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We investigate the axial Uð1Þ anomaly of two-flavor QCD at temperatures 190–330 MeV. In order to
preserve precise chiral symmetry on the lattice, we employ the Möbius domain-wall fermion action as
well as overlap fermion action implemented with a stochastic reweighting technique. Compared to our
previous studies, we reduce the lattice spacing to 0.07 fm, simulate larger multiple volumes to estimate
finite size effect, and take more than four quark mass points, including one below physical point to
investigate the chiral limit. We measure the topological susceptibility, axial Uð1Þ susceptibility, and
examine the degeneracy of Uð1Þ partners in meson/baryon correlators. All the data above the critical
temperature indicate that the axial Uð1Þ violation is consistent with zero within statistical errors. The
quark mass dependence suggests disappearance of the Uð1Þ anomaly at a rate comparable to that of the
SUð2ÞL × SUð2ÞR symmetry breaking.
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I. INTRODUCTION

The two-flavorQCDLagrangian in themassless limit has a
global SUð2ÞL × SUð2ÞR ×Uð1ÞV × Uð1ÞA symmetry. It is
widely believed that its SUð2ÞL × SUð2ÞR part is sponta-
neously broken to SUð2ÞV at low temperatures but is restored
above some critical temperature, which is called the chiral
phase transition. On the other hand, the axial Uð1ÞA part is
broken by the chiral anomaly. Since the anomaly refers to
symmetry breaking at the cutoff scale where the theory is
defined, and the anomalous Ward-Takahashi identity holds
at any temperature [1], it is natural to assume that the
anomaly survives the chiral phase transition and the physics
of the early universe is not Uð1ÞA symmetric.

However, there is a counter argument to this naive
picture. In fact, the Uð1ÞA anomaly is connected to the
topology of the gauge field, which is sensitive to the low
energy dynamics, and low-lying modes of the Dirac
operator affect the strength of the Uð1ÞA violation. In
particular, if the Dirac spectrum has a gap at the lowest end
of the spectrum, the Uð1ÞA anomaly becomes invisible in
two-point mesonic correlation functions in the chiral limit
[2,3]. Since the SUð2ÞL × SUð2ÞR symmetry is also related
to the Dirac spectrum through the Banks-Casher relation
[4], the restoration of SUð2ÞL × SUð2ÞR at the chiral
transition may also affect the Uð1ÞA anomaly. Indeed, it
was argued that the Uð1ÞA anomaly can completely
disappear in correlation functions of scalar and pseudo-
scalar operators [5].
If the effect of the Uð1ÞA anomaly is negligible at and

above the critical temperature, it may have an impact on our
understanding of the phase diagram of QCD [6]. In the
standard effective theory analysis of the chiral phase
transition, we expect only the pion and its chiral-partner
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scalar particle to be the light degrees of freedom that govern
the low-energy dynamics of QCD near the phase transition.
When the Uð1ÞA symmetry is effectively restored, the η,
isospin singlet pseudoscalar, and its chiral partner may play
a nontrivial role [7–9]. Since the effective potential can
have more complicated structure as the degrees of freedom
increase, it was argued that the chiral phase transition likely
becomes first order whenUð1ÞA symmetry is recovered (we
refer the readers to [10] for a different aspect of the first-
order scenario from ’t Hooft anomaly matching), though
other scenarios are theoretically possible [11–16].
How much the Uð1ÞA anomaly contributes to the

dynamics has a significant importance on cosmology.
The topological susceptibility is related to the mass and
decay constant of the QCD axion, which is a candidate of
the dark matter. Its temperature dependence influences the
relic abundance of the axion [17–23].
For the nontrivial question of how much the Uð1ÞA

anomaly remains and affects the chiral phase transition,
only lattice QCD can give a quantitative answer. Good
control of chiral symmetry on the lattice [24–27] is
necessary in order to precisely discriminate between the
lattice artifact and the physical signal that survives in the
continuum limit. Our previous studies [28–30] demon-
strated that the signal of topological susceptibility is
sensitive to the violation of chiral symmetry at high
temperature, and the reweighting of the Möbius domain-
wall fermion determinant to that of the overlap fermion is
essential when the lattice spacing is coarse a≳ 0.1 fm. We
also found that the use of the overlap fermion only in the
valence sector [31–33] makes the situation worse, since the
lattice artifact due to the mixed action, which is unphysical,
is strongly enhanced.
After removing the lattice artifact due to the violation

of the Ginsparg-Wilson relation at high temperature, we
observed that chiral limit of the Uð1ÞA susceptibility is
consistent with zero [30]. The disappearance of the Uð1ÞA
anomaly (at around 1.2Tc) was also reported by other
groups simulating nonchiral fermions [34,35].1 In [37],
it was found that the Uð1ÞA symmetry shows up at 1.3Tc
but not around Tc.

2

In this work, we reinforce the conclusion of [30] by
(1) reducing the lattice spacing to an extent where we
observe consistency between the overlap and Möbius
domain-wall fermions, 2) simulating different lattice vol-
ume sizes in a range 1.8 ≤ L ≤ 3.6 fm, and 3) simulating
more quark mass points, including one below the physical
point, to investigate the chiral limit. In order to study
possible artifact due to topology freezing, we also apply the

reweighting from a larger quark mass, where topology
tunneling is frequent, down to the mass where the topo-
logical susceptibility is consistent with zero. We measure
the topological susceptibility, axial Uð1Þ susceptibility,
meson correlators, and baryon correlators. Some of the
results were already reported in our contributions to the
conference proceedings [39–45].
All the data at temperatures above 190 MeV show that

the axial Uð1Þ anomaly is consistent with zero, within
statistical errors. Its quark mass dependence indicates
that the disappearance of the Uð1Þ anomaly is at a rate
comparable to that of the SUð2ÞL × SUð2ÞR symmetry.
At higher temperature, we have also observed a further
enhancement of symmetry [46–49].
The rest of the paper is organized as follows. We

describe our lattice setup and how to implement the chiral
fermions in the simulations in Sec. II. In Sec. III, the
numerical results for the Dirac spectrum, topological
susceptibility, axial Uð1Þ susceptibility, and meson/
baryon screening masses are presented. The conclusion
is given in Sec. IV.

II. LATTICE SETUP

The setup of our simulations is basically the same as our
previous study [30], except for the choice of parameters
(larger lattice sizes up to 3.6 fm, and smaller lattice spacing
a ∼ 0.074 fm). Our naive estimate for the critical temper-
ature of the chiral phase transition in [30] is Tc ∼ 175 MeV,
which was obtained from the Polyakov loop.3 Below,
we summarize the essential part.
In the hybrid-Monte-Carlo (HMC) simulations,4 we

employ the tree-level improved Symanzik gauge action
[53] for the link variables and the domain-wall fermion [54]
with an improvement (the Möbius domain-wall fermions
[55,56]) for the quark fields. Here we set the size of the fifth
direction as Ls ¼ 16. The Möbius kernel is taken as

HM ¼ γ5
2DW

2þDW
; ð1Þ

where DW is the standard Wilson-Dirac operator with a
large negative mass −1=a. In the following, we omit a,
when there is no risk of confusion. The numbers
without physical unit, e.g., MeV, are in the lattice unit.
The fermion determinant thus obtained corresponds to a
four-dimensional effective operator,

D4D
DWðmÞ ¼ 1þm

2
þ 1 −m

2
γ5 tanhðLs tanh−1ðHMÞÞ: ð2Þ

1In [36], they gave a preliminary results showing that the
anomaly studied in [34] looks enhanced as the volume size
increases.

2A recent work [38] reported that Uð1ÞA symmetry is still
broken at 1.6Tc using highly improved staggered quarks with
lattice spacings 0.06–0.12 fm.

3Our estimate for the critical temperature on coarse and small
lattices was not very accurate whereas the scale setting via the
Wilson flow is precise. See below for the details.

4Numerical works are done with the QCD software package
IroIroþþ [50], Grid [51] and Bridgeþþ [52].
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Note that if we take the Ls ¼ ∞ limit, this operator
converges to the overlap-Dirac operator [57] with a kernel
operatorHM. The stout smearing [58] is applied three times
with the smoothing parameter ρ ¼ 0.1 for the link variables
in the Dirac operator.
The residual mass for our main runs at β ¼ 4.30 is

0.14(6) MeV, which may look small enough for the
measurements in this work. However, as we reported in
our previous studies, the chiral symmetry breaking due to
lattice artifacts is enhanced at high temperature, in par-
ticular for the axial Uð1Þ susceptibility. Therefore, we
employ an improved Dirac operator, exactly treating the
near-zero modes of HM to compute the sign function. With
the near-zero modes whose absolute value is less than 0.24
(∼630 MeV) treated exactly, we find that the residual mass
becomes negligible ∼10−5 or ∼0.01 MeV. Although it is
different from the original definition in [57], we call this
improved Dirac operator the “overlap” Dirac operator
DovðmÞ. Note that our overlap operator has a finite Ls,
i.e., Ls ¼ 16. As we also found in our previous study that
the lattice artifact from mixed action is large even though
the overlap and Möbius domain-wall fermion actions are
very similar to each other, we reweight the gauge configu-
rations of the Möbius domain-wall fermion determinant by
that of the overlap fermion. For details of this OV/MDW
reweighting, see [30]. As we will see below, at β ¼ 4.30 the
results with the overlap fermion and those with Möbius
domain-wall fermion are consistent with each other, except
for the Uð1Þ susceptibility at T ≤ 260 MeV. For the meson
and baryon correlators, we use the Möbius domain-wall
fermion without reweighting.
The lattice spacing is estimated from the Wilson flow

with a reference flow time t0 ¼ ð0.1539 fmÞ2 determined
in [59]. For our main runs at β ¼ 4.30, the physical point of
the bare quark mass is estimated as m ¼ 0.0014ð2Þ, which
is slightly above our lightest quark mass. For this estimate,
we used a leading-order chiral perturbation formula, with
an input of simulated pion mass mπ ¼ 0.135ð8Þ (in the
lattice units) determined from a zero temperature study at
m ¼ 0.01. The choice of the simulation parameters enables
us to interpolate the results to the physical point.
The simulation parameters are summarized in Table I.

Compared to the previous work [30], we reduce the lattice
spacing from ∼0.1 fm to 0.074 fm. At this value of lattice
spacing, we change temperatures by varying the temporal
extent Lt ¼ 8, 10, 12, 14, which correspond to temper-
atures T ¼ 190–330 MeV. In order to estimate the finite
volume effects, we simulate with four different volume
sizes L3 with L ¼ 24, 32, 40 and 48 at T ¼ 220 MeV.
We also increase the statistics at β ¼ 4.24 ensembles
continued from [30] to check the consistency between
different lattice spacings.
For each ensemble, we simulated more than 20000

trajectories from which we carry out measurements on
the configurations separated by 100 trajectories. We then

bin the data in every 1000 trajectories, which is longer
than autocorrelation lengths we observe. When we use the
OV/MDW reweighting, we lose some amount of statistics
due to its noise. An estimate for the effective number of
statistics Nrew in the table is defined as

Nrew ¼ hRi
Rmax

; ð3Þ

where R is the reweighting factor or the ratio of the
determinant and Rmax is its maximal value in the ensemble.
As discussed in [30], R has a negative correlation with the
axial Uð1Þ observables, and the statistical error estimated
by the jackknife method are smaller than expected from
1=

ffiffiffiffiffiffiffiffiffi
Nrew

p
. For the ensembles with small number of

Nrew ∼ 10, it is important to check the consistency with
the Möbius domain-wall results without reweighting.

III. NUMERICAL RESULTS

In this section, we show our numerical results on the
axial Uð1Þ anomaly. For meson and baryon correlators, we
also present the tests of the SUð2ÞL × SUð2ÞR symmetry
for comparison.

A. Dirac spectrum

The spectral density of the Dirac operator

ρðλÞ ¼ 1

V

X
i

hδðλ − λiÞi; ð4Þ

in volume V is used as a probe of chiral symmetry breaking.
Here, λi denotes the ith eigenvalue of the Dirac operator
on a given gauge configuration and h� � �i is the gauge
ensemble average. In the chiral limit after taking the
thermodynamical limit, we obtain the Banks-Casher rela-
tion [4], which relates the chiral condensate hq̄qi to the
spectrum at λ ¼ 0:

hq̄qi ¼ πρð0Þ: ð5Þ

We expect that ρð0Þ ¼ 0 above the critical temperature of
the chiral phase transition.
As the vacuum expectation value (vev) hq̄qi also breaks

the axial Uð1Þ symmetry, the details of ρðλÞ in the vicinity
of zero is important in this work. It has been shown that if
the spectrum has a finite gap at λ ¼ 0, the anomaly
becomes invisible in mesonic two-point functions [2,3].
In Ref. [5], it is argued that the SUð2ÞL × SUð2ÞR sym-
metry restoration requires ρðλÞ ∼ λα with the power α > 2,
which is sufficient to show the absence of the axial Uð1ÞA
anomaly in multipoint correlation functions of scalar and
pseudoscalar operators.
We measure the eigenvalues/eigenfunctions of the

Hermitian four-dimensional effective Dirac operator
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HDWðmÞ ¼ γ5D4D
DWðmÞ and those of the corresponding

overlap-Dirac operator. Each eigenvalue λm is converted
to the one of massless Dirac operator by λ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2m −m2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

p
. Forty lowest (in their absolute

value) modes are stored for gauge configurations
separated by 100 trajectories. They cover a range from
zero to 300–500 MeV.
In Fig. 1, we present the Dirac eigenvalue density of the

overlap-Dirac operator at T ¼ 220 MeV at L ¼ 32. Here
the OV/MDW reweighting is applied. Compared to the
solid line which represents the chiral condensate at T ¼ 0

[60], the low-modes are suppressed by an order of
magnitude. We observe a sharp peak near zero, which

rapidly disappears as quark mass decreases, as expected
from the SUð2ÞL × SUð2ÞR symmetry restoration. Since
we find no clear gap, a region of λ where ρðλÞ ¼ 0, we are
not able to conclude if the axial Uð1Þ symmetry is
recovered or not from this observable only.
We also compare these results with the Dirac spectral

density of the Möbius domain-wall fermion (dashed
symbols) in Fig. 1. The agreement is remarkable. On the
other hand, when we switch off the OV/MDW reweighting,
which we call the non-reweighted overlap fermion setup,
we observe a remarkable peak at the lowest bin, as
presented in Fig. 2. Similar peaks were reported in [31–33],
with overlap fermion only in the valence sector. Our data

TABLE I. Simulation parameters. The values of mr are taken for the mass reweighting on that particular ensemble. Nrew denotes the
effective number of configurations after the OV/MDW reweighting (see the main text). #trj. is number of trajectory. The β ¼ 4.24 runs
are continuation from [30] to check the consistency.

β aðfmÞ L3 × Lt TðMeVÞ LðfmÞ m #trj. Nrew Comments

4.24 0.084 323 × 12 195 2.7 0.0025 21200 10(2)
Continuation from [30]0.005 20000 10(1)

0.01 25300 7(1)

4.30 0.074 323 × 14 190 2.4 0.001 13900 38(2)
0.0025 16600 8(1)
0.00375 12500 10(1)
0.005 10600 9(1)

243 × 12 220 1.8 0.001 31900 50(1)
0.0025 33400 49(1)
0.00375 34600 17(1)
0.005 36000 16(1)
0.01 35900 47(2)

323 × 12 220 2.4 0.001 26500 32(1)
0.0025 26660 57(2)
0.00375 26420 28(2)
0.005 18560 30(1)
0.01 31000 93(2)

403 × 12 220 3.0 0.005 28100 13(1)
0.01 27300 39(2)

483 × 12 220 3.6 0.001 11200 4(1)
0.0025 11300 8(1)
0.00375 12800 10(2)
0.005 10900 2(1)

323 × 10 260 2.4 0.005 12780 25(1) mr ¼ 0.003, 0.004
0.008 20050 19(1)
0.01 29000 58(2) mr ¼ 0.006, 0.007, 0.008, 0.009
0.015 12000 20(1)

323 × 8 330 2.4 0.001 26100 42(2)
0.005 31700 28(2)
0.01 24500 37(5)
0.015 30500 61(2)
0.02 19100 39(2) mr ¼ 0.0125, 0.015, 0.0175
0.04 5000 12(1)

483 × 8 330 3.6 0.01 9000 19(2)
0.015 13950 17(2)
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clearly show that these peaks are due to the lattice artifact of
the mixed action.
In order to grasp possible systematic effects due to the

finite lattice size, we compare the accumulated histogram

AðλÞ ¼
Z

λ

0

dλ0ρðλ0Þ ð6Þ

at three different volumes, L ¼ 24 (1.8 fm), 32 (2.4 fm),
40 (3.0 fm) in Fig. 3. Except for L ¼ 24 at m ¼ 0.01,
whose aspect ratio LT is 2, which is smallest among the
data sets, no clear volume dependence is seen. The point
m ¼ 0.01 is the heaviest mass in our simulation set, which
is expected to be least sensitive to the volume, but the Dirac
low-mode density is rather high, and some remnants of
spontaneous SUð2ÞL × SUð2ÞR breaking and associated
pseudo Nambu-Goldstone bosons may be responsible for
this volume dependence.

We summarize the results at different temperatures in
Fig. 4. The higher the temperature, the stronger the
suppression of the low modes is. We find a good con-
sistency between the Möbius domain-wall and reweighted
overlap results. We also find that β ¼ 4.30 and 4.24 results
are consistent. The quark mass dependence is not very
strong except for the lowest bin near λ ¼ 0.
Finally, the quark mass dependence of the eigenvalue

density of the reweighted overlap operator near λ ¼ 0 (with
the bin size ∼10 MeV) is presented in Fig. 5. Here both the
chiral zero modes and nonchiral pair of near zero modes are
included. It is remarkable that the density of near-zero
modes at different temperatures show a steep decrease
toward the massless limit and becomes consistent with zero
already at finite quark masses. As will be shown below, this
behavior of near zero modes is strongly correlated with the
signals of the axial Uð1Þ anomaly.

B. Topological susceptibility

In order to quantify the topological excitations of gauge
fields, we measure the topological chargeQ in two different
ways. One is the index of the overlap-Dirac operator, or the
number of zero modes with positive chirality minus that
with negative chirality. For this, we perform the OV/MDW
reweighting to avoid possible mixed action artifacts, which
is found to be quite significant. The other is a gluonic
definition, measured directly on the Möbius domain-wall
ensemble, using the cloverlike construction of the gauge
field strength Fμν after applying the Wilson flow on the
gauge configuration with a flow time ta2 ¼ 5.
The results for the topological susceptibility χt¼hQ2i=V

obtained at T ¼ 220 MeV are shown in Fig. 6. The filled
symbols show the data for the index of the overlap-Dirac
operator with the OV/MDW reweighting, while the
dotted symbols are those for gluonic definition without
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reweighting. Both are consistent with each other. The
systematics due to chiral symmetry violating lattice arti-
facts is therefore under control. We also find that there is no
strong volume dependence, except for the heaviest point
with L ¼ 1.8 fm where the aspect ratio is LT ¼ 2.
In Fig. 7, we present the data at various temperatures.

The volume size is fixed to L ¼ 32 (2.4 fm), except for data
at T ¼ 195 MeV (β ¼ 4.24) (2.7 fm) denoted by diamonds
and those at T ¼ 330 MeV (3.6 fm) by crosses. Here the
filled symbols are those obtained with reweighting from the

ensemble at a higher mass point shown by open symbols.
Even on the configurations where topology fluctuates
frequently, the reweighted results decrease toward the
chiral limit, which is consistent with the non-reweighted
data. See Table I for the ensembles and masses to which we
applied the mass reweighting.
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In order to focus on the region near the chiral limit and
compare the scale of χt compared to the temperature, we
plot the same data in Fig. 8 taking the fourth root of χt and
normalizing it by T. It suggests that the topological
susceptibility near the chiral limit is suppressed to the
level of Oð10Þ MeV with a power ∼m4 (or χ1=4t ∼m). The
results are not precise enough to determine if χt goes to zero
at finite quark mass, as predicted in [5].

C. Axial Uð1Þ susceptibility
Let us investigate a more direct measure of the violation

of the axial Uð1Þ symmetry, i.e., the axial Uð1Þ suscep-
tibility, defined by the difference between the pseudoscalar
(π) and scalar (δ) correlators integrated over spacetime,

ΔðmÞ ¼
X
x

½hπðxÞπð0Þi − hδðxÞδð0Þi�; ð7Þ

where the ensemble average is taken at a finite quark
mass m. For the overlap-Dirac operator, we can express
ΔðmÞ using the spectral decomposition (see [28] for the
details):

ΔðmÞ ¼ 1

Vð1 −m2Þ2
�X

λm

2m2ð1 − λ2mÞ2
λ4m

�
; ð8Þ

where λm’s are the eigenvalues of HovðmÞ≡ γ5DovðmÞ.
Although this equality holds even in a finite volume, we
must take the thermodynamical limit before taking the
chiral limit.
In our previous study [30], we found that the contribu-

tion from chiral zero modes is quite noisy. As an alter-
native, we subtract the zero-mode contribution, for which
λm ¼ m, and define

Δ̄ðmÞ≡ ΔðmÞ − 2hjQji
m2ð1 −m2Þ2V ; ð9Þ

where Q is the index of the overlap-Dirac operator. We
remind the reader that the index Q is equal to the
topological charge of the gauge field. This subtraction is
justified because in the thermodynamical limit, while at a
fixed temperature, hjQji scales as V1=2 (¼ L3=2), and thus
the zero-mode contributions vanish in the large volume
limit as 1=V1=2. We numerically confirm this scaling at
T ¼ 220 MeV as presented in Fig. 9. The L3=2 scaling of
hjQji looks saturated for 1=ðTLÞ < 0.4. Therefore, Δ̄ðmÞ in
the thermodynamical limit coincides with ΔðmÞ.
In this work, we further refine the observable by

removing the UV divergence. From a simple dimensional
analysis of the spectral expression in Eq. (8), the valence
quark mass mv dependence of Δ̄ðmÞ can be expanded as

A
m2

v
þ Bþm2

vCþOðm4
vÞ; ð10Þ
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and C has a logarithmic UV divergence. What we are
interested in is the divergence free piece A

m2
v
þ B and if it is

zero or not in the chiral limit. Note that A and B contain a
sea quark mass msea dependence, and A, in particular,
should be suppressed as m2

sea, at least, to avoid possible IR
divergence in the limit of msea ¼ mv → 0. Measuring
Δ̄ðmÞ at three different valence masses m1;2;3, we extract
the UV finite quantity:

Δ̄UVsubt: ¼ m2
2m

2
3

m2
2 −m2

3

�
Δ̄ðm1Þ− Δ̄ðm2Þ

m2
1 −m2

2

−
Δ̄ðm1Þ− Δ̄ðm3Þ

m2
1 −m2

3

�

þ ðm2
1 þm2

2Þðm2
1 þm2

3Þ
m2

3 −m2
2

�
m2

1Δ̄ðm1Þ−m2
2Δ̄ðm2Þ

m4
1 −m4

2

−
m2

1Δ̄ðm1Þ−m2
3Δ̄ðm3Þ

m4
1 −m4

3

�
; ð11Þ

while fixing the sea quark mass m. By choosing m1 ¼ m
and m2;3 in its vicinity, one can easily confirm that
Δ̄UVsubt:ðmÞ ¼ A=m2 þ BþOðm4Þ. In this work, we
choose m2 ¼ 0.95m and m3 ¼ 1.05m.
We compute Δ̄ðmÞ through the expressions in Eqs. (8)

and (9) truncating the sum at a certain upper limit λcut
(around 180–500 MeV). We then use Eq. (11) to obtain the
UV subtracted susceptibility. Figure 10 shows the λcut
dependence of ½Δ̄UVsubt:�1=2, where the left panel shows
data at T ¼ 190 MeV and 220 MeV and the right is for
T ¼ 260 and 330 MeV. The data at lower three temper-
atures are well saturated at λcut ∼ 50 MeV, while the data at
T ¼ 330 MeV show a monotonic increase though its
magnitude is small. The shadowed bands are stochastic
estimates of the two-point functions using the Möbius
domain-wall Dirac operator with three different valence
quark masses. This estimates contain contributions from all
possible modes under the lattice cutoff, and the consistency
between the two methods at T ¼ 260 MeV supports our
observation that the low-mode approximation is good for
T ¼ 260 MeV and below. The data also show the con-
sistency between the overlap and Möbius domain-wall

fermion formulations at this temperature, in contrast to
disagreement at lower temperatures (see below). As shown
in the Dirac eigenvalue density, the eigenvalues are
pushed up for higher temperatures, which makes the
low-mode approximation worse, but makes the violation
of the Ginsparg-Wilson relation less crucial. In the
following analysis, we use the stochastic Möbius domain-
wall results for T ¼ 330 MeV and the low-mode approxi-
mation of the overlap fermion for the other lower
temperatures.
In Fig. 11, the results for ½Δ̄UVsubt:�1=2 at T ¼ 220 MeV

are shown. Filled symbols with solid lines are data of
reweighted overlap fermion and dashed open symbols are
those of the Möbius domain-wall fermion. As reported in
[30], the Möbius domain-wall fermion results deviate from
due to the sensitivity of the observable to the violation of
the Ginsparg-Wilson relation. Except for the heaviest two
points with L ¼ 1.8 fm where the aspect ratio LT is 2, the
data are consistent among four different volumes. The axial
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Uð1Þ anomaly is strongly suppressed to a few MeV level at
the lightest quark mass.
This strong suppression is also seen at different temper-

atures, as presented in Fig. 12. For T ¼ 260 MeV, the
overlap and Möbius domain-wall fermion results agree
well, in contrast to the lower temperatures. The chiral limit
of ½Δ̄UVsubt:�1=2 looks consistent with zero, and the value
near the physical point is 20 MeV, at most.
In Table II, we summarize the results for the lowest bin

of the eigenvalue density or ρðλ ¼ 0Þ, hQ2i ¼ χtV, and
axial Uð1Þ susceptibility Δ̄UVsubt:.

D. Meson correlators

In the previous subsection we studied the difference
between the pseudoscalar and scalar two-point correlation
function integrated over the whole lattice. Since we have
subtracted the short-range UV divergent part, the quantity
is essentially probing physics at the scale of our lattice size
L, which is sensitive to the near zero modes. In this
subsection, we investigate the mesonic two point correla-
tion function itself, which must contain shorter-range
information of QCD, as our fitting range is typically L=4.
We measure the spatial correlator in the z direction

CΓðzÞ ¼ −
X
x;y;t

hOΓðx; y; z; tÞŌΓð0; 0; 0; 0Þi; ð12Þ

with OΓ ¼ q̄ τ⃗ Γq. Here τ⃗ are the generators in the flavor
space. For Γ we choose γ5ðPSÞ, 1ðSÞ, γ1;2ðVÞ, γ5γ1;2ðAÞ,
γ4γ3ðTtÞ and γ5γ4γ3ðXtÞ. In this work, we focus on Tt, and
Xt channels, which are related by the axial Uð1Þ trans-
formation, as well as the V and A channels to check the
recovery of the SUð2ÞL × SUð2ÞR symmetry. We find that
the S correlator is too noisy to extract the “mass” and
compare it with that of PS. For other channels, we will
report elsewhere.
Since this quantity represents shorter distance physics

than the axial Uð1Þ susceptibility obtained from integration
over whole lattice, the violation of the Ginsparg-Wilson

 0

 100

 200

 300

 400

 500

 600

 700

 0  20  40  60  80  100  120

(
-

U
V

su
bt

. )1/
2  [

M
eV

]

m (MeV)

T=190MeV
T=220MeV
T=260MeV

T=260MeV (stochastic DW)
T=330MeV (stochastic DW)

FIG. 12. The same as Fig. 11 but at different temperatures.

TABLE II. The results for the lowest bin of the eigenvalue density or ρðλ ¼ 0Þ, hQ2i ¼ χtV, and axialUð1Þ susceptibility Δ̄UVsubt:. For
T ¼ 330 MeV, the stochastic Möbius domain-wall results are listed.

β L3 × Lt TðMeVÞ m ρðλ ¼ 0Þ hQ2i Δ̄UVsubt:

4.24 323 × 12 195 0.0025 0.00211(91) 0.084(37)
0.005 0.0134(22) 0.575(83)
0.01 0.0393(69) 3.1(10)

4.30 323 × 14 190 0.001 0.9ð9Þ × 10−9 4ð4Þ × 10−8 0.00020(11)
0.0025 0.0037(11) 0.113(29) 0.0144(77)
0.00375 0.0126(25) 0.69(17) 0.031(15)
0.005 0.0113(19) 0.442(83) 0.0419(98)

323 × 12 220 0.001 0.8ð8Þ × 10−7 4ð4Þ × 10−6 1.4ð9Þ × 10−5

0.0025 0.00035(22) 0.014(12) 0.000128(35)
0.00375 0.000262(88) 0.0110(36) 0.000185(57)
0.005 0.0064(14) 0.367(74) 0.0046(23)
0.01 0.0160(22) 1.13(16) 0.0211(31)

323 × 10 260 0.005 0.00104(76) 0.043(20) 3ð2Þ × 10−5

0.008 0.0031(11) 0.122(38) 0.0042(34)
0.01 0.0047(13) 0.232(71) 0.00130(83)
0.015 0.0057(22) 0.251(96) 0.00040(27)

323 × 8 330 0.001 0(0) 0(0) 3ð6Þ × 10−5

0.005 1.2ð9Þ × 10−5 0.00049(39) 0.00040(26)
0.01 6ð2Þ × 10−5 0.0024(14) 0.000169(87)
0.015 0.00074(62) 0.044(28) 0.00043(31)
0.02 0.0025(10) 0.099(41) 0.000215(99)
0.04 0.0044(16) 0.508(97) 0.00035(17)
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relation enhanced by near-zero modes found in [30] is less
severe. Therefore, we employ the Möbius domain-wall
fermion formalism without reweighting. In order to
improve the statistics, rotationally equivalent directions
are averaged. Also, low-mode averaging [61,62] using 40
lowest eigenmodes of HDWðmÞ is performed with four
equally spaced source points at temperature T ¼ 220 MeV.
For the channels other than S, the signal is good enough

to extract the asymptotic behavior of CΓðzÞ at large z,
which should contain the information of the screening
mass. However, the correlator at high temperatures may not
behave like a single exponential even at large z. To
circumvent this, recent studies often apply multi-state fits
and introduce various source types to extract ground-state
values, e.g., in [37].
The asymptotic behavior depends on the structure of the

spectral functions (in the spatial direction) for each channelΓ:

CΓðzÞ ¼
Z

dωρΓðωÞ
Z

dpz

2π

2ωeipzz

p2
z þ ω2

¼
Z

dωρΓðωÞe−ωz:

ð13Þ

When the spectral function ρΓðωÞ starts from a series of
delta functions, which represents isolate poles, CΓðzÞ at
large z is dominated by a single exponential. On the other
hand, if the correlator is described by deconfined two quarks,
ρΓðωÞ is a continuous function ofω, provided that the volume
is sufficiently large. Let us assume that ρΓðωÞ becomes
nonzero at a threshold 2m̄, where m̄ is a constituent
screening quark mass. For large z, we can expand ρΓðωÞ
as θðω − 2m̄Þðc0 þ c1ðω − 2m̄Þ þ � � �Þ (with a step function
θ), which results in CΓðzÞ ∼ expð−2m̄zÞðc0=zþOð1=z2ÞÞ.
In the Appendix, we show that this form of the spectral
function is indeed realized in the free two quark propagators.
The essential difference from the single exponential is, thus,
the factor 1=z. In this study we therefore apply two types of
fitting functions: the standard cosh function,

AΓ
coshðmΓðz − L=2ÞÞ

sinhðmΓL=2Þ
; ð14Þ

and the two-quark-inspired function (2q),

FIG. 13. Cosh (squares) and “2-quark” (triangles) effective masses at T ¼ 220 MeV. The top panels show the data from A correlators,
while the bottom panels are Tt correlators. The left panels are at the heaviest simulated mass m ¼ 0.01 and the right ones are at the
lightest m ¼ 0.001. The band indicates the fit result and its range. The dashed line shows the Matsubara frequency πT times 2 expected
for two free quarks.
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BΓ

�
e−m

0
Γz

m0
Γz

þ e−m
0
ΓðL−zÞ

m0
ΓðL − zÞ

�
: ð15Þ

In the free quark limit,we obtainedmore complete formof the
two-quark propagations for each channel [46]. Note that in
this limit, m̄ ¼ πT, which is the lowest Matsubara mass. It is,
therefore, interesting to see how much m0

Γ is close to 2πT at
our simulated temperature.
In order to compare the above fitting functions, it is

helpful to plot their effective masses mΓðzÞ and m0
ΓðzÞ

defined as the solutions of

coshðmΓðzÞðz − L=2ÞÞ
coshðmΓðzÞðzþ 1 − L=2ÞÞ ¼

CΓðzÞ
CΓðzþ 1Þ ; ð16Þ

and

e−m
0
ΓðzÞz

m0
ΓðzÞz þ

e−m
0
ΓðzÞðL−zÞ

m0
ΓðzÞðL−zÞ

e−m
0
ΓðzÞðzþ1Þ

m0
ΓðzÞðzþ1Þ þ e−m

0
ΓðzÞðL−z−1Þ

m0
ΓðzÞðL−z−1Þ

¼ CΓðzÞ
CΓðzþ 1Þ ; ð17Þ

respectively, with the lattice data of CΓðzÞ=CΓðzþ 1Þ. If
the fitting form is good, the effective mass converges to a
constant at a shorter value of z. In Fig. 13, we plot typical
effective mass plots at T ¼ 220 MeV. Square symbols are
data for mΓðzÞ and the circles are those for m0

ΓðzÞ. The top
two panels show the data obtained from A correlators,
while the bottom panels are from Tt correlators. The left
panels are at the heaviest simulated mass m ¼ 0.01 and the
right ones are at the lightestm ¼ 0.001. The band indicates
the fitting result and its range. We find that the 2q function
shows longer and more stable plateau.
It is interesting to see that the plateaux are located at a

mass lower than 2πT which is indicated by dashed lines.

TABLE III. Meson screening mass determined with two-quark-inspired fit ansatz. Fit range is several lattice spacings around z ¼ 8
(0.6 fm) depending on parameters.

m0ðMeVÞ
β size TðMeVÞ ma PS S V A Tt Xt

4.30 323 × 14 190 0.001 172(104) 832(66) 872(62) 749(171) 1209(249)
0.0025 44(41) 1015(216) 928(214) 802(100) 1020(129)
0.00375 118(20) 747(61) 862(86) 1111(61) 759(125)
0.005 147(24) 806(99) 923(151) 942(82) 1036(123)

243 × 12 220 0.001 482(31) 482(32) 1027(41) 1028(41) 1088(22) 1086(22)
0.0025 413(47) 510(64) 1074(91) 1078(92) 1015(94) 1166(108)
0.00375 512(31) 590(59) 1055(44) 1068(46) 1138(35) 1108(31)
0.005 386(39) 640(237) 1103(54) 1109(56) 1011(48) 1153(73)
0.01 467(26) 772(104) 1070(53) 1040(60) 1093(24) 1160(29)

323 × 12 220 0.001 433(56) 445(55) 1047(36) 1048(30) 1066(42) 1060(43)
0.0025 486(25) 538(46) 1031(48) 1030(36) 1122(44) 1156(43)
0.00375 402(28) 698(269) 978(65) 1006(63) 1024(52) 942(51)
0.005 403(46) 1054(47) 1073(32) 1252(94) 1094(108)
0.01 408(24) 967(51) 1062(39) 1128(52) 1096(59)

403 × 12 220 0.005 334(85) 1022(37) 1021(37) 1068(69) 1146(45)
0.01 375(35) 1000(21) 1040(33) 1056(55) 1228(77)

483 × 12 220 0.001 569(35) 571(36) 1001(31) 1001(31) 1126(21) 1125(21)
0.0025 608(21) 616(21) 1002(34) 1003(34) 1114(40) 1113(40)
0.00375 577(66) 540(154) 944(51) 946(53) 992(66) 1045(76)
0.005 425(62) 581(125) 1085(28) 1092(28) 1091(59) 1122(68)

323 × 10 260 0.005 959(18) 998(20) 1307(7) 1308(7) 1368(7) 1366(7)
0.008 941(19) 966(22) 1332(11) 1333(11) 1386(10) 1385(10)
0.01 850(25) 997(69) 1313(11) 1314(11) 1357(15) 1363(14)
0.015 935(50) 1144(90) 1381(13) 1387(14) 1426(14) 1436(15)

323 × 8 330 0.001 1486(34) 1486(34) 1781(14) 1781(14) 1837(14) 1837(14)
0.005 1535(13) 1535(13) 1799(9) 1799(9) 1849(11) 1849(11)
0.01 1551(12) 1553(12) 1818(10) 1819(10) 1857(9) 1857(9)
0.015 1526(11) 1528(11) 1792(10) 1793(10) 1853(11) 1854(11)
0.02 1489(49) 1610(56) 1781(9) 1783(9) 1806(10) 1809(10)
0.04 1560(19) 1574(20) 1833(12) 1838(12) 1864(11) 1870(11)
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While we plan to give a detailed analysis in another
publication [63], we show the screening mass m0 obtained
by a fit to the 2q formula Eq. (15). The results are listed in
Table III.
In Fig. 14, we plot the difference of the fittedm0 between

Tt and Xt correlators at T ¼ 220 MeV at different volumes.
They are connected by the Uð1ÞA rotation, and therefore,
the difference, denoted by Δmscreen, is a probe of the axial
Uð1Þ symmetry. For the reference, we also plot in
Fig. 15 the results for the difference between A and V
channels, which is an indicator for the SUð2ÞL × SUð2ÞR
symmetry.
Although the Uð1Þ data at heavier quark masses are

noisier than those for SUð2ÞL × SUð2ÞR, their chiral limit
looks consistent with zero, and the central values are only a
few MeV, at the lightest quark mass. We note that their
individual mass is ∼1 GeV. Therefore, the axial Uð1Þ
symmetry relation is satisfied at a sub-% level. This
behavior is also seen at different temperatures, as shown
in Fig. 16, except for T ¼ 190 MeV (but they are still
consistent with zero with large error bars). The disappear-
ance of the axial Uð1Þ anomaly is consistent with other
observables obtained using the reweighted overlap
fermions.

E. Baryon correlators

Finally, let us discuss baryon correlators. We calculate
the spatial correlation functions of baryon operators pro-
jected onto positive z-parity (or an even component under
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the z reflection) and the lowest Matsubara frequency
ω0 ¼ πT, which takes account of the antiperiodic boundary
conditions in t-direction [64]:

Cj ¼
X
x;y;t

eitω0hNþ
j ðx; y; z; tÞN̄þ

j ð0; 0; 0; 0Þi; ð18Þ

with nucleon operators Nþ
j ¼ P̂z

þðqTiτ2Γ1
jqÞΓ2

jq, and

the parity projection operator P̂z
þ ¼ ð1þ γ3Þ=2. The com-

binations ðΓ1
j ;Γ2

jÞ specify the operator channels:
N1 ¼ ðCγ5; 1Þ; N2 ¼ ðC; γ5Þ; N3 ¼ ðCγ4γ5; 1Þ, and N4 ¼
ðCγ4τ⃗; γ5τ⃗Þ with the charge conjugation matrix C ¼ iγ2γ4.
Similar to the case of mesons, N1 and N2 channels are
related by the axial Uð1Þ transformation, and the N3—N4

pair probes SUð2ÞL × SUð2ÞR symmetry [65].
Along the lines of the two-quark-inspired function for

mesons, we use a three-quark-inspired function

Bj
e−m

0
jz

m0
jz

2
ð19Þ

to extract a screening mass m0
j for each channel by fitting

the forward propagating states. This procedure gives
qualitatively the same picture as in the previous section:
a more stable plateau located at a lower energy value than
that from the single cosh function. We therefore use m0 to
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FIG. 17. Difference of the fitted m0 between the baryon N1 and
N2 correlators, which are connected by the Uð1ÞA rotation. The
data at T ¼ 220 MeV at different volumes are shown.

TABLE IV. Baryon screening masses determined with the three-quark-inspired fit ansatz.

m0ðMeVÞ
β size TðMeVÞ ma N1 N2 N3 N4

4.30 323 × 14 190 0.001 628(227) 619(235) 723(245) 621(335)
0.0025 1882(409) 1260(852)
0.00375 1576(403) 1640(292)
0.005 1173(348) 1410(150)

243 × 12 220 0.001 1525(83) 1525(83) 1848(48) 1847(48)
0.0025 1626(39) 1623(41) 1847(37) 1838(45)
0.00375 1665(45) 1645(46) 1834(35) 1828(36)
0.005 1351(100) 2291(500) 1863(72) 1745(79)
0.01 1350(77) 1949(200) 1865(60) 1719(63)

323 × 12 220 0.001 1563(49) 1572(49) 1700(35) 1697(36)
0.0025 1440(48) 1484(60) 1647(49) 1640(49)
0.00375 1507(81) 1469(103) 1687(41) 1687(39)
0.005 1557(56) 1494(97) 1754(48) 1750(46)
0.01 1343(95) 1854(160) 1763(50) 1645(50)

403 × 12 220 0.005 1442(82) 1521(116) 1681(101) 1624(70)
0.01 1425(93) 1459(166) 1692(52) 1673(44)

483 × 12 220 0.001 1416(122) 1418(123) 1307(113) 1305(114)
0.0025 1466(295) 1999(266)
0.00375 1773(234) 1403(196)
0.005 1605(56) 1620(50) 1716(59) 1643(52)

323 × 10 260 0.005 2042(23) 2071(25) 2163(19) 2149(20)
0.008 2018(32) 2020(32) 2160(29) 2154(29)
0.01 1950(91) 1902(131) 2226(64) 2061(77)
0.015 2080(44) 2114(53) 2207(43) 2196(40)

323 × 8 330 0.001 2847(34) 2847(34) 2948(30) 2948(30)
0.005 2727(38) 2728(38) 2835(39) 2833(39)
0.01 2775(45) 2775(45) 2900(50) 2899(49)
0.015 2773(19) 2776(19) 2873(17) 2869(17)
0.02 2740(32) 2745(32) 2864(30) 2859(30)
0.04 2710(28) 2733(30) 2857(23) 2841(22)
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compare masses of different channels. Contrary to the case
of mesons, we measure the baryon correlation functions
exclusively in z-direction without low-mode averaging.
The numerical results presented in Table IV and in

Fig. 17 show the difference of m0 between the axial
Uð1Þ partners. While the uncertainty grows with increasing
quark mass, the signal is consistent with zero for all
volumes at T ¼ 220 MeV. A similar restoration pattern
is seen for SUð2ÞL × SUð2ÞR symmetry, as shown in
Fig. 18, albeit with less fluctuations.
In Fig. 19 the mass difference for pairs of both

symmetries is shown at different temperatures. At
T ¼ 190 MeV, closer to the chiral transition, noise

dominates all quark masses except the lightest one. All
data indicate consistency with zero in the chiral limit. At
T ¼ 260 MeV and T ¼ 330 MeV some tiny violation at
the order of Oð10Þ MeV can be seen for nonvanishing
quark masses. Similar to the meson screening masses, this
is ∼1% of the individual screening masses m0.

IV. CONCLUSION

In this work, we simulated two-flavor lattice QCD and
tried to quantify how much of the axial Uð1Þ anomaly
survives at high temperatures 190–330 MeV. We employed
the Möbius domain-wall fermion action and the overlap
fermion action whose determinant is obtained by a sto-
chastic reweighting technique. We fixed the lattice spacing
to 0.074 fm, and chose more than four quark masses,
including one below the physical point.
We confirmed that our data are consistent with those

in the previous works [30] extending statistics of ensem-
bles at β ¼ 4.24. We also observed a good consistency
between the Möbius domain-wall and overlap fermions,
except for the axial Uð1Þ susceptibility, which is very
sensitive to the violation of the chiral symmetry at
T ¼ 220 MeV. The discretization effect is therefore well
under control. We also confirmed that the systematics
due to finite size of the lattice is under control. Our data
with various lattice sizes agree, except for those with
L ¼ 24, which has a small aspect ratio TL ¼ 2 at
T ¼ 220 MeV.
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FIG. 18. The same as Fig. 17 but between the baryon N3 and
N4 correlators, which shows the SUð2ÞL × SUð2ÞR symmetry.
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In the Dirac spectrum we found a strong suppression of
low but nonzero eigenmodes. The higher temperature, the
more suppression of the low lying modes observed. On the
other hand, for the chiral zero mode, a peak is found at all
four simulated temperatures but its quark mass dependence
is steep and the chiral limit is consistent with zero.
As expected from the behavior of the chiral zero mode, a

sharp disappearance of the topological susceptibility is
found, which suggests a mass dependence starting with a
power ∼m4 near the chiral limit. Our numerical data for the
axial U(1) susceptibility, meson and baryon correlators also
indicate that the axial Uð1Þ anomaly is consistent with zero
in the chiral limit. From these observations we conclude
that the remaining anomaly of the axial Uð1Þ symmetry at
the physical point for T ≥ 1.1 Tc is at most a few MeV
level, which is ∼1% of the simulated temperatures.
To examine if the disappearance of the Uð1ÞA anomaly

occurs at the same time as the SUð2ÞL × SUð2ÞR symmetry
is restored, we need a simulation around the critical
temperature, which is beyond the scope of this paper.
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APPENDIX: SPECTRAL FUNCTION OF TWO
AND THREE NONINTERACTING QUARKS

In this appendix, we compute propagators for two and
three noninteracting quarks in d-dimensions (to show that

d ¼ 4 is special). To take the finite temperature into account,
the spacetime is assumed to be an Euclidean flat continuum
space with one direction compactified. Namely, we consider
S1 × Rd−1, and antiperiodic boundary conditions are
imposed on the fermions. We denote the compact direction
by x0 and consider spatial propagators in the x1 direction.

1. Two quarks

Let us start with the noninteracting pseudoscalar
“meson” propagator, which is expressed by two massless
and noninteracting quarks. By the standard Fourier trans-
formation we obtain

C2qðx1Þ≡
Z
S1×Rd−2

dd−1xhd̄γ5uðxÞūγ5dð0Þi

¼
Z
S1×Rd−2

dd−1xtr½γ5D−1ðx; 0Þγ5D−1ð0; xÞ�

¼ 4

Z
S1×Rd−2

dd−1x
Z

ddp
ð2πÞd

×
Z

ddp0

ð2πÞd
pμp0

μ

ðpÞ2ðp0Þ2 e
iðp−p0Þνxν

¼ 4

Z
dd−1p
ð2πÞd−1

Z
dp1

2π

×
Z

dp0
1

2π

ðp1p0
1 þ p2Þ

ðp2
1 þ p2Þðp02

1 þ p2Þ e
iðp1−p0

1
Þx1 : ðA1Þ

Noting that the 0-th component of p denoted by p0 is
discrete, and neglecting higher p0 contribution except for
the lowest Matsubara frequency p0 ¼ M ¼ �πT, we can
use the following approximation

Z
dd−1p
ð2πÞd−1 ∼ 2T

Z
dd−2q
ð2πÞd−2 ; p2 ¼ M2 þ q2; ðA2Þ

where the (d − 2)-dimensional vector q is given by q ¼
ðp2; p3; � � �pd−1Þ and the factor two comes from the
two possible signs of M. Changing the variables as
P1 ¼ p1 − p0

1, R1 ¼ ðp1 þ p0
1Þ=2 and explicitly integrat-

ing over R1 and P1, we obtain

C2qðx1Þ ¼ 4T
Z

dd−2q
ð2πÞd−2 e

−2
ffiffiffiffiffiffiffiffiffiffiffi
M2þq2

p
x1

¼ 4CT
Z

dqqd−3e−2
ffiffiffiffiffiffiffiffiffiffiffi
M2þq2

p
x1

¼ CT
Z

∞

2M
dωω

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

4
−M2

r �d−4

e−ωx1 ; ðA3Þ

where the constant C comes from the solid angle integral.
In the last line we have changed the integral variable to
ω ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p
. Note that a fractional power is absent

for d ¼ 4.

STUDY OF THE AXIAL Uð1Þ ANOMALY AT HIGH … PHYS. REV. D 103, 074506 (2021)

074506-15



From the above integral, we can read off the spectral function for d ¼ 4 as

ρfree2q ðωÞ ¼ 2CTθðω − 2MÞ½2M þ ðω − 2MÞ�; ðA4Þ
which supports our assumption for the fitting form Eq. (15) of the meson correlators. Here we have chosen the pseudoscalar
correlators but it was confirmed in [46] by a full computation including higher Matsubara frequencies that this asymptotic
form is universal in all other channels.

2. Three quarks

Next let us consider a “baryon” two-point function in which three noninteracting quarks propagate, choosing the N1

channel,
Z
S1×Rd−2

dd−1xeiMx0h½ðuTCγ5dÞu�ðxÞ½ūðd̄Cγ5ūT �ð0Þi: ðA5Þ

One of the contractions leads to

C3qðx1Þ≡
Z
S1×Rd−2

dd−1xeiMx0D−1ðx; 0Þtr½γ5D−1ðx; 0Þγ5D−1ð0; xÞ�

¼ 4

Z
S1×Rd−2

dd−1x
Z

ddp
ð2πÞd

Z
ddp0

ð2πÞd
Z

ddp00

ð2πÞd
ðpμpμÞðp00

νγ
νÞ

ðpÞ2ðp0Þ2ðp00Þ2 e
iðp−p0−p00ÞνxνþiMx0

¼ 4

Z
ddp
ð2πÞd

Z
ddp0

ð2πÞd
Z

dp00
1

ð2πÞ
ðpμpμÞðp00

νγ
νÞ

ðpÞ2ðp0Þ2ðp00Þ2 e
iðp−p0−p00Þ1x1 ; ðA6Þ

where p00
μ ¼ ðp0 − p0

0 −M;p00
1; q − q0Þwith (d − 2)-momentum vectors q ¼ ðp2; p3;…; pd−1Þ and q0 ¼ ðp0

2; p
0
3;…; p0

d−1Þ.
In the same way as the two-quark propagation, let us ignore the summation over p0; p0

0 except for the three cases with
p0 − p0

0 −M ¼ �M. We then obtain

C3qðx1Þ ∼ 12T2

Z
dd−2q
ð2πÞd−2

Z
dd−2q0

ð2πÞd−2
Z

dp1

ð2πÞ
Z

dp0
1

ð2πÞ
Z

dp00
1

ð2πÞ

×
ðp1p0

1 þM2 þ q · q0Þðp00
1γ1 þMγ0 þ ðq − q0Þ · γÞ

ðp2
1 þM2 þ q2Þðp02

1 þM2 þ q02Þðp002
1 þM2 þ ðq − q0Þ2Þ e

iðp−p0−p00Þ1x1

¼ 3T2

2

Z
dd−2q
ð2πÞd−2

Z
dd−2q0

ð2πÞd−2 e
−ð

ffiffiffiffiffiffiffiffiffiffiffi
M2þq2

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
M2þq02

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þðq−q0Þ2

p
Þx1

×

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02
1 þM2 þ q02

p
þM2 þ q · q0


	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p002
1 þM2 þ ðq − q0Þ2

p
γ1 þMγ0 þ ðq − q0Þ · γ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02
1 þM2 þ q02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p002
1 þM2 þ ðq − q0Þ2

p : ðA7Þ

As large q2; q02 contributions are exponentially suppressed, let us expand the integrand with q2=M and q02=M so that the
integral is greatly simplified as

C3qðx1Þ ∼ 3T2

Z
dd−2q
ð2πÞd−2

Z
dd−2q0

ð2πÞd−2 ðγ1 þ γ0Þe−x1ð3Mþðq2þq02−q·q0Þ=MÞ

∝ T2

Z
∞

0

dppd−3
�
M
x1

�ðd−2Þ=2
e−3x1ðMþp2=4MÞ

∝ T2

Z
∞

3M
dωMd−2ðω − 3MÞd−42 x−d−2

2

1 e−ωx1

∝ T2

Z
∞

3M
dωMd−2ðω − 3MÞd−3e−ωx1 ; ðA8Þ

where the integration over q0 − p=2 and solid angle in q are performed and an unimportant overall dimensionless (matrix-
valued) constant is neglected.
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From the above integral, we can read off the spectral function for d ¼ 4 as

ρfree3q ðωÞ ¼ DT4θðω − 3MÞðω − 3MÞ; ðA9Þ

with a constant (matrix) D, which supports the asymptotic three-quark form expð−3Mx1Þ=x21 corresponding to Eq. (19).
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