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We compute the composition of the bottomonium ϒðnSÞ states [including ϒð10860Þ] and the new
ϒð10753Þ resonance reported by Belle in terms of quarkonium and meson-meson components. We use a
recently developed novel approach utilizing lattice QCD string breaking potentials for the study of
resonances. This approach is based on the diabatic extension of the Born-Oppenheimer approximation and
the unitary emergent wave method and allows us to compute the poles of the S matrix. We focus on I ¼ 0

bottomonium S wave bound states and resonances, where the Schrödinger equation is a set of coupled
differential equations. One of the channels corresponds to a confined heavy quark-antiquark pair b̄b, and
the others correspond to pairs of heavy-light mesons. In a previous study, only one meson-meson channel

B̄ð�ÞBð�Þ was considered. Now, we also include the closed strangeness channel B̄ð�Þ
s Bð�Þ

s , extending our
formalism significantly to have a more realistic description of bottomonium. We confirm the new Belle
resonance ϒð10753Þ as a dynamical meson-meson resonance with around 76% meson-meson content.
Moreover, we identify ϒð4SÞ and ϒð10860Þ as states with both sizable quarkonium and meson-meson
contents. With these results, we contribute to the clarification of ongoing controversies in the vector
bottomonium spectrum.

DOI: 10.1103/PhysRevD.103.074507

I. INTRODUCTION

Starting from the determination of lattice QCD static
potentials with dynamical quarks, our long-term goal is a
complete computation of masses and decay widths of
bottomonium bound states and resonances as poles of the
Smatrix.We expect our technique to be eventually updated to
study the full set of exotic X, Y, and Z mesons. In this work,
however, we focus on the somewhat simpler, but nevertheless
controversial, I ¼ 0 bottomonium S wave resonances.
It has been standard for many years to use the ordinary

static potential obtained in lattice QCD as the confining

quarkonium potential to study the heavy quarkonium
spectrum [1]. Recently, we developed a novel approach
to apply lattice QCD string breaking potentials (as
e.g., computed in Ref. [2]) to coupled-channel systems,
opening the way for the computation of the spectrum and
the composition of resonances with heavy quarks [3]. This
approach allows us to study hadronic interactions non-
perturbatively with input from first principles lattice QCD.
In the past, microscopic determinations of hadronic

strong interactions, i.e., from quark interactions, were
mostly addressed with quark models. From the onset of
QCD, while developing the quark bag model, Jaffe pre-
dicted multiquarks such as tetraquarks. Moreover, he
started computing microscopically potentials for coupled
channels of hadrons [4,5]. An important type of potentials
is the hadron-hadron potentials, such as the VM̄M we use in
this work, where the number of quarks is preserved. The
microscopic computation of hadron-hadron potentials in
models needs to include the different algebraic color,
flavor, spin, and three-dimensional space or momentum
factors, the latter being systematically performed with the
resonating group method [6]. A second type of potentials is
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the mixing potentials, such as the Vmix used in this work,
which couples channels with a different number of quarks
and microscopically includes the creation or annihilation of
a light quark-antiquark pair. In quark models, it was
realized a long time ago from the symmetries the QCD
vacuum that the pair creation has SLJ ¼ 3P0 quantum
numbers in spectroscopic notation [7,8]. Spontaneous
chiral symmetry breaking can also be included in the
3P0 pair creation mechanism [9]. This microscopic knowl-
edge contributed to very successful models with quark-
antiquark channels and meson-meson channels, allowing
us to study a large number of resonances [10], complicated
dynamical resonances [11], and resonances with heavy
quarks [12]. These models share a vanishing interaction
between two mesons but have different mixing potentials.
For instance, Ref. [11] uses a delta-shell potential for
simplicity, and Ref. [12] uses a Gaussian shell potential
which has an additional parameter. References [9,10]
compute microscopically Vmix from the overlap of the
meson wave functions and the 3P0 pair creation term.
However, since multiquarks may be very complex sys-

tems, we expect some of them to be sensitive to the details of
the potentials. Unfortunately, the potentials are not fully
fixed by the symmetries of QCD; i.e., what one can infer is
only qualitative. For example, Vmix at large quark-antiquark
separations must decay rapidly like the meson wave func-
tions in the overlap, exponentially or as a Gaussian. At small
separations, due to the momentum or position present in the
3P0 mechanism, it must linearly increase from 0. Moreover,
due to the parity in the 3P0 mechanism, the orbital angular
momenta of the quark-antiquark channel and the meson-
meson channel must differ by 1. Obviously, these constraints
do not fully determine the potentials, and there are certain
degrees of freedom left. Lattice QCD, on the other hand, is a
method to unambiguously compute these potentials from
QCD. Thus, we expect that the computation of the potentials
VQ̄Q (the quark-antiquark potential), Vmix, and VM̄M with
lattice QCD will allow us to clarify important aspects of
certain quarkonium resonances and experimentally observed
multiquarks.
Lattice QCD computations fully incorporate the dynam-

ics of the light quarks and gluons, while the heavy quarks
are approximated as static color charges. The dynamics of
the heavy quarks is then added in a second step using
techniques from quantum mechanics as in the Born-
Oppenheimer approximation [13]. Due to heavy quark
symmetry, the spin of the heavy quarks is conserved
[14–17]. In previous works, this Born-Oppenheimer
approach was applied to investigate exotic mesons con-
taining a bottom and an antibottom quark. For example, the
spectrum of b̄b hybrid mesons was studied extensively
(see, e.g., Refs. [18–21]) using static potentials computed
within pure SU(3) lattice gauge theory, which are confining
and do not allow decays to pairs of lighter mesons. The first
application of the Born-Oppenheimer approach using

meson-meson potentials computed in full lattice QCD to
study tetraquarks can be found in Refs. [22,23]. For
instance, the existence of a stable b̄b̄ud tetraquark with
quantum numbers IðJPÞ ¼ 0ð1þÞ was confirmed [24,25],
whereas other flavor combinations do not seem to form
four-quark bound states [26]. In this context, the approach
was also updated by including techniques from scattering
theory, and a b̄b̄ud tetraquark resonance with quantum
numbers IðJPÞ ¼ 0ð1−Þ was predicted [27]. The Born-
Oppenheimer approach should also allow for the inclusion
of the heavy quark spin, either from the experimental
hyperfine splitting [25] or with lattice QCD computations
of 1=mb corrections to the static potentials [28].
In this work, we continue within this framework and

significantly extend our recent study of systems with a
heavy quark and a heavy antiquark and possibly another
light quark-antiquark pair [3]. This constitutes an even
more challenging system, which might open the way to
study bottonomium X, Y, and Z resonances. The approach
then requires the lattice QCD determination of several
potentials including a b̄b potential, a B̄ð�ÞBð�Þ potential, and
a mixing potential and allows the study of resonances and
their decays with scattering theory. In this work, we do not
carry out such lattice QCD computations but use results
from an existing study of string breaking [2]. Notice that we
go beyond the Born-Oppenheimer adiabatic approximation
[19], since the quarkonium potential crosses open meson-
meson thresholds. Formally, our system is then denomi-
nated diabatic [12,29,30], since the heavy quarks are much
slower that the light degrees of freedom, but the state of the
heavy quarks nevertheless changes, when a decay occurs.
The main goal of this paper is to compute the

composition of I ¼ 0 bottonomium resonances in terms
of quarkonium Q̄Q and meson-meson M̄M components.
It is important to note that in Ref. [3] only a B̄ð�ÞBð�Þ
meson-meson channel was included. However, since the
closed strangeness B̄ð�ÞBð�Þ channel is very close to the
bottomomium resonances we are interested in, we also
include this channel in the present work. Clearly, this case
is more involved because there are three coupled chan-
nels, a confined quarkonium channel with flavor b̄b
and the two meson-meson decay channels with flavor
b̄bðūuþ d̄dÞ= ffiffiffi

2
p

and b̄bs̄s.
In Table I, we show the available experimental results

according to the Review of Particle Physics [31]. Since we
work in the heavy quark limit, the heavy quark spins SPCQ do
not appear in the Hamiltonian, and the relevant quantum
numbers J̃PC are the remaining part of the total angular
momentum and the corresponding parity and charge con-
jugation (also listed in Table I). Notice that we also list
several states observed at Belle with large significance
[32,33]. These states are not yet confirmed by other
experiments because presently Belle and Belle II are the
only experiments designed to study bottomonium.
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In particular, a new resonance, ϒð10753Þ, possibly
another ϒðnSÞ state or a Y state, since it is a vector but
suggested to be of exotic nature, has recently been observed
at Belle with a mass around 10.75 GeV [33]. The
previously observed resonances ϒð4SÞ and ϒð10860Þ
approximately match quark model predictions of bottomo-
nium, and, thus, this new resonance comes in excess and
needs to be understood.
Notice also that the discovery of this resonance by Belle

with the process eþe− → ϒðnSÞπþπ− resulted from the
experimental effort to clarify the controversy on the nature
of the other excited ϒ resonances [33]. The ϒð4SÞ,
ϒð10860Þ, and ϒð11020Þ, although having masses approx-
imately compatible with the quark model, have transitions
to lower bottomonia with the emission of light hadrons with
much higher rates compared to expectations for ordinary
bottomonium. A possible interpretation is that these excited
ϒ states have large admixtures of B̄ð�ÞBð�Þ meson pairs
[34–37]. Another scenario is that they do not correspond to
the S wave states ϒð5SÞ and ϒð6SÞ but instead to the D
wave states ϒð3DÞ and ϒð4DÞ [38–40]. The Belle experi-
ment was, thus, designed to produce and study ϒ states
with a large B̄ð�ÞBð�Þ admixture.
Since the observation of the new resonance at Belle,

more exotic interpretations have been proposed for the
excited ϒ states. Most interpretations consider the new
ϒð10753Þ resonance as a nonconventional state, e.g., a
tetraquark [41,42] or a hybrid meson [43–45]. There are,
however, also different interpretations; e.g., in Ref. [39] it is
claimed that the ϒð4SÞ is not a simple quarkonium state.
In this work, we aim to contribute to the clarification of

the controversies concerning the bottomonium resonan-
ces ϒð4SÞ, ϒð10753Þ, and ϒð10860Þ. While the low-lying
bottomonium spectrum up to the B̄B threshold was
studied within full lattice QCD extensively [46–53], it
is extremely difficult to investigate higher resonances in a
similar setup, in particular those with several decay
channels. Thus, as already explained above, we continue
our recent work [3] using lattice QCD potentials and
applying the emergent wave method to study I ¼ 0
bottomonium S wave resonances. Using this strategy,
independently of the experimental observation of the
resonance ϒð10753Þ at Belle [33], which we were not
aware of at that time, we predicted a similar resonance
with mass 10774þ4

−4 MeV [3]. We now extend this work
including another important meson-meson channel, the

B̄ð�Þ
s Bð�Þ

s channel, with threshold between the ϒð10753Þ
and ϒð10860Þ. Within this improved setup, we determine
the composition of all bound states and resonances up to
energies of ≈11 GeV, i.e., the percentage of a pair of
confined heavy quarks b̄b as well as the percentage of a

pair of heavy-light mesons B̄ð�ÞBð�Þ and B̄ð�Þ
s Bð�Þ

s .
This paper is structured as follows. In Sec. II, we review

the theoretical basics of our approach from Ref. [3].

We discuss how to utilize lattice QCD static potentials
and how to solve the coupled Schrödinger equation to
obtain a quarkonium and one or two meson-meson wave
functions. We also review our results for the poles of the S
matrix, i.e., for I ¼ 0 bottomonium S wave resonances. In
Sec. III, we propose a technique to determine the percent-
age of the quark-antiquark and the meson-meson compo-
nent of a bottomonium state, either a bound state (if we
neglect heavy quark annihilation and electroweak inter-
actions) or a resonance. Then, we apply this technique to
ϒð1SÞ,ϒð2SÞ,ϒð3SÞ,ϒð4SÞ,ϒð10753Þ, andϒð10860Þ. In
Sec. III, we also discuss results within the two-channel
setup, i.e., considering quarkonium b̄b and a meson pair
B̄ð�ÞBð�Þ, and in Sec. IV, we discuss results within the

three-channel setup, i.e., with an extra B̄ð�Þ
s Bð�Þ

s channel. In
Sec. V, we conclude.

II. SUMMARY OF OUR APPROACH

In this section, we briefly summarize our approach
from Ref. [3] to study quarkonium resonances with isospin
I ¼ 0 in the diabatic extension of the Born-Oppenheimer
approximation, using lattice QCD static potentials. We also
recapitulate the main results from Ref. [3]. Moreover, we
extend the approach to three coupled channels, including a

B̄ð�Þ
s Bð�Þ

s channel.

TABLE I. Massesm and decay widths Γ of I ¼ 0 bottomonium
according to the Review of Particle Physics [31]. We also include
several states observed at Belle [32,33], but not yet confirmed by
other experiments. We add an extra column with the quantum
numbers J̃PC conserved in the infinite quark mass limit (in the
last three lines, J̃PC ¼ 2þþ is also a possibility). We mark with
horizontal lines the opening of the B̄B and B̄�B� thresholds.

Name IGðJPCÞ m (MeV) Γ (MeV) J̃PC

ηbð1SÞ 0þð0−þÞ 9399.0� 2.3 10� 5 0þþ

ϒð1SÞ 0−ð1−−Þ 9460.30� 0.26 ð54.02� 1.25Þ10−3 0þþ

χb0ð1PÞ 0þð0þþÞ 9859.44� 0.73 � � � 1−−

χb1ð1PÞ 0þð1þþÞ 9892.78� 0.57 � � � 1−−

hbð1PÞ ??ð1þ−Þ 9899.3� 0.8 � � � 1−−

χb2ð1PÞ 0þð2þþÞ 9912.21� 0.57 � � � 1−−

ηbð2SÞBelle 0þð0−þÞ 9999.0� 6.3 � � � 0þþ

ϒð2SÞ 0−ð1−−Þ 10023.26� 0.31 ð31.98� 2.63Þ10−3 0þþ

ϒð1DÞ 0−ð2−−Þ 10163.7� 1.4 � � � 2þþ

χb0ð2PÞ 0þð0þþÞ 10232.5� 0.9 � � � 1−−

χb1ð2PÞ 0þð1þþÞ 10255.46� 0.77 � � � 1−−

hbð2PÞBelle ??ð1þ−Þ 10259.8� 1.6 � � � 1−−

χb2ð2PÞ 0þð1þþÞ 10268.65� 0.72 � � � 1−−

ϒð3SÞ 0−ð1−−Þ 10355.2� 0.5 ð20.32� 1.85Þ10−3 0þþ

χb1ð3PÞ 0þð1þþÞ 10512.1� 2.3 � � � 1−−

ϒð4SÞ 0−ð1−−Þ 10579.4� 1.2 20.5� 2.5 0þþ

ϒð10753ÞBelle 0−ð1−−Þ 10752.7� 7.0 35.5� 21.6 0þþ

ϒð10860Þ 0−ð1−−Þ 10885.2� 2.1 37� 4 0þþ

ϒð11020Þ 0−ð1−−Þ 10000� 4 24� 7 0þþ
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A. Theoretical basics—Two coupled channels

We consider systems composed of a heavy quark-
antiquark pair Q̄Q and either no light quarks (quarkonium)
or another light quark-antiquark pair q̄q with isospin I ¼ 0

(for large Q̄Q separation, two heavy-light mesonsM ¼ Q̄q
and M̄ ¼ q̄Q). We treat the heavy quark spins as conserved
quantities such that the energy levels of Q̄Qðq̄qÞ systems as
well as their decays and resonance parameters do not
depend on these spins. Moreover, we assume that two of the
four components of the Dirac spinors of the heavy quarksQ
and Q̄ vanish. These approximations become exact for
static quarks and are expected to yield reasonably accurate
results for b quarks, possibly even for c quarks.
In Ref. [3], we have derived in detail a coupled-channel

Schrödiger equation for a four-component wave function
ψðrÞ ¼ ðψ Q̄QðrÞ; ψ⃗ M̄MðrÞÞ (Eq. (10) in Ref. [3]). The upper
component of this wave function represents the Q̄Q
channel, and the lower three components represent the
M̄M channel. For the M̄M channel, we consider only the
lightest heavy-light mesons with JP ¼ 0− and JP ¼ 1−,
i.e., B and B� mesons for Q≡ b (as usual, J, P, and C
denote total angular momentum, parity, and charge con-
jugation). Within the approximations stated above, these
two mesons have the same mass. One can show that the
spin of the two light quarks is 1, which is represented by the
three components of ψ⃗ M̄MðrÞ. Note that we ignore decays
of Q̄Q to lighter quarkonium and a light I ¼ 0 meson,
e.g., a σ or an η meson, because they are suppressed by the
OZI rule.
J̃PC denotes total angular momentum excluding the

heavy quark spins and the corresponding parity and
charge conjugation. It is a conserved quantity. As in
Ref. [3], we focus throughout this work on J̃PC ¼ 0þþ.
Thus, JPC ¼ SPCQ , where SQ denotes the heavy quark spin,
with only two possibilities, SPCQ ¼ 0−þ; 1−−.
The coupled-channel Schrödinger equation for the

partial wave with J̃ ¼ 0 is a two-channel equation,

�
−
1

2

�
1=μQ 0

0 1=μM

�
∂2
r þ

1

2r2

�
0 0

0 2=μM

�
þ V0ðrÞ

þ 2mM − E

��
uðrÞ

χM̄MðrÞ

�
¼ −

�
VmixðrÞ
VM̄M;kðrÞ

�
krj1ðkrÞ;

V0ðrÞ ¼
�VQ̄QðrÞ VmixðrÞ
VmixðrÞ VM̄M;kðrÞ

�
: ð1Þ

The upper equation represents the Q̄Q channel with orbital
angular momentum LQ̄Q ¼ J̃ ¼ 0. uðrÞ is the radial part of
the J̃ ¼ 0 partial wave of the wave function

ψ Q̄QðrÞ ¼
ffiffiffiffiffiffi
4π

p
i
uðrÞ
kr

Y0;0ðΩÞ þ � � � ð2Þ

with the dots � � � denoting partial waves with J̃ > 0.
Similarly, the lower equation represents the M̄M channel
with orbital angular momentum LM̄M ¼ 1. j1ðkrÞ and
χM̄MðrÞ are the radial parts of the J̃ ¼ 0 partial waves of
the incident plane wave and the emergent spherical wave of
the three-component wave function

ψ⃗ M̄MðrÞ ¼
ffiffiffiffiffiffi
4π

p
i
�
j1ðkrÞ þ

χM̄MðrÞ
kr

�
ZM̄MðΩÞ þ � � � ð3Þ

with ZM̄MðΩÞ ¼ er=
ffiffiffiffiffiffi
4π

p
and the dots � � � denoting partial

waves with J̃ > 0. Moreover, mQ and mM are the heavy
quark and heavy-light meson masses, respectively, and
μQ ¼ mQ=2 and μM ¼ mM=2 are the corresponding
reduced masses. The energy E and the momentum k are
related according to k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2μME
p

. The potentials VQ̄QðrÞ,
VM̄M;kðrÞ, and VmixðrÞ represent the energy of a heavy
quark-antiquark pair, the energy of a pair of heavy-light
mesons, and the mixing between the two channels, respec-
tively. In Ref. [3], we relate these potentials algebraically to
lattice QCD correlators computed and provided in detail in
Ref. [2] in the context of string breaking for lattice spacing
a ≈ 0.083 fm and pion mass mπ ≈ 650 MeV. The data
points for VQ̄QðrÞ, VM̄M;kðrÞ, and VmixðrÞ are shown in
Fig. 1 together with appropriate parametrizations,

VQ̄QðrÞ ¼ E0 −
α

r
þ σrþ

X2
j¼1

cQ̄Q;jr exp

�
−

r2

2λ2Q̄Q;j

�
ð4Þ

VM̄M;kðrÞ ¼ 0 ð5Þ

VmixðrÞ ¼
X2
j¼1

cmix;jr exp

�
−

r2

2λ2mix;j

�
: ð6Þ

FIG. 1. Potentials VQ̄QðrÞ, VM̄M;kðrÞ, and VmixðrÞ as functions
of the Q̄Q separation r. The curves correspond to the para-
metrizations (4) to (6) with parameters listed in Table II.
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The parameters appearing in Eqs. (4) to (6) are collected
in Table II.
It is interesting to compare our potentials to those

utilized in quark models. The models of Refs. [10–12]
all have a confining VQ̄QðrÞ, and our lattice QCD potential
is also confining. This is not surprising, since confinement
is a central feature of most quark models. However, it is
remarkable that the meson-meson interaction VM̄M;kðrÞ
obtained from lattice QCD correlators is compatible with
zero within error bars and at the same time all these models
have no direct meson-meson interaction as well. In the case
of the models, this is a simplification, but in our case, it is a
first principles QCD result. Such a vanishing meson-meson
interaction is not universal. It appears in the coupled-
channel I ¼ 0 bottomonium system but, for instance, not in
the b̄b̄ud system, where a significant attraction leads
to a tetraquark boundstate [22,54]. In what concerns the
mixing potential, the lattice QCD result VmixðrÞ has a richer
structure than those used in Refs. [11,12], which are
nonvanishing only in a certain region of r close to the
string breaking distance rc. We note again that our VmixðrÞ
is a first principles QCD result and that there is no physical
or phenomenological reason why this potential should not
have the behavior shown in Fig. 1. It vanishes at large r,
as in the case of the models, but extends to much smaller
quark-antiquark separations than the potentials of
Refs. [11,12]. Indeed, the lattice QCD result VmixðrÞ is
close to those calculated microscopically with the 3P0

mechanism of Refs. [9,10]. Finally, we notice that there is a
small but clearly visible bump in VQ̄QðrÞ at r ≈ 0.25 fm,
which is typically not present in quark model potentials.
This bump is a consequence of the nonvanishing mixing
between energy eigenstates on the one hand and Q̄Q and
M̄M states on the other hand. With lattice QCD the ground
state and the first excitation are computed as functions of r,
where the ground state corresponds to a confining potential

without a bump at small r (see, e.g., Fig. 13 in Ref. [2], the
curve labeled “state j1i”). Lattice QCD also provides the
mixing angle, i.e., the contribution of the ground state and
the first excitation to the Q̄Q and M̄M states. This mixing
moves VQ̄QðrÞ and VM̄M;kðrÞ closer together for the non-
vanishing mixing angle. The mixing angle is particularly
large at separations r ≈ 0.25 fm (see Fig. 15 in Ref. [2]) as
also indicated by the extremum in the mixing potential
VmixðrÞ. Thus, the mixing generates a bump in VQ̄QðrÞ and
removes a similar bump present in the first excitation (see
Fig. 13 in Ref. [2], the curve labeled “state j2i”), leading to
a essentially vanishing meson-meson interaction VM̄M;kðrÞ.
The appropriate boundary conditions for the radial wave

functions uðrÞ and χM̄MðrÞ are

uðrÞ ∝ r for r → 0 ð7Þ

uðrÞ ¼ 0 for r → ∞ ð8Þ

χM̄MðrÞ ∝ r2 for r → 0 ð9Þ

χM̄MðrÞ ¼ itM̄Mkrh
ð1Þ
1 ðkrÞ for r → ∞; ð10Þ

where hð1Þ1 is a spherical Hankel function of the first kind
and tM̄M is the scattering amplitude and an eigenvalue of the
S matrix. We compute tM̄M as a function of the complex
energy E. Poles of tM̄M on the real axis below the M̄M
threshold indicate bound states. Poles of tM̄M at energies
with nonvanishing negative imaginary parts represent
resonances with masses m ¼ ReðEÞ and decay widths
Γ ¼ −2ImðEÞ. tM̄M is also related to the corresponding
scattering phase via e2iδM̄M ¼ 1þ 2itM̄M.

B. Main results from Ref. [3]—Two coupled channels

In Ref. [3], we apply our approach to study bottomonium
bound states and resonances with I ¼ 0. For mM, which is
the energy reference of our system, we use the spin-averaged
mass of the B meson and the B� meson, i.e., mM ¼ ðmB þ
3mB�Þ=4 ¼ 5.313 GeV [31]. μQ ¼ mQ=2 in the kinetic term
of the coupled-channel Schrödinger equation (1) is the
reduced mass of the b quark. Since results are only
weakly dependent on mQ (see previous works following a
similar approach, e.g., Refs. [24,55]), we use for simplicity
mQ ¼ 4.977 GeV from quark models [1].
In Ref. [3], we present both the scattering amplitude tM̄M

and the phase shift δM̄M for real energies E above the
B̄ð�ÞBð�Þ threshold at 10.627 GeV (throughout this paper,
we use a notation slightly different from that in Ref. [3],
tM̄M ≡ t1→0;0 and δM̄M ≡ δ1→0;0). We also checked proba-
bility conservation by showing the Argand diagram for
tM̄M. The main numerical results of Ref. [3] are, however,
the poles of tM̄M in the complex energy plane, which are
shown in Fig. 2 (upper plot) and collected in Table III.

TABLE II. The parameters of the potential parametrizations
(4) to (6).

Potential Parameter Value

VQ̄QðrÞ E0 −1.599ð269Þ GeV
α þ0.320ð94Þ
σ þ0.253ð035Þ GeV2

cQ̄Q;1 þ0.826ð882Þ GeV2

λQ̄Q;1 þ0.964ð47Þ GeV−1

cQ̄Q;2 þ0.174ð1.004Þ GeV2

λQ̄Q;2 þ2.663ð425Þ GeV−1

VM̄M;kðrÞ � � � � � �
VmixðrÞ cmix;1 −0.988ð32Þ GeV2

λmix;1 þ0.982ð18Þ GeV−1

cmix;2 −0.142ð7Þ GeV2

λmix;2 þ2.666ð46Þ GeV−1
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FIG. 2. Positions of the poles in the complex energy plane of tM̄M for the case of two coupled channels (upper plot) and of the T matrix
for the case of three coupled channels (lower plot) for all bound states and resonances below 11.3 GeV. Colored point clouds represent
the 1000 resampled sets of lattice QCD correlators, while black points and crosses represent the corresponding mean values and error
bars (see Ref. [3] for details). The vertical dashed lines mark the spin-averaged B̄ð�ÞBð�Þ threshold at 10.627 GeVand the spin-averaged

B̄ð�Þ
s Bð�Þ

s threshold at 10.807 GeV. The shaded region above 11.025 GeV marks the opening of the threshold of one heavy-light meson
with negative parity and another with positive parity, beyond which our results should not be trusted. We also mark with a vertical
line Ethreshold ¼ 10.790 GeV, which corresponds to two times the mass of a static-light meson from Ref. [2].
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There are four poles on the real axis below the B̄ð�ÞBð�Þ
threshold representing bound states (n ¼ 1;…; 4 in
Table III). By comparing them to the experimental results
from Table I, we identify them with ηbð1SÞ≡ ϒð1SÞ,
ϒð2SÞ, ϒð3SÞ, and ϒð4SÞ. We also obtained a resonance
around 10.895 GeV, which matches ϒð10860Þ with exper-
imentally found mass ð10.885� 0.002Þ GeV rather well
(n ¼ 6 in Table III). Moreover, in Ref. [3], we predicted a
new, dynamically generated resonance close to the B̄ð�ÞBð�Þ
threshold with mass around 10.774 GeV (n ¼ 5 in
Table III). Recently, Belle has observed a bottomonium
state at ð10.753� 0.007Þ GeV denoted as ϒð10753Þ not
yet confirmed by other experiments, which could corre-
spond to our prediction.
However, for the n ¼ 5 and n ¼ 6 states, which are close

in energy to ϒð10753Þ and ϒð10860Þ, it should be

important to also include the B̄ð�Þ
s Bð�Þ

s channel, since its
threshold opens between these two states. Thus, we
proceed by studying three coupled channels and compare
the results with those obtained in the two-channel case.
This will provide insights into how important meson-
meson thresholds and the corresponding channels are
for resonance properties. We note that to obtain reliable
and realistic masses and widths for resonances above
≈11.025 GeV, which is the threshold of one heavy-light
meson with negative parity and another with positive parity,
one has to include even more meson-meson channels.

C. Extension to the three coupled channels case

We include the B̄ð�Þ
s Bð�Þ

s channel in Eq. (1) using the
same string breaking potentials as before, i.e., those
provided by Ref. [2]. We expect this is to be a reasonable
approximation because the mass of the light quarks in
Ref. [2] is between the physical u=d and the physical s
quark mass. Thus, we use the same mixing potential for
both channels.

Moreover, the direct interaction between the static-
light meson pairs in Eq. (1) turned out to be negligible in
the two coupled channels case (see Fig. 1 and the detailed
discussion in Ref. [3]). Thus, we use vanishing meson-
meson interactions also in the case of three coupled
channels, since one can hardly anticipate a mechanism
that increases the meson-meson interaction either

between a Bð�Þ
s and a B̄ð�Þ

s or in the transition between

a B̄ð�ÞBð�Þ and a B̄ð�Þ
s Bð�Þ

s .
In detail, we extend the potential matrix to three

coupled channels as follows. From the Review of
Particle Physics, we get mB0

s
¼ 5.367 GeV (1 spin state)

and mB�
s
¼ 5.415 GeV (3 spin states). Using spin sym-

metry, the average is 5.403 GeV. The B̄ð�Þ
s Bð�Þ

s threshold
opens at 10.807 GeV, indeed between the new ϒð10753Þ
and the ϒð10860Þ.
One can estimate the quark mass used in the lattice QCD

computation of Ref. [2] using a theorem of partially
conserved axial currents, applicable to the light quarks u,
d, and s. According to the Gell-Mann, Oakes, and Renner
relation [56], the light current quark masses and the
pseudoscalar mesons obey the relationmmeson

2fπ2 ¼ ðmq þ
mq̄ÞhΩjq̄qjΩi in first order. We consider the average u and d
quark mass ml ¼ ðmu þmdÞ=2 and the charge averaged
masses for the pion and the kaon given by mπ ¼ ðð2=3Þ ×
139.6þ ð1=3Þ × 135.0Þ MeV ¼ 138.0 MeV and mκ ¼
ðð2=4Þ× 493.7þ ð2=4Þ× 497.6Þ MeV ¼ 495.7 MeV. We
find ms ¼ 24.8 ×ml. However, the light quark mass
used in Ref. [2], corresponding to the light pseudoscalar
meson massmπ;Ref: ½2� ¼654.1MeV, amounts to ml;Ref: ½2� ¼
ð654.1=138.0Þ2ml ¼ 22.5 ×ml. Thus, the light quark mass
of Ref. [2] is even closer to the s quark mass than to the
physical u=d quark mass. As stated above, we use the
mixing potential obtained from the lattice QCD correlators

of Ref. [2] for both the B̄ð�ÞBð�Þ and the B̄ð�Þ
s Bð�Þ

s channels.

TABLE III. Masses m ¼ ReðEpoleÞ and decay widths Γ ¼ −2ImðEpoleÞ for I ¼ 0 bottomonium with J̃PC ¼ 0þþ from the coupled-
channel Schrödinger equations (1) and (11) and the corresponding Q̄Q and M̄M or M̄sMs percentages (for Rmax ¼ 2.4 fm). For

comparison, we also list available experimental results. The B̄ð�ÞBð�Þ and B̄ð�Þ
s Bð�Þ

s thresholds are marked by horizontal lines. Errors on
our results for m and Γ are purely statistical, while for%Q̄Q,%M̄M and%M̄sMs we additionally show systematic uncertainties for the
resonances as discussed in Sec. III C.

From poles of tM̄M, two channels From poles of T, three channels From experiment

n m (GeV) Γ (MeV) %Q̄Q (%) %M̄M (%) m (GeV) Γ (MeV) %Q̄Q (%) %M̄M (%) %M̄sMs (%) Name m (GeV) Γ (MeV)

1 ηbð1SÞ 9.399þ2
−2 10þ5

−4
1 9.562þ11

−17 0 89þ1
−0 11þ0

−1 9.618þ10
−15 0 84þ1

−1 12þ0
−0 5þ0

−0 ϒð1SÞ 9.460þ0
−0 ≈0

2 10.018þ8
−10 0 90þ0

−0 10þ0
−0 10.114þ7

−11 0 84þ0
−0 12þ0

−0 4þ0
−0 ϒð2SÞ 10.023þ0

−0 ≈0
3 10.340þ7

−9 0 88þ0
−0 12þ0

−0 10.442þ7
−9 0 79þ0

−0 17þ0
−0 4þ0

−0 ϒð3SÞ 10.355þ0
−0 ≈0

4 10.603þ5
−6 0 70þ3

−2 30þ2
−3 10.629þ1

−1 49.3þ5.4
−3.9 67þ0

−5
þ1
−1 29þ5

−0
þ1
−1 4þ0

−0
þ0
−0 ϒð4SÞ 10.579þ1

−1 21þ3
−3

5 10.774þ4
−4 98.5þ9.2

−5.9 6þ1
−0

þ2
−1 94þ0

−1
þ1
−2 10.773þ1

−2 15.9þ2.9
−4.4 24þ3

−3
þ1
−1 60þ4

−4
þ1
−2 16þ1

−2
þ1
−1 ϒð10753Þ 10.753þ7

−7 36þ22
−14

6 10.895þ7
−10 22.2þ7.1

−4.9 59þ4
−4

þ2
−2 41þ4

−4
þ2
−2 10.938þ2

−2 61.8þ7.6
−8.0 35þ11

−7
þ4
−3 40þ3

−6
þ3
−3 25þ5

−6
þ0
−0 ϒð10860Þ 10.885þ3

−2 37þ4
−4
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Another point is a possibly different algebraic factor for

the mixing potential of the new B̄ð�Þ
s Bð�Þ

s channel. We note
that the mixing potential is proportional to the lattice QCD

creation operator O
Σþ
g

M̄M (see Eqs. (14) and (18) in Ref. [3]).
For two degenerate flavors u and d, this operator is
composed of two terms of identical form (one for each
flavor) but has to be normalized by another factor 1=

ffiffiffi
2

p
compared to a single flavor s. Thus, the mixing potential is

weaker by the factor 1=
ffiffiffi
2

p
for the new B̄ð�Þ

s Bð�Þ
s channel.

Alternatively, one can set up a 3 × 3 Schrödinger equation

for the two-flavor case with a quarkonium, a B̄ð�Þ
u Bð�Þ

u

channel, and a B̄ð�Þ
d Bð�Þ

d channel, using a “one-flavor mixing
potential” V1 flavor

mix to describe the mixing between the
quarkonium and each of the two meson-meson channels.
This 3 × 3 can be block diagonalized, where a 2 × 2 block
is identical to Eq. (1) and a 1 × 1 block corresponds to
I ¼ 1. The mixing potential appearing in the 2 × 2 block is
Vmix ¼

ffiffiffi
2

p
V1 flavor
mix , confirming Vmix=

ffiffiffi
2

p
as mixing poten-

tial for the new B̄ð�Þ
s Bð�Þ

s channel.

To conclude, with the new B̄ð�Þ
s Bð�Þ

s channel, we now

have three channels: bb̄, B̄ð�ÞBð�Þ, and B̄ð�Þ
s Bð�Þ

s . This

amounts to adding one more line and column to the
Hamiltonian in the coupled-channel Schrödinger equa-
tion (1), where the threshold in the third component of the
wave function is 10.807 GeV, while the threshold in
the second component remains at 10.627 GeV. The
mixing potential in the new matrix elements (1,3) and
(3,1) is weaker by the factor 1=

ffiffiffi
2

p
compared to the

mixing potential Vmix in the matrix elements (1, 2) and
(2, 1). Moreover, the new matrix elements (2, 3) and (3, 2)
vanish, since there is neither a kinetic energy nor an
interaction.
Finally, we have to take into account the meson-

meson threshold of Ref. [2] corresponding to two times
the static-light meson mass, Ethreshold ¼ 2mBð�Þ . In the
case of two channels, we identified Ethreshold with
10.627 GeV, which is the physical B̄ð�ÞBð�Þ threshold.
However, now using mlRef: ½2� ¼ 22.5 ×ml and perform-
ing a linear interpolation between the spin averaged

masses of the Bð�Þ meson and the Bð�Þ
s meson, we

find Ethreshold ¼ 10.790 GeV.
Thus, the Schrödinger equation for the partial wave with

J̃ ¼ 0 in the case of three coupled channels is

0
BB@−

1

2

0
BB@

1=μQ 0 0

0 1=μM 0

0 0 1=μMs

1
CCA∂2

r þ
1

2r2

0
BB@

0 0 0

0 2=μM 0

0 0 2=μMs

1
CCAþ

0
BB@

VQ̄QðrÞ VmixðrÞ VmixðrÞ=
ffiffiffi
2

p

VmixðrÞ 0 0

VmixðrÞ=
ffiffiffi
2

p
0 0

1
CCA

þ

0
BB@

Ethreshold 0 0

0 2mM 0

0 0 2mMs

1
CCA − E

1
CCA
0
BB@

uðrÞ
χM̄MðrÞ
χM̄sMs

ðrÞ

1
CCA ¼ −

0
BB@

VmixðrÞ
0

0

1
CCAðαkrj1ðkrÞ þ αsksrj1ðksrÞ=

ffiffiffi
2

p
Þ: ð11Þ

The incident wave can be any linear superposition of a

B̄ð�ÞBð�Þ wave and a B̄ð�Þ
s Bð�Þ

s wave, where α and αs denote
the respective coefficients. For example, a pure B̄ð�ÞBð�Þ

wave translates into ðα; αsÞ ¼ ð1; 0Þ, and a pure B̄ð�Þ
s Bð�Þ

s

wave translates into ðα; αsÞ ¼ ð0; 1Þ. The momenta of these
waves, k and ks, are related to E via

E ¼ 2mM þ k2

2μM
; E ¼ 2mMs

þ k2s
2μMs

: ð12Þ

The corresponding boundary conditions of the wave
functions are

(i) In both cases [i.e., ðα; αsÞ ¼ ð1; 0Þ and
ðα; αsÞ ¼ ð0; 1Þ]

uðrÞ ∝ r for r → 0 ð13Þ

uðrÞ ¼ 0 for r → ∞ ð14Þ

χM̄MðrÞ ∝ r2; χM̄sMs
ðrÞ ∝ r2 for r → 0: ð15Þ

(ii) For an incident B̄ð�ÞBð�Þ wave [i.e., ðα; αsÞ ¼ ð1; 0Þ]

χM̄MðrÞ ¼ itM̄M;M̄Mkrh
ð1Þ
1 ðkrÞ;

χM̄sMs
ðrÞ ¼ itM̄M;M̄sMs

ksrh
ð1Þ
1 ðksrÞ for r → ∞:

ð16Þ

(iii) And for an incident B̄ð�Þ
s Bð�Þ

s wave [i.e.,
ðα; αsÞ ¼ ð0; 1Þ]:

χM̄MðrÞ ¼ itM̄sMs;M̄Mkrh
ð1Þ
1 ðkrÞ;

χM̄sMs
ðrÞ ¼ itM̄sMs;M̄sMs

ksrh
ð1Þ
1 ðksrÞ for r → ∞:

ð17Þ
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This defines the 2 × 2 matrices S and T,

S ¼ 1þ 2iT; T ¼
�

tM̄M;M̄M tM̄sMs;M̄M

tM̄M;M̄sMs
tM̄sMs;M̄sMs

�
: ð18Þ

To determine masses and decay widths of bound states and
resonances, we need to find the poles of the S matrix or,
equivalently, of the T matrix. We use similar techniques as
in our previous work [3], but this time, we apply the pole
search to the determinant of the T matrix.
It is an interesting consistency check to compare our

3 × 3 potential matrix to a recent lattice QCD computation
of string breaking with dynamical u, d, and s quarks [57].
For a meaningful comparison, we need to diagonalize our
3 × 3 potential matrix. The resulting diagonal elements,
which are shown as functions of r in Fig. 3, should
correspond to the three lowest energy levels of a system
with a static quark-antiquark pair and dynamical u, d, and s
quarks. As expected, they are similar to those plotted in
Fig. 1 of Ref. [57]. Note that there is a certain discrepancy
in the second excitation at small separations. The bump
we obtain and which is not present in Fig. 1 of Ref. [57]
could have different reasons. It might be a consequence of
different light quark masses or of the dynamical strange
quark used in Ref. [57] compared to the computation from
Ref. [2] or also of imperfect operator optimization. It could
also be that our assumptions to set up the 3 × 3 potential
matrix in Eq. (11) from the two-flavor lattice QCD results
from Ref. [2] are only partly fulfilled. As we discuss below
in our conclusions, we plan to carry out dedicated lattice
QCD computations of the relevant potentials in the near
future, where we can possibly clarify this tension. For our
current work, we use the lattice QCD results of Ref. [2]
because numerical values are provided for all required
quantities (see Table I in Ref. [2]). In Ref. [57], even though
more recent, certain quantities important for our formalism,
e.g., the mixing angle as a function of r, seem not to have
been computed.

III. QUARKONIUM AND MESON-MESON
CONTENT OF I = 0 BOTTOMONIUM–TWO

COUPLED CHANNELS

We continue or investigation of bottomonium bound
states and resonances with isospin I ¼ 0 by studying their
structure and quark content. In particular, we explore
whether the bound states and resonances close to the
B̄ð�ÞBð�Þ threshold, i.e., states with n ¼ 4, 5, 6 in
Table III, which could correspond to the experimentally
observed ϒð4SÞ, ϒð10753Þ, and ϒð10860Þ, are conven-
tional Q̄Q quarkonia or whether there is a sizable Q̄Qq̄q
four-quark component. For clarity, we first consider the
case of two coupled channels, where it is easier to define
the concepts of our study. Then, in Sec. IV, we will move on
to the case of three coupled channels, which is physically
more realistic.
We inspect in detail the percentages of quarkonium and

of a meson-meson pair present in each of the bound states
and resonances. To this end, we compute

%Q̄Q ¼ Q
QþM

; %M̄M ¼ M
QþM

ð19Þ

with

Q ¼
Z

Rmax

0

drjuðrÞj2; M ¼
Z

Rmax

0

drjχM̄MðrÞj2: ð20Þ

uðrÞ and χM̄MðrÞ are the radial wave functions of the Q̄Q
and the M̄M channels, respectively, obtained by solving the
coupled-channel Schrödinger equation (1) with energies E
identical to the real parts of the corresponding poles.

A. Bound states

For bound states, E < 2mM, and the corresponding
momentum is complex, k ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2μMðE − 2mMÞj
p

. The
boundary condition (10) for χM̄MðrÞ simplifies to

χM̄MðrÞ ¼ 0 for r → ∞: ð21Þ

Thus, both Q and M are independent of Rmax, if
chosen sufficiently large, i.e., Rmax ≳ 2.0 fm, because also
uðrÞ ¼ 0 for r → ∞ [see Eq. (8)]. The same is true for
%Q̄Q and %M̄M, which represent the probabilities to
either find the system in a quarkonium configuration or in a
meson-meson configuration.

B. Resonances

For resonances, things are more complicated. First,
resonances are defined by poles in the complex energy
plane with nonvanishing negative imaginary parts of E.
Evaluating %Q̄Q and %M̄M at such a complex energy

FIG. 3. Elements of the diagonalized 3 × 3 potential matrix
used in the coupled-channel Schrödinger equation (11).
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does not seem to be meaningful, because juðrÞj2=r2 and
jχM̄MðrÞj2=r2 are only proportional to probability densities,
if E is real. Thus, we compute %Q̄Q and %M̄M at the real
part of the corresponding pole position, ReðEÞ, which is the
resonance mass.
There is, however, another complication, namely, thatM

is not constant but linearly rising for large Rmax. The reason
is that χM̄MðrÞ represents an emergent wave [see Eq. (10)].
We found, however, the dependence of %Q̄Q and %M̄M
on Rmax to be rather mild, with an uncertainty of only a few
percent in the range 1.8 fm ≤ Rmax ≤ 3.0 fm, i.e., where
the quarkonium component is already negligible,
uðr ¼ RmaxÞ ≈ 0. Thus, we interpret %Q̄Q and %M̄M as
estimates of probabilities to either find the system in a
quarkonium configuration or in a meson-meson configu-
ration, as for the bound states discussed before.

C. Numerical results

We show plots of %Q̄Q and %M̄M as functions of
Rmax for the first seven bottomonium bound states and
resonances in Fig. 4.
As expected, for the four bound states, n ¼ 1;…; 4, both

%Q̄Q and%M̄M are constant for large Rmax. For ηbð1SÞ≡
ϒð1SÞ (n ¼ 1), this is the case already for Rmax ≳ 0.4 fm,
while, e.g., for ϒð4SÞ (n ¼ 4), Rmax ≳ 2.0 fm is needed.
This is not surprising and just indicates that wave functions
for increasing n are less localized, as usual in quantum
mechanics. ηbð1SÞ≡ ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ have
%Q̄Q ≈ 90%, i.e., are clearly quarkonium states. ϒð4SÞ,
which is close to the B̄ð�ÞBð�Þ threshold, is still quarkonium
dominated (%Q̄Q ≈ 70%) but already has a sizeable four-
quark component (%M̄M ≈ 30%).

FIG. 4. Percentages of quarkonium %Q̄Q and of a meson-meson pair %M̄M present in each of the first six bound states and
resonances as functions of Rmax. The error bands represent statistical uncertainties.
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For the resonances, there is a dependence of %Q̄Q and
%M̄M on Rmax, but it is rather mild with an uncertainty
of 2% or less in the range 1.8 fm ≤ Rmax ≤ 3.0 fm (see
also the discussion in Sec. III B). The wide resonance with
n ¼ 5 has %M̄M ≈ 94% and, thus, is essentially a meson-
meson pair. The resonance with n ¼ 6 is a mix of
quarkonium and a meson-meson pair with a slightly larger
Q̄Q component (%Q̄Q≈59%,%M̄M ≈ 41%). Resonances
with n ≥ 7 are above the threshold of one heavy-light
meson with negative parity and another with positive
parity. Since this decay channel is currently neglected,
their decay widths are tiny, and they are almost stable.
Correspondingly, they are strongly quarkonium dominated,
i.e., %Q̄Q ≫ %M̄M. We stress that results for n ≥ 7
should not be trusted until all relevant decay channels
are included.
%Q̄Q and %M̄M for Rmax ¼ 2.4 fm are listed in

Table III together with their statistical errors and, for the
resonances, also systematic uncertainties. To estimate
statistical errors, we utilize the same 1000 sets of param-
eters as in Ref. [3], which were generated by resampling the
lattice QCD correlators from Ref. [2]. Asymmetric stat-
istical errors are defined via the 16th and 84th percentile of
the 1000 samples. We visualize these errors as error bands
on %Q̄Q and %M̄M in Fig. 4. We define the asymmetric
systematic uncertainties as j%Q̄QðRmax ¼ 1.8 fmÞ −
%Q̄QðRmax ¼ 2.4 fmÞj and j%Q̄QðRmax ¼ 3.0 fmÞ −
%Q̄QðRmax ¼ 2.4 fmÞj and in the same way for %M̄M.
They are around 2% for the resonances with n ¼ 5 and
n ¼ 6, respectively, and negligible for all other n. The total
uncertainties on %Q̄Q and %M̄M are rather small. Thus,
our predictions concerning the structure of the bound states
and resonances are quite stable within our framework. The
columns “%Q̄Q” and “%M̄M” in Table III represent the
main results for case of two coupled channels, since these
numbers reflect the quark composition of the bound states
and resonances and clarify which states are close to
ordinary quark model quarkonium and which states are
dynamically generated by a meson-meson decay channel.

IV. QUARKONIUM AND MESON-MESON
CONTENT OF I = 0 BOTTOMONIUM–THREE

COUPLED CHANNELS

We now consider the case of three coupled channels, a

quarkonium, a B̄ð�ÞBð�Þ channel, and a B̄ð�Þ
s Bð�Þ

s channel.
Working with three channels is technically more elaborate
than with two, but formally the extension from the case of
two channels is straightforward. To identify the bound
states and resonances, we apply our pole searching algo-
rithm [3] to the determinant of the T matrix. In Fig. 2 (lower
plot), we show the resulting pole positions together with
their statistical errors.
Using the real part of a pole energy, we compute the

square of the wave functions of the three channels to

determine the relative amount of quarkonium, of a

B̄ð�ÞBð�Þ pair, and of a B̄ð�Þ
s Bð�Þ

s pair. Note that a pole in
the T matrix corresponds to one infinite eigenvalue, while
the second eigenvalue is finite. To make a meaningful
statement about a bound state or resonance, we thus need
to prepare the incident wave in such a way that exclu-
sively the bound state or resonance is generated. This
amounts to identifying ðα; αsÞ appearing on the right-
hand side of the coupled-channel Schrödinger equa-
tion (11) with that eigenvector of T corresponding to
the infinite eigenvalue.
This time, we compute three quantities,

Q ¼
Z

Rmax

0

drjuðrÞj2; M ¼
Z

Rmax

0

drjχM̄MðrÞj2;

Ms ¼
Z

Rmax

0

drjχM̄sMs
ðrÞj2; ð22Þ

from which we calculate the respective percentages of
quarkonium and of meson-meson pairs,

%Q̄Q ¼ Q
QþM þMs

; %M̄M ¼ M
QþM þMs

;

%M̄sMs ¼
Ms

QþM þMs
: ð23Þ

We determine the statistical and systematic errors of the
percentages using the same techniques as in Sec. III. The
corresponding results are shown in Fig. 5 as functions of
Rmax and also summarized in Table III.

A. Numerical results

We find that in the three-channel case, i.e., with a

B̄ð�ÞBð�Þ and a B̄ð�Þ
s Bð�Þ

s channel, the meson-meson percent-
age increases for the majority of states compared to the
two-channel case, which has only a B̄ð�ÞBð�Þ decay channel.
Nevertheless, the first three states ϒð1SÞ, ϒð2SÞ, and
ϒð3SÞ remain mostly quarkonium states, with %Q̄Q
around 80% to 85%. The changes appear to be more
pronounced for n ≥ 4.
The ϒð4SÞ, which is a bound state in the two-channel

case, is now a resonance with a decay width more than
twice as large as the experimental result. The reason could
be that we neglect the heavy quark spins and, thus, the mass
of ϒð4SÞ is not only above the B̄B but also above the B̄�B�

threshold. Its B̄ð�ÞBð�Þ content %M̄M ≈ 67% is, however,
quite similar to the corresponding percentage obtained in
the two-channel case.
In what concerns the new state ϒð10753Þ, the inclusion

of the B̄ð�Þ
s Bð�Þ

s channel decreases its decay width from a
value much larger than the experimental result to a value
consistent with experiment. It remains predominantly a
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B̄ð�ÞBð�Þ pair (around 60%), but the quarkonium component
increases (to around 24%), and there is now also a non-

vanishing B̄ð�Þ
s Bð�Þ

s component (around 16%).
For the ϒð10860Þ, sometimes denominated ϒð5SÞ, the

ratio of quarkonium to meson-meson changes from around
59%=41% to around 35%=65%. This is not surprising,
because in the three-channel case the ϒð10860Þ is not only
above the B̄ð�ÞBð�Þ threshold but also above the B̄ð�Þ

s Bð�Þ
s

threshold, where the latter increases the meson-meson
percentage.
On a qualitative level, results obtained with two channels

and with three channels are similar. The bound states
n ¼ 1, 2, 3 consist mostly of quarkonium, while the
resonances n ¼ 4, 5, 6 have significant meson-meson
components. It is particularly noteworthy that there is an
additional state compared to the spectrum of pure quarko-
nium excitations, which is dynamically generated by the

coupling to meson-meson decay channels. This state
(n ¼ 5) has a mass and decay width quite similar to that
of the resonance ϒð10753Þ recently reported by Belle.

V. CONCLUSIONS

In Ref. [3], we recently developed a novel approach to
utilize static potentials computed with lattice QCD in the
context of string breaking, opening the way for the
computation of the spectrum and the composition of
resonances with a heavy quark-antiquark pair and possibly
also a light quark-antiquark pair. We use these potentials,
provided in Ref. [2], in a coupled-channel Schrödinger
equation, which amounts to applying the diabatic extension
of the Born-Oppenheimer approximation, and study the
scattering problem with the emergent wave method. In
Ref. [3], we coupled a b̄b quarkonium channel and a

FIG. 5. Percentages of quarkonium %Q̄Q and of meson-meson pairs %M̄M and %M̄sMs present in each of the first six bound states
and resonances as functions of Rmax. The error bands represent statistical uncertainties.
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B̄ð�ÞBð�Þ meson-meson channel. In this work, we also

considered a third channel corresponding to B̄ð�Þ
s Bð�Þ

s .
Using this framework, we explored the nature of the

I ¼ 0 bottomonium S wave bound states and resonances in
more detail, including not only their pole positions but also
their compositions in terms of a bb̄ quarkonium component

and B̄ð�ÞBð�Þ and B̄ð�Þ
s Bð�Þ

s meson-meson components. This
first principles based computation is important because it
contributes to the clarification of controversies concerning

the states close to the B̄ð�ÞBð�Þ threshold and the B̄ð�Þ
s Bð�Þ

s

threshold (which in our approach are just single thresholds,
since the lattice QCD static potentials are independent of
the heavy quark spins).
The first controversy concerns the resonances ϒð10860Þ

and ϒð11020Þ. Although they can be identified with ϒð5SÞ
and ϒð6SÞ, they could instead also correspond to the 3D or
4D states. In our computation, we find an S wave state
(n ¼ 6) somewhat higher, but not too far away from the
mass of ϒð10860Þ. Thus, it will be very interesting to also
study D wave states within our framework, to see whether
there is a better match. In what concerns the ϒð11020Þ,
we are currently not in a position to make any reliable
statement. Its mass is in the region of the B̄ð�ÞB�

0;1 threshold,
i.e., the sum of the masses of a negative and a positive
parity B meson. Since we do not yet have the lattice
QCD potentials to include the coupling to such an excited
meson-meson system, the validity of our approach above
≈11.025 GeV is questionable. This is also reflected by the
unrealistic imaginary part of the pole we obtain for the
resonance with n ¼ 7 shown in Fig. 2.
Another controversy concerns the purity as quarkonium

states of these resonances, ϒð10860Þ and ϒð11020Þ, and
also of ϒð4SÞ, which is identified according to the Review
of Particle Physics [31] as a quarkonium state. We find that
ϒð4SÞ is quarkonium dominated (%Q̄Q ≈ 67%) but has
a sizable meson-meson component (%M̄M þ%M̄sMs ≈
33%). The ϒð10860Þ, however, is mostly a meson state,

composed both of B̄ð�ÞBð�Þ (%M̄M ≈ 40%) and of B̄ð�Þ
s Bð�Þ

s

(%M̄sMs ≈ 25%). In contrast to that, ϒð1SÞ, ϒð2SÞ, and
ϒð3SÞ have rather small meson-meson components, of the
order of 15% to 20%.
The most recent controversy concerns the nature of the

newly discovered resonance ϒð10753Þ. Model calculations
suggest, for instance, this resonance to be either a tetra-
quark [41,42], a hybrid meson [43–45], or the more

canonical and so far missing ϒð3DÞ [38–40]. With our
lattice QCD based approach, we find a pole corres-
ponding to the mass 10.773 GeV, similar to the Belle
measurement of the mass of the ϒð10753Þ resonance,
ð10.753� 0.007Þ GeV. In Ref. [3], we had already antici-
pated this pole to be dynamically generated by the B̄ð�ÞBð�Þ
meson-meson channel. Now, within our improved three-
channel setup, we confirm that this resonance is mostly
composed of a pair of mesons, %M̄M ≈ 60% and
%M̄sMs ≈ 16%. While there is essentially no direct inter-
action between a pair of mesons, the mixing potential with
the quarkonium channel generates an effective potential
sufficiently strong to bind the mesons into a resonance.
Thus, since it is not a quarkonium state and the heavy quark
spin can be 1−−, it can be classified as a Y type cryptoexotic
state. Notice that it should also be part of the ηb family,
since the heavy quark spin can also be 0−þ and there is
degeneracy with respect to the heavy quark spin.
As an outlook, we are on the way to extending our study

beyond S wave bottomonium, to the Pwave, D wave, and
F wave, which is more cumbersome, since in these cases
there are two additional meson-meson channels. We
expect then to be able to address the controversy on
the existence of D wave resonances in more detail.
Moreover, in the long term, we plan to compute lattice
QCD static potentials ourselves, in order to update our
results with more precision and, hopefully, with excited
meson-meson channels, possibly even with spin-depen-
dent potentials [58,59]. For example, considering also a
B̄ð�ÞB�

0;1 channel with threshold at ≈11.025 GeV would
enable us to predict further excited states not yet discov-
ered in experiments.
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