n(k—p-gq)
Uy s ik M=)
8 Tr{iﬂm Aoy v ie} an

Notice that TI?#¥8, T13#0 [1%19 are ultraviolet finite. Only 1'% is linearly divergent as in the Lorentz invariant
electrodynamics.

To compute the axial anomaly we will use Pauli-Villars regularization and Mandelstam-Leibbrandt prescription to treat
infrared divergences. We will follow Ref. [27].
It is easy to check that formally:

(HIS;wé + HZS;w& + T135mw0 + H45’”"5)p5 =0

if shift of the integration variable k — k + Q is allowed. Here Q is a constant vector.'
Introduce a Pauli-Villars particle of mass M and define the regularized amplitude:

TSRS (M, /1, p, q) = (TS0 4 [125005 | [35m0 4 T145m6) (M, p, q) — (T 4 [P2Sw6 | [P35ms | [14500) (§7, p, q)
Since IIPR“°(M, M, p, q) is finite, it satisfies the naive Ward identity(electric charge conservation):

R (M, M, p, q)ps = 0
Besides, the axial Ward identity formally is, if shift of the integration variable k — k + Q is allowed:

_ (P + q)ﬂi(HISyw + H25y1/§ + H35/41/5 + H45;w5) — ZMA(M,p, q)u5

M — m> A"
_ —2M(—ie)2 / dk{Tr{ ((k‘l’ ﬂ“‘ ﬂ) + 2 n(k+p+q)) |:},y +ln”(ﬂ)m2(n(k +p+ q))‘l(n(k—I— p))—1:|

(k4+p+q)? —M* —m? + ie 2
l(k‘i‘ﬂ“‘M nﬂ ik+M_m_2n,}{)
Ukt p) = 2m<kjrpzi {7/5 +%n5(ﬂ)m2(n.(k+ p))—l(n.k)—l] (k§2 Y. fnz f ie} +(p.6) - (q,y)}

(12)

"This is true if we use DR as in Secs. V and VI.
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(—2M)(ie)’n’n’i / dk(n.k)~ (n.(k = p = q))[(n.(k = q))~" + (n.(k = p))~']

. L | )
e[ Ly AT~ Sy s M )
2 g M m i T R M e

The term (13) is convergent and has zero trace in four dimensions. So it vanishes.
Therefore the regularized amplitude satisfies:
—(p + q),TPR>(M, M, p,q) = 2MA(M, p, q)*° = 2MA(M, p, q)*°

Since the original amplitude is obtained formally as limj_,,, the axial anomaly is given by:
A% = Timy_, (~20LA(M. p. 9)**)

(13)

After computing the trace, we use ML prescription to regulate the infrared divergences. A(M, p, q)*° is ultraviolet finite
A nice property of ML prescription is that preserve naive power counting. Using this property, we can easily show that all

1

terms containing n* in A(M, p, q)*° are smaller than M~2 for large M, so they do not contribute to the axial anomaly.

1 1
(k+pP—m? =M, —m? =2 (k + p)> — m® — M?

A = limj;_, o, 8M*e"% p q5(—ie)? / d*k

That is:
) i
A = —(ie)? Y &P psq,

This is the standard result [26,27].

We see that Pauli-Villars regularization of ultraviolet divergences and Mandelstam-Leibbrandt regularization of infrared
divergences preserve the Ward identity for the vector current (electric charge conservation) as well as the standard anomaly

for the axial current, without modification from VSR terms.

V. TWO DIMENSIONAL AXIAL ANOMALY IN DIMENSIONAL REGULARIZATION

To treat y°> we follow the prescription of [23]. That is, in any number of dimensions

y5 = iy%!
Py =0u=0,1; [P.*=0, pu=23...d
q,, n* are two dimensional vectors. P, is d — dimensional

iHlS/w _ —(—ie)z/d Tr " —|—1n"(ﬂ)m2(n ( + ))—1(n )_1 l(ﬂ+M_%2ﬁ)
9, = p Y \PTq P M-+ ie
2
! (P +4) + M- p)
X —n. 2(n. ~1(n.p)1 )53 n-(p+q)
(4+2n q()ym*(n.(p + q))~" (n.p) )7/ =M=t ie
Write
¥ = P + po; 1livesin two dimensions, 2 lives in d — 2 dimensions
Now we use the identity:
2
)
2n.p

i+ 5+ ) )| = ot = o+ @) = b= (-
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(P +4) + M=)
(p+q)?*—M>—m?+ie

Mg, = —(—ie)? / der{— [y” + %n”(ﬂ)mz(n-(p +4q)7! (n-p)“] s

AL T
p*—M? —m? Ve’

o)+ M=
R R i) R Y s q)l_Mz_zm v (15

[ g o+ @) )|

(P +4)+ M=%t
(p+q)?—M>—m?+ie

—~(-ief [ aptef |4 S o+ ) )|

(11+M—TE }

Pl S W+ ) |

1

= (i [ apted [ S o+ ) )

JFM_TT 1 +¢ +M 7 [ﬁ_q
+2M(—ie)2/der{ {y‘“r;n"(ﬂ) *(n.(p+q)~" (n.p) ]p ﬂMz_m +pzey5 E;ﬂ ))—M2 2m(—|— z;)}
i 4
2 (p+

ﬂ+M—7E) y52ﬂl
-M q)? —M? —m? + ie

(17)
In dimensional regularization we can shift variable p — p — ¢ in the term (16). Then the addition of terms (16) and (17)) is

cancelled by the contribution of Fig. 2.
The anomaly is

—m? + ie

(P +d) +M -1 n(,:iq))}

2
pz—Mz—mz—i—iz:"y5 7 (p+q)?—M>—m?+ie

(18)

i(f+M—m2i M-t
AF = —(—ie)2/der{ {7" +%n”(ﬂ)m2(n.(11 +q)) H(n.p)™! Wt i) W+ d)+ np q))}.

That is

T [=p3eq, — p3snm*(n.(p + q))~" (n.p)~" €V naqy)
Al = 4(—ie)* [ dp 2 2 2 2 2 2
(p* =M* —m*> +ie)((p + q)* = M* —m” + ie)

p3 ~ (d—2)p* when d — 2. The VSR part of the integral is convergent, using ML prescription, so it is zero, when we
take d = 2.
So only the Lorentz invariant part of the integral contributes to the anomaly.

2 .
P32 L
A =dereg, | d = e2eg, - 19
ee qy/ p pP=M?*—m? +ie(p+q)* —M*—m? +ie “e (19)
That is
5 82 v i 1 v,
qM<J M(q» = —iegﬂ ql/;A/l =—-—¢&% A}t =€ MQvAy

which is the standard result [26].
In Appendix B we study the vector Ward identity. If we use dimensional regularization there, then shifting the integration
variable p— > p + Q is allowed. So the naive Ward identity for the vector current is satisfied without anomaly.
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VI. 4D AXTAL ANOMALY. DIMENSIONAL REGULARIZATION

In this section we compute the axial anomaly using dimensional regularization. The contribution of Fig. 3 is

~(p + @m0 = ~(=ie? [ akte{ [ ) = (04 ko4 ) (k= )

(k) + M-ty

XM+qP—M%q£$2ﬁw+%MWWH”“+QW%”@”}

i+ M-y
K= M?—m?+ie
o ’nz
l(k_ ﬂ+ M - 7n<(l:t—p))
(k=p)*=M?*—m?>+ie’

. [yﬁ+§n5<¢>m2<n.<k—p>>-1<n.k>-‘}

Write ¥ = ¥ + />

K+l +p+d+Mys=—ys(ki + ko + P+ d + M)+ 2ysk, + 2Mys.

That is the anomaly is

o : i((k+ﬂ+¢i)+M—”’;M)[
r0(p.g) = 2(cief [ atel g

Xi(k+ﬁ+M—%ﬁ)
(k+ p)? = M?* —m? + ie

y”+%fmwﬁwlk+p+qn”ﬁ“k+pn4]

i%+M—%ﬁ@:} 20)

v+ ln5(ﬂ)m2(l’l-(k + P))_l(”‘krl} (k) = M? —m? + ie

2

To compute the trace, we notice that there must be an even number of }, otherwise the trace vanishes. Assume there are
four ¥,

Tr{y’ lokor* kor°ka} = (k3)*Tr{y’y*y’} = 0

That is, only two ¥, contribute to the trace.

The trace can be written as Tr = k3S

But k35 ~ (d — 4)k*S. So if k%S is convergent in d = 4 the contribution of this S vanishes. If we use ML prescription to
regularize the infrared divergences we can show that k%S is convergent in d = 4 for all VSR S’s, since ML preserves naive
power counting. Therefore only Lorentz invariant terms contribute to the anomaly.

Finally the anomaly is

N2 Tr{ys(4)r.(P)rs} 1 1
F5y5 , —2(= 2 3/dkk2 v
(p.q) (—ie)”i 2k+p+qF-—M—m>+ie(k+p)?— M —m>+ie (k)2 = M> —m?® + ie
2
: € Lo
g —lz—ﬁgéﬂpaqﬂ (21)

Therefore

(p.410,7*(0)[0) = - ;—nz & (—iq,)e;(q)(—ipa)es(p) (22)

which is the standard result [26].

Following the same reasoning as in Appendix B, we can study the vector Ward identity in four dimensions. If we use
dimensional regularization there, then shifting the integration variable k— > k + Q is allowed. So the naive Ward identity
for the vector current is satisfied without anomaly.

VII. PATH INTEGRAL DERIVATION OF THE AXIAL ANOMALY
We use the approach of [29].

075011-8



AXIAL ANOMALY IN VERY SPECIAL RELATIVITY

PHYS. REV. D 103, 075011 (2021)

The generating functional in the presence of an external
field A, is

7 — / Dle/'/ei f d*xpiBy

where the gauge invariant and Sim(2) invariant Dirac
operator is

P=D+1im*(n-D)™', D, =0, - ieA,.

Introduce a basis of eigenvectors of P

Dy, = dnbu: b (iP) = =Dyt = hubn (23)
For large ¢ and fixed A,
bn(X) ~ bu(@)e™, X5~ %,
We can expand
w(x) = aubu(x), T =D @ (x).
The integration measure is defined by:

Dy Dy = | [da,da,.

Under the change of variables:

y'(x) = (1 + ia(x)r)y(x)

) 1
(D, D) ~ —ieF,u (p)blg) 70 — ic s m?

2 n.g(n.p+n.gq)

~ —ieF,,(p)¢(q)e' P9 for large g

we get:
Dy'Dy = J*Dy Dy (24)

where the Jacobian 7 is given by:
logJ =i [ dxa(x)> i (x)r’¢a(x).  (25)

To evaluate it we introduce a gauge invariant and Sim(2)
invariant regularization:

~
SIS

D _on@)Ppa(x) = lim > @i (x)r b (x)ew
= A/lji_r)r;o<x|Tr{yse%}|x>

Tr traces over Dirac indices.
We can write:

) 1 i
(D) ==D,Dg# =3[0, DJo™. 0" =3[

Since we take M — oo, we look at the asymptotic part of
the spectrum.

It is simpler to evaluate the commutator in the light cone
gauge n.A =0

PP ig(q)ei 3 (n,A, (p) — mA,(p))

()
(lD)z = _DMDUQ’MD + gFﬂDG”DA%i_rgo<x|Tr{y5e7}|x>

, | Ay w)’ 2
:A}EI;OTr 07 WF”DG (x|e 2 |x)

2 d*k . 2
T2 |x) = i —ik(x=y) pis2
(x]e™|x) Ty‘/ T e

Py 5 M
pr— | __2 pr— i —_—.
J G = i

Then:

. 35 @ 62 apuv
A}Iggo(x|Tr yew plx) = _327128 Fop(x)F(x).

That is:

2
J =exp <—i / d*xa(x) 12”2 E“ﬁ””Faﬂ(x)FW(x)>.

Then the Adler-Bell-Jackiw anomaly follows.
Notice that we could get this result assuming that the

infrared regulator of - preserves scaling (naive power
n.q
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counting). To guarantee this property we work with the MLL
prescription, as in the perturbative approach.

VIII. CONCLUSIONS

We have examined the appearance of axial anomalies in
VSR electrodynamics, using Pauli-Villars and dimensional
regularization of ultraviolet divergences and Mandelstam-
Leibbrandt regularization of infrared divergences.

Given that ML preserves naive power counting in loop
integrals, we have shown that the usual form for the
anomaly of the axial current appears, without corrections
from VSR terms. No anomaly is present in the vector
current conservation. This computation is at variance from
a previous result for the axial anomaly in two dimensions
[20], where corrections from VSR terms were found. This
difference could be due to different normalization con-
ditions for the anomaly term[27] or some extra freedom that
occurs when Lorentz invariance is violated [28]. In any
case, our result implies that the procedure of [20] destroys
the naive power counting of loop integrals.

The anomaly is produced because the loop integral is
ultraviolet (UV) divergent, so a regulator must be intro-
duced. To fix the renormalized quantities we must impose
normalization conditions (Please see [27], chapter 13.1).
These normalization conditions reflects the symmetries
to be satisfied by the model. Different regulators may
produce different normalization conditions and therefore
the anomaly could appear in the vector current, axial vector
current or in a combination of both (This is important for a
chiral theory like the SM). See for example [30] where a
regulator is able to interpolate between different forms of
the anomaly.

In this paper we are discussing a theory that has infrared
(IR) divergences as well. So a new ambiguity in the value of
the loop integral appears. The result depends on the IR
regulator we choose. Beside the normalization conditions
on the renormalized quantities are different, because we
have a new fixed vector n, and nonlocal terms are allowed.

The results contained in [20] and in this paper corre-
spond to different normalization conditions. In this sense,
both results are right. But naive power counting of loop
integrals is such an important tool in quantum field theory
that the normalization conditions of the present paper
should be preferred.

In four dimension we find a completely different result
compared to [22]. There they claim that the conservation for
the vector current has an anomaly and VSR corrections
should appear in the anomaly of the axial current. We notice
also that Figs. 5 and 6 are lacking in the computation of both
anomalies in [22]. Figures 5 and 6 are crucial to satisfy the
Ward identity for the vector current as a procedure in 4d
similar to the one explained in Appendix B shows.

In Appendix C we derived the Ward identity for the
product of two vectors and one axial vector current in VSR.
The nonlocality of the model introduces new contact terms.

We study also the axial anomaly from the point of view
of the path integral method. Again ML property of
preserving scaling (naive power counting) permits us to
show that the axial anomaly is the Lorentz invariant one,
without corrections from VSR.

According to our results, using dimensional (or PV)
regularization of UV divergences and ML regularization
of IR divergences, the VSRSM must be free from local
chiral anomalies. We get the same anomalies as in the SM,
so the usual mechanism of cancellation of anomalies within
families of leptons and quarks should work.

Finally we want to recall that M is not the mass of the
particle. So if the fermion acquires a VSR mass m even if
M = 0, the divergence of the axial current will contain the
anomalous term only.
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APPENDIX A: FEYNMAN RULES

V(p1.p2.13.9)

m?2 1
=i(ie)*—pfn® n®n

2 n.(qg+pi+pr+ps)

1 1 1 1
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FIG. 7. Electron propagator.

FIG. 8. e—e—A, vertex.
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FIG. 10. axial-e-e vertex. FIG. 12. axial —A,, — A,, — e — e vertex.

APPENDIX B: FORMAL PROOF OF THE WARD IDENTITIES IN 2D

In this Appendix we want to show in some detail how to obtain the Ward identities in 2d. In 4d we have more graphs, but
the procedure is essentially the same.

. 2
l(p—l—M—mTﬁ)
p>—M? —m? +ie
2
(F+d)+M =25 )
(e - M —m+ic |

QJP””=—Gd@{/dpﬂ{[g+%nq@am%n(p+q»—wmpy1

<4 5 W+ ) ()7

Now we use the identity:

3+ ) )| = [yt =g+ ) v (=20 | e

and the cyclic property of the trace to get:

(P +M=1535)
pr—M*—m? + e

s = (-iep [ apmef Py o + ) ) |7

2

<<¢+¢>+M—%m>}
(p+q)?*-M>—m>+ie ]’

- [ R+ ) ) (B2)

Besides:

2
(P M=)

pz—Mz—m2+i8y'

a5 = 2(iefn.an [ dp(on.p)”(n(a-+ p) (n(=g + p))Te o
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In the second term of (B2) shift p - p — g to get2:

(F+M—"2-1)

pr—M? —m? +ie

s = ~(-iep” [ apte{ Sy P (2n)l(np -+ 0) 0p - )1

That is IT* = 1" + T1?* is transverse.
The axial Ward identity is obtained in the same way.

APPENDIX C: WARD IDENTITY FOR THE PRODUCT OF THREE CURRENTS IN VSR

We follow [26] page 311.
The vector current is

- 1 - _
P =ty + s me (- 0)~hp)(n - 0) "y

The axial vector current is

1 1 1
S — 7S Z 2 - a5
J l;/yyl;/+2m <n'al//>;/iny< al//).

n-

Consider the path integral, where § is the action (1) with A, =0

z~ [ DyDyed ) (2).
Make the following local transformations

Sy (x) = ia(x)y(x);  op(x) = —ia(x)p(x).

The integration measure is invariant under this transformation.
We get the following Ward identity:

OG0T (7#(x)j (). (2))10) = (0|6, (v)*(2))[0) = (OIT (j*° (¥)8x/” (2))]0) = O (C1)

where:

.1 () = gl (n - 9) 7 (n- 0) o (e — ) + k- O)wn - 0)5(x — )
— ((n-0) (- ) )hyS(x = y) = ((n- 0) )y (n - 0)5(x - ]
6.5(y) = g mn i H(n - 0) (- 0) olx = ) + iy (n- O) wn - 0)5(x — )
— ((n-0) (- 0) Py wS(x = y) = ((n- 0 )y (n - O)75(x — y).

The nonlocality of the action and currents modify the Ward identity for the triangle graph. It is easy to check that the
graphs in Fig. 3 satisfy (C1) if shifting of the loop integration variable is allowed.

Notice that (C1) is not given by the addition of the graphs in Fig. 1 of [22].

In a similar way we can derive the Ward identity for the divergence of the axial vector current.

*This is justified if we use DR as in Secs. V and VI.
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