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We derive machine learning algorithms from discretized Euclidean field theories, making inference and
learning possible within dynamics described by quantum field theory. Specifically, we demonstrate that
the ϕ4 scalar field theory satisfies the Hammersley-Clifford theorem, therefore recasting it as a machine
learning algorithm within the mathematically rigorous framework of Markov random fields. We illustrate
the concepts by minimizing an asymmetric distance between the probability distribution of the ϕ4 theory
and that of target distributions, by quantifying the overlap of statistical ensembles between probability
distributions and through reweighting to complex-valued actions with longer-range interactions. Neural
network architectures are additionally derived from the ϕ4 theory which can be viewed as generalizations of
conventional neural networks and applications are presented. We conclude by discussing how the proposal
opens up a new research avenue, that of developing a mathematical and computational framework of
machine learning within quantum field theory.
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I. INTRODUCTION

Relativistic quantum fields [1] are formulated on
Minkowski space where intricate mathematical problems
related to the hyperbolic geometry emerge. By recasting
Minkowski space as Euclidean significant simplifications
can be obtained for certain cases: the hyperbolic problems
are transformed to be elliptic, the Poincaré group becomes
the Euclidean group where a positive-definite scalar prod-
uct emerges, noncommuting operators are expressed as
random variables and causality is formulated as a Markov
property.
Of high importance is the reverse direction: that of

arriving at a quantum field in Minkowski space by
constructing it from one in Euclidean space. To make such
prospects attainable a rigorous mathematical framework for
quantum fields had to be established, and a series of

relevant contributions led to advances known as construc-
tive quantum field theory [2–4]. A connection between
probability theory and quantum field theory was then
established when quantum fields were constructed from
Euclidean fields that satisfy Markov properties [5,6].
Recently, applications of deep learning [7], a class of

machine learning algorithms which are able to hierarchi-
cally extract abstract features in data, have emerged in the
physical sciences [8], including in field theories [9–17] and
in the study of phase transitions [18–24]. Insights on
machine learning algorithms have been obtained from
the perspective of statistical physics [25–33], particularly
within the theory of spin glasses [34], or in relation to
Gaussian processes [35–39].
A notable case of these algorithms is the framework of

Markov random fields [40], which introduces Markov
properties on a graph-based representation to encode
probability distributions over high-dimensional spaces.
As quantum field theory and probability theory are evi-
dently connected analytically [6], and computational inves-
tigations of quantum fields are feasible through the
framework of lattice field theory [41], a new challenge
is anticipated to emerge: namely that of investigating
machine learning from the perspective of quantum fields.
In this manuscript, we derive machine learning algo-

rithms from discretized Euclidean field theories, making
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inference and learning possible within dynamics described
by quantum field theory. From the mathematical point of
view, we explore if the ϕ4 scalar field theory on a square
lattice satisfies the Hammersley-Clifford theorem, therefore
recasting it as a Markov random field which can complete
machine learning tasks. From the equivalent perspective of
physics, we treat the ϕ4 scalar field theory as a system with
inhomogeneous coupling constants and we search based on
its dynamics, which comprise local interactions, for the
optimal values of the coupling constants that are able to
complete a machine learning task. Specifically we consider
the minimization of an asymmetric distance between the
probability distribution of the ϕ4 theory and that of target
distributions. We also quantify the overlap of statistical
ensembles between probability distributions and investi-
gate if reweighting to the parameter space of complex-
valued actions with longer-range interactions is possible by
utilizing instead the probability distribution of the approxi-
mating local inhomogeneous action.
We then proceed to derive neural network architectures

from the ϕ4 scalar field theory which can progressively
extract features of increased abstraction in data. We explore
the implications of including a local symmetry-breaking
term in the ϕ4 Markov random field, and rearrange the
lattice topology to derive a ϕ4 neural network which can be
viewed as a generalization of conventional neural network
architectures. Based on the equivalence between the ϕ4

scalar field theory and the Ising model under a certain limit,
we discuss how the ϕ4 neural network can provide novel
physical insights to the interpretability of a notable class of
machine learning algorithms. Finally, we conclude by
discussing how the introduction of ϕ4 machine learning
algorithms opens up a new research avenue, that of
developing, computationally and analytically, a framework
of machine learning within quantum field theory.

II. THE ϕ4 SCALAR FIELD THEORY AS A
MARKOV RANDOM FIELD

Let Λ be a finite set whose points represent the sites of a
physical model, and let Λ have an additional structure; for
instance consider that the spacing between the sites might
be known and that the sites are connected. We now consider
that the points of Λ lie on the vertices of a finite graph
G ¼ ðΛ; eÞ, where e is the set of edges on G. If i; j ∈ Λ and
there exists an edge between i and j then i and j are called
neighbors and the set of all neighbors of a considered point
i will be denoted byN i. A clique is a subset of Λ where the
points are pairwise connected, and a clique is called
maximal if no additional point can be included such that
the resulting set is still a clique. We will denote a maximal
clique as c and the set of all maximal cliques as C. For an
illustration of the concepts see Fig. 1 and for rigorous
results see Refs. [40,42].
In addition we associate to each point i ∈ Λ a random

variable ϕi;i∈Λ and we will call ϕ ¼ fϕig a state or

configuration of the system. Given a graph G ¼ ðΛ; eÞ,
the set of random variables define a Markov random field if
the associated probability distribution p fulfills the local
Markov property with respect to G. The local Markov
property denotes that a variable ϕi is conditionally inde-
pendent of all other variables given its neighbors N i, i.e.,

pðϕijðϕjÞj∈Λ−iÞ ¼ pðϕijðϕjÞj∈N i
Þ: ð1Þ

A probability distribution is then related with the events
generated by a Markov random field through the
Hammersley-Clifford theorem [40]:
Theorem 1 (Hammersley-Clifford.) A strictly positive

distribution p satisfies the local Markov property of an
undirected graph G, if and only if p can be represented as a
product of strictly positive potential functions ψc over G,
one per maximal clique c ∈ C, i.e.,

pðϕÞ ¼ 1

Z

Y
c∈C

ψcðϕÞ; ð2Þ

where Z ¼ R
ϕ

Q
c∈C ψcðϕÞdϕ is the partition function and

ϕ are all possible states of the system.
We will demonstrate that the ϕ4 scalar field theory

satisfies the Hammersley-Clifford theorem and is therefore
a Markov random field. The two-dimensional ϕ4 theory is
described by the Euclidean Lagrangian:

LE ¼ κ

2
ð∇ϕÞ2 þ μ20

2
ϕ2 þ λ

4
ϕ4; ð3Þ

where the action that regularizes the continuum theory on a
square lattice is

SE ¼ −κL
X
hiji

ϕiϕj þ
ðμ2L þ 4κLÞ

2

X
i

ϕ2
i þ

λL
4

X
i

ϕ4
i : ð4Þ

The quantities κL; μ2L; λL are dimensionless parameters,
one of which is deprecated and can be absorbed by
rescaling the fields [43]. Nevertheless, consider the set
of variables w ¼ κL, a ¼ ðμ2L þ 4κLÞ=2, b ¼ λL=4 as
inhomogeneous and the resulting action as

FIG. 1. (a) A bipartite graph. The maximal cliques correspond
to the sites associated with the random variables fϕ1; h1g,
fϕ1; h2g, fϕ1; hmg, fϕ2; h1g, fϕ2; h2g, fϕ2; hmg, fϕn; h1g,
fϕn; h2g, fϕn; hmg. (b) A square lattice. The maximal cliques
correspond to the sites associated with the random variables
fϕ1;ϕ2g, fϕ1;ϕ3g, fϕ3;ϕ4g and fϕ2;ϕ4g.
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Sðϕ; θÞ ¼ −
X
hiji

wijϕiϕj þ
X
i

aiϕ2
i þ

X
i

biϕ4
i ; ð5Þ

where the set of coupling constants is θ ¼ fwij; ai; big, and
the associated Boltzmann probability distribution is

pðϕ; θÞ ¼ exp½−Sðϕ; θÞ�R
ϕ exp½−Sðϕ; θÞ�dϕ

: ð6Þ

The ϕ4 scalar field theory is formulated on a graph G ¼
ðΛ; eÞ where Λ is the set of lattice sites and e is the set of
edges or pairwise interactions. For a square lattice only
nearest neighbors define a maximal clique (see Fig. 1).
Since we search for arbitrary, strictly positive potential
functions ψc per maximal clique c ∈ C, we can multiply ψc
with strictly positive functions of subsets of c [44], i.e.,
with functions of one-site cliques. We then arrive, after
considering the imposed boundary conditions, at a non-
unique choice of potential function:

ψc ¼ exp

�
−wijϕiϕj þ

1

4
ðaiϕ2

i þ ajϕ2
j þ biϕ4

i þ bjϕ4
jÞ
�
;

ð7Þ
where i, j are nearest neighbors. As the potential functions
ψc are strictly positive the quantity lnψc can be defined,
and the probability distribution pðϕ; θÞ can be factorized as

pðϕ; θÞ ¼ exp½Pc∈C lnψcðϕÞ�R
ϕ exp½

P
c∈C lnψcðϕÞ�dϕ

¼ 1

Z

Y
c∈C

ψcðϕÞ: ð8Þ

To summarize, the discretized ϕ4 scalar field theory
satisfies the Hammersley-Clifford theorem and the local
Markov property and is therefore a Markov random field.
To understand intuitively the meaning of the local Markov
property, consider the more familiar case satisfied by a
Markov chain Pðϕkþ1jϕk;…;ϕ0Þ ¼ Pðϕkþ1jϕkÞ. This
property declares that given a certain state ϕk a future
state ϕkþ1 depends only on the current state ϕk, and not on
states that preceded it, such as ϕk−1. The local Markov
property of Eq. (1) extends this concept to higher dimen-
sions by giving it a spatial representation via a Markov
random field. For the case of the ϕ4 scalar field theory the
variational parameters θ are the coupling constants
θ ¼ fwij; ai; big. By considering that the probability
pðϕ; θÞ of the Markov random field depends on the
parameters θ a variety of machine learning tasks can then
be completed.

III. MACHINE LEARNING WITH THE ϕ4 SCALAR
FIELD THEORY

A. Learning without predefined data

Consider a target probability distribution qðϕÞ of an
arbitrary statistical system. An asymmetric measure of the

distance between the two probability distributions pðϕ; θÞ
and qðϕÞ can be defined, which is called the Kullback-
Leibler divergence [40]:

KLðpjjqÞ ¼
Z

∞

−∞
pðϕ; θÞ lnpðϕ; θÞ

qðϕÞ dϕ ≥ 0: ð9Þ

The Kullback-Leibler divergence is non-negative and
equal to zero when the two probability distributions exactly
match one another. We emphasize that the Kullback-Leibler
divergence does not satisfy the triangle inequality and it
therefore cannot be classified as a proper distance as it is
not symmetric. It is the quantity KLðpjjqÞ þ KLðqjjpÞ
which is a true metric. The Kullback-Leibler divergence
will be called an asymmetric distance to retain the intuitive
picture that it establishes a measure of the difference
between two probability distributions.
By searching for an optimal set of coupling constants

θ ¼ fwij; ai; big we can minimize the Kullback-Leibler
divergence so that the probability distribution of the ϕ4

scalar field theory pðϕ; θÞ will converge to the target
probability distribution qðϕÞ. Once minimization is con-
ducted a Markov chain Monte Carlo simulation can be
initiated for pðϕ; θÞ to draw samples that would be repre-
sentative of the target distribution qðϕÞ. Let us consider the
case where the target probability distribution qðϕÞ is that of
an arbitrary statistical system with partition function ZA
and it has a Boltzmann form qðϕÞ ¼ exp½−A�=ZA. Any
additional parameter, such as the inverse temperature, is
absorbed within the Hamiltonian or lattice action A. By
substituting qðϕÞ and pðϕ; θÞ in Eq. (9) we arrive at

− lnZA ≤ hA − Sipðϕ;θÞ − lnZ: ð10Þ

By considering that the terms FA ¼ − lnZA and F ¼
− lnZ are equal to the free energy, the above equation can
be equivalently expressed as

FA ≤ hA − Sipðϕ;θÞ þ F≡ F ; ð11Þ

where F is the variational free energy. As a result Eq. (11)
sets a rigorous upper bound to the calculation of the free
energy FA of the target system and this bound F is
dependent on calculations conducted entirely on the dis-
tribution pðϕ; θÞ of the ϕ4 Markov random field. This
indicates that one can map an arbitrary system to a ϕ4 scalar
field theory by minimizing an asymmetric distance between
the probability distributions of the two systems.
A gradient-based approach can then be implemented to

minimize the variational free energy F via its derivatives in
terms of the parameters θ:

∂F
∂θi ¼ hAi

�∂S
∂θi

�
−
�
A

∂S
∂θi

�
þ
�
S
∂S
∂θi

�
− hSi

�∂S
∂θi

�
;

ð12Þ
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where all expectation values are calculated under the
probability distribution pðϕ; θÞ of the ϕ4 scalar field theory.
Derivations can be found in the Appendix A. The varia-
tional parameters are then updated at each epoch t of the
minimization process through

θðtþ1Þ ¼ θðtÞ − η � L; ð13Þ

where η is the learning rate and L ¼ ∂F=∂θðtÞ. After the
minimization process we anticipate that F ≈ FA and as a
result pðϕ; θÞ ≈ qðϕÞ.
To illustrate the approach we consider as a target system

a ϕ4 lattice action A with longer-range interactions and
complex-valued coupling constants, defined as

A ¼
X5
k¼1

gkAðkÞ ¼ g1
X
hijinn

ϕiϕj þ g2
X
i

ϕ2
i ð14Þ

þg3
X
i

ϕ4
i þ g4

X
hijinnn

ϕiϕj þ ig5
X
i

ϕ2
i : ð15Þ

The notations nn and nnn denote nearest-neighbor and
next-nearest-neighbor interactions and the lattice action is
complex due to the g5Að5Þ term. The combination of the g2
and g5 parameters introduces a complex coupling constant
in the mass term. The coupling constants have values
g1 ¼ g4 ¼ −1, g2 ¼ 1.52425, g3 ¼ 0.175 and g5 ¼ 0.15.
The values for g1, g2 and g3 have been chosen near the
critical point of the second-order phase transition for the
system with a local homogeneous action for which
g4 ¼ g5 ¼ 0. We will present three applications for lattices
of size L ¼ 4 at each dimension: first, a proof-of-principle
demonstration will be conducted to verify that the inho-
mogeneous action S [see Eq. (5)] can learn the local lattice
action Af3g ¼

P
3
k¼1 gkA

ðkÞ. Second, we will discuss that
by considering the local lattice action Af3g it is impossible
to reweight to the full action A due to insufficient overlap
of statistical ensembles, but there exists an inhomogeneous
representation of Af3g equal to S for which this is possible.
Finally we will demonstrate that S can approximate A
sufficiently to simultaneously extrapolate observables in
the parameter space of the complex action A along the
trajectory of a considered coupling constant and we will
discuss how to successfully define the allowed reweight-
ing range.
We now initialize the ϕ4 Markov random field with

inhomogeneous coupling constants θ which are randomly
drawn from a Gaussian distribution and consider as a target
system in Eq. (10) the local lattice action Af3g. We
anticipate that the optimal solution is the one where the
inhomogeneous coupling constants θ of the ϕ4 Markov
random field will converge to the homogeneous constants
g1, g2 and g3 of the target ϕ4 scalar field theory. Details
about the simulations can be found in Appendix B. The

time evolution for the parameters θ is depicted in Fig. 2 and
details of the training process can be found in Appendix B.
After training is conducted the parameters θ have con-
verged to the homogeneous constants of the target system
with precision of order of magnitude of 10−8 for all cases. It
then becomes clear that given sufficient training time the
two systems become identical.
The overlap of statistical ensembles can be quantified

through the Kullback-Leibler divergence. We consider
the probability distribution pðϕ; θÞ, described by the local
inhomogeneous action S, and we minimize the Kullback-
Leibler divergence to approximate the target distribution of
action Af4g which is denoted as qðϕÞ. In addition, we
simultaneously estimate the Kullback-Leibler divergence
between the distributions ofAf3g andAf4g to quantify their
overlap of statistical ensembles. The results are depicted in
Fig. 3 where it is evident that the local inhomogeneous
action S produces a probability distribution which approx-
imates Af4g exceedingly better than the probability dis-
tribution ofAf3g. This tentatively indicates that while S and
Af3g have the same form of lattice action, the inhomoge-
neity present in the former allows for the construction of
richer representations of probability distributions. As a
result, histogram reweighting [45] from local inhomo-
geneous actions to regions of parameter space that are

FIG. 2. Variational parameters θ ¼ fwij; ai; big versus epochs t
on logarithmic scale. The figures depict the evolution of the
parameters θ towards the expected values of the coupling
constants in the target homogeneous action.

FIG. 3. Estimated Kullback-Leibler divergence versus epoch t
on logarithmic scale. The probability distributions of actionsAf3g
and S are compared with the one of Af4g. Only the action S is
updated at each epoch based on a finite sample of fixed size. For
action Af3g results are depicted based on a finite sample of equal
size to allow for a direct comparison of the two quantities at each
epoch t.
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inaccessible to the local homogeneous action might be
possible.
We proceed to discuss the precise implications of the

equivalence between the approximating distribution
pðϕ; θÞ of action S and the target distribution qðϕÞ of
actionAf4g. The definition of the expectation value hOiP of
an arbitrary observable O in a system that has some
equilibrium occupation probabilities P is

hOiP ¼
X
ϕ

OϕPðϕÞ; ð16Þ

where the sum is over all possible states ϕ of the system.
After the Kullback-Leibler divergence between the distri-
butions pðϕ; θÞ and qðϕÞ is minimized KL ≈ 0 and

pðϕ; θÞ ≈ qðϕÞ; ð17Þ

which instantly implies, based on Eq. (16), that

hOipðϕ;θÞ ≈ hOiqðϕÞ: ð18Þ

To clarify further, observables, such as the lattice action
Af4g should yield approximately equal values when calcu-
lated from samples drawn from either distribution pðϕ; θÞ
or qðϕÞ even though the two distributions have different
actions S andAf4g, respectively. To express these ideas in a
more formal manner, we now consider the expectation
value of an arbitrary observable as obtained during a
Monte Carlo simulation (e.g., see Refs. [21,22]) in the
target system with action Af4g:

hOiqðϕÞ ¼
P

N
l¼1 p̃

−1
l Ol exp½−

P
4
k¼1 gkA

ðkÞ
l �P

N
l¼1 p̃

−1
l exp½−P

4
k¼1 gkA

ðkÞ
l �

; ð19Þ

where p̃ are the probabilities used to sample from the
equilibrium distribution and N is the number of samples
that we have obtained during the Monte Carlo simulation.
There are two fundamentally different ways to proceed in
calculating the expectation value of the above equation by
relying instead on the approximating probability distribu-
tion pðϕ; θÞ.
The first is to draw a subset of samples from pðϕ; θÞ and

then conjecture, based on Eq. (17), that these N samples
have been produced instead by the distribution qðϕÞ. This
would have been equivalent to considering p̃ ¼ qðϕÞ in
Eq. (19) but a systematic error would be introduced based
on the accuracy in which the probability distribution
pðϕ; θÞ approximates qðϕÞ. The second approach again
relies on drawing a subset of samples from the distribution
pðϕ; θÞ, but this time we will consider that pðϕ; θÞ ≠ qðϕÞ
and that the samples have been produced directly from
pðϕ; θÞ of Eq. (6) with action S. This is equivalent to
conducting a reweighting step so that the probability
distribution pðϕ; θÞ will become equal to the distribution

qðϕÞ under the condition that there exists a sufficient
overlap of ensembles between the two distributions. We
anticipate that this reweighting step is possible to achieve
due to the minimization of the Kullback-Leibler divergence
between the two distributions pðϕ; θÞ to qðϕÞ and their
approximate equivalence.
We will follow the second approach and implement a

reweighting technique, details of which can be found in
Appendix C, to simultaneously extrapolate observables in
the parameter space of the full action A which includes
complex couplings and longer-range interactions:

hOi ¼
P

N
l¼1Ol exp½Sl − g0jA

ðjÞ
l −

P
5
k¼1;k≠j gkA

ðkÞ
l �P

N
l¼1 exp½Sl − g0jA

ðjÞ
l −

P
5
k¼1;k≠j gkA

ðkÞ
l �

: ð20Þ

The equation above can be interpreted as two distinct
simultaneous reweighting steps. First the probability distri-
bution pðϕ; θÞ of the ϕ4 Markov random field with
action S is reweighted to the distribution qðϕÞ with action
Af4g but with a shifted coupling constant g0j. This acts as a
correction step to ensure that the proper distribution is
reached from pðϕ; θÞ and it additionally allows an extrapo-
lation along the direction of the parameter space described by
coupling g0j. Second there is a reweighting step to reach the
distribution described by the complex lattice actionA, which
includes the imaginary part g5Að5Þ. Any arbitrary observable
can be reweighted in parameter space, such as machine
learning derived observables [22], andHamiltonian-agnostic
reweighting [21] could additionally be explored.
We consider that j ¼ 4 and we extrapolate observables

along the trajectory of the g04 coupling constant for a
continuous range of values g04 ∈ ½−0.85;−1.15�. We recall
that the ϕ4 Markov random field was trained to appro-
ximate the action Af4g where g4 ¼ −1. Results for the
magnetization and the internal energy, obtained with
reweighting from the probability distribution pðϕ; θÞ to
the full action A are depicted in Figs. 4 and 5. The results

FIG. 4. Real part of the complex lattice action A versus
coupling constant g4. The results are obtained by reweighting
from the Markov random field distribution p to the distribution of
the complex action A. The statistical errors are comparable with
the width of the line. The results are compared with Monte Carlo
(MC) and reweighting from the distribution of the real action
Af4g to A.
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are compared with Monte Carlo simulations conducted on
action Af4g which are combined with reweighting to the
full complex distribution to allow for a comparison with the
ones from pðϕ; θÞ. It is evident that the results depicted
agree within statistical errors with the Monte Carlo extrap-
olations. Details about the statistical error analysis can be
found in Appendix D.
When reweighting is implemented to extrapolate to

the probability distribution of a complex action or as a
correction step in the case of an approximating distribution
the question of how to strictly define the reweighting range
emerges. This can be achieved, formally, through the

calculation of weight functions which are dependent on
the underlying histograms. Specifically, we consider as an
example in Eq. (20) the expectation value of the action S.
In addition, instead of expressing Eq. (20) as a sum over
each action Sl calculated on a configuration ϕ we instead
reformulate it in terms of each uniquely sampled action S in
the Monte Carlo data set after the construction of histo-
grams. The expectation value is then

hSi ¼
X
S

SWðSÞ; ð21Þ

where the sum is over uniquely sampled actions S and
WðSÞ is a weight function which is equal to

WðSÞ ¼
P

ℜ½A0�;ℑ½A0�hðS;ℜ½A0�;ℑ½A0�Þ exp½S −ℜ½A0� − iℑ½A0��P
S;ℜ½A0�;ℑ½A0�hðS;ℜ½A0�;ℑ½A0�Þ exp½S −ℜ½A0� − iℑ½A0�� ; ð22Þ

where A0 ¼ g0jA
ðjÞ þP

5
k¼1;k≠j gkA

ðkÞ. The quantity
hðS;ℜ½A0�;ℑ½A0�Þ is a multidimensional histogram of
the inhomogeneous action S as well as each action term
in which we are interested to extrapolate towards during
reweighting. Reweighting can be achieved either by in-
cluding novel terms in the action or by shifting its
corresponding coupling constant if the term already exists.
Of particular interest is also the quantity W 0ðSÞ where the
exponentials are chosen equal to one and which is propor-
tional to the actual histograms of the action in the
corresponding Monte Carlo data set. This quantity can
additionally serve as an indication of the reweighting range.
We proceed to calculate the weight functions WðSÞ for

each uniquely sampled action S in a considered extrapo-
lation range. The results are depicted in Fig. 6 where an
overlap between distinct weight functions that are adjacent
in parameter space to the coupling constant g4 ¼ −1 is
observed. We recall that reweighting extrapolations are
accurate only when the method successfully predicts the
form of histograms at the extrapolated point in parameter

space based on the histograms present at the initial data set.
When the coupling constant is g04 ¼ −0.8 major inconsis-
tencies can be noticed. This indicates that reweighting
extrapolations to g04 ¼ −0.8would be inaccurate as the form
of the weight functions cannot be successfully predicted.
We emphasize that reweighting from the local homo-

geneous actionAf3g to the full actionA is not possible. The
inclusion of an imaginary term and a longer range inter-
action does not produce a sufficient overlap of ensembles.
Results are depicted in Fig. 7. We recall that the local
homogeneous action Af3g has coupling constant g4 ¼ 0

and the target distribution of action Af4g includes a term
with coupling constant g04 ¼ −1.0. It is clear that the values
of the lattice action lie at an entirely different scale and
inconsistencies begin to emerge when g04 ¼ −0.2.
Reweighting to the full action is then impossible from
the probability distribution of action Af3g. However, the
local inhomogeneous action S is able to achieve reweight-
ing to the full distribution of the actionA. Consequently the

FIG. 5. Real part of the magnetization m versus coupling
constant g4. The results are obtained by reweighting from the
Markov random field distribution p to the target distribution of
the complex action A. The associated statistical errors are
depicted by the dashed lines. The results are compared with
Monte Carlo (MC) and reweighting from the distribution of the
real action Af4g to A.

FIG. 6. Real part of the weight function WðSÞ versus lattice
action S for considered coupling constants g04 ∈ ½−1.05;−0.8�.
The results are obtained by reweighting from the local inhomo-
geneous action S to the complex action A which includes longer-
range interactions.
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opportunity to map improved lattice actions, which include
longer-range interactions, to local inhomogeneous actions
is a prospect that is open to explore. This can be achieved
by minimizing the asymmetric distance between their
associated probability distributions.

B. Learning with predefined data

The preceding results do not require any predefined data
to be used as input within the training process since
configurations were obtained during the gradient-based
approach. However, there exist cases where one has already
obtained a set of available data, which could comprise
configurations of a system, experimental data, or a set of
images, and whose probability distribution is of unknown
form. The obtained data set then explicitly encodes an
empirical probability distribution qðϕÞ that is a represen-
tation of the complete probability distribution of the
system. The empirical distribution qðϕÞ can still be learned
by minimizing instead the opposite divergence:

KLðqjjpÞ ¼
Z

∞

−∞
qðϕÞ ln qðϕÞ

pðϕ; θÞ dϕ ≥ 0: ð23Þ

By expanding the above equation we arrive at

KLðqjjpÞ ¼ hln qðϕÞiqðϕÞ − hlnpðϕ; θÞiqðϕÞ: ð24Þ

The first right-hand term is constant and the minimiza-
tion of KLðqjjpÞ is therefore equivalent to the maximiza-
tion of the second right-hand term under the training data:

∂ lnpðϕ; θÞ
∂θ ¼

�∂S
∂θ

�
pðϕ;θÞ

−
∂S
∂θ : ð25Þ

The variational parameters are now updated according to
Eq. (13) where L ¼ −∂ lnpðϕ; θðtÞÞ=∂θðtÞ.
To illustrate the concepts we now create a data set from a

Gaussian distribution with μ ¼ −0.5 and σ ¼ 0.05 which
encodes an empirical distribution qðϕÞ. The information
about the form of qðϕÞ will not be introduced in Eq. (23)
because the training will instead be conducted on the

obtained data. To clarify further, the same approach can be
established for any obtained data set, without the need to
even infer the underlying form of the distribution. After
successful training, Markov chain Monte Carlo simulations
can be implemented based on the distribution pðϕ; θÞ of the
ϕ4 Markov random field to draw samples that would be
representative of the unknown target distribution qðϕÞ.
Additional details can be found in Appendix A.
We anticipate, due to the invariance under the Z2

symmetry in the lattice action S, that the symmetric
distribution with μ ¼ 0.5might be additionally reproduced.
If this feature is not desirable then a local symmetry-
breaking term of the form

P
i riϕi can be included in the

action S to favor configurations that will explicitly repro-
duce qðϕÞ. The Hammersley-Clifford theorem is still
satisfied and results for the symmetric action S and the
action Sb which includes a symmetry-breaking term are
depicted in Fig. 8. We observe for the symmetric case that
while the algorithm has been trained on one of the probable
solutions it is able to produce additional solutions that are
invariant under the inherent symmetry, whereas this feature
has been eliminated for the broken-symmetry case where
the probability distribution qðϕÞ is explicitly reproduced.
Markov random fields are widely applied to problems

in computer vision, image segmentation and compression,
as well as image analysis [46]. Every problem that is
formulated as an energy or lattice action minimization
problem can be solved by implementing Markov random
fields. Since the ϕ4 scalar field theory satisfies the
Hammersley-Clifford theorem and is therefore a Markov
random field it can be implemented to complete such tasks.
We therefore consider as qðϕÞ in Eq. (24) the configuration
of an image from the CIFAR-10 data set [47], which we
will map to the action of the inhomogeneous ϕ4 theory of
Eq. (5). In essence, we search for the optimal values of the
coupling constants, which describe the local interactions in
the ϕ4 scalar field theory, that can reproduce the considered
image as a configuration in the equilibrium distribution of
the system. We emphasize that the coupling constants wij

relate two adjacent lattice sites and are therefore of utmost
importance in uncovering the spatial structure of the image.
In Fig. 9, results are depicted after training the ϕ4 theory.

FIG. 7. Real part of the weight function WðAf3gÞ versus lattice
action Af3g for considered coupling constants g04. The results are
obtained by reweighting from action Af3g to the complex action
A which includes longer-range interactions.

FIG. 8. Probability density function versus lattice value ϕi for a
Euclidean action S that is Z2 invariant and Sb which includes a
local symmetry-breaking term.
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We observe that by initializing a Markov chain the
configurations of the equilibrium distribution converge to
an accurate representation of the original image.

IV. ϕ4 NEURAL NETWORKS

When the aim of the machine learning task is to study
intricate probability distributions, deep learning algorithms
that include multiple layers in the neural network archi-
tecture can be implemented. These layers progressively
transform data to arrive at increasingly abstract represen-
tations, allowing for increased expressivity and representa-
tional capacity in the model. Such cases of deep learning
algorithms can be constructed from the dynamics of the ϕ4

scalar field theory.
We consider that part of the random variables ϕi on the

lattice sites are visible and correspond to a set of obser-
vations and the remaining are hidden variables hj, which
capture dependencies on a set of training data, given as
input to ϕi. In addition, to make the connection with the
computer science literature we consider a bipartite graph
which imposes the restriction that interactions are exclu-
sively between the ϕ and the h variables (see Fig. 1). We
therefore recast the ϕ4 neural network as a variant of a
restricted Boltzmann machine (RBM) [48–51], which is
able to model continuous data. Alternative parametrizations
of the graph structure are open to explore. A joint
probability distribution pðϕ; h; θÞ is then defined, based
on a lattice action Sðϕ; h; θÞ,

Sðϕ; h; θÞ ¼ −
X
i;j

wijϕihj þ
X
i

riϕi þ
X
i

aiϕ2
i ð26Þ

þ
X
i

biϕ4
i þ

X
j

sjhj þ
X
j

mjh2j þ
X
j

njh4j ; ð27Þ

which also gives rise to a new expression, based on
Eq. (23), for the derivative of the log-likelihood lnpðϕ; θÞ:

∂ lnpðϕ; θÞ
∂θ ¼

�∂S
∂θ

�
pðϕ;h;θÞ

−
�∂S
∂θ

�
pðhjϕ;θÞ

; ð28Þ

where the set of variational parameters is now θ ¼
fwij; ri; ai; bi; sj; mj; njg. The conditional distributions of
the visible and the hidden variables are pðϕjh; θÞ ¼Q

i pðϕijhÞ and pðhjϕ; θÞ ¼ Q
j pðhjjϕÞ. Derivations can

be found in Appendix A.

By considering certain values of parameters in the ϕ4

neural network of Eq. (26) one can arrive at other neural
network architectures, all of which are special cases of a ϕ4

Markov random field. For instance by choosing bi ¼ nj ¼
0 one obtains a Gaussian-Gaussian RBM [48,50]. If bi ¼
nj ¼ mj ¼ 0 and hj ∈ f−1; 1g then the architecture is a
Gaussian-Bernoulli RBM [48,50]. Of particular interest
could be the choice of mj ¼ nj ¼ 0 and hj ∈ f−1; 1g
which would reduce to a ϕ4-Bernoulli RBM, a case with a
nonlinear sigmoid function that, to our knowledge, has not
been studied before. We emphasize that the ϕ4 Bernoulli
RBM is anticipated to have substantial representational
capacity due to the presence of the nonlinear sigmoid
function in the hidden layer [52].
It is a well-known fact that the ϕ4 scalar field theory of

Eq. (4), a model with continuous degrees of freedom,
reduces to an Ising model under the limit κL fixed, λL → ∞
and μ2L → −∞ [43]. The ϕ4-Bernoulli RBM can then be
interpreted as a ϕ4 neural network where certain lattice sites
have reached the Ising limit, allowing for novel physical
insights. It is important to recall that, with the inclusion of
two hidden layers, deep variants of restricted Boltzmann
machines are universal approximators of probability dis-
tributions [53].
To demonstrate the applicability of the ϕ4 neural net-

work of Eq. (26), we train it on the first 40 examples of the
Olivetti faces data set [54] using 4096 visible units and 32
hidden units to observe if meaningful features are learned.
A subset of the learned features, i.e., the coupling constants
wij for a fixed j, are depicted in Fig. 10. We observe that the
neural network has learned hidden features which comprise
abstract face shapes and characteristics. The hidden units
can then serve as input to a new ϕ4 neural network to
progressively extract abstract features in data [55].

V. CONCLUSIONS

In this manuscript we derived machine learning algo-
rithms from discretized Euclidean field theories.
Specifically we demonstrated that the ϕ4 scalar field theory
on a square lattice satisfies the Hammersley-Clifford
theorem and is therefore a Markov random field that can
be used for inference and learning. By recasting the ϕ4

theory within a mathematically rigorous framework a
variety of theorems, as well as training algorithms, are
available and an overview can be found in Ref. [40]. As the
resulting algorithm has inhomogeneous coupling constants

FIG. 9. Original image and equilibration of the Markov random
field after 1, 10 and 50 steps.

FIG. 10. Example features learned in the hidden layer of the ϕ4

neural network.
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it can additionally be investigated from the perspective of
spin glasses and of quenched disorder [34,56–58], and
enhanced sampling can be obtained based on computa-
tional techniques from statistical mechanics [59,60], or
model-specific algorithms [61,62].
The Kullback-Leibler divergence can be utilized to

quantify the overlap of statistical ensembles between
probability distributions. Specifically, we demonstrated
that the ϕ4 scalar field theory with inhomogeneous cou-
pling constants is able to absorb longer-range interactions
and observables can be reweighted to the parameter
space of complex actions using the approximating prob-
ability distribution. The results have been obtained on
small lattice volumes. On larger systems more demanding
simulations would be needed to achieve the required
precision within the permitted reweighting range. The
prospect of constructing improved lattice actions [63,64]
based on local inhomogeneous representations is open to
explore.
In principle any arbitrary system can be mapped to a ϕ4

scalar field theory with inhomogeneous coupling constants
by minimizing an asymmetric distance of their probability
distributions based on Eq. (10). The concepts are therefore
anticipated to be generally applicable to systems within
condensed matter physics, lattice field theories and stat-
istical mechanics. To enhance the accuracy a variant of a
neural network architecture can be implemented which is
proven to be a universal approximator of a probability
distribution [53]. In the manuscript such variants have been
presented as special cases of a ϕ4 neural network.
The resulting ϕ4 machine learning algorithm of Secs. II

and III retains the topology of the lattice structure and the
boundary conditions, but differs from the conventional ϕ4

scalar field theory due to the inhomogeneous coupling
constants. To employ the tools of quantum field theory a
framework involving the replica method is required, but the
theories can still be formulated in terms of the functional
integral with an additional averaging over the space of
couplings [65]. It is noted that in our formulation the
couplings are inhomogeneous but not random as they are
determined during the minimization process.
We emphasize that prior arguments considering the

Hammersley-Clifford theorem hold for arbitrary dimen-
sions and one could therefore construct a d-dimensional
Markov random field to initiate analytical or computational
investigations. The factorization of a lattice action in terms
of products of potential functions, a step that is required
to recast a system as a Markov random field, depends
on the topology of the graph structure and different
topologies yield different maximal cliques. An equivalence
between local, pairwise and global Markov properties
of a graph structure can also be rigorously proven [40].
Through the construction of quantum fields in Minkowski
space from Markov fields in Euclidean space [6], a new
research avenue is envisaged, namely that of developing a

computational and mathematical framework of machine
learning within quantum field theory.
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APPENDIX A: DERIVATIONS

1. ϕ4 Markov random field

The Kullback-Leibler divergence, which is repeated here
for convenience, defines an asymmetric measure of the
distance between the distribution of the machine learning
algorithm pðϕ; θÞ and an unknown target distribution qðϕÞ:

KLðpjjqÞ ¼
Z

∞

−∞
pðϕ; θÞ lnpðϕ; θÞ

qðϕÞ dϕ ≥ 0: ðA1Þ

By expanding the above equation we arrive at

hln pðϕ; θÞipðϕ;θÞ − hln qðϕÞipðϕ;θÞ ≥ 0; ðA2Þ

where hipðϕ;θÞ denotes the expectation value under the
probability distribution pðϕ; θÞ. If the two probability
distributions are substituted to be of Boltzmann form,
pðϕ; θÞ ¼ exp½−S�=Z, qðϕÞ ¼ exp½−A�=ZA, we arrive at

−hlnZAipðϕ;θÞ ≤ hA − Sipðϕ;θÞ − hlnZipðϕ;θÞ: ðA3Þ

The terms hlnZipðϕ;θÞ are constant in terms of expect-
ation values and we therefore obtain

− lnZA ≤ hA − Sipðϕ;θÞ − lnZ: ðA4Þ

By denoting the right-hand part as F , the derivative in
terms of a variational parameter θi is equal to

∂F
∂θi ¼

∂hAipðϕ;θÞ
∂θi −

∂hSipðϕ;θÞ
∂θi −

∂ð− lnZÞ
∂θi ; ðA5Þ

where each term is calculated as
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∂hAipðϕ;θÞ
∂θi ¼ ∂

∂θi
�R

ϕAðϕÞ exp½−Sðϕ; θÞ�dϕR
ϕ exp½−Sðϕ; θÞ�dϕ

�
¼ −

�
A

∂S
∂θi

�
pðϕ;θÞ

þ hAipðϕ;θÞ
�∂S
∂θi

�
pðϕ;θÞ

; ðA6Þ

∂hSipðϕ;θÞ
∂θi ¼ ∂

∂θi
�R

ϕ Sðϕ; θÞ exp½−Sðϕ; θÞ�dϕR
ϕ exp½−Sðϕ; θÞ�dϕ

�
¼

�∂S
∂θi

�
pðϕ;θÞ

−
�
S
∂S
∂θi

�
pðϕ;θÞ

þ hSipðϕ;θÞ
�∂S
∂θi

�
pðϕ;θÞ

; ðA7Þ

∂ð− lnZÞ
∂θi ¼ −

R
ϕ

∂
∂θi ð−Sðϕ; θÞÞ exp½−Sðϕ; θÞ�dϕR

ϕ exp½−Sðϕ; θÞ�dϕ
¼

�∂S
∂θi

�
pðϕ;θÞ

: ðA8Þ

By substituting we arrive at

∂F
∂θi ¼ −

�
A

∂S
∂θi

�
þ hAi

�∂S
∂θi

�
−
�∂S
∂θi

�
þ
�
S
∂S
∂θi

�
− hSi

�∂S
∂θi

�
þ
�∂S
∂θi

�
: ðA9Þ

A gradient-based approach can be implemented based on the above equation to learn a target known probability
distribution.
In the opposite direction if a set of data is available for which the probability distribution is unknown the alternative

Kullback-Leibler divergence can be considered:

KLðqjjpÞ ¼
Z

∞

−∞
qðϕÞ ln qðϕÞ

pðϕ; θÞ dϕ: ðA10Þ

By expanding the right-hand side we arrive at the expression

KLðqjjpÞ ¼ hln qðϕÞiqðϕÞ − hlnpðϕ; θÞiqðϕÞ: ðA11Þ

Minimizing the Kullback-Leibler divergence is equivalent to the maximization of the term hlnpðϕ; θÞiqðϕÞ, which is

hlnpðϕ; θÞiqðϕÞ ¼
1

N

X
x

ln pðϕðxÞ; θÞ; ðA12Þ

where x is a training example andN is the number of training data. For the case of the Markov random field the derivative of
the log-likelihood is

∂ lnpðϕ; θÞ
∂θ ¼ ∂

∂θ
�
ln

exp½−Sðϕ; θÞ�R
ϕ exp½−Sðϕ; θÞ�dϕ

�
¼ ∂

∂θ
�
ln exp½−Sðϕ; θÞ� − ln

Z
ϕ
exp½−Sðϕ; θÞ�dϕ

�

¼ ∂
∂θ ð−Sðϕ; θÞÞ −

R
ϕ

∂
∂θ ð−Sðϕ; θÞÞ exp½−Sðϕ; θÞ�dϕR

ϕ exp½−Sðϕ; θÞ�dϕ
¼ ∂

∂θ ð−Sðϕ; θÞÞ −
Z
ϕ
pðϕ; θÞ ∂ð−Sðϕ; θÞÞ∂θ dϕ

¼ ∂
∂θ ð−Sðϕ; θÞÞ −

� ∂
∂θ ð−Sðϕ; θÞÞ

�
pðϕ;θÞ

;

where the term outside the expectation values is calculated on the training examples.

2. ϕ4 Neural network

The case of the quantum field-theoretic neural network is more complicated due to the joint probability distribution of the
visible units ϕ and the hidden units h:

pðϕ; h; θÞ ¼ exp½−Sðϕ; h; θÞ�R
ϕ;h exp½−Sðϕ;h; θÞ�dϕdh

: ðA13Þ
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From the joint probability distribution we can define marginal probability distributions via

pðϕ; θÞ ¼
Z
h
pðϕ; h; θÞdh ¼

R
h exp½−Sðϕ; h; θÞ�dhR

ϕ;h exp½−Sðϕ; h; θÞ�dϕdh
;

pðh; θÞ ¼
Z
ϕ
pðϕ; h; θÞdϕ ¼

R
ϕ exp½−Sðϕ; h; θÞ�dϕR

ϕ;h exp½−Sðϕ; h; θÞ�dϕdh
;

as well as conditional probability distributions through

pðϕjh; θÞ ¼ pðϕ; h; θÞ
pðh; θÞ ¼ exp½−Sðϕ; h; θÞ�dhR

ϕ exp½−Sðϕ; h; θÞ�dϕ
ðA14Þ

¼ exp½Pi;jwijϕihj −
P

iriϕi −
P

iaiϕ
2
i −

P
ibiϕ

4
i −

P
jsjhj −

P
jmjh2j −

P
jnjh

4
j �R

ϕ exp½
P

i;jwijϕihj −
P

iriϕi −
P

iaiϕ
2
i −

P
ibiϕ

4
i −

P
jsjhj −

P
jmjh2j −

P
jnjh

4
j �dϕ

ðA15Þ

¼
Q

i exp½ϕi
P

jwijhj − riϕi − aiϕ2
i − biϕ4

i �R
ϕ

Q
i exp½ϕi

P
jwijhj − riϕi − aiϕ2

i − biϕ4
i �dϕ

ðA16Þ

¼
Y
i

exp½ϕi
P

jwijhj − riϕi − aiϕ2
i − biϕ4

i �R
ϕi
exp½ϕi

P
jwijhj − riϕi − aiϕ2

i − biϕ4
i �dϕi

ðA17Þ

¼
Y
i

pðϕijhÞ; ðA18Þ

Similarly

pðhjϕ; θÞ ¼ pðϕ; h; θÞ
pðϕ; θÞ ¼ exp½−Sðϕ; h; θÞ�R

h exp½−Sðϕ; h; θÞ�dh
¼

Y
j

pðhjjϕÞ: ðA19Þ

The gradient of the log-likelihood for the case of the quantum field-theoretic neural network is

∂ lnpðϕ; θÞ
∂θ ¼ ∂

∂θ
�
ln

R
h exp½−Sðϕ; h; θÞ�dhR

ϕ;h exp½−Sðϕ; h; θÞ�dϕdh
�

ðA20Þ

¼ ∂
∂θ

�
ln
Z
h
exp½−Sðϕ; h; θÞ�dh − ln

Z
ϕ;h

exp½−Sðϕ; h; θÞ�dϕdh
�

ðA21Þ

¼
R
h

∂
∂θ ð−Sðϕ; h; θÞÞ exp½−Sðϕ; h; θÞ�dhR

h exp½−Sðϕ; h; θÞ�dh
−

R
ϕ;h

∂
∂θ ð−Sðϕ; h; θÞÞ exp½−Sðϕ; h; θÞ�dϕdhR

ϕ;h exp½−Sðϕ; h; θÞ�dϕdh
ðA22Þ

¼
Z
h
pðhjϕ; θÞ ∂

∂θ ð−Sðϕ;h; θÞÞdh −
Z
ϕ;h

pðϕ; h; θÞ ∂
∂θ ð−Sðϕ; h; θÞÞdϕdh ðA23Þ

¼
� ∂
∂θ ð−Sðϕ; h; θÞÞ

�
pðhjϕ;θÞ

−
� ∂
∂θ ð−Sðϕ; h; θÞÞ

�
pðϕ;h;θÞ

: ðA24Þ

We approximate the last expression in the above equation for each parameter θ using contrastive divergence. Specifically,
the visible units ϕ are set equal to a specific training example ϕðxÞ and then based on the conditional distribution pðhjϕðxÞÞ a
set of hidden units hðxÞ is sampled. The hidden units hðxÞ are then utilized to sample a new set of visible units ϕðxþ1Þ and the
approach is repeated for k steps:

CDk ¼
� ∂
∂θ ð−Sðϕ

ð0Þ; h; θÞÞ
�

pðhjϕð0Þ;θÞ
−
� ∂
∂θ ð−Sðϕ

ðkÞ; h; θÞÞ
�

pðhjϕðkÞ;;θÞ
; ðA25Þ

where for the considered cases we use k ¼ 1.
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APPENDIX B: SIMULATION DETAILS AND
HYPERPARAMETERS

The ϕ4 scalar field theory is a system with continuous
degrees of freedom −∞ < ϕi < þ∞. To sample the system
we implementMarkov chainMonte Carlo sampling with the
Metropolis algorithm, where we consider one step as equi-
valent to updating a number of lattice sites equal to the
volume of the system. The question of how to properly
choose a new state additionally arises.When the training data
have values which lie at a specific interval, the aim of the
machine learning algorithm is to learn a probability distri-
bution which reproduces them. The new state can then be
chosen by sampling uniformly between the minimum and
maximum value, therefore guaranteeing that every state is
reachable under an arbitrary large number of Monte Carlo
steps. For the case of the hidden units in the ϕ4 neural
network we impose the same restriction, even though the
hidden units could, in principle, remain unconstrained, i.e.,
−∞ < h < þ∞. We also emphasize that during the gradient
process of the Markov random field we retain one Markov
chain to conduct the necessary calculations.
The learning rates that produced Figs. 2 and 3 are 10−3 and

10−2, respectively. The sample size is chosen equal to 50
before updating the variational parameters θ. The image in
Fig. 9 has size 32 � 32 and its continuous values lie between
½−1; 1�. The Markov random field was trained with learning
rate 0.1 and 4 × 104 epochs. The parameters that produced
Fig. 8 are a learning rate of 0.1, 400 epochs and a batch size of
4. For the results depicted in Fig. 10 the ϕ4 neural network
has 4096 visible units, 32 hidden units, learning rate 0.1,
batch size of 5 and was trained for 104 epochs on the first 40
examples of the Olivetti faces data set.

APPENDIX C: HISTOGRAM REWEIGHTING

We consider the numerical estimator for an arbitrary
observable hOi in the full complex action A which we aim
to sample:

hOi ¼
P

N
l¼1Olp̃l

−1 exp½−g0jAðjÞ
l −

P
5
k¼1;k≠j gkA

ðkÞ
l �P

N
l¼1 p̃l

−1 exp½−g0jAðjÞ
l −

P
5
k¼1;k≠j gkA

ðkÞ
l �

;

ðC1Þ
whereN is the subset of Monte Carlo samples and p̃ are the
probabilities used to sample from the equilibrium distri-
bution. We have expressed the numerical estimator in a
form that simultaneously allows extrapolation along the
trajectory of a coupling constant g0j. We will now substitute
the probabilities p̃ for the probabilities of the inhomo-
geneous ϕ4 Markov random field:

p̃l ¼
exp½−Sl�R

ϕ exp½−Sϕ�dϕ
; ðC2Þ

where the sum is over all possible states ϕ of the system
and we arrive at the reweighting equation

hOi ¼
P

N
l¼1Ol exp½Sl − g0jA

ðjÞ
l −

P
5
k¼1;k≠j gkA

ðkÞ
l �P

N
l¼1 exp½Sl − g0jA

ðjÞ
l −

P
5
k¼1;k≠j gkA

ðkÞ
l �

: ðC3Þ

Given a subset of samples drawn from the equilibrium
distribution of the ϕ4 Markov random field, which is
described by the action S, one can extrapolate observables
to the full distribution of the action A which includes
longer range interactions and complex-valued terms along
the trajectory of a coupling constant g0j.
To compare the reweighting extrapolations from the ϕ4

Markov random field to the full action, we additionally
implement reweighting from the simulated action Af4g. In
this form of reweighting we consider again Eq. (C1) and we
substitute p̃ for

p̃l ¼
exp½−P

4
k¼1 gkA

ðkÞ
l �R

ϕ exp½−
P

4
k¼1 gkA

ðkÞ
ϕ �dϕ

; ðC4Þ

where we consider for this specific case that g0j ¼ gj,
arriving at the equation

hOi ¼
P

N
l¼1Ol exp½−ℑAl�P
N
l¼1 exp½−ℑAl�

: ðC5Þ

One observable of interest is the magnetization which is
defined as

m ¼ 1

V

����
X
i

ϕi

����; ðC6Þ

where V ¼ L � L is the volume of the system.

APPENDIX D: BINNING ANALYSIS

Statistical errors are calculated with the binning method
on the obtained Monte Carlo data sets. Each data set with
104 minimally correlated configurations is split into n ¼ 10
data sets where calculations of observables O are con-
ducted. The standard deviation for an observable O is then
obtained through

σO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1
ðO2 − Ō2Þ

r
: ðD1Þ
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