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We build rigorously the attractive five-dimensional model where bulk fermions propagate along the
S1=Z2 orbifold and interact with a Higgs boson localized at a fixed point of the extra dimension. The
analytical calculation of the fermion mass spectrum and effective Yukawa couplings is shown to require the
introduction of either essential boundary conditions (EBC) imposed by the model definition or certain
bilinear brane terms (BBT) in the action, instead of the usual brane-Higgs regularizations. The obtained
fermion profiles along the extra dimension turn out to undergo some discontinuities, in particular at the
Higgs brane, which can be mathematically consistent if the action is well written with improper integrals.
We also show that the Z2 parity transformations in the bulk do not affect the fermion chiralities, masses and
couplings, in contrast with the EBC and the BBT, but when extended to the fixed points, they can generate
the chiral nature of the theory and even select the Standard Model chirality setup while fixing as well the
fermion masses and couplings. Thanks to the strict analysis developed, the duality with the interval model
is scrutinized.
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I. INTRODUCTION

As it is well known since the 2000s, the paradigm of
models with additional spatial dimensions1 constitutes an
attractive alternative to supersymmetry for addressing the
Standard Model (SM) puzzle of the gauge hierarchy.
Furthermore, the warped dimension framework [1] with
SM fermions in the whole bulk [2] offers an elegant
geometrical principle of fermion profile overlap generating
the SM fermion mass hierarchy [3] (see concrete applica-
tion models, e.g., in Refs. [4–9]). In order to realize these
two hierarchical features, the Brout-Englert-Higgs scalar
field [10,11], which is at the origin of the SM particle
masses through the electroweak symmetry breaking, must
be stuck at the so-called TeV-brane2 (or located in the bulk
with a wave function strongly peaked at this brane). The
TeV-brane is a 3-brane (three spatial dimensions) possibly

at a boundary of the finite warped extra dimension.3 More
generally, a brane is an hypersurface located in an higher-
dimensional space. It can arise in the context of string
theories as D-branes which are dynamical objects with
quantum properties [28,29] (see also Refs. [30,31] for the
supergravity limit of string theories).4

In this paper, we will study the original version [1] of the
warped dimension scenario based on the S1=Z2 orbifold
[34,35] where the extra space is compactified on a circle
respecting a spatial parity of the Lagrangian.5 Focusing our
attention on the subtle bulk fermion interactions with the
brane-Higgs field localized at a fixed point, we will analyze
the toy model with a flat extra dimension and the minimal
field content: the results obtained on the fermion-Higgs
coupling structure are directly applicable to the realistic
warped model.
We will clarify the treatment of the bulk fermion

couplings to the brane-localized Higgs boson, within
the S1=Z2 orbifold background, by building rigorously
the four-dimensional (4D)6 effective Lagrangian of the
minimal model, that is by calculating consistently the
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1Together with the composite Higgs models which are dual
models via the AdS=CFT correspondance.

2Let us mention here other possible phenomenological moti-
vations, as from neutrino mass models, for the Higgs boson to be
stuck at the boundary of an interval [12–16] or for fermions to
propagate in the bulk [17,18].

3See for instance Ref. [19–26] for its phenomenology and
Ref. [27] in a supersymmetric context.

4See Ref. [32,33] for brane-world effective field theories.
5An orbifold O being defined as an extra compact manifold C

with so-called fixed points where the introduced spatial trans-
formation (element from a discrete group G)—letting the
Lagrangian invariant—is just equivalent to the identity. It is
noted O ¼ C=G and possesses thus singularities, not like a
smooth manifold [36,37].

6Including time.
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Kaluza-Klein (KK) tower spectrum of fermion mass
eigenvalues and the 4D effective Yukawa couplings (via
the fermion wave functions along the extra dimension).
In particular, we will demonstrate that no brane-Higgs

regularization [like smoothing the Higgs Dirac peak]
should be applied (not necessary and no theoretical argu-
ment for it) in contrast with the usual regularization
procedure of literature (see Ref. [38] and references therein)
and that, instead, one must introduce either essential
boundary conditions (EBC) on 5D fields,7 originating from
theZ2 symmetry, or equivalently some bilinear brane terms
(BBT) in the fundamental 5D Lagrangian. The exact
matching of the fermion mass spectra derived respectively
through 4D and 5D methods will be used in order to
confirm our analytical results. All those statements (except
the 4D approach) hold as well for the free case, i.e., without
Yukawa interactions.
This necessity of the presence of EBC or BBT (terms

with the same form as in Refs. [38,39]), in the 4D or
5D approach, has been found as well [38] in the finite
interval scenario (the higher-dimensional framework of
the other warped model version) with identical brane-
Higgs couplings to bulk fermions: this conclusion confirms
that a specific treatment is required for pointlike inter-
actions between bulk fermions and brane-Higgs bosons in
higher-dimensional spaces.
Besides, we will strictly describe and work out the entire

known duality: identical physical quantities, namely the
mass eigenvalues and 4D effective Yukawa couplings,
are obtained in the different S1=Z2 orbifold scenario
with the Higgs boson localized at a fixed point and finite
interval geometrical setup with the Higgs field stuck at a
boundary.
The EBC and BBT (forms including signs) choices,

which should originate from an Ultra-Violet (UV) com-
pletion of the theory, turn out to induce the chiral nature of
the low-energy effective theory as well as realising the
specific SM fermion chiralities. Indeed, all these chirality
properties are in fact not selected by the remaining sign
choices for the 5D fields transformed via the spatial Z2

group—as the solutions we find within this orbifold
configuration can exhibit twist transformations (sign modi-
fication here) of the 5D fields, à la Scherk-Schwarz
[40,41], through the extra space reflection. We will even
show that the transformation sign choices are just math-
ematical conventions without physical impacts on the SM
field chiralities, the fermion mass spectrum and the 4D
effective Yukawa couplings.
Nevertheless, in order to clarify the chirality aspects, we

will also study a different scenario—considered for

example in Ref. [42]—where the Z2 transformation def-
initions on the fields cover as well the fixed points
themselves.
It turns out that the associated transformation sign choices
precisely at these fixed points constitute here additional
EBC, noted EBC’, that have the capacity to select some
of the previous EBC and hence to fix the chirality setup.
Once more, the role of these EBC’ can be played instead by
certain of the above BBT. Interestingly, such an inclusive
Z2 symmetry definition can induce by itself the chiral
nature of the theory as well as the SM chirality distribu-
tion over the various fields. This origin for the whole
chirality configuration is not offered within the simpler
interval model for instance. In the presence of brane-
localized Yukawa couplings, such an inclusive Z2 scenario
can only be treated through the 4D method. The fermion
masses and couplings are also affected by this inclusive Z2

symmetry.
The action integral definition and integral domain end-

points will be treated carefully. In particular the decom-
position of the action to introduce improper integrals will
appear to be required in the presence of orbifold fixed
points or pointlike fermion-boson interactions (not located
at the boundary of a finite extra space like an interval).
Within this new and appropriate approach of the specific
points along the extra dimension of the orbifold, we find for
the free or Yukawa case that some of the obtained
consistent solutions exhibit certain field jumps at these
fixed points and localized-interaction point. This interest-
ing result of the possible existence of consistent profile
jumps stands against one’s first intuition [43,44], but those
jumps are only induced by sign flipping and not by
pointlike changes of the absolute value of the wave function
amplitudes.
The analysis of the present orbifold background with

brane-localized fermion-scalar interactions, as well as the
previous results [38] on the interval background, show that
generally speaking the action expression does not system-
atically contain all the information allowing to fully define
the model: in particular some EBC may be used (in
contrast, the BBT are terms in the action) depending on
the brane treatment adopted or on the UV completion of the
theory (which could introduce the BBT).

II. MINIMAL S1=Z2 CONSISTENT MODEL

A. Geometry and symmetries: the proper action

We consider the 5D space-time model with the product
geometry M4 × S1=Z2 described just below.

(i) M4 represents the usual 4D Minkowski space-time
whose coordinates are denoted by xμ where
μ ∈ ⟦0; 3⟧ is the Lorentz index of the covariant
formalism. The metric conventions are given in
Appendix A.

7Directly imposed by the model definition, in contrast with the
natural boundary conditions (NBC) deduced from the action
minimization condition.
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(ii) S1=Z2 stands for the extra space orbifold obtained
from modding out the circle S1 by the discrete
group8 symmetry Z2.
This circle S1 is characterized by a radius R

and its coordinate is y ∈ ð−πR; πR�, not double-
counting the point y ¼ πR since it is this point, by
pure convention, that is chosen to be the junction
point geometrically identified with the point
y ¼ −πR (which we note: −πR≡ πR)9 in order
to implement the circle periodicity. The circle
could be constructed from the real axis by impos-
ing a periodicity, that is by identifying geometri-
cally an infinite number of translated regions of
size 2πR and hence by limiting the 1D space to the
fundamental domain ð−πR; πR�.
The (non-neutral) Z2 transformation on space,

y → −y,10 has a representation on a generic 5D
field,

Φðxμ;−yÞ ¼ T Φðxμ; yÞ;
∀ y ∈ ð−πR; 0Þ ∪ ð0; πRÞ; ð2:1Þ

which must let the Lagrangian density invariant, by
definition of the symmetry:

L½Φðxμ;−yÞ� ¼ L½Φðxμ; yÞ�; ∀ y ∈ ð−πR; πR�:
ð2:2Þ

We mention that this equation can define a class of
equivalence of a given coordinate y0, defined as
½y0� ¼ fy ∈ S1jy ∼ y0g with y ∼�y, as illustrated
symbolically on Fig. 1.

Two fixed points arise: ðy ¼ 0Þ→ ð−0 ¼ 0Þ and
ðy ¼ πRÞ → ð−πR≡ πRÞ. At these fixed points,
the Lagrangian condition of Eq. (2.2) is auto-
matically satisfied: L½Φðxμ;−0Þ� ¼ L½Φðxμ; 0Þ�,
and, L½Φðxμ;−πRÞ� ¼ L½Φðxμ; πRÞ�, so that T is
naturally taken as the identity operator in Eq. (2.1)
since no transformation needs to apply on the
fields there. Another scenario will be analysed
in Sec. VI.

In order to properly write down the initial action, we
urge the importance of taking care of possible field
jumps along the extra dimension upon the reader. We
are going to show that the existence of a field jump in
field theory can make sense mathematically if the action
integration domain is properly divided at the jump
location. Different discontinuity configurations must
be considered. First, the hypothesis of a possible jump
at any point of the bulk would lead to an infinite
number of cuts in the action integration region which
would obviously not be treatable leading to unpredict-
able observables: this assumption is thus excluded.
Second, assuming an arbitrary finite number of possible
jumps and hence of mathematical separations in the
action domain, outside the fixed points, is not expected
to affect the unique physical results—like the fermion
mass spectrum—since none of those jump points exhibit
some specific property: it is thus useless to explore this
direction. Third, the case of possible profile jumps at the
two specific points that are the fixed points of the
orbifold—one of those two, y ¼ πR, corresponding as
well to the Yukawa coupling location (see Sec. II B 3)—
remains to be studied. The effective presence of such
profile jumps in some of the obtained solutions (see
Figs. 2 and 3 respectively for the free and coupled
fermion situations) confirms this possibility. For exam-
ple, in case of a profile jump at y ¼ 0 (an identical
discussion holds for the other fixed point at y ¼ πR),
regarding a well-defined Lagrangian integrand involving
5D fields over the whole action integration domain, we
simply have to choose between the mathematical def-
initions of the left or right continuity for a generic
profile function along the extra dimension: fð0Þ ¼
fð0−Þ ¼ limϵ→0 fð0 − ϵÞ with ϵ > 0, or, fð0Þ ¼ fð0þÞ.
This choice is conventional and hence cannot affect
numerical results, so let us choose conveniently

fð0Þ ¼ fð0þÞ and fðπR−Þ ¼ fðπRÞ ð2:3Þ

throughout this paper, in case of jumps at the fixed
points. Then, the well-defined global action of this
model must be written as a sum of some brane terms,
an improper integral and a standard integration over
different regions covering the whole physical domain of
the circle:

FIG. 1. S1=Z2 orbifold picture. The fixed points at y ¼ 0 and
y ¼ πR are indicated by the two black points. The two examples
of pairs of points with opposite coordinates, respectively in-
dicated by the double dashed arrows, correspond to an identical
Lagrangian density (for each pair).

8Factor element, e�i
2π
2 ¼ −1, and neutral element, 1.

9Another possible mathematical convention would have been,
for instance, − 3πR

2
≡ πR

2
.

10The convention above, of having taken the coordinate origin
at the strict middle of the circle domain (or fundamental domain),
renders the Z2 parity with respect to the origin more explicit and
convenient to study.
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S5D ¼ Sbulk þ Sbranes; with; Sbulk ¼
Z

d4x

�Z
0−

−πRþ
dyLkin þ

Z
πR

0

dyLkin

�
; and;

Z
d4x

Z
0−

−πRþ
dyLkin ¼̂ lim

a→0−;b→−πRþ

Z
d4x

Z
a

b
dyLkin ¼ lim

ϵ→0

Z
d4x

Z
0−ϵ

−πRþϵ
dyLkin; ð2:4Þ

where ϵ > 0, Sbranes represents action terms located at
the orbifold fixed points and Lkin stands for the fermion
kinetic terms of the Lagrangian density (see next
subsection). Indeed, all the obtained fields will be
well defined at the two fixed points via Eq. (2.3).
Besides, for Lkin to be integrable over the entire region
y ∈ ½0; πR�, this Lagrangian density, which will involve
profile derivatives f0ðyÞ, must be well-defined over this
region. The necessary (but not sufficient) condition for
this last feature is that the profiles fðyÞ have to be
continuous on ½0; πR� and Eq. (2.3) also guarantees this
continuity. For the consistency of the other integra-
tion term in Eq. (2.4), the profile continuity along
y ∈ ½−πRþ; 0−�11 obviously reads as:

lim
κ→0

fð0− − κÞ ¼ lim
ϵ→0

lim
κ→0

fð½0 − ϵ� − κÞ
¼ lim

ω→0
fð0 − ωÞ ¼ fð0−Þ;

with κ > 0, ϵ > 0, ω ¼ ϵþ κ and similar equalities
hold at the other region boundary y ¼ −πRþ.
Furthermore, the worked out solutions fðyÞ will (well)
be derivable over the two regions ½−πRþ; 0−� and ½0; πR�
(see Secs. III B and V C respectively for the free and
coupled fermion situations) so that Lkin will be well
defined. For example, fðyÞ is derivable in the region
½0; πR� at y ¼ 0 if and only if fðyÞ is right-derivable at
y ¼ 0, and the corresponding right-derivative does not
diverge thanks to the first equality of Eq. (2.3). Notice
that from the point of view of the integration by pieces
of the action in Eq. (2.4) precisely over the physical
domain, the inclusion (or not) of the single points at
y ¼ 0 or y ¼ πR≡ −πR does not affect the integral
results—given the continuous form of the even Lkin over

FIG. 2. Zero-mode and KK dimensionless wave functions qnL=RðyÞ, dnL=RðyÞ, with n ¼ 0, 1, 2, along the S1=Z2 orbifold domain,
y ∈ ½−πRþ; 0−� ∪ ½0; πR�, corresponding to the free solutions of Table I in the simplified case, αnQ;D ¼ 0, mn > 0, and for the two
different types of Z2 transformations, I, II from Eqs. (3.8) and (3.9). The two fixed points at, y ¼ 0, y ¼ πR≡ −πR, and Dirichlet/
Neumann BC, ð−Þ=ðþÞ, are indicated on the graph.

11To be clear, the integration domain ½−πRþ; 0−� corres-
ponds to the spatial region along the extra dimension
� − πR; 0½⇔ ð−πR; 0Þ—respectively the Francophone and
Anglophone notations—which does not include the fixed
points at y ¼ 0 and y ¼ −πR.
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the two regions—so that only consistent action defi-
nition arguments were considered here.
Finally, the Lagrangians of the whole expression (2.4)

will respect the Z2 symmetry since the Lagrangian
Lkin will fulfill the condition (2.2) and the brane action
will exclusively involve Lagrangians taken at fixed points
like for example [see Eq. (2.13)], Sbranes ∋ SY ¼R
d4xLYðxμ; πRÞ.

B. Field content and complete action

1. Bulk fermion fields

Let us introduce the minimal spin-1=2 field content
which allows to write down a SM Yukawa-like coupling
between zero mode fermions (of different chiralities) and a
spin-0 field (see Sec. II B 3). It is constituted by a pair of
fermion fields called Q and D. Those particles propagate
along the circle S1, as we have in mind an extension of this
toy model to a realistic scenario with bulk matter (cf.,
Sec. II B 4) where Q, D will represent respectively the
SUð2ÞL gauge doublet down-component quark and the
singlet down-quark.
The 5D fields Qðxμ; yÞ and Dðxμ; yÞ—of mass dimen-

sion 2—have the following kinetic terms [entering
Eq. (2.4)] which allow to recover canonical covariant

kinetic terms for the associated fermions in the 4D effective
action (as imposed by the argument of decoupling limit12):

Lkin ¼
i
2
ðQ̄ΓM∂M

⟷
Qþ D̄ΓM∂M

⟷
DÞ; ð2:5Þ

using the standard notations ∂M

⟷
¼ ∂⃗M − ∂M

 �
, ∂M ¼

∂=∂xM, xM ¼ ðxμ; yÞ with M ∈ ⟦0; 4⟧ for the coordinates
xM ∈ M4 × S1=Z2 and ΓM for the 5D Dirac matrices
(cf., Appendix A). In the used conventions, the 5D Dirac
spinor, being in the irreducible representation of the
Lorentz group, reads for example for Q as,

Q ¼ QL þQR with QL ¼
�
QL

0

�
; QR ¼

�
0

QR

�
;

ð2:6Þ

in terms of the two two-component Weyl spinors QL, QR,
L=R standing for the left/right chirality, and as usu-
ally Q̄ ¼ Q†γ0.

FIG. 3. Zero-mode and excitation wave functions qnL=RðyÞ, dnL=RðyÞ, with n ¼ 0, 1, 2, along the S1=Z2 orbifold domain,
y ∈ ½−πRþ; 0−� ∪ ½0; πR�, corresponding to the Yukawa-coupled solutions (5.18), presented in Table II, for the simplified case,
αY ¼ αn0 ¼ 0, and the two different types of Z2 transformations, I, II from Eqs. (5.7)–(3.9). The two fixed points at, y ¼ 0,
y ¼ πR≡ −πR, the BC, ð−Þ=ðþÞ=ð×Þ, the BBT and Yukawa coupling brane-locations are indicated on the graph.

12From the theoretical consistency and phenomenological
points of view, the SM must be approximately recovered at
low-energies in the limit of infinitely heavy KK excitations.
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As stated at the end of previous section, the Lagrangian
Lkin must obey the condition (2.2). For this purpose, the Z2

transformation (2.1) on the 5D fields Qðxμ; yÞ and Dðxμ; yÞ
can take four different forms which constitute essential
conditions (EC) issued from the model definition:

Type I

�
Qðxμ;−yÞ ¼ −γ5Qðxμ; yÞ⇒ QL even; QR odd;

Dðxμ;−yÞ ¼ γ5Dðxμ; yÞ⇒ DL odd; DR even;

ð2:7Þ

Type II

�
Qðxμ;−yÞ ¼ γ5Qðxμ; yÞ⇒QL odd; QR even;

Dðxμ;−yÞ ¼ −γ5Dðxμ; yÞ⇒DL even; DR odd;

ð2:8Þ

Type III

�
Qðxμ;−yÞ ¼ −γ5Qðxμ; yÞ⇒QL even; QR odd;

Dðxμ;−yÞ ¼ −γ5Dðxμ; yÞ⇒DL even; DR odd;

ð2:9Þ

Type IV

�
Qðxμ;−yÞ ¼ γ5Qðxμ; yÞ⇒ QL odd; QR even;

Dðxμ;−yÞ ¼ γ5Dðxμ; yÞ⇒ DL odd; DR even;

ð2:10Þ

under which the Lagrangian (2.5) is indeed invariant, as
appears by using the properties of the γ5 Dirac matrix and
the odd parity of the fifth partial derivative ∂4. Notice that
the Z2 parity (second order cyclic group) does not allow
complex phase factors in the transformations:

Fjy ¼ eiθFγ5Fj−y ¼ eiθFγ5eiθFγ5Fjy ¼ ðeiθFÞ2Fjy:

Using the γ5 definition of Appendix A together with
Eq. (2.6), we already deduce some information on the
possible 5D chiral field parities with respect to y ¼ 0, as
indicated in Eqs. (2.7)–(2.10).
Based on Eq. (2.6), we can rewrite the bulk Lagrangian

of Eq. (2.5) in forms which are convenient to see at a glance
the Lagrangian even parity, simply by using the occurrence
of fixed 5D field parities, different for the left/right
chiralities [cf., Eqs. (2.7)–(2.10)], and the ∂4 odd parity:

Lkin ¼
1

2
ðiQ†

Rσ
μ∂μ

⟷
QR þ iQ†

Lσ̄
μ∂μ

⟷
QL −Q†

R∂4

⟷
QL

þQ†
L∂4

⟷
QRÞ þ fQ ↔ Dg;

¼ 1

2
ðiQ̄Rγ

μ∂μ

⟷
QR þ iQ̄Lγ

μ∂μ

⟷
QL − Q̄R∂4

⟷
QL

þ Q̄L∂4

⟷
QRÞ þ fQ ↔ Dg;

where the low double arrows indicate a replacement of 5D
fields in the previous terms and the matrices σμ; σ̄μ are
defined in Appendix A.

2. Brane-localized scalar field

The questions about the mass calculation arise when the
bulk fermions couple to a single 4D real scalar field H
(mass dimension 1) which is confined at a fixed point of the
orbifold, as in the studied model (inspired by the warped
scenario addressing the gauge hierarchy problem). We
simply choose this fixed point to be at y ¼ πR, rather than
y ¼ 0, which is a purely mathematical convention since
these two points belong to a circle. The real scalar field has
an action of the generic form,

SH ¼
Z

d4x

�
1

2
∂μH∂μH − VðHÞ

�
; ð2:11Þ

with a potential V possessing a minimumwhich generates a
nonvanishing vacuum expectation value (VEV) for the field
H expanded as

HðxμÞ ¼ vþ hðxμÞffiffiffi
2
p ; ð2:12Þ

in analogy with the SM Higgs field.

3. Yukawa interactions

We consider the following Yukawa interactions allowing
to study the subtleties induced by the coupling of the above
brane-scalar field (at y ¼ πR) to the introduced bulk
fermions,

SY ¼
Z

d4xLYðxμ; πRÞ; with;

LY ¼ −Y5HQ†
LDR − Y 05HQ†

RDL þ H:c:: ð2:13Þ

Notice that considering operators involving the fieldsH,Q,
D up to dimension 5 allows to include such a Yukawa
coupling. Let us recall here that in case of profile jumps at
the fixed point at y ¼ πR, the 5D fields QL=Rðxμ; πRÞ,
DL=Rðxμ; πRÞ are defined through the profile convention
(2.3), as already described. The studied model with a
Yukawa coupling at a fixed point will turn out to be dual to
the interval model including a Yukawa coupling at a
boundary (see Sec. VII).
The complex Y5 ¼ eiαY jY5j and Y 05 ¼ eiα

0
Y jY 05j Yukawa

coupling constants, entering Eq. (2.13), are independent
and a well-defined 4D chirality holds for the fermion fields
on the 3-brane strictly at y ¼ πR [38,44]. To avoid the
introduction of a new energy scale, in the spirit of the
warped model, we can define the 5D Yukawa coupling
constants as

Y5 ¼ y4 × 2πR; and; Y 05 ¼ y04 × 2πR; ð2:14Þ

where y4, y04 are dimensionless coupling constants ofOð1Þ.
Then, y4 can be approximately identified with the SM
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Yukawa coupling constant within the decoupling limit, as
will be described in Eqs. (5.22) and (5.23).
When calculating the tower of excited fermion masses,

we restrict our considerations to the VEV of H and
concentrate our attention on the following part of the
action (2.13),

SX ¼
Z

d4xLXðxμ; πRÞ; with;

LX ¼ −XQ†
LDR − X0Q†

RDL þ H:c:; ð2:15Þ

with the compact notations X ¼ vY5=
ffiffiffi
2
p

and X0 ¼
vY 05=

ffiffiffi
2
p

. Based on Eq. (2.12), the complete action reads
as, SY ¼ SX þ Sint, with the localized fermion-scalar inter-
action terms:

Sint ¼
Z

d4xLintðxμ; πRÞ; with;

Lint ¼ −
Y5ffiffiffi
2
p hQ†

LDR −
Y 05ffiffiffi
2
p hQ†

RDL þ H:c:; ð2:16Þ

that allow to work out the 4D effective Yukawa coupling
constants.

4. Bilinear brane terms

Introducing all the covariant operators up to mass
dimension 5 [like for the Yukawa couplings (2.13)] in this
model, one should consider as well the dimension 4
operators given just below, that we call the BBT like in
Ref. [38]. Furthermore, the presence of the BBT has several
justifications: (i) they allow to avoid physical consistency
problems both in the free case (see Secs. III A and III C)
and with Yukawa couplings (Secs. VA and V C); (ii) they
play the role of defining well the model at the two orbifold
fixed points both in the free case (see Secs. III B and III C)
and with Yukawa couplings (Sec. V C); (iii) they induce the

expected matching of the analytical results on the
spectrum derived through the 4D and 5D approaches
(see Secs. IV and V C).
The following BBT lead to the SM chirality

configuration,

SB ¼
Z

d4xðσQ0 Q̄Qj0 þ σQπRQ̄QjπR þ σD0 D̄Dj0
þ σDπRD̄DjπRÞ; ð2:17Þ

where σQ
0ðπRÞ ¼ þð−Þ, σ

D
0ðπRÞ ¼ ðþÞ− and for example Q̄Qj0 ¼

Q̄ðxμ; 0ÞQðxμ; 0Þ. Indeed, without Yukawa couplings, these
terms will induce only a nonvanishing profile q0LðyÞ [see
line 2 of Eq. (3.18) and Table I in case of the zero-mode
with mass m0 ¼ 0] in the 5D field QLðxμ; yÞ so that only
the left-handed 4D field Q0

LðxμÞ will exist. This zero-mode
Q0

LðxμÞ, without KK mass contribution, constitutes the
lightest mode of the KK tower and also the SM state.
Hence, we can well recover the SM configuration: a chiral
field content and a left-handed 4D field potentially repre-
senting the SUð2ÞL quark doublet in the direct extension to
gauge symmetries (and three flavors). Given that, similarly,
the BBT (2.17) will exclusively lead to a right-handed 4D
field D0

RðxμÞ [line 1 of Eq. (3.18)] potentially representing
the SM down quark type (gauge singlet). When adding the
Yukawa couplings (2.13), this SM chirality set-up remains
though it is no more explicit due to the QnðxμÞ −DnðxμÞ
mixing, via vector-like KK state mixings, which induces
some vector-like mass eigenstates ψ0

L=RðxμÞ for the lightest
modes of the tower (see Secs. IVandVC). In the decoupling
limit where heavy KK state mixings tend to vanish, the SM
chirality configuration is recovered as expected.
For completeness, let us underline that in the free case,

the opposite BBT signs, σQ
0ðπRÞ ¼ ðþÞ− , σD

0ðπRÞ ¼ þð−Þ, would
lead to a chiral set-up for the zero-modes but different from

TABLE I. SM-like free fermionic fnL=RðyÞ profiles—normalized to the indicated complex phases—on the two orbifold domains
½−πRþ; 0−� and ½0; πR�, corresponding to the solution of line 1 (2) in Eq. (3.18) for the fieldD (Q). The associated mass spectrum (3.20)
is included as well for completeness. The profiles are given for the four types ofZ2 transformations (3.8)–(3.9). The phases αnQ=D belong

to R. In the special case, n ¼ 0, the
ffiffiffi
2
p

factors must all be replaced by the unity.

Continuity domains Z2

Fields

QL=R DL=R

qnLðyÞ=eiα
n
Q qnRðyÞ=eiα

n
Q dnLðyÞ=eiαnD dnRðyÞ=eiαnD

½0; πR� Any
ffiffiffi
2
p

cosðmnyÞ −
ffiffiffi
2
p

sinðmnyÞ
ffiffiffi
2
p

sinðmnyÞ
ffiffiffi
2
p

cosðmnyÞ

½−πRþ; 0−�
I

ffiffiffi
2
p

cosðmnyÞ −
ffiffiffi
2
p

sinðmnyÞ
ffiffiffi
2
p

sinðmnyÞ
ffiffiffi
2
p

cosðmnyÞ
II −

ffiffiffi
2
p

cosðmnyÞ
ffiffiffi
2
p

sinðmnyÞ −
ffiffiffi
2
p

sinðmnyÞ −
ffiffiffi
2
p

cosðmnyÞ
III

ffiffiffi
2
p

cosðmnyÞ −
ffiffiffi
2
p

sinðmnyÞ −
ffiffiffi
2
p

sinðmnyÞ −
ffiffiffi
2
p

cosðmnyÞ
IV −

ffiffiffi
2
p

cosðmnyÞ
ffiffiffi
2
p

sinðmnyÞ
ffiffiffi
2
p

sinðmnyÞ
ffiffiffi
2
p

cosðmnyÞ
KK Masses jmnj ¼ n=R, n ∈ N
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the potential SM chirality configuration, namely:
Q0

RðxμÞ, D0
LðxμÞ. Similarly, the BBT signs, σQ

0ðπRÞ ¼ þð−Þ,
σD
0ðπRÞ ¼ þð−Þ, would lead to the setup, Q0

LðxμÞ, D0
LðxμÞ, and

σQ
0ðπRÞ ¼ ðþÞ− , σD

0ðπRÞ ¼ ðþÞ− , to, Q0
RðxμÞ, D0

RðxμÞ.
Finally, as will be described in the Secs. III B and III C,

the possible signs, σQ
0ðπRÞ ¼ � (same sign for 0 and πR),

would instead lead to the profile solutions (3.19) with
two non-vanishing profiles for the lightest modes (as
m0 ≠ 0) and hence to vectorlike states: Q0

L=RðxμÞ. The

same statement holds for σD
0ðπRÞ ¼ � and thus D0

L=RðxμÞ.
Such massive vectorlike states13 can be used to build
custodially protected warped models [50] and are then
called custodians (see for instance Ref. [9]). Of course there
exist 8 remaining cases combining the above Lagrangian
sign configurations: σQ

0ðπRÞ ¼ þð−Þ, ðþÞ− , σD
0ðπRÞ ¼ �, and,

σQ
0ðπRÞ ¼ �, σD0ðπRÞ ¼ þð−Þ, ðþÞ− .

Therefore, it appears clearly that the BBT control the
chiral configurations of the model. The UV completion of
the theory can be at the origin of the BBT and hence of
the chirality setup: chiral nature of the theory and specific
chiralities of the various fields.
To end up this section, we note that the complete toy

model studied is characterized by the action,

S5D ¼ Sbulk þ Sbranes ¼ Sbulk þ SH þ SX þ Sint þ SB:

ð2:18Þ

The conclusions that will be derived in the present work
can be directly extended to the realistic warped model with
SM bulk matter addressing the fermion mass and gauge
hierarchies, along the same lines as the flavor and gauge
symmetry generalizations described in details in the
Sec. 2.6 of Ref. [38].

III. FREE BULK FERMIONS ON THE ORBIFOLD

In this section, we calculate the fermionic mass spectrum
for the free case where Y5 ¼ Y 05 ¼ 0 in the action piece SY
given by Eq. (2.13).

A. Applying the NBC

We start by considering the bulk action part,

Sbulk;

of Eq. (2.4), from the considered action, S5D, of Eq. (2.18).
We apply the least action principle to it which leads to two
relations of the kind, δF̄Sbulk ¼ 0, one for each of the
unknown 5D fields F ¼ Q, D, and two corresponding
ones, δFSbulk ¼ 0, involving the complex conjugate
fields,14 since the elementary field variations δQα, δQ̄α,
δDα and δD̄α (see Appendix B 1) are generic and hence
independent from each other. Using compact notations, like
for example,

X4
α¼1

δF̄α
∂Lkin

∂F̄α
¼̂ δF̄

∂Lkin

∂F̄ ;

we can write in particular,15

δF̄Sbulk ¼
Z

d4x

�Z
0−

−πRþ
þ
Z

πR

0

�
dy

�
δF̄

∂Lkin

∂F̄ þ δð∂MF̄Þ
∂Lkin

∂∂MF̄

	

¼
Z

d4x

�Z
0−

−πRþ
þ
Z

πR

0

�
dy

�
δF̄

∂Lkin

∂F̄ þ ∂M

�
δF̄

∂Lkin

∂∂MF̄

�
− δF̄∂M

∂Lkin

∂∂MF̄

	

¼
Z

d4x

�Z
0−

−πRþ
þ
Z

πR

0

�
dy

�
δF̄

�∂Lkin

∂F̄ − ∂M
∂Lkin

∂∂MF̄

�	

þ
Z

d4x

�
δF̄

∂Lkin

∂∂4F̄





0
−

−πRþ
þ δF̄

∂Lkin

∂∂4F̄





πR
0

�
: ð3:1Þ

Based on the Lagrangian Lkin of Eq. (2.5), these two bulk terms take the same form (the first one being calculated explicitly
in Eq. (B6) to clarify the spinor component treatment) and the two remaining brane terms can be calculated as well:

13Extensive phenomenology at colliders has been developed about such vectorlike particles [45–49].
14The equations of motion and boundary conditions derived from the least action principle for the fields and their conjugates are

trivially related through the Hermitian conjugation.
15We omit the global 4-divergence which vanishes in the action integration due to vanishing fields at the boundaries at infinities.

Indeed, when minimizing the action, the varied terms must vanish separately at infinite boundaries, since the nonvanishing field
variations at boundaries are independent from each other and from the bulk ones (see also Ref. [51]). This is realized by the local physics
statement which induces vanishing fields at infinities due to the wave function normalization conditions (see also Ref. [52]).
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δF̄Sbulk ¼
Z

d4x

�Z
0−

−πRþ
þ
Z

πR

0

�
dyfδF̄½iΓM∂MF�g

þ
Z

d4x

�
δF̄

�
−
γ5

2
F

�




πR−

0þ
þ δF̄

�
−
γ5

2
F

�




πR

0

�
; ð3:2Þ

where we have further invoked the Z2 transformations (2.7)–(2.10) for the generic 5D field, Eq. (B7) for its variation and γ5

properties:

δF̄
�
−
γ5

2
F
�





0−;−πRþ
¼ ð∓δF̄γ5Þ

�
−
γ5

2
ð�γ5FÞ

�




0þ;πR−

¼ −δF̄
�
−
γ5

2
F
�





0þ;πR−
:

Then thanks to Eq. (2.3)16 and Eqs. (B4) and (B5), respectively, the expression (3.2) simplifies to,

δF̄Sbulk ¼
Z

d4x

�Z
0−

−πRþ
þ
Z

πR

0

�
dyfδF̄½iΓM∂MF�g þ

Z
d4x2δF̄

�
−
γ5

2
F

�




πR

0

¼
Z

d4x

�Z
0−

−πRþ
þ
Z

πR

0

�
dyfδF̄½iΓM∂MF�g þ

Z
d4x½δF†

RFL − δF†
LFR�jπR0 : ð3:3Þ

In this expression, the bulk and brane variations—
respectively the volume and surface terms—must vanish
separately due to independent field variations (no reason to
be linked). Besides all those field variations are not vanishing
(unknown fields) so that we get the bulk equations of motion
(EOM),

iΓM∂MF ¼ 0; ∀ xμ; ∀ y ∈ ½−πRþ; 0−� ∪ ½0; πR�;
ð3:4Þ

and the natural boundary conditions (NBC),

FLj0 ¼ FRj0 ¼ FLjπR ¼ FRjπR ¼ 0: ð3:5Þ

At this level, we can first solve Eq. (3.4) together with
Eq. (3.5) to find out theF fields over the domain, y ∈ ½0; πR�.
This is precisely what has been done in the preliminary
Ref. [38] where the two exactly identical Eqs. (3.3) and (3.4)
[there] have been solved over the interval, y ∈ ½0; L�. Since
the fields are continuous over y ∈ ½0; πR� [cf., Eq. (2.3)] like
there over y ∈ ½0; L�, we can thus apply here the results
obtained in this reference: the solutions found for Eqs. (3.4)
and (3.5) are expressed through the KK decomposition (with
a similar choice of global factor),

FL=Rðxμ; yÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πR
p

Xþ∞
n¼0

fnL=RðyÞFn
L=RðxμÞ; ð3:6Þ

where the 4D fields Fn
L=R ¼ Qn

L=R, D
n
L=R represent the KK

states and satisfy the Dirac-Weyl equations,

∀ n ∈ N;

�
iσ̄μ∂μFn

LðxμÞ −mnFn
RðxμÞ ¼ 0;

iσμ∂μFn
RðxμÞ −mnFn

LðxμÞ ¼ 0;
ð3:7Þ

involving the KK mass eigenvalues mn, while the only
resulting profiles fnL=RðyÞ ¼ qnL=RðyÞ, dnL=RðyÞ, included res-
pectively intoF ¼ Q,D, are vanishing over y ∈ ½0; πR�. The
opposite signs in front of each mass term of the bulk profile
EOM induced by Eq. (3.4), with respect to the calcula-
tions of Ref. [38], just originate from a different sign
convention for the Γ4 matrix [see Eq. (A3)] and hence do
notmodify the (un)physical result of vanishing profiles.Now
let us study the profile solutions in the complementary
region, y ∈ ½−πRþ; 0−�. Inserting the KK decomposition
(3.6) into the first type ofZ2 transformation (2.7), one obtains
the Z2 transformations directly on the fnL=RðyÞ profiles
(∀ n ∈ N):

Type I

8<
:

Pþ∞
n¼0 ½qnLðRÞð−yÞðþÞ− qnLðRÞðyÞ�Qn

LðRÞðxμÞ ¼ 0 ⇒ qnLðRÞð−yÞ ¼ þð−Þq
n
LðRÞðyÞPþ∞

n¼0½dnLðRÞð−yÞþð−Þd
n
LðRÞðyÞ�Dn

LðRÞðxμÞ ¼ 0 ⇒ dnLðRÞð−yÞ ¼ ðþÞ− dnLðRÞðyÞ
ð3:8Þ

where the implications come from the linear independence
of mass eigenstates Fn

L=RðxμÞ. Similarly, for the three other
types of Z2 transformations (2.8)–(2.10), we have the
following profile parities:

16Those continuity relations lead to F̄j0 ¼ F̄j0þ , i.e., F̄αj0 ¼
F̄αj0þ [c.f. Eq. (B2)], and in turn to δF̄αj0 ¼ δF̄αj0þ which can be
written as δF̄j0 ¼ δF̄j0þ via Eq. (B3). Similarly we get
δF̄jπR ¼ δF̄jπR− .
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II

8<
:

qnLðRÞð−yÞ ¼ ðþÞ− qnLðRÞðyÞ

dnLðRÞð−yÞ ¼ þð−Þd
n
LðRÞðyÞ

III

8<
:

qnLðRÞð−yÞ ¼ ðþÞ− qnLðRÞðyÞ

dnLðRÞð−yÞ ¼ ðþÞ− dnLðRÞðyÞ

IV

8<
:

qnLðRÞð−yÞ ¼ ðþÞ− qnLðRÞðyÞ

dnLðRÞð−yÞ ¼ ðþÞ− dnLðRÞðyÞ
ð3:9Þ

Therefore, all the fnL=RðyÞ profiles are systematically
vanishing on the whole S1=Z2 orbifold region,
y ∈ ½−πRþ; 0−� ∪ ½0; πR�. Such profiles conflict with the
two (for L=R) ortho-normalization conditions over the full
domain,

∀n;m∈N;
1

2πR

�Z
0−

−πRþ
þ
Z

πR

0

�
dyfn�L=RðyÞfmL=RðyÞ ¼ δnm;

ð3:10Þ
originating from the condition of a canonical form for the
4D effective kinetic terms. Hence the solutions for the
fields obtained through this first method are not physically
consistent.

B. Introducing the EBC

In fact, one necessary ingredient was missing in the naive
approach of Sec. III A. In order to identify it, we have to
study the conserved fermion probability currents corre-
sponding, via the Noether’s theorem, to the global Uð1ÞQ
and Uð1ÞD symmetries of the action,

Sbulk;

involving the Lagrangian (2.5). The two independent
global Uð1ÞQ;D transformations of the fields, letting Lkin

invariant, act respectively as,

Q ↦ eiαQ; Q̄ ↦ e−iαQ̄; and;

D ↦ eiα
0
D; D̄ ↦ e−iα

0
D̄; ð3:11Þ

where α; α0 (∈ R) are continuous constants entering for
instance the infinitesimal field variations17:

δQ ¼ iαQ; δ Q̄ ¼ −iαQ̄:

Choosing instead to consider a unique symmetry (α ¼ α0
for any field F) would correspond to a particular case only,
among the general Lagrangian symmetry possibilities.

Besides, this particular case would not provide the maximal
information, since one symmetry would be associated to
only one conserved probability current. We thus well
consider, in this subsection, the transformations (3.11)
[with both possibilities, α ≠ α0 or α ¼ α0] and the two
independent Uð1ÞQ;D symmetries. Based on these two
symmetries, and the bulk EOM whose standard structure
appears in Eq. (3.1), the Noether’s theorem predicts the
local conservation relation,

∂MjMF ¼ 0; ð3:12Þ
for the two probability currents,

jMQ ¼ −αQ̄ΓMQ; jMD ¼ −α0D̄ΓMD; ð3:13Þ

as derived in details within the Appendix B of Ref. [38].
This relation holds over the whole S1=Z2 orbifold
domain, y ∈ ½−πRþ; 0−� ∪ ½0; πR�, since the sole bulk
terms in the action infinitesimal variation—under
Uð1ÞQ;D transformation—must vanish for any integration
sub-region included inside the entire integration domain
of the action precisely defined for the model. The math-
ematical consistency of the condition (3.12) imposes
necessarily continuous 5-current components over all
the model space-time and in particular a continuous j4F
along y ∈ ½−πRþ; 0−� ∪ ½0; πR�.18 Furthermore, a jump of
the form, j4Fj0− ≠ j4Fj0, would not determine any field at the
fixed point and thus would not lead to vanishing variations
in Eq. (3.1) that would modify the BC (3.5) inducing
nonphysical solutions. A similar argument applies at the
other fixed point, y ¼ πR≡ −πR. Hence, one has to
consider the remaining model possibility, j4Fj0− ¼ j4Fj0
and19 j4Fj−πRþ ¼ j4FjπR, so that this current component is
continuous over all the range, y ∈ ð−πR; πR�. In particular,
we can now write,

j4Fj0− ¼ j4Fj0 ¼ j4Fj0þ : ð3:14Þ

This obtained relation must be compared with the following
one, coming directly from the Z2 transformations of type
(2.7)–(2.10) and γ5 properties,

j4Fj0− ¼ −αð0ÞF̄Γ4Fj0− ¼ −αð0Þð�γ5FÞ†γ0½−iγ5�ð�γ5FÞj0þ
¼ αð0ÞF†γ0γ5½−iγ5�ðγ5FÞj0þ ¼ αð0ÞF̄Γ4Fj0þ ¼ −j4Fj0þ :

ð3:15Þ

The combination of Eqs. (3.14) and (3.15) gives rise to a
vanishing current component at the fixed point:

17Different clear notations are used here for the infinitesimal
field variations under specific transformations, δF, and the above
generic field variations in the variation calculus context of the
least action principle, δF [see typically Eq. (B3)].

18Notice that this condition is in agreement with Eq. (2.3)
which guarantees continuous fields along y ∈ ½−πRþ; 0−� ∪
½0; πR�.

19A change must occur at both fixed points to cure the
problems of the solutions worked out in previous subsection.
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j4Fj0− ¼ j4Fj0 ¼ j4Fj0þ ¼ 0:

Similar arguments regarding the second fixed point imply
obviously that,

j4FjπR− ¼ j4FjπR ¼ j4Fj−πRþ ¼ 0;

so that, using the generic chiral decomposition (B5), we get
the following current conditions,

j4Fj0;πR ¼ iαð0ÞðF†
LFR − F†

RFLÞj0;πR ¼ 0; ð3:16Þ
leading to the minimal boundary conditions (BC),8>><

>>:
FLj0 ¼ 0;

or

FRj0 ¼ 0;

and

8>><
>>:

FLjπR ¼ 0;

or

FRjπR ¼ 0;

½EBC� ð3:17Þ

These BC induce systematically the vanishing of all the
brane terms in the varied action obtained in Eq. (3.3).
Indeed, for example, the fixed value FLj0 ¼ 0 implies
F†
Lj0 ¼ 0 and in turn δF†

Lj0 ¼ 0
20 [considering more

precisely their two respective components as is clear
from Appendix B 1]. Therefore the sole remaining BC
are those of Eq. (3.17): there are no more NBC generated
from the brane terms of Eq. (3.3) and we name the BC
(3.17) as EBC since they are imposed by the Z2

transformations (3.15) which contribute to define the
studied model. From the point of view of the method-
ology, notice interestingly that it was necessary to
consider the fermion probability currents to reveal the
existence of the EBC. Now, solving the new EBC (3.17)
together with the unchanged bulk EOM (3.4) over the
domain, y ∈ ½0; πR�, was precisely realized in Ref. [38]
where the same Eqs. (3.3) and (3.16) [there] were solved
over the interval, y ∈ ½0; L�. Once more, since the fields
are continuous over y ∈ ½0; πR� [see Eq. (2.3)] like there
over y ∈ ½0; L�, we can apply here the results derived in
this previous work: the 5D solutions found for
Eqs. (3.4)–(3.17) are given by Eqs. (3.6) and (3.7) and
the following four possible sets of profiles over y ∈
½0; πR� together with the associated KK mass spectrum
equations (∀ n ∈ N),

1Þ ð−−Þ∶ fnLðyÞ ¼ Bn
L sinðmnyÞ; ðþþÞ∶ fnRðyÞ ¼ Bn

L cosðmnyÞ; sinðmnπRÞ ¼ 0;

2Þ ðþþÞ∶ fnLðyÞ ¼ Bn
R cosðmnyÞ; ð−−Þ∶ fnRðyÞ ¼ −Bn

R sinðmnyÞ; sinðmnπRÞ ¼ 0; ð3:18Þ

and,

3Þ ð−þÞ∶ fnLðyÞ ¼ Bn
L sinðmnyÞ; ðþ−Þ∶ fnRðyÞ ¼ Bn

L cosðmnyÞ; cosðmnπRÞ ¼ 0;

4Þ ðþ−Þ∶ fnLðyÞ ¼ Bn
R cosðmnyÞ; ð−þÞ∶ fnRðyÞ ¼ −Bn

R sinðmnyÞ; cosðmnπRÞ ¼ 0: ð3:19Þ

The opposite signs in front of the (−−) and (−þ) profiles,
with respect to the results in Ref. [38], just come from a
different sign convention for the Γ4 matrix, between here
[see Eq. (A3)] and this reference. In Eqs. (3.18) and (3.19),
we use the standard BC notations, i.e., − or þ for instance
at y ¼ 0 stands respectively for the Dirichlet or Neumann
BC: fnL=Rð0Þ ¼ 0 or ∂4fnL=RðyÞj0 ¼ 0. For example, the
symbolic notation (−þ) denotes Dirichlet (Neumann) BC
at y ¼ 0 (y ¼ πR). These notations make explicit the
correspondence between the four EBC (3.17) and the
four solutions (3.18)–(3.19). The equation sinðmnπRÞ ¼ 0
possesses the following solutions for the KK mass
spectrum,

mn ¼ �
n
R
; n ∈ N: ð3:20Þ

Similarly, the equation cosðmnπRÞ ¼ 0 has the solutions:

mn ¼ �
2nþ 1

2R
; n ∈ N: ð3:21Þ

The part of the general fnL=RðyÞ solutions in the comple-
mentary domain, y ∈ ½−πRþ; 0−�, is now obtained via the
four types of Z2 transformations (3.8)–(3.9). Therefore, the
inclusion of the EBC based on the vanishing probability
currents allows to obtain consistent fermion profile and
mass solutions.
In Table I, we present the explicit solutions over the

whole orbifold domain for the SM-like profile dnL=RðyÞ
(qnL=RðyÞ) taken from line 1 (2) of Eq. (3.18): see the
discussion on SM chirality configuration in Sec. II B 4. The
mass spectrum for the 4D KK states is defined by Eq. (3.7)
and it is already determined by Eqs. (3.20) and (3.21).
Notice on Table I that the same mn spectrum enters the
profile solutions in both regions, y ∈ ½0; πR�, and,
y ∈ ½−πRþ; 0−�. In this table, we also give the general
values of the Bn

L=R complex constants, in Eq. (3.18),

20Rigorously speaking, the action should not be minimized
with respect to the known fixed fields so that the terms with
vanishing field variations should not even appear. In fact, the
brane terms of Eq. (3.3) should originally be written as a generic
sum over unfixed fields.
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obtained from the orthonormalization conditions (3.10).21

We observe on Table I that the choice of type of Z2

transformation is just a convention since it can modify the
profile signs but it affects neither the mass spectrum nor the
fermion chirality configuration—as a certain chiral zero-
mode profile vanishing on the region ½0; πR� is also
systematically vanishing over y ∈ ½−πRþ; 0−�. In contrast,
the chirality configuration and mass spectrum are fixed by
the choice of EBC (3.17) which can lead either to the two
kinds of chiral solutions in Eq. (3.18) or to the vectorlike
solutions (3.19).
In Fig. 2, we draw the first two excitation profiles for

each free solution presented in Table I within the simple
real case, αnQ;D ¼ 0, and for two different types of Z2

transformations from Eqs. (3.8) and (3.9). We see clearly on
Fig. 2 that for example with the type II of Z2 trans-
formation, jumps appear for the profiles q0;1L ðyÞ and d0;1R ðyÞ
at the two fixed points at, y ¼ 0, y ¼ πR≡ −πR, in the
scenario without Yukawa couplings. The presence of
profile discontinuities here already justifies the treatment

exposed in Sec. II A. The precise prescription (2.3) regard-
ing the action integration domain, described in this section,
renders the jumps of Fig. 2 consistent mathematically: the
difference, e.g., q1Lð0−Þ ≠ q1Lð0Þ, is compatible with a well-
defined Lagrangian integrand over the action integration
domain, y ∈ ½−πRþ; 0−� ∪ ½0; πR�, where the profiles are
continuous.

C. Introducing the BBT

As suggested in Sec. II B 4, we can alternatively intro-
duce the dimension 4 operators of Eq. (2.17) to study their
effects with respect to the inconsistencies raised in Sec. III
A. Hence, to the action Sbulk from Eq. (2.4), we add now
another part and consider:

Sbulk þ SB:

The variations of SB with respect to the generic field F̄
[using Eq. (B4)],

δF̄SB ¼
Z

d4xðσF0 δF†
LFRj0 þ σF0 δF

†
RFLj0 þ σFπRδF

†
LFRjπR þ σFπRδF

†
RFLjπRÞ;

together with Eq. (3.3) allow to write down the variations of the free fermion action:

δF̄ðSbulk þ SBÞ ¼
Z

d4x

��Z
0−

−πRþ
þ
Z

πR

0

�
dyδF̄iΓM∂MF þ ðσF0 1þ 1ÞδF†

LFRj0

þ ðσF0 1 − 1ÞδF†
RFLj0þðσFπR1 − 1ÞδF†

LFRjπR þ ðσFπR1þ 1ÞδF†
RFLjπR

	
: ð3:22Þ

The individual vanishing of those volume and surface terms lead to the EOM (3.4) together with the four following NBC,
depending on the two σF0;πR choices,

8<
:

FLj0 ¼ 0 ðσF0 ¼ −Þ;
or

FRj0 ¼ 0 ðσF0 ¼ þÞ;
and

8<
:

FLjπR ¼ 0 ðσFπR ¼ þÞ;
or

FRjπR ¼ 0 ðσFπR ¼ −Þ
½NBC� ð3:23Þ

At this level, the EOM and NBC are effectively the same
as the EOM (3.4) and EBC (3.17) of the previous
subsection, in the domain y ∈ ½0; πR�, so that we find
again the solutions (3.18)–(3.19) together with the mass
spectra (3.20)–(3.21). For instance, the SM-like choice
σQ
0ðπRÞ ¼ þð−Þ of Eq. (2.17) leads via Eq. (3.23) to the

solution of line 2 in Eq. (3.18). Then the parts of the
general profile solutions in the complementary region,
y ∈ ½−πRþ; 0−�, are found out via the different types of
Z2 transformations (3.8)–(3.9) in the free case, as in

Sec. III B, so that the complete solutions are once more
identical and can also be illustrated by the Table I and Fig. 2
both based on the orthonormalization conditions (3.10). In
conclusion, introducing the BBT permits to rigorously
work out profile and mass solutions. A second conclusion
in this approach is that the chirality setup—one of the two
chiral solutions (3.18) or of the vectorlike ones (3.19)—and
associated mass spectrum are fixed by the choice of NBC
(3.23) and thus originally by the choices of σF0;πR BBT signs
in Eq. (2.17). In simpler words, the BBT (like the EBC
previously) control the chiral nature of the theory as well as
each field chirality.
Let us now discuss the probability currents. The addition

of the SB part in Eq. (2.17) to Sbulk is not affecting the
current equations (3.12) and (3.13) since the new brane

21Here, thanks to the profile parities, a change of variable,
y → −y, could be applied to recover exclusively the integration
domain ½0; πR�.

LENG, MOREAU, and NORTIER PHYS. REV. D 103, 075010 (2021)

075010-12



terms so induced in the infinitesimal action variation—
under the Uð1ÞQ;D transformations (3.11)—vanish due to
their Uð1ÞQ;D invariant form. In contrast with the previous
subsection and with the interval model in the free case
with BBT [38], there exists no demonstration here of
Eq. (3.16). Nevertheless, we can check that j4Fj0;πR is
well vanishing by using the obtained solutions (3.18)
and (3.19): the product fnLðyÞfmR ðyÞ systematically vanishes
at y ¼ 0; πR. Therefore, the BBT play the role of making
j4Fj0;πR vanish (Z2 transformation consequence) like the
EBC were guaranteeing it in Sec. III B. Note that we could
simultaneously apply the EBC and introduce the BBT but
those two processes would be physically redundant to
define the model.

IV. BRANE-LOCALIZED SCALAR COUPLINGS IN
THE ORBIFOLD: 4D APPROACH

Once the free case is addressed, via the EBC (3.17)
in Sec. III B or the NBC (3.23) induced by the BBT in
Sec. III C, the free fermion mass spectrum and profiles are
known. Then how to take into account the effects of the
action part SX in the mass spectrum, the action (2.15) being
induced by the Yukawa interaction between a brane-
localized scalar field and bulk fermions? The considered
action reads thus as,

Sbulk þ SXðþSBÞ: ð4:1Þ

A first method called the perturbation method, described
in the present section, is performed at the level of the
4D effective Lagrangian, that is by calculating the mass
mixings between the different levels of the KK towers.
Considering the SM-like profile solutions dnL=RðyÞ
(qnL=RðyÞ) and associated free KK mass spectrum from line
1 (2) of Eq. (3.18), all the initial 4D effective masses for the
KK modes of Eq. (3.6) in the interaction basis can be
classified into two species: the pure KK masses (3.20) and
the mass contributions from the Yukawa interaction given
by the overlap between the wave functions and Higgs-
brane,

8<
:

∀ ði; jÞ ∈ N2; αij ¼ X qiLðπRÞffiffiffiffiffiffi
2πR
p djRðπRÞffiffiffiffiffiffi

2πR
p ;

∀ ði; jÞ ∈ N⋆2; βij ¼ X0 d
i
LðπRÞffiffiffiffiffiffi
2πR
p qjRðπRÞffiffiffiffiffiffi

2πR
p :

ð4:2Þ

In particular, βij ¼ 0 as imply the respective SM solutions
(3.18) so that the coupling constant X0 disappears from the
mass dependences. Note that for similar reasons [cf.,
Eq. (B5)], in case of the presence of the BBT (2.17), those
do not generate 4D mass terms. All the 4D mass terms enter
the 4D effective Lagrangian through the following mass
matrix,

−χ†LMχR þ H:c:

within the field basis noted,

�
χtLðxμÞ ¼ ðQ0t

L ; Q
1t
L ; D

1t
L ; Q

2t
L ; D

2t
L ; � � �Þ;

χtRðxμÞ ¼ ðD0t
R ; Q

1t
R ; D

1t
R ; Q

2t
R ; D

2t
R ; � � �Þ:

ð4:3Þ

The texture of this infinite mass matrix M involving the
diagonal mn, off-diagonal αij and mixing the Q, D fields
together can be precisely taken from the interval model
context [38] (Sec. III.2), with the replacement L ↔ πR,
since the KK masses and bulk profile solutions are then
identical (up to extensions over ½−πRþ; 0−� as seen in
Sec. III B here) like the Yukawa interactions localized at
y ¼ πR [for any Z2 transformation (3.8)–(3.9)]. Now we
can apply the results for the mass eigenvaluesMn of the 4D
eigenstates ψn

L=RðxμÞ obtained through the bi-diagonaliza-
tion performed in this Ref. [38], based on the calculations
of Ref. [53], by renormalizing X to X=2 since the two
present profiles (even or odd) entering αij are normalized
via Eq. (3.10) over a domain of double size 2L ↔ 2πR
compared to the interval case. Doing so, the obtained exact
mass eigenvalues are determined by the following equation,
coming from the characteristic equation,

∀ n ∈ N; tan2ð
ffiffiffiffiffiffiffiffiffiffiffi
jMnj2

q
πRÞ ¼

�
X
2

�
2

; ð4:4Þ

in the case of a real X parameter and the positivemn branch
from Eq. (3.20). Notice that the different conventional sign
in front of the (−−) profiles found in Eq. (3.18) [here qnRðyÞ
and dnLðyÞ], with respect to the interval study [38], does not
affect the final mass spectrum—as is clear from Eq. (4.2).
Hence, the physical absolute value of the mass spectrum
reads as:

jMnj ¼
1

πR





 arctan
�
X
2

�
þ ð−1ÞnñðnÞπ





; n ∈ N; ð4:5Þ

with the function ñðnÞ defined according to,

ñðnÞ ¼
� n

2
for n even;

nþ1
2

for n odd:
ð4:6Þ

V. BRANE-LOCALIZED SCALAR COUPLINGS
IN THE ORBIFOLD: 5D APPROACH

A. Applying the NBC

Let us now study the presence of Yukawa couplings at
the fixed point, y ¼ πR, through the action,

RIGOROUS TREATMENT OF THE PHYS. REV. D 103, 075010 (2021)

075010-13



SbulkþSXþS0B; with; S0B ¼
Z

d4xðσQ0 Q̄Qj0þ σD0 D̄Dj0Þ;

ð5:1Þ

within the 5D approach, that is by considering the
mixings among KK excitation states at the level of the
5D fields. The BBT introduced here at the fixed point at

y ¼ 0 are the ones of Eq. (2.17) leading to SM-like chirality
configurations: σQ0 ¼ þ, σD0 ¼ −. Those guarantee a cor-
rect treatment of the free brane, like the EBC, as analyzed
throughout Sec. III. Using Eqs. (3.22) and (2.15), one gets
directly the following action variations with respect to the
fields Q̄ and D̄,

δQ̄ðSbulk þ SX þ S0BÞ ¼
Z

d4x

��Z
0−

−πRþ
þ
Z

πR

0

�
dyδQ̄iΓM∂MQ

þ ½δQ†
Lð−XDR −QRÞ þ δQ†

Rð−X0DL þQLÞ�jπR þ 2ðδQ†
LQRÞj0

	
;

δD̄ðSbulk þ SX þ S0BÞ ¼
Z

d4x

��Z
0−

−πRþ
þ
Z

πR

0

�
dyδD̄iΓM∂MD

þ ½δD†
Lð−X0�QR −DRÞ þ δD†

Rð−X�QL þDLÞ�jπR − 2ðδD†
RDLÞj0

	
: ð5:2Þ

The separate vanishings of these volume and surface terms,
induced by the least action principle, give rise respectively
to the EOM (3.4) and the following NBC,

8<
:
ðQR þ XDRÞjπR ¼ 0; ðDL − X�QLÞjπR ¼ 0;

ðQL − X0DLÞjπR ¼ 0; ðDR þ X0�QRÞjπR ¼ 0;

QRj0 ¼ 0; DLj0 ¼ 0;

ð5:3Þ

As usual, the 5D field solutions of the EOM (3.4) and NBC
(5.3) have the form of the following mixed KK decom-
position [instead of Eq. (3.6)] [5,44],

2
6666664

QLðxμ; yÞ ¼ 1ffiffiffiffiffiffi
2πR
p

Pþ∞
n¼0 q

n
LðyÞψn

LðxμÞ;
QRðxμ; yÞ ¼ 1ffiffiffiffiffiffi

2πR
p

Pþ∞
n¼0 q

n
RðyÞψn

RðxμÞ;
DLðxμ; yÞ ¼ 1ffiffiffiffiffiffi

2πR
p

Pþ∞
n¼0 d

n
LðyÞψn

LðxμÞ;
DRðxμ; yÞ ¼ 1ffiffiffiffiffiffi

2πR
p

Pþ∞
n¼0 d

n
RðyÞψn

RðxμÞ;

ð5:4Þ

with the 4D fields ψn
L=RðxμÞ, already mentioned in Sec. IV,

satisfying the Dirac-Weyl equations,

�
iσ̄μ∂μψ

n
LðxμÞ −Mnψ

n
RðxμÞ ¼ 0;

iσμ∂μψ
n
RðxμÞ −Mnψ

n
LðxμÞ ¼ 0;

ð5:5Þ

the Mn being the fermion mass eigenvalues including
the contributions from the Yukawa terms and these 4D
fields the mass eigenstates including the effects of mixings
among the Q, D fields as well as (infinite) KK levels.
The explicit profile solutions appearing in Eq. (5.4) over
the domain, y ∈ ½0; πR�, were found out for the interval
model studied in Ref. [38] where the exactly identical
EOM and same NBC, up to a sign and a factor 2 in front of

each Xð0Þ parameter, [respectively Eq. (3.3) and (5.5) there]
have been solved over y ∈ ½0; L�. Because the fields
are continuous over y ∈ ½0; πR� [cf., Eq. (2.3)] like there
over y ∈ ½0; L�, one can apply here the conclusions ob-
tained in this reference. The opposite sign in front of the
Xð0Þ parameters originates from a different Dirac matrix
sign convention [see the Γ4 sign in Eq. (A3)] and has thus
no physical consequences. The relative factors 2, at the
same places in the NBC (5.3), come from the existence of
surface terms both at y ¼ 0, 0− and y ¼ πR, −πRþ as is
clearly described in Eq. (3.1)–(3.3). These factors turn out
not to modify the relations between the different profile
solutions and to only induce a factor-4 change in the
final mass spectrum equation, both obtained in Ref. [38].
Besides, the two (for L=R) following orthonormali-
zation conditions over the full S1 domain [replacing
Eq. (3.10)],

∀ n;m ∈ N;
1

2πR

�Z
0−

−πRþ
þ
Z

πR

0

�
dy½qn�L=RðyÞqmL=RðyÞ

þ dn�L=RðyÞdmL=RðyÞ� ¼ δnm; ð5:6Þ

as induced by the decomposition (5.4), can be recast into
the integration relations of Ref. [38] over the region ½0; πR�
but with a global factor 2, thanks to the change of variable
y0 ¼ −y, the fixed odd/even parities of the profiles and
Eq. (2.3), so that the demonstration about profile solu-
tions on the interval in Ref. [38] remains unchanged here,
from this point of view as well. Indeed, injecting the mixed
KK decomposition (5.4) into the first type of Z2 trans-
formation (2.7), we get the Z2 transformations directly on
the profiles:
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Type I

8<
:

Pþ∞
n¼0½qnLðRÞð−yÞðþÞ− qnLðRÞðyÞ�ψn

LðRÞðxμÞ ¼ 0 ⇒ qnLðRÞð−yÞ ¼ þð−Þq
n
LðRÞðyÞPþ∞

n¼0½dnLðRÞð−yÞþð−Þd
n
LðRÞðyÞ�ψn

LðRÞðxμÞ ¼ 0 ⇒ dnLðRÞð−yÞ ¼ dnLðRÞðyÞ
ð5:7Þ

In the same way, for the three other types of Z2 trans-
formations (2.8)–(2.10), one obtains the same profile parities
as in Eq. (3.9). As a conclusion, the same result as in Ref. [38]
holds here for the orbifold: the 4D effective Yukawa coupling
constant for the lightest modes (ψ0

L;R), induced by the found
profiles, tends to zerowithin the decoupling limitwhich is not
compatible with the SM configuration expected. The prob-
lematic characteristics of the solutions obtained in this naive
approach are confirmed by the final mass spectrum equation,
tan2ðMnπRÞ ¼ jXj2 (independent from the profile normal-
izations), which conflicts analytically with the one obtained
through the 4D method in Eq. (4.4) for a real X parameter.
This failure motivates the alternative 5D methods of the next
two subsections.

B. Introducing the EBC

Following the same idea as for the free case in Sec. III B,
we try now to find consistent fermion mass solutions via
considerations on their currents. The currents permit
a priori to fully define the geometrical field configuration
like here for the S1=Z2 orbifold scenario. The complete
relevant action including the brane-localized Yukawa
terms (2.15),

Sbulk þ SX þ S0B; ð5:8Þ

like in Eq. (5.1), is invariant under the unique Uð1ÞF
symmetry defined via Eq. (3.11) only for,

α ¼ α0; ð5:9Þ

since the fermions Q and D are mixed on the brane at
y ¼ πR. Based on this symmetry involving both Q and D
as well as on the bulk EOM [whose standard structure
appears in the action variation (3.1)], the Noether’s theorem
predicts (cf., Appendix B of Ref. [38]) the new local
probability conservation relation,

∂MjM ¼ 0; with; jM ¼
X

F¼Q;D

jMF ; ð5:10Þ

involving the individual currents given by Eqs. (3.13)–(5.9)
over the full orbifold domain, y ∈ ½−πRþ; 0−� ∪ ½0; πR�.
Notice that the new SX brane terms entering the infinitesi-
mal action variation—under the Uð1ÞF transformations—
vanish because of their invariant form and have thus no
direct effect on the conservation relation (5.10). The
mathematical consistency of the relation (5.10) implies
necessarily the continuity of 5-current components over the

whole space-time and in particular a continuous j4 along
y ∈ ½−πRþ; 0−� ∪ ½0; πR�. Besides, a discontinuity of the
form, j4j−πRþ ≠ j4j−πR ≡ j4jπR, would not fix any field at
this fixed point and in turn would not induce vanishing
variations in Eq. (5.2) possibly modifying the BC (5.3)
which induce the drawbacks already pointed out in
Sec. VA. As a consequence, we must consider the
remaining model possibility:

j4j−πRþ ¼ j4j−πR ≡ j4jπR ¼ j4jπR− ; ð5:11Þ

where Eq. (2.3) is also invoked. On the other side, the
current j4 is odd under any type ofZ2 transformation (2.7)–
(2.10) as can be shown in a similar way as in Eq. (3.15):

j4j−πRþ ¼ −j4jπR− : ð5:12Þ

Combining Eq. (5.11) with Eq. (5.12) leads to,

j4jπR− ¼ j4jπR ¼ j4j−πRþ ¼ 0;

so that, using Eqs. (3.16) and (5.9), we get the relation
(inducing EBC),

j4jπR ¼ iαðQ†
LQR −Q†

RQL þD†
LDR −D†

RDLÞjπR ¼ 0;

ð5:13Þ

and its variation (for a nontrivial transformation with
α ≠ 0),

ðδQ†
LQR þQ†

LδQR − δQ†
RQL −Q†

RδQL

þδD†
LDR þD†

LδDR − δD†
RDL −D†

RδDLÞjπR ¼ 0:

ð5:14Þ

At this level, we can consider the search for field solutions
of vanishing Eqs. (5.2) and (5.13)–(5.14) first on the
domain, y ∈ ½0; πR�, which is equivalent to the search
performed for the interval model in Ref. [38] with the
replacement, L ↔ πR. Given that the orthonormalization
condition (5.6) written on the domain ½0; πR� is the same
within the orbifold and interval frameworks, up to an
overall factor 2, we can apply the conclusion of Ref. [38]
and claim that there exists no SM-like consistent solution
for the fields (over y ∈ ½0; πR�) for similar reasons as in
Sec. VA. As a conclusion, the introduction of EBC does
not constitute the correct approach towards the treatment of
point-like Yukawa interactions at a fixed point of the S1=Z2

orbifold. Regarding the bulk fermion probability currents,
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both the cases of a j4 jump and a j4 continuity at the
Yukawa coupling location, y ¼ πR, lead to inconsistent
field solutions so that, at this stage of the study, there exists
no theoretical proof of the j4 continuity—and via Eq. (5.12)
of its vanishing—at this fixed point, in contrast with the
interval model (case of presence of boundary-localized
Yukawa interactions) [38].

C. Introducing the BBT

In order to get meaningful field solutions in the presence
of brane-localized Yukawa couplings at the fixed point,

y ¼ πR, let us finally try the introduction of the SM-like
BBT (2.17) as in the free case of Sec. III C or as in the
interval model [38]. We thus consider here the same
action as in Eqs. (5.1)–(5.8) but adding now the BBT at
y ¼ πR:

Sbulk þ SX þ SB:

Using Eqs. (3.22) and (5.2), we find the following action
variations with respect to Q̄ and D̄:

δQ̄ðSbulk þ SX þ SBÞ ¼
Z

d4x

��Z
0−

−πRþ
þ
Z

πR

0

�
dyδQ̄iΓM∂MQ

þ
�
−2δQ†

L

�
QR þ

X
2
DR

�
− X0δQ†

RDL

�




πR
þ 2ðδQ†

LQRÞj0
	
;

δD̄ðSbulk þ SX þ SBÞ ¼
Z

d4x

��Z
0−

−πRþ
þ
Z

πR

0

�
dyδD̄iΓM∂MD

þ
�
−X0�δD†

LQR þ 2δD†
R

�
DL −

X�

2
QL

��




πR

− 2ðδD†
RDLÞj0

	
:

The individual vanishing of those volume and surface
terms, due to the action minimization, leads to the EOM
(3.4) and the following NBC,

� fQR þ ðX=2ÞDRgjπR ¼ 0; fDL − ðX�=2ÞQLgjπR ¼ 0;

X0DLjπR ¼ 0; X0�QRjπR ¼ 0; QRj0 ¼ DLj0 ¼ 0;

ð5:15Þ

which differ from the NBC (5.3) obtained without the
BBT. As before, given the continuity region defined by
Eq. (2.3), we can start by considering the search for
profile solutions of 5D EOM (3.4) and 5D NBC (5.15)
on the domain, y ∈ ½0; πR�, being equivalent to the
search performed for the interval scenario (with BBT)
[38] after the replacement, L ↔ πR. The 4D field
solutions in the decomposition (5.4) obey the known
Eq. (5.5). First, the opposite sign in factor of each Xð0Þ
parameter in the NBC (5.15), with respect to Ref. [38]
[see Eq. (5.23) there], comes from the mentioned differ-
ent Dirac matrix sign convention [cf., Γ4 in Eq. (A3)] and

hence has no physical impact, neither on the fermion
masses nor on the 4D effective Yukawa couplings [see
Eq. (5.21)]. Second, the factor 1=2 difference at the same
places in NBC (5.15), compared to the interval NBC
[38], comes from the existence of double numbers of
surface terms (at y ¼ 0, 0− and y ¼ πR, −πRþ)—like in
Sec. VA—and leads to the factor 1=2 in the final mass
spectrum relations (5.18)–(5.19) through a renormaliza-
tion of the X parameter as X=2. Thirdly, the necessary
orthonormalization condition (5.6) can be rewritten on
the domain ½0; πR� only, as [the subscript C stands for L
or R],

δnm ¼
1

πR

Z
πR

0

dy½qn�C ðyÞqmCðyÞ þ dn�C ðyÞdmCðyÞ�; ð5:16Þ

thanks to the change of variable, y0 ¼ −y, the fixed
profile parities (5.7)–(3.9) and the continuity relations
(2.3):

Z
0−

−πRþ
dy½qn�C ðyÞqmCðyÞ þ dn�C ðyÞdmCðyÞ� ¼

Z
πR−

0þ
dy0½qn�C ð−y0ÞqmCð−y0Þ þ dn�C ð−y0ÞdmCð−y0Þ�

¼
Z

πR−

0þ
dy0½qn�C ðy0ÞqmCðy0Þ þ dm�C ðy0ÞdmCðy0Þ� ¼

Z
πR

0

dy½qn�C ðyÞqmCðyÞ þ dm�C ðyÞdmCðyÞ�;

recovering thus exactly and conveniently the interval condition, if L ¼ πR. Nevertheless, including the factor 1=
ffiffiffiffiffiffiffiffiffi
2πR
p

, the
dimensional wave functions [mass dimension 1=2] are identical within the orbifold and interval frameworks only up to an
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additional normalization factor 1=
ffiffiffi
2
p

here, due to the double compact space size: see the respectively used decomposition
normalizations (5.4) above and (4.1) in Ref. [38]. Therefore, we can finally apply the results of Ref. [38] here for the SM-
like consistent solutions of the fields over y ∈ ½0; πR�: we find, for the dimensionless profiles (∀ n ∈ N),

� ðþ×Þ∶ qnLðyÞ ¼ An
q cosðMnyÞ; ð−×Þ∶ qnRðyÞ ¼ −An

q sinðMnyÞ;
ð−×Þ∶ dnLðyÞ ¼ An

d sinðMnyÞ; ðþ×Þ∶ dnRðyÞ ¼ An
d cosðMnyÞ;

ð5:17Þ

for the two classes of real mass spectrum solutions (X ¼ jXjeiαY with αY , αn0 ∈ R),

tanðMnπRÞ ¼




X2





; An
q ¼ eiðαn0þαYÞ; An

d ¼ eiα
n
0 ; ð5:18Þ

tanðMnπRÞ ¼ −




X2





; An
q ¼ eiðαn0þαY�πÞ; An

d ¼ eiα
n
0 ; ð5:19Þ

and for the absolute values of the fermion masses [based on
Eq. (4.6)],

jMnj ¼
1

πR
j arctan jX

2
j þ ð−1ÞnñðnÞπj: ð5:20Þ

We call ð×Þ the new Yukawa coupling (in X) dependent
BC, given by Eqs. (5.17)–(5.19), (5.20) at the brane
located at y ¼ πR, in order to distinguish them from the
Dirichlet BC usually noted (−) and the Neumann BC
(þ). Note that, similarly to the free solutions (3.18), the
opposite signs in front of the (−×) profiles (5.17), with
respect to the results of Ref. [38], simply come from a
different sign convention for the Γ4 matrix. At this stage,
the part of the profile solutions on the complementary
region, y ∈ ½−πRþ; 0−�, is deduced through the four types
of Z2 transformations (5.7)–(3.9). Hence, the Mn spec-
trum entering the profile solutions in both regions, ½0; πR�
and ½−πRþ; 0−�, is the same. As a first conclusion, the
introduction of the BBT allows to obtain realistic fermion
wave functions and consistent mass eigenvalues. The
absolute mass spectrum obtained within the 5D approach

in Eq. (5.20) is analytically matching the one derived via
the 4D method in Eq. (4.5) for a real Yukawa coupling
constant: this feature represents a nontrivial confirmation
of the present exact results. In particular, the absence of
X0 parameter in the fermion 4D mass matrix M,
described below Eq. (4.2), is interestingly recovered
through the mass independence from X0 as induced as
well by the condition

X0 ¼ 0;

issued from the 5D NBC (5.15). Regarding the probability
current, the component j4jπR at the Yukawa brane is still
given by Eq. (5.13) since the BBT do not affect it, as
explained at the end of Sec. III C. The relations found in
the first line of the NBC (5.15), injected once into each
term of this current component expression, give rise to,

j4jπR ¼ 0:

The BBT are thus found to induce NBC leading to a
vanishing current component along the extra dimension at

TABLE II. SM-like coupled fermion profiles on the two orbifold continuity domains ½−πRþ; 0−� and ½0; πR�, corresponding to the
solutions (5.17), (5.18)–(5.19), together with the associated absolute mass spectrum (5.20) for completeness. The profiles are given for
the four types of Z2 transformations (5.7)–(3.9).

Continuity domains Z2

Fields

QL=R DL=R

qnLðyÞ=ð�eiðα
n
0
þαY ÞÞ qnRðyÞ=ð�eiðα

n
0
þαY ÞÞ dnLðyÞ=eiα

n
0 dnRðyÞ=eiα

n
0

½0; πR� Any cosðMnyÞ − sinðMnyÞ sinðMnyÞ cosðMnyÞ

½−πRþ; 0−�
I cosðMnyÞ − sinðMnyÞ sinðMnyÞ cosðMnyÞ
II − cosðMnyÞ sinðMnyÞ − sinðMnyÞ − cosðMnyÞ
III cosðMnyÞ − sinðMnyÞ − sinðMnyÞ − cosðMnyÞ
IV − cosðMnyÞ sinðMnyÞ sinðMnyÞ cosðMnyÞ

KK Masses jMnj ¼ j arctan jX=2j þ ð−1ÞnñðnÞπj=πR, n ∈ N
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the fixed points of the orbifold, with (present section)
or without (cf., Sec. III C) a brane-localized Yukawa
coupling, and in turn to a continuous current component
along the extra dimension at those points given the odd
parities, demonstrated in Eq. (5.12) or (3.15) respectively.
In Table II are exhibited the explicit profile functions

over the entire orbifold domain for the SM-like solutions
(5.17), (5.18)–(5.19), (5.20). We can see on this table that
the choice of type of Z2 transformation is purely a
convention because it can modify the profile signs but
without effects on the mass spectrum.
In Fig. 3, we illustrate a set of excitation profiles,

obeying the Z2 transformations of types I and II in
Eqs. (5.7)–(3.9), for the found Yukawa-coupled solutions
(5.18), which are explicitly presented in Table II, within the
simplified real case, αY ¼ αn0 ¼ 0. We observe on this
figure that all the wave function values at the Yukawa-brane
(at the fixed point, y ¼ πR) are modified due to the
presence of this coupling. For example, under the type I
of Z2 transformation, the profile values dnLðπRÞ ¼
dnLðπR−Þ are shifted from zero as well as from
dnLð−πRþÞ, in contrast with the free case shown in
Fig. 2. This shift creates profile jumps whose amplitude
is depending on the Yukawa coupling constant through the
X parameter [BC ð×Þ from Eq. (5.17), (5.18)–(5.19),
(5.20)]. Under the type II of Z2 transformation, the same
figure shows clearly that the profile jump dnLðπRÞ ¼
dnLðπR−Þ ≠ dnLð−πRþÞ disappears but then other kinds of
jump arise like: qnLðπRÞ ¼ qnLðπR−Þ ≠ qnLð−πRþÞ and
qnLð0−Þ ≠ qnLð0Þ ¼ qnLð0þÞ. The presence of new possible
profile discontinuities justifies once more mathematically
the prescriptions about the field continuities and action
integration domains introduced in Sec. II A.
Finally, let us calculate, still without any kind of Higgs

field regularization, the physical 4D effective Yukawa
coupling constants between the mass eigenstates ψn

LðxμÞ
and ψm

R ðxμÞ as generated by the insertion of decompositions
(5.4) into Eq. (2.16), based on the obtained profile
expressions (5.17), (5.18)–(5.20):

ynm ¼̂ −
Y5

2
ffiffiffi
2
p

πR
qn�L ðπRÞdmR ðπRÞ

¼ ∓ jY5j
2

ffiffiffi
2
p

πR
eiðα

m
0
−αn

0
Þ cosðMnπRÞ cosðMmπRÞ

¼ ∓ð−1ÞñðnÞþñðmÞeiðαm0 −αn0Þ jY5j
2

ffiffiffi
2
p

πRð1þ jX=2j2Þ ;

ð5:21Þ

where we have used a trigonometric identity22 to get
the last equality. In the decoupling limit of extremely

heavy KK modes, R → 0, we can then write the
modulus of the lightest mode coupling constant, using
Eq. (2.14), as,

jy00j !
R→0

jY5j
2

ffiffiffi
2
p

πR
¼ jy4jffiffiffi

2
p ; since ;

X ¼ vffiffiffi
2
p Y5 ¼

vffiffiffi
2
p 2πRy4; ð5:22Þ

and the absolute mass eigenvalue of the lightest eigenstates
as [from Eq. (5.20)],

jM0j !
R→0

jXj
2πR
¼ vjY5j

2
ffiffiffi
2
p

πR
!
R→0

vjy00j; ð5:23Þ

so that the SM fermion setup—for the assumed single
family—is recovered as expected from the decoupling
condition. Besides, we can conclude that the choice of
type of Z2 transformation among Eqs. (5.7)–(3.9)
affects neither the profile values taken at the point
y ¼ πR—see Table II—nor their global orthonormali-
zation condition (5.6)—as described right below
Eq. (5.16)—so that the 4D effective Yukawa coupling
constants (5.21) are insensitive as well to this Z2

representation choice.

VI. THE INCLUSIVE Z2 PARITY

Let us study the alternative scenario whose defini-
tion is based on the Z2 transformation of 5D fields
extended to include the two fixed points at y ¼ 0 and
y ¼ πR:

Φðxμ;−yÞ ¼ T Φðxμ; yÞ; ∀ y ∈ ð−πR; πR�; ð6:1Þ

in contrast with Eq. (2.1). This generic transformation
still lets the Lagrangian density invariant, exactly like in
Eq. (2.2). At the two fixed points, this Lagrangian
invariance is once more automatically satisfied without
the need for any specific T transformation. Accordingly
to the simple Eq. (6.1), the operator T for the fixed
points is the same as the non-trivial one which must let
the Lagrangian invariant in the bulk. Let us consider in
particular the realistic Z2 transformation leading to the
SM chirality setup: it is the bulk transformation in
Eq. (2.7), defined now over the same range as in
Eq. (6.1), which keeps well Lkin invariant in the bulk
according to Eq. (2.2):

�
Qðxμ;−yÞ ¼ −γ5Qðxμ; yÞ
Dðxμ;−yÞ ¼ γ5Dðxμ; yÞ ; ∀ y ∈ ð−πR; πR�: ð6:2Þ

Focusing on the fixed points at y ¼ 0 and
y ¼ πR≡ −πR, we obtain the four nontrivial relations

22For n ∈ Z, one has, cosðθ þ nπÞ ¼ ð−1Þn cosðθÞ, and for
T ∈ R, cos½arctanðTÞ� ¼ 1ffiffiffiffiffiffiffiffi

1þT2
p .
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�
Qðxμ; 0Þ ¼ −γ5Qðxμ; 0Þ⇒ QLj0 ¼ QLj0; and; QRj0 ¼ −QRj0 ¼ 0

Dðxμ; 0Þ ¼ γ5Dðxμ; 0Þ⇒ DLj0 ¼ −DLj0 ¼ 0; and; DRj0 ¼ DRj0
ð6:3Þ

�
Qðxμ; πRÞ ¼ −γ5Qðxμ; πRÞ⇒ QRjπR ¼ 0

Dðxμ; πRÞ ¼ γ5Dðxμ; πRÞ⇒ DLjπR ¼ 0
½EBC0�

representing new EBC that we denote EBC’ to distin-
guish them from those in Eq. (3.17).
In the free case, Sec. III A has shown that EBC(’) or BBT

must be considered. Starting with the EBC(’), in analogy
with Sec. III B, the fixed Z2 transformations (6.2) in the
bulk lead to the EBC (3.17) while the Z2 transformations
(6.3) at the fixed points lead to the EBC’. Those EBC’
select one general BC set among these four EBC sets for the
5D field Q, and same statement for D: the sets correspond-
ing to the chiral solution of line 1 (2) in Eq. (3.18) for the
field D (Q), namely the SM-like chirality configuration.
Finally, the complete profile solutions over the whole
orbifold domain are found out as before via the bulk Z2

transformations (6.2).
Alternatively, the selected consistent BBT (2.17) can be

included like in Sec. III C to obtain the same SM-like
solutions. The corresponding EBC’ (6.3), part of the EBC
(3.17) and required by the model, are checked to be
satisfied afterwards, as consequences.
Once the free profiles are worked out as described right

above—either through the EBC(’) or the BBT—we can
apply the 4D method of Sec. IV, based on infinite matrix
diagonalization, in order to derive the mass spectrum in the
presence of brane-localized Yukawa couplings. Even the
4D effective Yukawa coupling constants can be calculated
in this way: the above EBC’ selection of a specific chirality
setup and mass spectrum for the free fields would affect as
well these effective coupling constants, for instance via the
KK mass mixings.
In contrast, the analysis of pointlike Yukawa interactions

cannot be achieved via the 5D approach within the present
inclusive Z2 symmetry model.
First, the EBC(’) motivated by Sec. VAmust be split into

the EBC coming directly from the vanishing probability
currents—or say indirectly from the fixed Z2 transforma-
tions (6.2) in the bulk—discussed in Sec. V B and the EBC’
(6.3). These EBC’ combined with the surface terms at y ¼
πR in Eq. (5.2), including the Yukawa terms, give rise to the
BC of type (5.3) involving only single terms proportional to
the Yukawa coupling constant and equal to zero. Hence, the
resulting mass spectrum loses its dependence on the
Yukawa coupling constant which conflicts with the decou-
pling limit argument [see Eq. (5.23)].
Second, the BBT (2.17) could be added like in Sec. V C

to try obtaining SM-like solutions. However the EBC’
(6.3), expected to be recovered afterwards, are not

compatible with the resulting BC (5.17) together with
the spectrum equations (5.18) and (5.19).

VII. RESULT ANALYSIS

A. The higher-dimensional method

The present study confirms the general methodology
depicted in Fig. 4 and presented in Ref. [38]. Within the
present model, the probability current condition on this
schematic description is the vanishing of fermion currents
at the two fixed points (issued from Z2 symmetry criteria
and inducing the EBC (3.17) in the free case). For the
interval model, the vanishing current condition is a direct
implication of the existence of boundaries for the matter
fields. This current vanishing holds both in the presence
and absence of brane-localized Yukawa couplings.
In the framework of the orbifold version described in

Sec. VI, the additional field condition (6.3), coming from
the Z2 symmetry at the fixed points, accompanies the
definition of the Z2 symmetry of the bulk action and leads
to the new EBC’.

B. Discussion of the action content

In addition to the information contained in the action
(2.18), the present orbifold model is defined in a comple-
mentary way by other elements like: (i) the S1 junction
point at y ¼ πR≡ −πR, (ii) the choices of Z2 trans-
formations for the fields in the bulk [see Eqs. (2.7)–
(2.10)] and possibly at the fixed points [cf., Eq. (6.3)],
(iii) the EBC (3.17) imposed by the model definition when
those are used instead of the BBT. Regarding the point (iii),
Table III summarizes the obtained cases where the EBC and

FIG. 4. Schematic inverse pyramidal picture describing the
generic process for determining the mixed KK mass spectrum
and bulk field wave functions. Acronym notations are the same as
in the main text.
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the BBT can be used. This table is identical to the one
obtained in the interval model study [38].

C. About the orbifold/interval duality

The present S1=Z2 orbifold model and the ½0; L� interval
scenario studied in Ref. [38] are physically different: their
geometrical setups and Lagrangian symmetries are not
identical. Nevertheless, the respective theoretical predic-
tions for the observables like the (brane-coupled) fermion
mass spectra and 4D effective Yukawa coupling constants
are identical up to factors 2, which may be called a duality.
Indeed, for a comparable dimension size L ¼ πR, although
the mass absolute values (5.20) involve a new factor 1=2 in
front of X, with respect to the interval analytical result, the
measurable range of values for jMnj is of the same order
and the precise limits of this range rely on the approximate
perturbative limits of the 4D effective Yukawa coupling
constants proportional to y4 [see Secs. II B 3 and
Eqs. (5.21)–(5.23)]. Besides, the dependence of the ana-
lytical mass formula on the Lagrangian parameters is
identical in the two models, up to this factor 1=2 entering
the coupling constant definition, as can be seen from
Eq. (5.20) and Sec. II B 3—including the free limiting
case X → 0. Similar comments hold for the 4D effective
Yukawa coupling constants (5.21) which have additional
factors 1=2 in front of X and as an overall factor (latter one
induced by normalization considerations), with respect to
the interval case.
The orbifold version of Sec. VI contains additional

information at the fixed point branes. It predicts thus a
specific chirality configuration and mass spectrum [among
chiral or vector-like solutions respectively of type (3.18)–
(3.19)] so that it is not dual to the interval model.
Coming back to the case of duality, there exist similar-

ities between the orbifold and interval models, as it
appeared throughout this work when solving the EOM
and BC to find out the fields. Let us now comment on the
similarities at the Lagrangian level. First, the BBT (2.17)
have the same form as in the interval framework [38] and
the different factor 2 is related to the double size of the
compactified space for the identification, L ¼ πR. The
opposite front sign in the BBT (for a similar profile solution
setup) is just due to a different Dirac matrix sign convention
[see Γ4 sign in Eq. (A3)].

In the global action (2.18), Sbulk remains to be dis-
cussed, the other parts being identical in the orbifold and
interval models. Thanks to the orbifold property (2.2), the
change of variable, y0 ¼ −y, allows the following rewriting
of Eq. (2.4),

Sbulk ¼
Z

d4x

�Z
0−

−πRþ
dyLkinðyÞ þ

Z
πR

0

dyLkinðyÞ
�

¼
Z

d4x

�Z
πR−

0þ
dy0Lkinðy0Þ þ

Z
πR

0

dyLkinðyÞ
�

¼ 2

Z
d4x

�Z
πR

0

dyLkinðyÞ
�
; ð7:1Þ

where the last step is based on Eq. (2.3). Therefore, using
Eq. (2.18) and the relevant identification, L ¼ πR, we can
express the orbifold action in terms of the interval action
pieces [38] (indicated by the L exponent):

S5D ¼ 2SLbulk þ SðLÞH þ SðLÞX þ SðLÞint þ 2SLB

¼ 2½SLbulk þ
1

2
fSðLÞX þ SðLÞint g þ SLB� þ SðLÞH

¼ 2½SLbulk þ SðLÞX=2 þ SðLÞint jX=2 þ SLB� þ SðLÞH : ð7:2Þ

This reexpression reveals an alternative method to derive
the fermion masses and couplings, which are independent

from the pure scalar part, namely SðLÞH . The idea is that,
within the orbifold model now described by the action (7.2)
importantly together with the description of the Z2 sym-
metry over S1, we can first search for the field parts along
the limited domain ½0; πR�. This search is in fact based on

the action ½SLbulk þ SðLÞX=2 þ SðLÞint jX=2 þ SLB�, since the overall
factor 2 in Eq. (7.2) affects neither the EOM (global factor)
nor the BC (same factor in front of the surface terms and
pure brane terms combined into BC),23 and is in turn strictly
equivalent to solving the interval model. Given this action,
the solutions obtained for the 4D masses (and 4D effective
Yukawa coupling constants from profile overlaps with the

TABLE III. Types of boundary conditions for the bulk fermions at an orbifold fixed point where is located their interactions with the
Higgs boson, in different brane treatments: presence of BBT, vanishing of probability current or nothing specific. The 4D line holds as
well for the 5D approach of the free brane. As usually, the Dirichlet BC are noted (−), the Neumann BC (þ) and we denote ð×Þ the new
BC depending on the Yukawa coupling constant [corresponding to Eq. (5.17) taken at y ¼ πR]. The (N,E)BC acronym definitions are
the same as in the text.

No boundary characteristic Vanishing current condition [EBC] Bilinear brane terms [NBC]

4D Approach (Impossible) BC (�) BC (�)
5D Approach (Impossible) (Impossible) BC (×)

23This search could also be constrained by vanishing currents
at y ¼ 0, πR instead of the SLB presence, in the free case, as shown
in Secs. III B and V B.
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Higgs boson peak at y ¼ πR) are those of Ref. [38] but
involving a normalized coupling parameter X=2. The last
stage of this technics is the extension of the obtained
profiles over the complete orbifold domain via the Z2

transformations, before applying the orthonormalization
condition. The 4D effective Yukawa coupling constants are
then changed by an additional factor 1=2, as is clear from
the dimensional wave function normalization forms (5.6)–
(5.16), which confirms the result (5.21). On the other side,
we see as well that the fermion masses so obtained
(unchanged by the spatial domain extension) involve only
a new normalized parameter X=2, with respect to Ref. [38],
which confirms the found spectrum (5.20).
Beyond these action correspondences, there are other

elegant similarities. For example, as illustrated by Fig. 4,
both the interval and orbifold scenarios lead to the same
vanishing probability current conditions at the two branes
(and hence to identical EBC); those current conditions
come, respectively, directly from the interval boundary
criteria and indirectly from Z2 symmetry considerations.
Besides, Table III shows that the same treatments of the two
branes, at the fixed points or interval boundaries, must be
adopted in identical situations and that the same BC are
generated.
Finally, let us propose an intuitive description for under-

standing the orbifold versus interval model duality.
The obtained wave functions for the bulk fermions on
the interval are of the kind cosðMnyÞ ∝ ðeiMny þ e−iMnyÞ,
coming in factor (via the KK decomposition) of the energy
coefficients e�iEt in the 4D Dirac fields, which gives rise to
wave planes propagating in both y-directions of the interval
with momenta �pn ¼ �Mn—as for oscillations left-mov-
ing and right-moving along opposite directions in the
world-sheet parameter space of strings. The associated
particle, going in the directionL → 0 and then coming back
along 0 → L, reproduces the propagation along S1, follow-
ing consecutively the two fundamental domains −πR → 0−

and 0þ → πR of the orbifold (effectively equivalent ori-
entations of the circle in the bulk so a unique propagation
direction chosen along it): exactly the same L½Φðxμ; yÞ�
Lagrangian evolution is felt by this particle during those
dual travelings along the extra y-dimension, in the two
different models, as is clear from the Lagrangian Z2

symmetry depicted in the drawing 1.

VIII. CONCLUSIONS

In the study of the S1=Z2 orbifold, the proper action
definition through improper integrals has allowed to obtain
consistent bulk profile solutions with possible discontinu-
ities at the fixed points. In particular the point-like
interaction of Yukawa creates a profile jump.
These solutions have been obtained without brane-Higgs

regularization, by relying on the necessary EBC, coming
from vanishing fermion probability currents, or alterna-
tively on the introduction of BBT in the action. The

associated calculations have been confirmed by the match-
ing, between the 4D and 5D approaches, of the analytical
results for the fermion mass spectrum and 4D effective
Yukawa coupling constants.
The orbifold version, with Z2 transformations of the

fields extended to the fixed points, was shown to be able to
generate the chiral nature of the theory and even to select
the expected SM chirality configuration for the 4D states.
The duality between the interval and orbifold scenarios

has been deeply described. It has also constituted the
opportunity to point out an alternative method for calculat-
ing the tower of excitation masses and 4D Yukawa
couplings.
We are now working on the introduction of distributions

in this context.
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APPENDIX A: NOTATIONS AND CONVENTIONS

Throughout the paper, we use the conventions of
Ref. [52]. The 5D Minkowski metric is,

ηMN ¼ diagðþ1;−1;−1;−1;−1Þ;

where M;N ¼ 0; 1;…; 4.
The 4D Dirac matrices are taken in the Weyl represen-

tation,

γμ ¼
�

0 σμ

σ̄μ 0

�
with

�
σμ ¼ ðI; σiÞ;
σ̄μ ¼ ðI;−σiÞ; ðA1Þ

where μ ¼ 0, 1, 2, 3 and σi (i ¼ 1, 2, 3) are the three Pauli
matrices:

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
:

One has also the 4D chirality operator,

γ5 ¼ i
Y3
μ¼0

γμ ¼
�−I 0

0 I

�
: ðA2Þ

In our conventions, the 5D Dirac matrices ΓM (M ¼ 0;
1;…; 4) obey fΓA;ΓBg ¼ 2ηAB (A;B ¼ 0; 1;…; 4) and
read as,

ΓM ¼ ðγμ;−iγ5Þ: ðA3Þ
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APPENDIX B: FROM SPINOR COMPONENTS TO
COMPACT NOTATIONS

1. Spinor components and their variations

The generic spinor field F (F ¼ Q, D) introduced via
Eq. (2.6) can be written in terms of its four explicit
components Fα [α ¼ 1, 2, 3, 4]:

F ¼

0
BBB@

F1

F2

F3

F4

1
CCCA; ðB1Þ

and similarly, F̄ can be expressed in terms of its own four
components F̄α:

F̄ ¼ ð F̄1; F̄2; F̄3; F̄4 Þ
¼̂ F†γ0 ¼ ðF�3; F�4; F�1; F�2 Þ: ðB2Þ

These 8 components constitute the fundamental variables
of the Lagrangian (2.5). Hence, the variation of the
associated action, Sbulk [see Eq. (2.4)], involves the
following 8 elementary variations, that we can group into
new 4-component (transposed) vectorial objects defined as:

δF¼̂

0
BBB@

δF1

δF2

δF3

δF4

1
CCCA; δF̄ ¼̂ ð δF̄1; δF̄2; δF̄3; δF̄4 Þ;

ðB3Þ

introducing the 8 components δFα and δF̄α. We then
define,

δF ¼
�
δFL

δFR

�
;

δF̄¼̂ ð δF†
R; δF†

L Þ;with for instance; δF†
R¼̂ ð δF̄1; δF̄2 Þ;

ðB4Þ

inspired by the following generic relations, based on
Eq. (2.6),

F ¼
�
FL

FR

�
; F̄ ¼̂ F†γ0 ¼ ðF†

R; F
†
LÞ: ðB5Þ

2. A typical compact form calculation

Using the Lagrangian Lkin of Eq. (2.5), let us work out
explicitly the following quantity entering Eq. (3.1) in a
compact form (no explicit spinor index of type α),

δF̄
∂Lkin

∂F̄ ¼̂
X4
α¼1

δF̄α
∂Lkin

∂F̄α
¼

X4
α¼1

δF̄α
∂

∂F̄α

�i
2
F̄ΓM∂MF

�

¼
X4
α¼1

δF̄α
∂

∂F̄α

�
i
2

X4
β¼1

F̄β½ΓM∂MF�β
�

¼
X4
α¼1

δF̄α
i
2
½ΓM∂MF�α

¼ i
2
δF̄ΓM∂MF; ðB6Þ

where the spinor components of Eqs. (B1) and (B2) have
appeared, as well as the variations of Eq. (B3).

3. Z2 transformations of field variations

Finally, we can derive the Z2 transformation for the
compact form δF̄ of Eq. (B3). Accordingly to the Z2

transformations (2.7)–(2.10), we have,

F̄j−y ¼ F†j−yγ0 ¼ ð�γ5FÞ†jyγ0 ¼ �F†jyγ5γ0
¼ ∓F†jyγ0γ5 ¼ ∓F̄jyγ5;

due to the anticommutator relation fγ5; γμg ¼ 0. Then one
must rewrite this relation by making the spinor components
of Eq. (B2) appear explicitly:

F̄αj−y ¼ ∓X4
β¼1

F̄βjyγ5βα;

in order to deduce the relation on the variations of these
components:

δF̄αj−y ¼ ∓X4
β¼1

δF̄βjyγ5βα:

Thanks to Eq. (B3), this equation can be contracted back to
the compact notation as,

δF̄j−y ¼ ∓δF̄jyγ5: ðB7Þ
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