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We present lattice Monte Carlo evidence of stable excitations of isolated static charges in the Higgs
phase of the charge q ¼ 2 Abelian Higgs model. These localized excitations are excited states of the
interacting fields surrounding the static charges. Since the q ¼ 2 Abelian Higgs model is a relativistic
version of the Landau-Ginzburg effective action of a superconductor, we conjecture that excited states of
this kind might be relevant in a condensed matter context. Taken together with recent related work in SU(3)
gauge Higgs theory, our result suggests that a massive fermion excitation spectrum may be a general feature
of gauge Higgs theories.
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I. INTRODUCTION

Physical states in gauge field theories are gauge
invariant, and this property implies that a static charge
is necessarily accompanied by a surrounding field.1 This
could be a Coulomb field extending to infinity, as in free
field electrodynamics, or the charge of the state could be
neutralized in some way by other charged dynamical
fields. In an interacting theory in which the surrounding
field interacts with itself, there could in principle be a
spectrum of localized quantum excitations of the sur-
rounding field. This is certainly true for a static quark-
antiquark pair in the confining phase of a pure gauge
theory. In that case the color electric field associated with
the pair of color charges is collimated into a flux tube, and
that flux tube can exist in a number of vibrational modes,
as has been shown in various lattice Monte Carlo sim-
ulations [4,5]. By contrast, in free electrodynamics, any
disturbance of the field surrounding a static charge can be
viewed as the creation of some set of photons super-
imposed on a Coulombic background. In that case there
are no stable (or metastable) localized excitations. What
has not been studied in much detail is whether such
excitations can exist in nonconfining, but still interacting,
gauge Higgs theories.

Recently Greensite [6] has shown that there is indeed
a spectrum of localized excitations around an isolated
fermion in SU(3) gauge Higgs theory, in the Higgs phase
of the theory in four spacetime dimensions. This raises the
question of whether such an excitation spectrum is a
general feature of gauge Higgs theories, particularly those
of physical interest such as effective theories of super-
conductivity, and the electroweak sector of the Standard
Model. Nonperturbative studies in the electroweak theory
are complicated by the chiral nature of the gauge theory. So
we focus here on a simple Abelian gauge Higgs theory,
namely the charge q ¼ 2 Abelian Higgs model, which is a
relativistic generalization of the Landau-Ginzburg effective
model of superconductivity. In this article we will show that
stable localized excitations of the massive photon and
Higgs fields surrounding a static charge can in fact exist in
this theory, at least in some regions of the phase diagram.
We believe this finding may be relevant to condensed
matter systems, although our present work is limited to
this result in the relativistic model. Application of these
methods to a more realistic model of superconductivity, and
to the chiral gauge theories of interest to particle physics, is
a topic which we defer to later work.
Our strategy is to compute, via lattice Monte Carlo

simulations, the energy (above the vacuum) of the ground
state, containing two static sources of opposite charge,
and the energy of a certain excited state of this charge pair
whose construction we describe. If the difference in
energies is less than the photon mass, then the excited
state is stable. This is what we will show below.

II. FERMION EXCITATION SPECTRUM

Our starting point is the lattice action of the Abelian
Higgs model:
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1In the electroweak theory, the identification of gauge invariant
operators creating particles in the asymptotic spectrum goes back
to ’t Hooft [1] and Frohlich, Morchio, and Strocchi [2] (see also
Maas [3]).
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S ¼ −β
X

plaq

Re½UμðxÞUνðxþ μ̂ÞU�
μðxþ ν̂ÞU�

νðxÞ�

− γ
X

x;μ

Re½ϕ�ðxÞU2
μðxÞϕðxþ μ̂Þ�: ð1Þ

Here the scalar field has charge q ¼ 2 (as do Cooper pairs),
and for simplicity we impose a unimodular constraint,
ϕ�ðxÞϕðxÞ ¼ 1, corresponding to the λ → ∞ limit of a
Mexican hat potential λðϕϕ� − γÞ2, followed by a rescaling
to jϕj ¼ 1. We then consider physical states containing a
static fermion and antifermion at sites x, y, each of�2 units
of electric charge, of the form

jΦαðRÞi ¼ QαðRÞjΨ0i; ð2Þ

where Ψ0 is the vacuum state and

QαðRÞ ¼ ½ψ̄ðxÞζαðxÞ� × ½ζ�αðyÞψðyÞ�: ð3Þ

Here the ψ̄ and ψ are operators creating double-charged
static fermions of opposite charge, transforming as ψðxÞ →
e2iθðxÞψðxÞ, and the fζαðxÞg are a set of operators, which
may depend on some (possibly nonlocal) combination of
the Higgs and gauge fields, also transforming as ζðxÞ →
e2iθðxÞζðxÞ, under a gauge transformation UμðxÞ →
expðiθðxÞÞUμðxÞ expð−θðxþ μ̂ÞÞ. One possible choice
for ζ is the Higgs field ϕðxÞ. Another set is provided by
eigenstates ζ ¼ ξα of the covariant Laplacian, where

ð−DiDiÞxyξαðy;UÞ ¼ λαξαðx;UÞ ð4Þ

and

ð−DiDiÞxy ¼
X3

k¼1

½2δxy − U2
kðxÞδy;xþk̂ − U�2

k ðx − k̂Þδy;x−k̂�:

ð5Þ

Because the covariant Laplacian depends only on the
squared link variable, the ξαðx;UÞ, which we have else-
where referred to as “pseudomatter” fields [7], transform
like q ¼ 2 charged matter fields, with the one difference
that, unlike matter fields, they do not transform under a
global transformation in the center of the gauge group
[which for U(1) is simply the group itself]. Pseudomatter
fields depend nonlocally on the gauge fields, and the
low-lying eigenstates and eigenvalues of the covariant
Laplacian, which is a sparse matrix, can be computed
numerically via the Arnoldi algorithm [8].2 In our calcu-
lation we make use of the four lowest-lying Laplacian
eigenstates and the Higgs field to construct theΦα, defining

ζiðxÞ ¼
�
ξiðxÞ i ¼ 1; 2; 3; 4;

ϕðxÞ i ¼ 5:
ð6Þ

In general the five states ΦαðRÞ are nonorthogonal at
finite R. Of course ϕðxÞ is a q ¼ 2 matter field, rather
than a pseudomatter field.
We express the operator Qα in Eq. (3) in terms of a

nonlocal operator Vαðx; y;UÞ:

QαðRÞ ¼ ψ̄ðxÞVαðx; y;UÞψðyÞ;
Vαðx; y;UÞ ¼ ζαðx;UÞζ�αðy;UÞ; ð7Þ

and also define T ¼ e−ðH−E0Þ as the Euclidean time
evolution operator of the lattice Abelian Higgs model.
This is the operator corresponding to the transfer matrix,
multiplied by a constant eE0 , where E0 is the vacuum
energy, evolving states for one unit of discretized time. Let

½T �αβ ¼ hΦαje−ðH−E0ÞjΦβi ¼ hQ†
αðR; 1ÞQβðR; 0Þi;

½O�αβ ¼ hΦαjΦβi ¼ hQ†
αðR; 0ÞQβðR; 0Þi ð8Þ

denote matrix elements of T , in the five nonorthogonal
states Φα, with [O] the matrix of overlaps of such states.
We obtain the five orthogonal eigenstates of T in the
subspace of Hilbert space spanned by theΦα by solving the
generalized eigenvalue problem

½T �αβυðnÞβ ¼ λn½O�αβυðnÞβ ; ð9Þ

with eigenstates denoted

ΨnðRÞ ¼
X3

α¼1

υðnÞα ΦαðRÞ ð10Þ

and ordered such that λn decreases with n. We then consider
evolving the states Ψn in Euclidean time:

T nnðR; TÞ ¼ hΨnje−ðH−E0ÞT jΨni
¼ υ�ðnÞα hΦαje−ðH−E0ÞT jΦβiυðnÞβ

¼ υ�ðnÞα hQ†
αðR; TÞQβðR; 0ÞiυðnÞβ ; ð11Þ

where Latin indices indicate matrix elements with respect
to the Ψn rather than the Φα and there is a sum over
repeated Greek indices.
To calculate this expression, we first define timelike

q ¼ 2 Wilson lines of length T:

Pðx;t;TÞ¼U2
0ðx;tÞU2

0ðx;tþ1Þ…U2
0ðx;tþT−1Þ: ð12Þ

After integrating out the massive fermions, whose world-
lines lie along timelike Wilson lines, we have

2Eigenstates of the lattice covariant Laplacian were originally
introduced by Vink and Wiese [9] to define a variant of Landau
gauge which would be free from Gribov ambiguities.
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hQ†
αðR; TÞQβðR; 0Þi
¼ hTr½V†

αðx; y;Uðtþ TÞÞP†ðx; t; TÞ
× Vβðx; y;UðtÞÞPðy; t; TÞ�i: ð13Þ

On general grounds, T nnðR; TÞ is a sum of exponentials

T nnðR; TÞ ¼ hΨnðRÞje−ðH−E0ÞT jΨnðRÞi
¼

X

j

jcðnÞj ðRÞj2e−EjðRÞT; ð14Þ

where cðnÞj ðRÞ is the overlap of state ΨnðRÞ with the jth
energy eigenstate of the Abelian Higgs theory containing a
static fermion-antifermion pair at separation R and EjðRÞ is
the corresponding energy eigenvalue minus the vacuum
energy.
Of course one might expect that the T nnðR; TÞ will all

rapidly converge, in Euclidean time T, to a constant times
expð−E1TÞ, where E1 is the ground state energy. This will
be true for all n unless one or more of the jΨnðRÞi,
constructed as just described, has only a very small overlap
with the true ground state. In that case the exponential
falloff may be dominated by, e.g., the energy of the first
excited states, at least for some moderate range of T. In that
situation it would be possible to extract the energy of that
excited state in a simple way, without a multiparameter fit
to a sum of exponentials.

III. NUMERICAL RESULTS

We proceed to the numerical results. The phase diagram
of the q ¼ 2Abelian Higgs model was first obtained from a
lattice Monte Carlo simulation by Ranft, Kripfganz, and
Ranft in [10], and more recently and accurately by
Greensite and the author in [11], with the result shown
in Fig. 1. We are interested in determining EnðRÞ in the
Higgs phase, and, because the calculation involves fitting
exponential decay, we would like both the mass of the
photon and the energies EnðRÞ to be not much larger than
unity in lattice units. For this reason we choose to work at
the edge of the phase diagram shown in Fig. 1, just above
the massless-to-Higgs transition line at β ¼ 3, γ ¼ 0.5.
We compute the photon mass from the gauge invariant

on-axis plaquette-plaquette correlator with the same μν
orientation:

GðRÞ ¼ hIm½UμðxÞUνðxþ μ̂ÞU�
μðxþ ν̂ÞU�

νðxÞ�
× Im½UμðyÞUνðyþ μ̂ÞU�

μðyþ ν̂ÞU�
νðyÞ�i; ð15Þ

where y ¼ xþ Rk̂ and k̂ is a unit vector orthogonal to the μ̂,
ν̂ directions. The result for the β ¼ 3, γ ¼ 0.5 parameters
we have chosen is shown in Fig. 2. From an exponential fit,
disregarding the initial points, we find a photon mass of
mγ ¼ 1.57ð1Þ in lattice units. Data were obtained on a 164

lattice with 1 600 000 sweeps and data taken every 100
sweeps. We have checked that if the calculation is done just
below the transition, in the massless phase, then GðRÞ is fit
quite well by a 1=R4 falloff, as expected.
The energies EnðRÞ for n ¼ 1, 2 are also obtained by

fitting the data for T nnðR; TÞ vs T, at each R, to an
exponential falloff. An example of these fits at R ¼ 6.93 is
shown is Fig. 3. The data and errors were obtained from ten
independent runs, each of 77 000 sweeps after thermal-
ization, with data taken every 100 sweeps, computing T nn
from each independent run. The lattice volume was again
164, with couplings β ¼ 3, γ ¼ 0.5. The points shown are
the average of the ten sets, with the error taken as the
standard error of the mean. The fits shown in Fig. 3 are
through the points at T ¼ 2–5, with E1 ¼ 0.2929ð6Þ and
E2ðRÞ ¼ 1.01ð1Þ in this case. The results of fits of this type,
at all R, are displayed in Fig. 4.
We note that the last data point in Fig. 3, at T ¼ 7, lies

above the straight line on a log plot. This is systematic, it is
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FIG. 1. Phase diagram of the q ¼ 2 Abelian Higgs model
computed in [11] (“conf” denotes the confinement phase).
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FIG. 2. The plaquette-plaquette correlator computed for
β ¼ 3, γ ¼ 0.5. The photon mass is obtained from the slope
of the line shown.
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found at all R, and the question is whether it is a finite size
effect. To check this we can make the same computation,
with the same number of sweeps, only on a 124 lattice.
The corresponding result at R ¼ 6.93 is shown in Fig. 5.
This time a fit through the points T ¼ 2–4 yields
E2ðRÞ ¼ 0.99ð2Þ, consistent with the larger volume result.
Here we see that the last data point, this time at R ¼ 5, also
lies a little above the straight line fit, and again this effect is
seen at all R. This fact indicates that the deviation of the last
data point from the fit to the other points is probably a finite
size effect.
The fact thatT 11ðRÞ is fit by a single exponential, a straight

line on a log plot, starting at T ¼ 1, was certainly not obvious
from the start. It implies thatΨ1ðRÞmust be very close to the
ground state, rather than evolving to the ground state in
Euclidean time. Convergence ofΨ2 to a single exponential fit
is also rapid and is achieved after two time steps.We reserve a
discussion of fitting details to an Appendix.
The data for T 33ðR; TÞ simply do not fit a single

exponential at any R, for the range of T at our disposal.

To try and extract some information nonetheless, we can try
to fit the data to a sum of three exponentials:

T 33ðR; TÞ ≈ a1ðRÞe−E1T þ a2ðRÞe−E1T þ a3ðRÞe−E3T;

ð16Þ

where E1 ¼ 0.29 and E2 ¼ 1.02 are taken from the
previous fits. A sample fit, again at R ¼ 6.93, is shown
in Fig. 6. Obviously one cannot be very impressed by a
four-parameter fit through a handful of data points. What is
more, there is no compelling reason to stop at three
exponentials.3 But we do what we can; the idea here is
to see if there is any indication of a second stable excited
state, although the numerical value for E3 should be
regarded with appropriate caution. With that caveat in
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FIG. 4. Energy expectation values EnðRÞ vs R for n ¼ 1 and
n ¼ 2, obtained from a fit to a single exponential.
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FIG. 5. The same as Fig. 3, but on a 124 lattice.
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FIG. 6. T 33ðR; TÞ vs T at fixed R ¼ 6.93. The fit shown is to
the sum of exponentials in Eq. (16).
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FIG. 3. T nnðR; TÞ vs T for n ¼ 1, 2 at fixed R ¼ 6.93 on a 164

lattice.

3It is worth noting, however, that a1ðRÞ is 3 orders of
magnitude smaller than a2ðRÞ and a3ðRÞ, indicating that Ψ3 is
almost orthogonal to the true ground state.
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mind, the values of E1, E2, and E3, together with the one-
photon threshold, are displayed in Fig. 7.
The one-photon threshold is simply E1 þmphoton ¼

0.29þ 1.57ð1Þ ¼ 1.86ð1Þ in lattice units. The important
observation is that E2ðRÞ lies well below this threshold,
which implies that the first excited state of the static
fermion-antifermion pair is stable. The second point to
note is that E3ðRÞ seems to lie above or near the one-photon
threshold. The indications are that there is no second stable
excited state. States above the first excited state most likely
lie above the threshold and are probably combinations of
the ground state plus a massive photon.
All of our results have been obtained using four

pseudomatter fields, namely the four lowest-lying eigen-
states of the q ¼ 2 covariant Laplacian operator, and it is
reasonable to ask what would be the result of changing this
number. Figure 8 is a comparison of E1 and E2 values
obtained from using nev ¼ 2 Laplacian eigenstates, with
the values obtained using nev ¼ 4 Laplacian eigenstates.

As can be seen in the figure, there is not much difference in
the E2 values, at least for R ≥ 3, and the E1 values cannot
even be distinguished in the plot.

IV. CONCLUSIONS

To summarize, we have presented lattice Monte Carlo
evidence for the existence of a stable excitation of the
quantized fields surrounding isolated static charges, in the
Higgs phase of the q ¼ 2 Abelian Higgs model in D ¼ 4
spacetime dimensions. The q ¼ 2Abelian Higgs model is a
close relative of the nonrelativistic Ginzburg-Landau effec-
tive action of superconductivity. So the obvious next
question is whether excitations of the type seen in the
Abelian Higgs model would also be found in nonrelativistic
models of that kind. If such excitations are found to exist in
a realistic effective model, then the follow-up question is
how they might be observed experimentally. A further
question is whether heavy fermions (or even light fermions)
have a spectrum of excitations in the electroweak sector of
the Standard Model. Although the lattice regularization of
chiral gauge theories is known to be problematic, perhaps
something can still be done numerically using nondynam-
ical static charged sources. We leave these possibilities for
future investigation.
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APPENDIX: SOME FITTING DETAILS

We begin by noting that our method involves solving the
generalized eigenvalue equation (9), and an exact solution
will provide eigenstates satisfying the orthogonality con-
dition hΨijΨji ¼ δij. Surprisingly, the numerical solution
of this eigensystem, by the standard MATLAB eig routine
(ultimately derived from LAPACK) shows a small Oð10−3Þ
but non-negligible deviation from this orthogonality
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FIG. 7. Energy expectation values EnðRÞ vs R for n ¼ 1, 2, 3
together with the one-photon threshold. The energy E3 is
obtained from a fit to two exponentials, as explained in the text.
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data points in the range T ¼ 3–6, rather than T ¼ 2–5.
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condition. We have therefore made Ψ2 orthogonal to Ψ1 by
subtracting its projection onto Ψ1 (i.e., the first step of a
Gram-Schmidt procedure). This makes a small, but none-
theless noticeable, improvement in the single exponential
fits to T 22.
We also note that at the larger R > 3 values, on a 164

lattice, the next-to-last data point at T ¼ 6 lies mostly on or
near the best exponential fit through the points at T ¼ 2–5.
But this is not always the case, especially for lower R, and
as a result a fit for data points in the range T ¼ 3–6, rather
than T ¼ 2–5, often results in a high χ2. We display in
Fig. 9 the values of E2 obtained from a fit in the T ¼ 3–6
interval. In general, the E2 values cluster around E2 ¼ 1, as
in the previous fit. But there are large error bars for some of
the points, especially at the lower R values, and significant
deviations from E2 ≈ 1. Data points up to R ¼ 2.5 are

obtained from fits with rather large χ2 values and can be
discarded simply on those grounds. In Fig. 10, correspond-
ing to R ¼ 3.16, one can see the reason for these devia-
tions: both the last data points for T 22 at T ¼ 7 and the
next-to-last data point at T ¼ 6 deviate very significantly
from the fit in the T ¼ 2–5 range. We are inclined to
attribute both deviations to finite size effects, which seem
especially apparent at lower R.
We conclude with a display, in Fig. 11, of E1 and E2

obtained on a 124 lattice volume. As in the larger volume,
the data for E2 clusters around E2 ≈ 1, albeit with a few
outliers. These values, however, are obtained from a fit
through only three data points at T ¼ 2, 3, 4, and also
the χ2 values of these fits tend to be significantly larger
than unity, indicating a possible underestimate of the
error bars.

[1] G. ’t Hooft, NATO Sci. Ser. B 59, 117 (1980).
[2] J. Frohlich, G. Morchio, and F. Strocchi, Nucl. Phys. B190,

553 (1981).
[3] A. Maas, Prog. Part. Nucl. Phys. 106, 132 (2019).
[4] K. J. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett. 90,

161601 (2003).
[5] B. B. Brandt, Proc. Sci., Confinement2018 (2018) 039

[arXiv:1811.11779].
[6] J. Greensite, Phys. Rev. D 102, 054504 (2020).

[7] J. Greensite and K. Matsuyama, Phys. Rev. D 96, 094510
(2017).

[8] https://www.caam.rice.edu/software/ARPACK/.
[9] J. C. Vink and U.-J. Wiese, Phys. Lett. B 289, 122

(1992).
[10] J. Ranft, J. Kripfganz, and G. Ranft, Phys. Rev. D 28, 360

(1983).
[11] K. Matsuyama and J. Greensite, Phys. Rev. B 100, 184513

(2019).

10-5

10-4

10-3

10-2

10-1

100

 0  1  2  3  4  5  6  7  8

(R
,T

)

T

n=1
n=2

FIG. 10. T22ðRÞ vs T at R ¼ 3.16. The reason for a discrepancy
between a fit of data points at T ¼ 2–5 and T ¼ 3–6 is apparent.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 3  3.5  4  4.5  5  5.5  6  6.5  7

E
n

R

E1
E2

FIG. 11. Energy expectation values E1 and E2 vs R at R > 3,
obtained on a 124 lattice.

KAZUE MATSUYAMA PHYS. REV. D 103, 074508 (2021)

074508-6

https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1016/j.ppnp.2019.02.003
https://doi.org/10.1103/PhysRevLett.90.161601
https://doi.org/10.1103/PhysRevLett.90.161601
https://arXiv.org/abs/1811.11779
https://doi.org/10.1103/PhysRevD.102.054504
https://doi.org/10.1103/PhysRevD.96.094510
https://doi.org/10.1103/PhysRevD.96.094510
https://www.caam.rice.edu/software/ARPACK/
https://www.caam.rice.edu/software/ARPACK/
https://www.caam.rice.edu/software/ARPACK/
https://www.caam.rice.edu/software/ARPACK/
https://doi.org/10.1016/0370-2693(92)91372-G
https://doi.org/10.1016/0370-2693(92)91372-G
https://doi.org/10.1103/PhysRevD.28.360
https://doi.org/10.1103/PhysRevD.28.360
https://doi.org/10.1103/PhysRevB.100.184513
https://doi.org/10.1103/PhysRevB.100.184513

