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We develop a flow-based sampling algorithm for SUðNÞ lattice gauge theories that is gauge invariant by
construction. Our key contribution is constructing a class of flows on an SUðNÞ variable [or on a UðNÞ
variable by a simple alternative] that respects matrix conjugation symmetry. We apply this technique to
sample distributions of single SUðNÞ variables and to construct flow-based samplers for SU(2) and SU(3)
lattice gauge theory in two dimensions.
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I. INTRODUCTION

Gauge theories based on SUðNÞ or UðNÞ groups
describe many aspects of nature. For example, the
Standard Model of nuclear and particle physics is a non-
Abelian gauge theory with the symmetry group Uð1Þ×
SUð2Þ × SUð3Þ, candidate theories for physics beyond the
Standard Model can be defined based on strongly interact-
ing SUðNÞ gauge theories [1,2], SUðNÞ gauge symmetries
emerge in various condensed matter systems [3–7], and
SUðNÞ and UðNÞ gauge symmetries feature in the low
energy limit of certain string-theory vacua [8]. In the
context of the rapidly developing area of machine-learning
applications to physics problems, the incorporation of
gauge symmetries in machine learning architectures is thus
of particular interest [9–14].
Here, we demonstrate how SUðNÞ gauge symmetries can

be incorporated into flow-based models [15]. These models
use a parametrized invertible transformation (a “flow”) to
construct a variational ansatz for a target probability
distribution that can be optimized via machine learning
techniques to enable efficient sampling. We detail the
application of this approach to lattice field theory calcu-
lations, for which such samplers have been found to offer

potentially significant advantages over more traditional
sampling algorithms [11,16,17].
A general approach to incorporating a symmetry in flow-

based sampling models is to construct the models in terms
of invertible transformations that are equivariant to sym-
metry operations, meaning that the transformation and
symmetry operations commute. For any gauge theory with
a continuous gauge group, we showed in Ref. [11] that a
gauge equivariant transformation that simultaneously
remains equivariant under a large subgroup of spacetime
translations can be constructed in terms of a kernel: a
transformation that acts on elements of the gauge group and
is equivariant under matrix conjugation, U → XUX−1,
where U and X are elements of the gauge group in the
fundamental matrix representation. In Ref. [11], this
approach was demonstrated in the context of U(1) gauge
theory. Here, we develop a class of kernels for SUðNÞ
group elements (and describe a similar construction for
UðNÞ group elements). We show that if an invertible
transformation acts only on the eigenvalues of a matrix
and is equivariant under permutation of those eigenvalues,
then it is equivariant under matrix conjugation and may be
used as a kernel. Moreover, by making a connection to the
maximal torus within the group and to the Weyl group of
the root system, we show that this is in fact a universal way
to define a kernel for unitary groups.
The application of flow-based models to lattice field

theory is reviewed briefly in Sec. II A. Methods to impose
symmetries in these models are reviewed in Sec. II B, and
Sec. II C describes our particular approach to imposing
gauge symmetry in flow-based models using single-vari-
able kernels. In Sec. III, we construct kernels for SUðNÞ
variables and investigate sampling from distributions over
such variables, including the marginal distributions relevant
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for plaquettes in two-dimensional (2D) lattice gauge theory.
Finally, in Sec. IV, we use these kernels to construct gauge-
symmetric flow-based samplers for SU(2) and SU(3) lattice
gauge theory in two dimensions and demonstrate that
observables in these theories are exactly reproduced by
the flow-based sampling approach.

II. FLOW-BASED SAMPLING FOR LATTICE
GAUGE THEORY

Lattice quantum field theory provides a nonperturbative
regularization of the path integral by discretizing the theory
onto a spacetime lattice. In Euclidean spacetime, the
regularized expectation value of an observableO is defined
in terms of the discretized action SðUÞ by

hOi¼ 1

Z

Z
DUOðUÞe−SðUÞ; Z¼

Z
DUe−SðUÞ; ð1Þ

where
R
DU integrates over all degrees of freedom of the

discretized quantum field U. We denote by UμðxÞ ∈ G the
element of U on link ðx; xþ μ̂Þ, where μ ∈ f1; 2;…; Dg is
the spacetime direction of the link, x ∈ ZD indicates a site
on the D-dimensional spacetime lattice, and G is the
structure group of the gauge theory; for many relevant
physical theories, the structure groups are Lie groups. The
path integral measure DU for a lattice gauge theory is a
product of the Haar measure of G per link.
Equation (1) can be evaluated numerically by sampling

configurations from the probability distribution pðUÞ ¼
e−SðUÞ=Z, which is typically undertaken usingMarkov chain
methods [18]. In Refs. [11,16], we developed an approach to
evaluate Eq. (1) for lattice field theories by sampling
independent configurations from a flow-based model opti-
mized to approximate pðUÞ, where unbiased estimates of
observables can be obtained from this approximate distri-
bution by either a reweighting technique or a Metropolis
accept/reject step.1 Flow-based methods can similarly be
applied to statistical theories (with continuous degrees of
freedom) by replacing the field configurations U of Eq. (1)
with microstates, replacing the action with the Hamiltonian
over temperature, S → H=kBT, and interpreting the distri-
bution as the Boltzmann distribution [21–25].

A. Sampling gauge configurations using flows

A flow-based sampler consists of two components which
are as follows:
(1) A prior distribution2 rðVÞ that is easily sampled

(2) An invertible function, or flow, f that has a tractable
Jacobian factor

Here, we restrict discussion to flow-based models targeting
distributions pðUÞ on Lie groups G, for which U ∈ G
and f∶G → G. The group could be a product of structure
groups G ¼ G ⊗ G ⊗ …, as in the case of lattice gauge
theory, or an unfactorizable group such as SUðNÞ or UðNÞ.
Generating a sample from the model proceeds by first
sampling from the prior distribution rðVÞ, then applying f
to produce U ¼ fðVÞ. In general, the invertible function f
stretches and concentrates the density of points over the
domain; thus, the output samples are distributed according
to a new effective distribution qðUÞ. The output density can
be explicitly computed in terms of the log-det-Jacobian of
f, LDJf,

qðUÞ ¼ rðVÞ
eLDJfðVÞ

; eLDJfðVÞ ≔
����detij ∂½fðVÞ�i∂Vj

����: ð2Þ

Here, the indices i and j run over directions in theLie algebra
of G translated to fðVÞ and V, respectively [26].
When f is parametrized3 by a collection of model

parameters ξ, the model output distribution qðUÞ can be
considered a variational ansatz for the target distribution
pðUÞ. Its free parameters can be optimized to produce an
approximation to the target distribution, qðUÞ ≈ pðUÞ, by
applying stochastic gradient descent to a loss function
defined to be a measure of the divergence between qðUÞ
and pðUÞ. For this optimization to be viable without a large
body of training data from existing samplers, we must be
able to approximate the divergence and its gradients using
only samples from the model and the functional form of the
action. This may be achieved by employing the Kullback-
Leibler (KL) divergence between the two distributions as a
loss function,

DKLðqjjpÞ≔
Z

DUqðUÞ½logqðUÞ− logpðUÞ�≥ 0: ð3Þ

For lattice theories, it is convenient to shift the KL
divergence to remove the (unknown) constant logZ,
defining a modified KL divergence [21],4

D0
KLðqjjpÞ ≔

Z
DUqðUÞ½logqðUÞ þ SðUÞ� ≥ − logZ:

ð4Þ

The gradients and location of the minimum are unaffected
by this constant shift. The KL divergence can then be

1Sampling for lattice field theories based on generative
adversarial networks has also been investigated in related
work [19,20].

2We specify the distribution using a density function rðVÞ.
Here and in the following, this is implicitly a density with respect
to the path integral measure DV (or DU).

3The prior rðVÞ may also be parametrized, though parameters
controlling deterministic transformations of stochastic variables,
as in f, have been shown to be easier to optimize [27–29].

4This can be considered a special case of the variational lower
bound [30].
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stochastically estimated by drawing samples U from the
model and computing the sample mean of logqðUÞþSðUÞ,
from which stochastic gradients with respect to the model
parameters ξ can be computed via backpropagation.
It is illuminating to consider the variational ansatz as

defining a family of effective actions, any of which we can
directly sample, i.e., the model density can be interpreted as
arising from the effective action SeffðUÞ ≔ − logðqðUÞÞ.
The ability to both compute the effective action and sample
from it enables producing unbiased estimates of observ-
ables under the true distribution. For example, a reweight-
ing approach can be used [23], in which the vacuum
expectation value of an operator O can be computed as

hOi¼
R
DUqðUÞ½OðUÞwðUÞ�R

DUqðUÞ½wðUÞ� ¼ hOðUÞwðUÞiSeff
hwðUÞiSeff

;

wherewðUÞ¼ expð−SðUÞþSeffðUÞÞ: ð5Þ

Since Seff is an approximation of the true action, the
reweighting factors wðUÞ will vary with U. A measure
of the quality of the reweighted ensemble is the effective
sample size (ESS),

ESS ≔
ð1n
P

iwðUiÞÞ2
1
n

P
iwðUiÞ2

; Ui ∼ qðUÞ; ð6Þ

which is normalized relative to the total number of samples
n such that ESS ¼ 1 for a perfect model. This reweighting
approach is computationally efficient when computing
observables is inexpensive relative to drawing samples
from the model, because the extra cost of computing
observables on samples which will be severely down-
weighted is small.
When computing observables is instead expensive rel-

ative to drawing samples from the model, producing
unbiased estimates of observables by resampling tech-
niques can be more efficient than reweighting. A flow-
based Markov chain is one such approach [11,16].5 In a
flow-based Markov chain, samples from the model are used
as proposals for each step of the chain, with a Metropolis
accept/reject step to guarantee asymptotic exactness.
Each proposal is independent of the previous configuration
in the chain, and therefore the appropriate acceptance
probability is

paccðU → U0Þ ¼ min

�
1;
pðU0Þ
qðU0Þ

qðUÞ
pðUÞ

�
: ð7Þ

When the model closely approximates the target,
qðUÞ ≈ pðUÞ, the acceptance rate will be close to 1.
Rejections duplicate the previous state of the chain, and
observables only need to be computed once on each
sequence of duplicated samples in the chain. Essentially,
the Markov chain approach acts as an integer rounding of
the reweighting factors, and thus resources are efficiently
allocated toward computing observables only on suffi-
ciently likely configurations. In the flow-based Markov
chain, the analog of the effective sample size is determined
by correlations between sequential configurations; these
correlations are introduced entirely through rejections,
since proposals are independently drawn from the model.
The efficiency of the flow-based sampling approach

hinges on implementing a general and well-parametrized
function f, which must be invertible and for which LDJf
must be tractable. A powerful approach to constructing such
functions is through composition of simpler functions gi,

fðVÞ ≔ gnðgn−1ð…g1ðVÞ…ÞÞ: ð8Þ
When each gi is invertible and has a tractable log-det-
Jacobian, f satisfies these properties as well. In the following
sections, we choose the gi to be coupling layers: functions
that act elementwise on a subset of the components of the
input, conditioned on the complimentary (“frozen”) subset.
This structure guarantees a triangular Jacobian matrix,
allowing LDJf to be efficiently computed from the diagonal
elements of the matrix. Coupling layers generally guarantee
invertibility by defining the transformation as an explicitly
invertible operation on the input. For example, a coupling
layer could transform a link in a gauge configuration by left
multiplication with a group element that only depends on
nearby frozen links and model parameters, ξ,

UμðxÞ⟶
e:g:

U0
μðxÞ ¼ Wξðfrozen neighborsÞUμðxÞ; ð9Þ

where Wξðfrozen neighborsÞ ∈ G. Regardless of the func-
tion Wξ, this transformation is invertible: to undo it, we
compute ½Wξðfrozen neighborsÞ�−1 and left multiply. In our
models, the gi each depends on an independent subset of the
model parameters, though sharing parameters is an interest-
ing possibility for future exploration.
In general, coupling layers are written in terms of

functions of the frozen links and model parameters (analo-
gous to Wξ in the example above), which we call context
functions. The outputs of these context functions are used to
transform the input in a manifestly invertible way, but the
functions themselves may be arbitrary, up to producing
output in the correct domain (in our example, returning
values in G). These functions are therefore typically imple-
mented in terms of feed-forward neural networks, with the
model parameters ξ specifying the neural network weights.

5In some situations, either bootstrap resampling with weights
(also known as sampling importance resampling) [31] or rejec-
tion sampling may be useful. In the former approach, the
ensemble size cannot easily be expanded, while in the latter, a
multiplicative factorM must be chosen such thatMqðUÞ ≥ pðUÞ
while avoiding excessive rejection; these challenges motivate the
use of flow-based Markov chain Monte Carlo (MCMC) in this
work.

SAMPLING USING SUðNÞ GAUGE EQUIVARIANT FLOWS PHYS. REV. D 103, 074504 (2021)

074504-3



B. Symmetries in flow models

Symmetries in a lattice gauge theory manifest as trans-
formations of field configurations that leave the action
invariant for all field configurations. We write the trans-
formation t acting on a field configuration U as t ·U; a
group of transformationsH is then a symmetry group when
SðUÞ ¼ Sðt · UÞ for all t ∈ H and all U. Lattice actions
SðUÞ are commonly constructed to preserve discrete geo-
metric symmetries of the Euclidean spacetime as well as
internal symmetries. In particular, actions are typically
invariant under the following:
(1) Discrete translational symmetry group, T¼fTδx;δyg,

where δx; δy enumerate all possible lattice offsets
(2) Hypercubic symmetry group R ¼ fRig, where i

enumerates all 2DðD!Þ unique combinations of
rotations and reflections of the D-dimensional
hypercube6

(3) Gauge symmetry group, where each element Ω can
be defined as a group-valued field over lattice sites,
ΩðxÞ ∈ G, that transforms links of a field configu-
ration as follows:

ðΩ ·UÞμðxÞ ¼ ΩðxÞUμðxÞΩ†ðxþ μ̂Þ: ð10Þ

Any expressive flow-based model should approximately
reproduce the symmetries of the original action after
optimization, even if these symmetries are not imposed
in the model. Exact symmetries are recovered on average in
the sampled distribution after reweighting or composing
samples into a Markov chain. Nevertheless, any breaking of
the symmetries in the model reflects differences between
the model and target distribution, and is thus associated
with sampling inefficiencies in the form of increased
variance or correlations in the Markov chain. Imposing
symmetries explicitly in the form of the model effectively
reduces the variational parameter space to include only
symmetry-respecting maps, i.e., those that factorize the
distribution. An example of such factorization is illustrated
for gauge symmetry in Fig. 1. In many machine learning
contexts, it has been found that explicitly preserving the
symmetries of interest in models improves both the
optimization costs and ultimate model quality [22,32–
37]. For example, gauge symmetry is a large symmetry
group with dimension proportional to the number of lattice
sites; in our study of U(1) gauge theory in Ref. [11], it was
shown that imposing this symmetry exactly was necessary
to construct flow-based samplers of comparable or better
efficiency than traditional sampling approaches.
Interactions between symmetry groups are also an

important consideration. For example, a simple way to

achieve the factorization of the model distribution depicted
in Fig. 1 would be to employ a gauge fixing procedure that
reduces configurations to gauge invariant degrees of free-
dom only and sample only in the remaining lower-dimen-
sional space. This could be achieved with a maximal tree
gauge fixing [38,39]. However, gauge fixing procedures
like the maximal tree procedure that explicitly factorizes
the degrees of freedom are not translationally invariant. On
the other hand, gauge fixing procedures based on implicit
differential equation constraints instead of an explicit
factorization are known to preserve translational invariance
in the path integral formulation [40], but it is unclear how to
restrict flow-based models to act on configurations satisfy-
ing these constraints. Recent work in the Hamiltonian
formulation has suggested ways to factor out pure-gauge
degrees of freedom for U(1) gauge theory, but it is not clear
whether this can be extended to SUðNÞ gauge theory or the
path integral formulation [41]. Here we develop an
approach to simultaneously impose gauge and translational
symmetries on models acting on all of the degrees of
freedom of an SUðNÞ gauge field, without any preemptive
factorization along the lines of gauge fixing.
To preserve a symmetry in a flow-based sampling model,

it is sufficient to sample from a prior distribution that is
exactly invariant under the symmetry and transform the
samples using an invertible transformation that is equiv-
ariant under the symmetry [42–44], meaning that sym-
metry transformations t commute with application of the
function,

fðt ·UÞ ¼ t · fðUÞ: ð11Þ

For lattice gauge theories, a uniform prior distribution (with
respect to the product Haar measure) is easily sampled and
is symmetric under translations, hypercubic symmetries,
and gauge symmetry. Equivariance of the map f can be
guaranteed by ensuring that the individual coupling layers
in the decomposition of f are each equivariant,

giðt · UÞ ¼ t · giðUÞ
⇒ fðt · UÞ ¼ gnðgn−1ð…g1ðt · UÞ…ÞÞ ¼ t · fðUÞ: ð12Þ

FIG. 1. Left: distributions that exactly respect gauge symmetry
factor over the degrees of freedom, such that they have uniform
density in the pure-gauge degrees of freedom and a nontrivial
density only in the gauge invariant degrees of freedom. Right:
arbitrary distributions on the space of gauge configurations do not
factor, and uniformity in the pure-gauge direction must be
approximately learned by the model.

6These operations represent the symmetry about a distin-
guished point on the lattice. In general, the whole geometric
symmetry group is given by the combination of this group with
the translational symmetry group.
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In our approach [11], coupling layers decompose the
components of a field configuration by spacetime location,
and therefore making coupling layers equivariant to space-
time symmetries (translational and hypercubic symmetries)
and making coupling layers equivariant to internal sym-
metries (such as gauge symmetry) must be handled in
different ways, but can be simultaneously achieved.
It has been noted that convolutional neural networks are

equivariant to discrete translations, and a similar approach
can extend equivariance to rotations and reflections [9,32].
For lattice gauge theory, using these equivariant networks
acting on the frozen links inside each coupling layer and
choosing symmetric decompositions into frozen and
updated links ensures, each coupling layer is equivariant
under (a large subgroup of) translations. For example, in
Sec. IV, we construct models for two-dimensional gauge
theory using convolutional neural networks with a decom-
position pattern that repeats after offsets by four sites in
both directions on the lattice, resulting in equivariance
under the translational symmetry group modulo Z4 × Z4.
Though the full translational symmetry group is not
preserved exactly, the residual group that must be learned
has a fixed size independent of the lattice volume.
Internal symmetries, on the other hand, do not mix links

at different spacetime locations. The symmetry transfor-
mations acting on the frozen links already commute
through the coupling layer. The updated links, however,
must be transformed specifically to guarantee equivariance.
Generally, this can be achieved by making the context
function [i.e., the analog of Wξ acting on frozen links in
Eq. (9)] invariant to symmetry transformations, and defin-
ing how the function is applied to the remaining links such
that the operation commutes with symmetry transforma-
tions. This must be done based on the form of the symmetry
group; we review how this can be achieved for the case of
gauge symmetries in the following section.

C. Gauge equivariance

In Ref. [11], we presented a framework for the con-
struction of coupling layers that are equivariant under
gauge symmetries. At a high level, each coupling layer
is constructed to the following:
(1) Change variables to open (untraced) loops of links

that start and end at a common point
(2) Act on these loops in a way that is equivariant under

matrix conjugation; we call the function acting in
this way a kernel

(3) Change variables back to links to compute the
resulting action on the gauge configuration

Under a gauge transformation, each open loop transforms
by matrix conjugation. The kernel acting on open loops is
equivariant under matrix conjugation; thus, the whole
coupling layer is gauge equivariant. Matrix conjugation
leaves the set of eigenvalues, i.e., the spectrum, of the open
loop invariant. Arranging the coupling layer in terms of the

spectra of open loops thus allows the flow to directly
manipulate these physical, gauge invariant, marginal dis-
tributions independently of the pure-gauge degrees of
freedom.
In our implementation, we use 1 × 1 loops, or plaquettes,

as the open loops transformed by the kernel. The plaquette
oriented in the μν plane and located at site x is defined in
terms of the links by7

PμνðxÞ ≔ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð13Þ

Asubset of plaquettes is transformed by the kernel, while the
traces of unmodified plaquettes are used as gauge invariant
input to the context functions in the transformation.8 After
the kernel acts on untraced plaquettes,PμνðxÞ → P0

μνðxÞ, we

FIG. 2. Decomposition of a single gauge equivariant coupling
layer. Outer gray sections depict the general formulation of gauge
equivariant flows detailed in Ref. [11]. Inner colored sections
detail the kernel we construct in Sec. III for a single SUðNÞ
variable.

7Note that there is no trace and PμνðxÞ is matrix valued.
8The use of plaquettes as the open loops and gauge invariant

inputs is one of the many possible choices. For either the open
loops or gauge invariant inputs, plaquettes could be replaced or
augmented by other choices of loops.
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change variables back to links and implement the update on
the gauge configuration as

U0
μðxÞ ¼ P0

μνðxÞP†
μνðxÞUμðxÞ; ð14Þ

so that the plaquette is updated as desired,

U0
μðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞU†
νðxÞ ¼ P0

μνðxÞ: ð15Þ

Equivariance under matrix conjugation ensures that output
plaquettes transform appropriately under the gauge sym-
metry, ðΩ · P0ÞμνðxÞ ¼ ΩðxÞP0

μνðxÞΩ†ðxÞ, and therefore the
output configuration does as well,

ðΩ ·U0ÞμðxÞ ¼ ½ΩðxÞP0
μνðxÞΩ†ðxÞ�½ΩðxÞP†

μνðxÞΩ†ðxÞ�
× ½ΩðxÞUμðxÞΩ†ðxþ μ̂Þ�

¼ ΩðxÞU0
μðxÞΩ†ðxþ μ̂Þ: ð16Þ

This general construction is schematically depicted in the
outer, gray sections of Fig. 2.
Finally, to ensure invertibility, we require that the

term P†
μνðxÞUμðxÞ¼UνðxÞUμðxþν̂ÞU†

νðxþμ̂Þ in Eq. (14)
does not contain any links that are updated as a result of
other plaquettes being transformed. In our construction, we
must choose the subsets of loops to transform, and the
corresponding links to update, in such a way that any loop
that is actively transformed is not also modified passively as
a byproduct of another loop being transformed. There are
many possible ways to choose subsets satisfying these
constraints; to ensure that all links are updated, we should
also choose different subsets of loops to update in each
coupling layer. For example, in our application to two-
dimensional gauge theory, we choose to update rows or
columns of plaquettes that are spaced four sites apart, with
a repeating cycle of offsets and rotations in each successive
coupling layer, as depicted in Fig. 3. Note that in the figure
the subsets of plaquettes that are actively and passively
updated are disjoint in all coupling layers. This updating
scheme is also applicable to higher spacetime dimensions,
as the actively and passively updated plaquettes will
similarly be disjoint in each coupling layer.
In Ref. [11], we applied this general gauge equivariant

construction to U(1) gauge theory. Our contribution in the
present work is the development of transformations that are
equivariant under matrix conjugation in SUðNÞ [with a
straightforward adaptation to UðNÞ] which can be used as
kernels for gauge equivariant coupling layers in SUðNÞ or
UðNÞ lattice gauge theory. This novel contribution is
depicted in the inner, colored sections of Fig. 2. We detail
these transformations in the next section.

III. FLOW MODELS FOR SINGLE SUðNÞ
VARIABLES

The key component of a gauge equivariant flow-based
model is a kernel: an invertible map that acts on a single
group-valued variable and is equivariant under matrix
conjugation. Specifically, an invertible map h∶G → G is
a kernel if hðXUX−1Þ ¼ XhðUÞX−1 for all U;X ∈ G. In
constructing a gauge equivariant flow-based model, the
kernel is used to transform untraced loops of links starting
and ending at a common point (whose spectrum has
physical, gauge invariant meaning). Here, we specify a
general method to construct such kernels and investigate
application of these kernels to sampling probability den-
sities on single SUðNÞ or UðNÞ variables (representing
marginal distributions on open loops in the full gauge
theory).
In the language of groups, a kernel should move density

between conjugacy classes while preserving structure
within those classes. Each conjugacy class is defined by
a set fXUX−1∶X ∈ Gg, for some U. It is useful, however,
to think of each conjugacy class in SUðNÞ or UðNÞ as a set
of all matrices with some particular spectrum; e.g., all
matrices with eigenvalues fei3π=12; ei5π=12; e−i8π=12g form a
conjugacy class in SU(3). Intuitively, a kernel should
therefore move density between possible N-tuples of
eigenvalues while preserving the eigenvector structure.
In Appendix A, we prove that this intuition is exact: a
kernel can generally be defined as an invertible map that
acts on the list of eigenvalues of the input matrix, is
equivariant under permutations of the eigenvalues, and
leaves the eigenvectors unchanged. In our applications, we
therefore structure the kernel to accept a matrix-valued
input, diagonalize it to produce a (arbitrarily ordered) list of
eigenvalues and eigenvectors, transform the eigenvalues in
a permutation equivariant fashion, then reconstruct the

FIG. 3. Our choice of plaquettes to update [PμνðxÞ, yellow],
gauge invariant context for that transformation [I1 and I2, green],
the corresponding updated link [UμðxÞ, blue], and the plaquettes
passively modified as a result of the link update [Pμνðx̃Þ, red] for
two-dimensional gauge theory. A repeating cycle of rotations and
translations are applied to the pattern for successive coupling
layers; composition of eight coupling layers is sufficient to update
every link once for this pattern.
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matrix using the new eigenvalues. Figure 2 depicts how this
spectral flow is applied in the context of a gauge equiv-
ariant coupling layer.
Permutation equivariance is required to ensure that the

kernel acts only based on the spectrum, not the particular
order of eigenvalues produced during diagonalization.
Normalizing flows that are permutation equivariant have
previously been investigated in the machine-learning com-
munity to learn densities over sets (such as point clouds,
objects in a 3D scene, particles in molecular dynamics, and
particle tracks in collider events) [42–52]. Such approaches
are directly applicable to kernels for UðNÞ variables
(see Appendix E), because the eigenvalues can be trans-
formed independently. For an SUðNÞ variable, however, the
constraint detU ¼ 1 must additionally be satisfied,
which prevents these methods from being straightforwardly
applied. As an example, Fig. 4 depicts the space of
eigenvalues of SU(2), SU(3), and SU(4) variables and
illustrates the constrained surface of possible eigenvalues
as well as the cells on this surface that are related by
permutations in each case. To be equivariant, a spectral flow
for SUðNÞmust transformvalueswithin each cell identically.
In this section, we describe special-case constructions of

permutation equivariant transformations on the eigenvalues
of an SU(2) or SU(3) variable, then generalize the approach
to SUðNÞ. In each case, we demonstrate the expressivity of
these transformations by constructing flow-based models in
terms of these transformations and training the models to
learn several target families of densities that are invariant
under matrix conjugation.

A. Target densities

As target distributions to test this approach, we define
densities on SUðNÞmatrices that are invariant under matrix

conjugation. For an SUðNÞ variable in the fundamental
matrix representation, such a class of probability densities
can be defined in terms of traces of powers of the variable,

pðiÞ
toyðUÞ ≔ e−SiðUÞ=Zi; Zi ¼

Z
dU e−SiðUÞ; ð17Þ

where

SiðUÞ ≔ −
β

N
Re tr

�X
n

cðiÞn Un

�
ð18Þ

and
R
dU is integration with respect to the Haar measure of

the group. Any distribution in this family is manifestly
invariant under matrix conjugation and is therefore a
function of the spectrum only. The coefficients cðiÞ deter-
mine the shape of the density on the group manifold, while
β determines the scale of the density.
The coefficients cðiÞ defining the target densities for this

study are reported in Table I. The first set of coefficients,
cð0Þ, was chosen to exactly match the marginal distribution
on each open plaquette in the case of two-dimensional
lattice gauge theory. To further investigate densities with
similar structure, two additional sets of coefficients were

chosen by randomly drawing values for cðiÞ1 , cðiÞ2 , and cðiÞ3

FIG. 4. Illustration of the eigenvalue spaces and respective Haar measures in the angular coordinate system θk ¼ argðλkÞ for SU(2)
[left], SU(3) [middle], and SU(4) [right]. Equation (19) describes how the Haar measure is included in these plots over the space
of eigenvalues. The constraint detU ¼ 1 restricts the space of eigenvalues to the surface of codimension 1 defined by

P
kθk¼0ðmod2πÞ

depicted in each space. On each surface, permutation of the axes corresponds to permutation among the N! cells delineated by
green boundaries. A canonical cell used to construct permutation equivariant coupling layers is highlighted in orange for
each surface. For SU(4), we show the surface of eigenvalues projected to an orthonormal basis in the constraint surface. For clarity
in the SU(3) and SU(4) figures, we extend the range of the axes rather than showing the parts of the eigenvalue surface that would wrap
around the periodic boundaries.

TABLE I. Sets of coefficients cðiÞn used to investigate the SU(2)
and SU(3) matrix conjugation equivariant flow.

Set i cðiÞ1 cðiÞ2 cðiÞ3
0 1 0 0
1 0.17 −0.65 1.22
2 0.98 −0.63 −0.21
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and restricting to coefficients that produce a single peak in
the density across all values of β. Performance on this set of
coefficients is therefore representative of the ability of these
flows to learn the local densities relevant to sampling for
two-dimensional lattice gauge theory.
To investigate the expressivity of the permutation equiv-

ariant transformations that we define, we construct flow-
based models that combine a uniform prior density with
one kernel defined using the equivariant transformations
under study. This combination of an invariant prior dis-
tribution with application of an equivariant kernel imposes
matrix conjugation symmetry on each flow-based model
exactly. As a metric for the expressivity of the permutation
equivariant transformations used in each kernel, we
checked the ability of the flow-based models to reproduce
the target densities. Measurements of the ESS and plots of
the densities are used to investigate model quality.
When plotting densities in the space of eigenvalues, as in

Fig. 4 above and the density plots below, we always plot
with respect to the Lebesgue measure on the eigenvalues.
This is a natural choice, as densities with respect to
this measure are what one expects to reproduce using
histograms in the space of eigenvalues. However, the full
model on SUðNÞ reports densities with respect to the Haar
measure. When restricting to the space of eigenvalues, the
resulting measure is absolutely continuous with respect to
the Lebesgue measure with density given by the volume in
SUðNÞ of conjugacy classes. This volume is given by [53]

Haarðλ1;…; λNÞ ¼
Y
i<j

jλi − λjj2: ð19Þ

See also the Weyl integration formula and the case of
SUð3Þ in [54].

B. Flows on SU(2)

The eigenvalues of an SU(2) matrix can generically be
written in terms of a single angular coordinate as λ1 ¼ eiθ

and λ2 ¼ e−iθ. The permutation group S2 on these eigen-
values is generated by the exchange λ1 ↔ λ2, which
corresponds to θ → −θ. We can therefore define a flow
on θ which is equivariant under this transformation by
separately handling the case of θ ∈ ½−π; 0� and θ ∈ ½0; π�.
(1) If θ is in the first interval, negate it (otherwise, do

nothing).
(2) Take the result and apply any invertible flow suitable

for a variable in the finite interval ½0; π�; e.g., a spline
flow with fixed endpoints could be applied [55].

(3) If θ was negated in the first step, negate the result
(otherwise, do nothing).

In effect, this extends the action of a flow on one canonical
cell, θ ∈ ½0; π�, to the entire domain in a permutation
equivariant fashion. The canonical cell for SU(2) is
schematically depicted in the left panel of Fig. 4. This

intuition is useful to extend the method to SU(3) and
generic SUðNÞ variables in the following subsections.
To investigate the efficacy of this permutation equivar-

iant spectral flow, we constructed SU(2) flow-based models
to sample from each of the families of distributions defined
by Eq. (17), with coefficients listed in Table I, for each
β ∈ f1; 5; 9g. All models were constructed with a uniform
prior distribution [with respect to the Haar measure of
SU(2)] and a single matrix conjugation equivariant cou-
pling layer, defined using the permutation equivariant
spectral flow above. The transformation on the canonical
cell ½0; π� was performed with a spline flow defined using
four knots. Each model was trained using the Adam
optimizer [56] with gradients of the loss function in
Eq. (4) stochastically evaluated on batches of 1024 samples
per step. Appendix C describes how gradients can be
backpropagated through matrix diagonalization during
optimization.
The densities learned by the flow-based model are

compared against the target densities in Fig. 5. The peaks
of the distribution are very precisely reproduced by the
flow-based model, and the exact symmetry between the
two cells (left and right halves of each plot) is apparent for
both the model and target densities. Minor deviations
between the model and target densities appear in the tails
of the distribution, below roughly a density of 10−4. These
are rarely sampled regions; thus, these deviations only have

FIG. 5. Densities on the angular coordinate θ describing the
eigenvalues of an SU(2) variable. The mirror symmetry across
θ ¼ 0 corresponds to invariance of the distribution with respect to
permutation of the eigenvalues; this symmetry is exactly enforced
in the flow-based distribution using a permutation equivariant
coupling layer.
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a minor impact on model quality: all models reached an
ESS above 97% for all sets of coefficients, as shown in
Table II.

C. Flows on SU(3)

The eigenvalues of an SU(3) matrix can generically be
written in terms of two angular variables as λ1 ¼ eiθ1 ,
λ2 ¼ eiθ2 , and λ3 ¼ e−iθ1−iθ2 . There are six cells related by
the permutation group S3 on these three eigenvalues, as
depicted in the middle panel of Fig. 4. We can define a
permutation equivariant flow on these angular variables by
extending a flow on a canonical cell to the whole space, as
was done for SU(2) in the previous section.
(1) Enumerate all possible permutations of ½θ1; θ2; θ3�,

where θ3 ≔ wrapð−θ1 − θ2Þ is the phase of λ3 in the
interval ½−π; π�.

(2) Choose the order ½θ10 ; θ20 ; θ30 � satisfying the canoni-
cal condition, iscanonðθ10 ; θ20 ; θ30 Þ. This makes
ðθ10 ; θ20 Þ fall in the shaded region in Fig. 6. Record
the permutation required to move from the original
order to the canonical order.

(3) Since the shaded domain in Fig. 6 is split in two,
replace θ10 with ðθ10 − 2πÞ if θ10 > 0 to maintain a
connected domain. Apply any invertible flow suit-
able for the canonical triangular domain of θ10 and
θ20 ; our implementation is discussed below.

(4) Reconstruct the final angular variable θ0
30 ¼

wrapð−θ0
10 − θ0

20 Þ, then apply the inverse of the
permutation in step 2 to produce the final eigenvalue
phases ½θ01; θ02; θ03�.

For SU(3), we can define the canonical condition on
eigenvalue phases in an ad hoc fashion,

iscanonðθ1;θ2;θ3Þ¼

8>>>>><
>>>>>:

θ3 ≥ θ2 ≥ θ1
P
i
θi¼ 0

θ1 ≥ θ3 ≥ θ2
P
i
θi¼ 2π

θ2 ≥ θ1 ≥ θ3
P
i
θi¼−2π

: ð20Þ

Intuitively, this function defines a canonical ordering of the
eigenvalues while smoothly accounting for the fact that
they are circular variables. This intuition is made more
precise in the generalization of this approach to SUðNÞ
variables in the following subsection. The ad hoc shift used
to move the cell to a contiguous region is also addressed
when generalizing.

Mapping to and from canonical cells is one particular
construction for permutation equivariant flows. AppendixD
details an alternate method based on averaging over all
permutations for SU(3). In that approach, equivariance is
also guaranteed, but the cost scales as N! making it
unsuitable for large N.
We investigated the efficacy of this permutation equiv-

ariant spectral flow by constructing SU(3) flow-based
models to sample from the families of distributions defined
by Eq. (17), with coefficients listed in Table I, for each
β ∈ f1; 5; 9g. All models were constructed with a uniform
prior distribution [with respect to the Haar measure of
SU(3)] and a single matrix conjugation equivariant cou-
pling layer, defined using the spectral flow above. The
transformation on the triangular canonical cell was per-
formed using two spline flows with four knots each,
independently acting on the height and width coordinates.
Each model was trained using the Adam optimizer with
gradients of the loss function in Eq. (4) stochastically
evaluated on batches of 1024 samples per step.
Figure 7 compares the distributions learned by the flow-

based models to the target distributions when β ¼ 9. The
structure of the peaks of the distribution is reproduced
accurately, and the exact sixfold symmetry between the
cells is apparent in both the model and target densities.
Minor deviations between the model and target densities
appear in the tails of the distribution, below roughly a
density of 10−3. As with the SU(2) models, these deviations
are in rarely sampled regions and therefore only have a
minor impact on model quality. Quantitatively, our flow-
based models achieved ESSs greater than 73% on all
distributions, with the full set of final ESS values reported
in Table III. The performance on this SUð3Þ gauge group is
observed to be marginally worse than SUð2Þ, likely due to
the additional complexity of modeling density in the
higher-dimensional space of eigenvalues. In practice, this

TABLE II. Final values of the ESS for each model trained for
distributions on an SU(2) variable.

cð0Þ cð1Þ cð2Þ

β 1 5 9 1 5 9 1 5 9
ESS (%) 100 100 100 98 98 97 100 99 100

FIG. 6. The cell decomposition of the maximal torus of SU(3)
viewed in the ðθ1; θ2Þ coordinate system. The orange shaded cell
is our choice of canonical cell.
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performance is sufficient to observe significant ESS when
applying the approach to SUð3Þ gauge theory. The leftmost
distribution is the marginal distribution on plaquettes for
two-dimensional SU(3) gauge theory; the high value of the
ESS for this distribution indicates that this spectral flow is
well suited to learn such distributions in the lattice gauge
theory.

D. Flows on SUðNÞ
To apply the method to SUðNÞ variables for any N, we

develop a general version of three of the steps used above
which are as follows:
(1) Computing the vertices bounding a canonical cell
(2) Mapping eigenvalues into that canonical cell
(3) Applying spline transformations within that cell
We define cells in SUðNÞ as subsets of the maximal torus

T, the subgroup of diagonal matrices of SUðNÞ, as follows.
An element of T is called regular if it has N distinct
eigenvalues [54]. The set of regular matrices in T is an open
set with N! connected components; the closure of each
component is a cell.

To construct a general spectral flow for SUðNÞ, we
first choose a particular cell, which we call the
canonical cell. It is helpful to define the canonical cell
in the Lie algebra t of the maximal torus, rather than on the
maximal torus directly. The Lie algebra t is the (N − 1)-
hyperplane

P
N
k¼1 θk ¼ 0 in RN and is related to the

maximal torus by the exponential map expðθ1;…; θNÞ ¼
Diagðe2πiθ1 ;…; e2πiθN Þ. In this space, cells are (N − 1)-
simplexes enclosed by (N − 2)-hyperplanes, each defined
by a pair of eigenvalues becoming degenerate, i.e., θj ¼
θk ðmod 2πÞ for some j and k.
The N vertices of any of these simplexes are mapped by

the exponential map to the N elements of the center of
SUðNÞ (which are also elements of T). We define one such
simplex Ψ by defining the bounding vertices y1;…; yN
inside t,

½yk�j ≔ 2π

�
k
N
− δk≥j

�
; ð21Þ

where δk≥j ¼ 1 when k ≥ j, and is 0 otherwise. A proof
that expðΨÞ is a cell and a derivation of this formula is
given in Appendix B. Thus, we choose expðΨÞ as our
canonical cell.
There are N! ways of reordering the eigenvalues

of a regular point x ¼ Diagðλ1;…; λNÞ in T, and exactly
one of those falls in the canonical cell. It is intractable
for large N to find the element that falls in the canonical
cell by checking all permutations, as we did for SU(3).
Instead, we explain in Algorithm 1 an approach to find the
preimage in Ψ of this canonical element based on sorting.
Algorithm 1. Map into simplex Ψ

canon(λ1;…; λN)
1. Extract angles in range ½0; 2πÞ, θk ¼ argðλkÞ mod 2π.
2. Set S ¼ 1

2π

P
k θk; it is an integer because detU ¼ 1.

3. Sort the angles in ascending order θsort ¼ sortðθÞ.
4. Snap the angles to the hyperplane t by

θsnap ¼ ðθsort1 ;…; θsortN−Sþ1 − 2π;…; θsortN − 2πÞ.
5. Set θcanon ¼ sortðθsnapÞ.
6. Return θcanon and the combined permutation that was used to
sort in steps 3 and 5.

The output of Algorithm 1 is a point in Ψ (see Sec. B 3)
and a permutation. To invert the map into the canonical cell
after we apply a flow, we permute the flowed values θ0k
using the inverse of the returned permutation, then map
them to the torus using the exponential map. Appendix B 3
proves that this algorithm maps into the correct simplex.
We can then show that applying the algorithm to any point
in some cell returns the same output permutation by
checking that the permutation does not change along
any connected path within the cell. No two eigenvalues
become degenerate along such a path; therefore, the order
of the eigenvalue phases only changes when some θk
crosses the boundary between 0 and 2π. For example, when

FIG. 7. Densities on the angular coordinates θ1 and θ2 defining
the eigenvalues of an SU(3) variable. The densities learned by the
flow-based models are compared to the target densities for three
distributions, each with β ¼ 9. The sixfold symmetry in each
density is due to permutation invariance; this symmetry is exactly
enforced in the flow-based distributions by using permutation
equivariant coupling layers.

TABLE III. Final values of the ESS for each model trained for
distributions on an SU(3) variable.

cð0Þ cð1Þ cð2Þ

β 1 5 9 1 5 9 1 5 9
ESS (%) 99 98 99 97 80 82 99 91 73
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θk crosses from 0 to 2 π, it will become the largest angle
(instead of the smallest) and S increments by 1; thus, the
value of θk after snapping changes smoothly due to the
additional 2π subtracted in step 4, all other angles are
unaffected, and the final permutation is unchanged.
A similar argument can be made when angles cross from
2π to 0.
Finally, we describe the implementation of a flow on Ψ,

which concretely defines the “flow in canonical cell” step
of Fig. 2. To be invertible, the flow must preserve the
boundaries of Ψ. We implement such a flow by first using a
coordinate transformation to map Ψ to an open box
Ω ¼ ð0; 1ÞN−1. On this box, an arbitrary boundary-preserv-
ing flow χ∶Ω → Ω can easily be applied (e.g., by using
transformations suitable for a finite interval along each axis).
Finally, the coordinate transformation can be undone to map
back to Ψ. It is helpful to further introduce an intermediate
(N − 1)-simplex Δ, which is a right-angled simplex with
equal leg lengths. Its vertices arefκ1;…; κNg, where κ1 is the
origin and ½κk�j ¼ δðk−1Þj ∀ k ∈ f2;…; Ng. The map
ϕ∶Ω → Δ maps the box Ω to the simplex Δ by collapsing
one end of the box in each direction,

ϕiðαÞ ¼
� α1 i ¼ 1

αi
Qj<i

j¼1ð1 − αjÞ i > 1;
ð22Þ

where α ∈ Ω. The map ζ∶Δ → Ψ then sends the intermedi-
ate right-angled simplex to the canonical simplex by

ζðρÞ ¼ y1 þ ρM; ð23Þ

where ρ ∈ Δ and M is the ðN − 1Þ × N matrix defined by
Mij ¼ ½yiþ1�j − ½y1�j. Both maps are invertible. The inverse
map ϕ−1∶Δ → Ω is given by

ϕ−1
i ðρÞ ¼ ρ

1 −
P

i−1
j¼1 ρj

; ð24Þ

for ρ ∈ Δ, while ζ−1∶Ψ → Δ is given by

ζ−1ðxÞ ¼ ðx − y1ÞMTðMMTÞ−1: ð25Þ

The entire chain of coordinate transformations, flow, and
inverse coordinate transformations is depicted in Fig. 8.
The Jacobian of the entire flow can be computed by

composing the Jacobian factors from each transformation
in the chain. While the Jacobian factors acquired from the
coordinate transformations are fixed, the flow acting on Ω
is parametrized by, and the resulting density depends on,
the action of this inner flow. For example, the inner flow
could be a spline flow [55] constructed to transform each
coordinate of Ω as a function of the model parameters and
possibly the other coordinates of Ω. It is this inner flow that
must be trained in each coupling layer to reproduce the final
density on SUðNÞ. A complete listing of the algorithm to

apply the matrix conjugation equivariant kernel defined by
the above spectral flow is given in Appendix B.
We implemented this general approach to matrix con-

jugation equivariant flows on SUðNÞ variables for a range
of N. For N ≤ 9, we trained these flows to reproduce target
densities defined by Eq. (17), with coefficients listed in
Table I, and β ¼ 9. An ESS of greater than 5% was
achieved on all target densities, with cð0Þ performing
significantly better with greater than 90% ESS across all
densities. Figure 9 compares the flow-based densities to the
target densities for N ¼ 9. Worse performance on cð1Þ and
cð2Þ is reflective of their multimodal nature for some values
of β=N. To investigate performance at large N, we trained
flows to reproduce the cð0Þ density for 10 ≤ N ≤ 100 and
found ESSs greater than 90% for all models. All model
distributions were confirmed to have exact permutation
invariance.

IV. APPLICATION TO SU(2) AND SU(3) LATTICE
GAUGE THEORY IN 2D

With an invertible kernel that is equivariant under matrix
conjugation, the methods presented in Ref. [11] immedi-
ately allow construction of gauge equivariant coupling
layers for SUðNÞ lattice gauge theory. To study the efficacy
of such coupling layers for this application, we trained
flow-based models to sample from distributions relevant for
1þ 1-dimensional gauge theory. Specifically, we consid-
ered the distribution defined by the imaginary-time path
integral in Eq. (1) with the action given by the Wilson
discretization of the continuum gauge action,

FIG. 8. Illustration of the steps we use to apply a flow to an
(N − 1)-simplex, shown for N ¼ 3 as an example. Starting from
an initial density on the simplex Ψ, we map it to an axis-aligned
simplex Δ then to an open box Ω. We apply a parametric
boundary preserving flow χ to the box and finally invert the chain
back to the original coordinate system.
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SðUÞ ≔ −
β

N

X
x

Re tr½P01ðxÞ�: ð26Þ

We investigated SU(3) gauge theory at a range of values of
inverse coupling β and SU(2) gauge theory matched to
approximately equivalent ’t Hooft couplings λ ¼ 2N2=β on
16 × 16 periodic lattices, as listed in Table IV.
In the following subsections, we describe the architec-

ture and training of our flow-based models, confirm the
exactness of results using our sampler, and demonstrate that
all symmetries are either exactly built into the model or are
approximately learned by the model.

A. Model architecture and training

In all cases, we constructed flow-based models using
a prior distribution rðVÞ that is uniform with respect to

the Haar measure of the link variables, for which configu-
rations in the matrix representation are easily sampled.9 The
invertible function f acting on samples from the prior was
composed of 48 coupling layers g1;…; g48. We constructed
each coupling layer using the gauge equivariant architec-
ture presented in Sec. II C. Coupling layers specifically
acted on plaquettes as the choice of open loops, trans-
forming rows or columns of plaquettes spaced four sites
apart on the lattice in each coupling layer, as denoted by
PμνðxÞ (yellow) in Fig. 3; plaquettes that were unaffected
by the transformation were used as the gauge invariant
inputs to the inner spectral flow, as denoted by I1 and I2
(green) in Fig. 3. Coupling layers used an alternating
sequence of rotations and a sweep over all possible trans-
lations of the transformation pattern to ensure that every
link was updated after every eight layers.
The updating pattern that we define here is just one of the

many possible choices. One could vary the open loops that
are updated, change how the links are updated as a function
of the open loops, choose a different pattern of translations
and rotations between coupling layers, or alter which
closed loops are passed as gauge invariant inputs to context
functions. The choices made here were sufficient to learn
distributions in two-dimensional gauge theory, but in
generalizing beyond this proof-of-principle study, in par-
ticular to higher spacetime dimensions, these choices must
be studied more carefully.
For SU(2) gauge theory, we implemented the spectral

flow itself in a permutation equivariant fashion as described
in Sec. III B. The flow acting on the interval θ ∈ ½0; π� was
a spline flow consisting of four knots, with the positions of
the knots in ½0; π� computed as a function of the gauge
invariant neighboring plaquettes I1; I2;… using convolu-
tional neural networks with 32 channels in each of the two
hidden layers. Throughout we used circular padding to
support periodic boundaries, never used pooling opera-
tions, and used leaky ReLU activation functions between
each convolution [58]. The model parameters defining the
variational ansatz distribution consisted of the weights in
these convolutional neural networks across all coupling
layers.
For SU(3) gauge theory, we implemented the spectral

flow as described in Sec. III C. The inner flow acted on
eigenvalues in the canonical triangular cell by changing
coordinates to an open box and applying a spline flow in
that space, as discussed in Sec. III D. The spline flow acted
on the open box in two steps, transforming the horizontal
coordinate first, then the vertical coordinate conditioned on
the new horizontal coordinate. The 16 knots of the splines
were computed as a function of the gauge invariant
neighboring plaquettes, and in the second step as a function

FIG. 9. Densities on a two-dimensional slice through
the space of SU(9) eigenvalues defined by varying θ1 and θ2,
keeping θ3;…; θ8 fixed to random values, and assigning
θ9 ¼ wrapð−P

8
k¼1 θkÞ. The densities learned by the flow-based

models are compared to the target densities for three distributions,
each with β ¼ 9. Horizontal, vertical, and diagonal lines of zero
density correspond to locations where the chosen slice crosses
through walls of the cells (on which the Haar measure forces the
density to zero). Due to exact permutation invariance of the flow-
based distribution, these lines are exactly reproduced.

TABLE IV. Choices of parameters on which we investigated
the performance of our flow-based sampler. We selected three
values of β for both SU(2) and SU(3) gauge theory, correspond-
ing to approximately equivalent ’t Hooft couplings λ. nd:o:f ¼
DL2ðN2 − 1Þ indicates the dimensionality of the gauge configu-
ration manifold in each case.

SUðNÞ L β λ ¼ 2N2=β ndof

SU(2) 16 f1.8; 2.2; 2.7g f4.4; 3.6; 3.0g 1536
SU(3) 16 f4.0; 5.0; 6.0g f4.5; 3.6; 3.0g 4096

9To sample the prior distribution, the method presented in
Ref. [57] can be used for UðNÞ and can also be modified to fix the
determinant to 1 for SUðNÞ.
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of the horizontal coordinate as well. These two functions in
each coupling layer were implemented using convolutional
neural networks with 32 channels in each of the two hidden
layers, with similar use of circular padding, no pooling
operations, and leaky ReLU activation functions. The
model parameters defining the variational ansatz distribu-
tion thus consisted of the weights in this pair of convolu-
tional neural networks across all coupling layers.
In both cases, the model parameters were optimized

using the Adam optimizer with the default hyperparameters
used in the Pytorch library [59]. The learn rate was set to
10−3 early in training and reduced to 10−4 partway through
training. Each optimization step consisted of sampling a
batch of size 3072, estimating the modified KL divergence
in Eq. (4), then using the optimizer to update the param-
eters. Between 14 000 and 29 000 total batches were used
for training each model, divided into two stages detailed in
the discussion of volume transfer below. During training,
we monitored the ESS on each batch to assess model
quality. Figure 10 shows how ESS and the spread of
reweighting factors evolve over the course of training on a
representative model. The final values of ESS for each
model are reported in Table V. For the fixed architecture
used, we observe a decrease in ESS as β is increased,
approaching the continuum limit. It is natural to instead
scale the model size to counteract this effect if attempting to
approach the continuum along a line of constant physics.
We comment further in Sec. V.
For this proof-of-principle study, we did not perform an

extensive search over training hyperparameters. When
scaling the method, we expect careful tuning of these
hyperparameters and the model architecture can improve
the model quality and allow more efficient training.
Automatic tuning of hyperparameters, in particular, have
been shown to significantly reduce model training costs in
other machine learning applications [60–62].

In general, models defined in terms of convolutional
neural networks acting on invariant quantities in a localized
region capture the local correlation structure defining the
distribution. This local structure is independent of volume
as long as finite volume effects are not too large. Thus,
models can largely be trained on much smaller volumes
than the target volume, requiring few training steps at the
final volume to correct for any finite volume effects learned
by the model. In this study, fewer training steps were used
at the final volume than in the earlier small-volume train-
ing, resulting in computational gains over training immedi-
ately at the large volume.
The two-dimensional gauge theories used to investigate

this model consist entirely of ultralocal dynamics, with any
finite volume corrections exponentially small in the number
of lattice sites [63]. In our study, we were thus able to train
nearly optimal models on much smaller volumes, which
enabled significantly more efficient training. For example,
Fig. 11 shows that transferring a model that has already

FIG. 10. Normalized reweighting factors log δw ¼ −SðUÞ þ SeffðUÞ − logZ vs action S per configuration across 10 000 model
proposals for SUð3Þ gauge theory with β ¼ 6.0. Reweighting factors are plotted at various points throughout training, reported in terms
of the number of batches of size 3072 that have been used at that point in training.

TABLE V. Final values of the ESS for each model trained for
SU(2) and SU(3) gauge theory.

SU(2) SU(3)

β 1.8 2.2 2.7 4.0 5.0 6.0
ESS (%) 91 80 56 88 75 48

FIG. 11. Comparison of training dynamics for a model for
SU(3) gauge theory on a 16 × 16 lattice, when initialized with
weights from a model trained on an 8 × 8 geometry, versus the
dynamics for an identical model trained from a random initial-
ization. Results are shown for the β ¼ 6 target in SU(3) gauge
theory. The model transferred from the 8 × 8 geometry almost
immediately converges to a plateau in model quality, while
the model trained from a random initialization requires many
training steps to converge to similar quality, despite adjusting the
optimization hyperparameters to improve the rate of optimization
from a random initialization.
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learned to capture the local structure of the β ¼ 6, SU(3)
gauge theory on an 8 × 8 lattice almost immediately results
in an optimized model for the target 16 × 16 lattice
geometry, whereas it takes many training steps at the large
volume to reach similar model quality when beginning
training from a randomly initialized model. In any theory
with a mass gapM, we expect that finite volume effects will
be exponentially small inML when the side length L of the
lattice is large enough. Initially training at the smallest
value of L in this regime thus provides an efficient
approach to training models with larger L since the
corrections that must be learned are exponentially small.
These gains will be even more significant in higher
spacetime dimensions, where the number of lattice sites
scales with a larger power of the lattice side length L.

B. Observables

For each model, we constructed a flow-based Markov
chain using independent proposals from the model with a
Metropolis accept/reject step, as described in Sec. II A.
Composing proposals into a Markov chain in this way
ensures exactness in the limit of infinite statistics.
At finite statistics, it is possible that large correlations

between samples at widely separated points in the Markov
chain could result in apparent bias due to underestimated
errors or insufficient thermalization time. We confirmed
that this is not the case by comparing against a variety of
analytically known observables. Specifically, we measure
the expectation values of the following:
(1) Wilson loops Wab, i.e., traced loops of links of

shape a × b
(2) Polyakov loops lðxÞ ¼ trfQt U0ðt; xÞg, winding

around the periodic boundary of the lattice
(3) Two-point functions of Polyakov loops, l�ðxÞlðyÞ

These observables can also be computed analytically by a
simple extension of analytical results found for UðNÞ
lattice gauge theory in two dimensions in Refs. [64,65]
to the SUðNÞ gauge group. The expectation value of any
Polyakov loop is zero due to an exact center symmetry; this
result was reproduced by the flow-based samples (as we
discuss below, center symmetry is also exact in our models;
therefore, this quantity is exact based on model proposals
even before composition into a Markov chain). Due to
confinement, Wilson loops have an expectation value
exponentially small in the area of the loop; thus, we
considered loops of simple shapes up to area 4 and the
Polyakov loop two-point function with zero separation,
jlðxÞj2. The flow-based estimates of these quantities for
SU(2) and SU(3) gauge theory are shown graphically in
Fig. 12. The results are statistically consistent with the
analytical result.
We further checked that as statistics are increased,

estimated errors fall as 1=
ffiffiffi
n

p
. This must be true asymp-

totically, but could be modified if there are correlations
longer than the finite Markov chain length. We find that

errors are indeed consistent with 1=
ffiffiffi
n

p
scaling, as shown,

e.g., in Fig. 13 for estimates of ReW11 for SU(3) gauge
theory with β ¼ 6.

C. Symmetries

After composition into a Markov chain, flow-based
samples are guaranteed to asymptotically reproduce the
exact distribution, including all symmetries. However, to
reduce Markov chain correlations and improve training
efficiency, we constructed our flow-based models to exactly
reproduce some symmetries even when generating pro-
posals. In terms of the factorization schematically shown in
Fig. 1, exactly imposing symmetries in the model can

FIG. 12. Selection of observables, relative to the true values,
computed using the flow-based SU(2) (top) and SU(3) (bottom)
gauge theory ensembles. Observables were measured on con-
figurations separated by a number of steps equal to the Markov
chain autocorrelation time, as determined by the self-consistent
estimator presented in Ref. [66]. The autocorrelation time ranged
from 1 to 4 for all observables. Per observable, a total number of
samples ranging from 20 to 15 000 was chosen to give percent-
level errors.
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reduce variance in reweighting factors along the pure-
symmetry directions of the distribution.
As detailed in Sec. II B, we used coupling layers exactly

equivariant to gauge symmetry and translational symmetry
modulo a Z4 × Z4 breaking arising from the size of the
tiled pattern. To confirm the exact invariance of the flow-
based distribution under gauge transformations, we mea-
sured the flow-based effective action over a range of gauge
transformations on 32 random configurations along a
randomly selected pure-gauge direction. Figure 14 depicts
the invariance of both the effective and true actions under
this random direction of gauge transformation. The data

shown in different colors, corresponding to different
random configurations, are approximately aligned in the
left and right panels of Fig. 14, indicating that the true
action is approximately matched by the effective action in
the gauge invariant directions. We performed a similar
investigation of translational invariance by scanning over
all 16 × 16 possible translations of 32 random configura-
tions. Figure 15 shows that there are fluctuations in the
flow-based effective action, which arise from symmetry
breaking within each 4 × 4 tile, but a large subgroup of the
translational group is preserved as can be seen by the lines
of constant effective action across various translations of
each configuration. The spatial structure of the residual
fluctuations in the effective action is shown in Fig. 16.
We also expect the hypercubic symmetry group to be an

exact symmetry in most studies of lattice gauge theories. In
the two-dimensional gauge theories under study, this group
consists of the eight possible combinations of rotations and
reflections of the lattice. While this symmetry could be
imposed in every convolutional neural network used in all

FIG. 14. Effective action Seff vs normalized true action Sþ
logZ on a sequence of gauge transformations of 32 gauge
configuration samples for SU(3) gauge theory with β ¼ 6. The
gauge transformation applied is smoothly varied as δ is increased.
Both the flow-based action and true action are exactly invariant to
gauge transformations.

FIG. 16. Fluctuations in the flow-based effective action across
all possible translations of three random gauge configurations.
Configurations are drawn from the model for SU(3) gauge theory
with β ¼ 6. Fluctuations are reported relative to the mean
effective action across all possible translations in each configu-
ration and are normalized with respect to the standard deviation
of the action in the path integral,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðS − hSiÞ2i

p
. The action is

invariant for shifts δx ¼ 0 ðmod 4Þ, δy ¼ 0 ðmod 4Þ demonstrat-
ing the exact translational symmetry modulo Z4 × Z4.

FIG. 15. Effective action Seff vs normalized true action Sþ
logZ on a sequence of translations of 32 gauge configuration
samples for SU(3) gauge theory with β ¼ 6. All 16 × 16 trans-
lations are plotted in a sequential pattern with index given by
i ¼ δyþ 16δx.

FIG. 13. Statistical errors on estimates of ReW11 in SU(3)
gauge theory with β ¼ 6 scale as expected as the number of
independent samples n is varied. Errors (orange points) are
estimated by a bootstrap procedure after thinning the data based
on the measured autocorrelation time; the uncertainties on these
estimates are measured using an outer bootstrap resampling step.
The normalization VarðReW11Þ for the theoretical scaling (gray
dashed line) is computed using the rightmost measured point.
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coupling layers, the pattern of open loops and the relation of
these loops to updated links is difficult to make invariant;
choosing a link to “absorb” the update of each open loop
fundamentally breaks the hypercubic symmetry. On the other
hand, this discrete symmetry group has few elements, con-
sisting of only eight elements in two dimensions, 48 elements
in three dimensions, and 384 elements in four dimensions. As
such, we instead allowed our flow-based models to learn this
small symmetry group over the course of training. Figure 17
depicts the approximate invariance of the flow-based effective
action on 32 random gauge configurations under all eight
elements of the hypercubic group in 2D.
For the pure-gauge theories under consideration, center

symmetry and complex conjugation symmetry are addition-
ally exact symmetries of the action; we included both
symmetries explicitly in all of our models. Center sym-
metry is defined by the transformations

U0ðxÞ → U0ðxÞei2πn=N; n ∈ f0;…; N − 1g; ð27Þ

for all links on a fixed time slice, x0 ¼ t, with other
links unaffected. Our coupling layers are already
equivariant under this symmetry, which can be seen by
considering the updated value of any modified link,
U0

μðxÞ ¼ P0
μνðxÞP†

μνðxÞUμðxÞ: plaquettes do not transform
under center symmetry, and by definition center trans-
formations on the link UμðxÞ are free to commute all the
way to the left. If open Polyakov loops were transformed in
the coupling layers, or if traced Polyakov loops were
used as part of the gauge invariant inputs to any trans-
formation, this property would no longer hold; including
terms like thesewill be necessary for theories in which center
symmetry is explicitly broken.We also explicitly constructed
our spectral flows to be equivariant under complex con-
jugation. For SU(2) matrices, this is equivalent to permuta-
tion of the eigenvalues and is therefore immediate. For SU(3)
matrices, it corresponds to a nontrivial mirror symmetry

within a single canonical cell. We implemented this mirror
symmetry by extending a spline flow from one half of the
canonical cell to the entire space using an approach similar to
that applied for SU(2) permutation equivariance. Both center
symmetry and complex conjugation symmetry were repro-
duced to within numerical precision.
Finally, we considered explicitly symmetrizing model

proposals under a discrete symmetry group H. Such an
approach could be used, e.g., to impose the residual Z4 ×
Z4 translational symmetry or hypercubic symmetry on the
flow-based model post hoc. To do so, a random symmetry
transformation is applied after drawing a model proposal
and the averaged model weight,

SeffðUÞ ≔ − log

�
1

jHj
X
h∈H

e−Seffðh·UÞ
�
; ð28Þ

is reported. This averaging over all possible symmetry
transformations is required to faithfully report the proba-
bility density of the output sample for reweighting or
composition into a flow-based Markov chain. It is also very
costly if the symmetry group is large (and is intractable for
continuous symmetry groups).
We studied the possibility of employing such averaging

for the residual Z4 × Z4 translational symmetry breaking.
Figure 18 compares the reweighting factors required for the
translationally symmetrized model vs the fluctuations
that have been averaged over by the sum in Eq. (28). The
comparable width of these histograms indicates that the
improvement in the spread of reweighting factors (which
controls the variance of estimators) is Oð1Þ; evaluating the
ESS directly, we found in this example that the ESS was
increased by roughly a factor of 2. Thus, the additional
factor of 16 in cost required to generate the symmetrized
proposals outweighed the variance reduction benefits. We

FIG. 17. Measured effective action Seff vs normalized true
action Sþ logZ on all eight possible hypercubic transformations
of 32 gauge configurations sampled for SU(3) gauge theory with
β ¼ 6.

FIG. 18. Reweighting factors after post hoc symmetrization
(filled blue) vs the log difference of the symmetrized effective
action from the original effective action (outlined orange). The
width of the latter distribution indicates the gains made by
averaging over these fluctuations in Eq. (28). The width of the
former distribution indicates the remaining errors in the model.
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conclude that it is beneficial to impose symmetries
when possible in the flow-based model itself, as we did
with gauge symmetry, center symmetry, conjugation sym-
metry, and a large subgroup of translational symmetry,
but in our application we found it counterproductive to
impose a residual symmetry by brute force averaging of
proposals.

V. OUTLOOK

It has recently been shown in proof-of-principle work that
the challenging computational task of sampling field con-
figurations for lattice gauge theory may be accelerated by
orders ofmagnitude comparedwithmore traditional sampling
approaches through the use of flow-based models [11,16].
In other lattice field theories, it has been demonstrated
that these models can also be used to estimate observables,
such as the absolute value of the free energy, that are difficult
to estimate with existing MCMC methods [17].
Here, we present a definitive step toward more efficient

sampling for lattice gauge theories by developing flow-based
models that are equivariant under SUðNÞ gauge symmetries,
thus enabling the construction of model architectures that
respect the symmetries of the StandardModel of particle and
nuclear physics and other physical theories. We demonstrate
the application of this approach to sampling both single
SUðNÞ variables and SU(2) and SU(3) lattice gauge theory
configurations, showing that observables computed using
samples from flow-based models are correct within uncer-
tainties and have the predicted statistical scaling with an
increasing number of samples.
In the proof-of-principle implementation presented

here, we have not attempted to optimize the model archi-
tecture and training approaches for expressivity or efficiency.
State-of-the-art calculations will likely require further devel-
opment in these directions. For one, alternative patterns of
loops to update in each coupling layer could increase
expressivity of the model, and we expect that exploring
these choices will have significant impact in higher dimen-
sions, where the degree of connectivity between links and
loops is higher. Second, studies of whether the kernels and
coupling layers that we constructed can generalize to
multimodal distributions will help to understand the ability
of these models to capture distributions in broken symmetry
phases of lattice gauge theories. Third, investigation of
hyperparameter tuning and further ways to exploit existing
models for training and model initialization could allow
more efficient training and improve model quality. Finally,
studying the scaling of model complexity required to take
the continuum limit will determine the viability of this
approach on the fine-grained lattices employed in state-of-
the-art lattice field theory calculations. Due to locality,
keeping the variance of reweighting factors or the flow-
based Markov chain rejection rate fixed while we increase
the physical volume of the lattice will require improving the
model’s approximation of the local correlation structure of

the theory.10 However, it is not clear how the model
complexity and number of parameters (and therefore the
cost of model evaluation) must scale when physical volume
is held fixed and the lattice spacing is decreased. This scaling
depends on the dynamics of the theory and the architecture
of the flow-based model under study, and it must be
determined experimentally. If these challenges can be
addressed, the extension of these proof-of-principle results
to state-of-the-art lattice gauge theory calculations for
complex theories such as quantum chromodynamics has
the potential to redefine the computational limits, and hence
the impact, of lattice gauge theory in the coming exascale
computing era [67].
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APPENDIX A: PROOF THAT EQUIVARIANCE
UNDER MATRIX CONJUGATION CAN BE

REPRESENTED AS EQUIVARIANCE UNDER
EIGENVALUE PERMUTATION

Let G be a compact connected Lie group, such as
SUðNÞ. We are interested in characterizing the group of

10Instead keeping the model architecture fixed while increasing
the physical volume results in exponential degradation of the
variance of reweighting factors or the flow-based Markov chain
rejection rate.
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diffeomorphisms of G that are equivariant under the action
by matrix conjugation. Such a diffeomorphism f∶G → G
satisfies fðXWX−1Þ ¼ XfðWÞX−1 for any W;X ∈ G. Our
aim is to show that all such diffeomorphisms are extensions
to G of diffeomorphisms of a maximal torus that are
equivariant under the action of the Weyl group. We note
that despite the use of neural networks to generate the
parameters for the diffeomorphism fðWÞ on the maximal
torus, it is a diffeomorphism on W for any fixed set of
parameters and this is the only required property for the
following proof to proceed.
Let T be amaximal torus inG. Recall this torus is equal to

its own centralizer ZðTÞ¼ fX∈GjXDX−1¼D; ∀ D∈Tg.
The Weyl group of G is a finite group equal to NðTÞ=T,
where NðTÞ ¼ fX ∈ GjXDX−1 ∈ T; ∀ D ∈ Tg is the
normalizer of T.
In the case of G ¼ SUðNÞ or G ¼ UðNÞ, a maximal

torus is given by the subgroup of diagonal matrices, and the
Weyl group is isomorphic to the group of permutations on
N elements acting on T by permuting the elements on the
diagonal. For a permutation σ, a representative matrix in
NðTÞ is given by a permutation matrix, with potentially
some elements set to −1 instead of 1 in order for the
determinant to be 1 in the case of SUðNÞ.
We start with the easy direction, where we restrict a

diffeomorphism from G to T.
Proposition 1.—Let f∶G → G be a matrix conjugation

equivariant diffeomorphism. Then f restricted to T is a
diffeomorphism of T that is equivariant under the action of
the Weyl group.
Proof.—First, let us show that fðTÞ ⊂ T. Let D ∈ T.

For any X ∈ T, we have XDX−1 ¼ D since T is commu-
tative. By equivariance of f, we also have fðXDX−1Þ¼
XfðDÞX−1. We deduce that XfðDÞX−1 ¼ fðDÞ for all
X ∈ T, which means that fðDÞ is in the centralizer of T.
Since this is equal to T for a maximal torus, we have
proved fðDÞ ∈ T.
Since f is a diffeomorphism, its restriction to T is also a

diffeomorphism on its image. This image will be both
closed and open in T, and is therefore the whole of T.
Finally, the fact that f restricted to T is equivariant under

the action of the Weyl group is immediate, since this action
comes from the action by conjugation from NðTÞ. ▪
For the opposite direction, we restrict ourselves to the

cases G ¼ SUðNÞ and G ¼ UðNÞ. We choose T to be the
subgroup of diagonal matrices. The Weyl group acts by
permutation on the diagonal elements in T.
In what follows, we will assume f∶T → T is a diffeo-

morphism that is equivariant under the action of the Weyl
group. We first introduce a Lemma that will be used later.
Lemma 1.—Let D ∈ T. Assume A ∈ G commutes with

D, then A also commutes with fðDÞ.
Proof.—Let i, j be distinct indices in the range 1…N.

Assume that Dii¼Djj. We will first prove that fðDÞii¼
fðDÞjj. Let P ∈ SUðNÞ be given by Pij¼1;Pji¼−1;

Pii¼Pjj¼0, and Pkk¼ 1 for all k ≠ i, j, then PDP−1 ¼
D. Since P ∈ NðTÞ, we have PfðDÞP−1 ¼ fðPDP−1Þ ¼
fðDÞ and P commutes with fðDÞ. This means that
fðDÞii ¼ fðDÞjj.
Let λ1;…; λm be the m distinct eigenvalues of D, with

respective multiplicity n1;…; nm. There exists P in NðTÞ
such that

PDP−1 ¼

0
B@

λ1In1 0

·

0 λmInm

1
CA; ðA1Þ

where Ink is an identity matrix of size nk. This means that
fðPDP−1Þ must also be of the form

fðPDP−1Þ ¼

0
B@

μ1In1 0

·

0 μmInm

1
CA: ðA2Þ

Since A commutes with D, we have that PAP−1

commutes with PDP−1. Since matrices that commute must
preserve each others eigenspaces, this implies that PAP−1

must have the form

PAP−1 ¼

0
B@

U1 0

:

0 Un

1
CA: ðA3Þ

Given the form of PfðDÞP−1 ¼ fðPDP−1Þ shown above,
we conclude that PAP−1 commutes with PfðDÞP−1;
therefore, A commutes with fðDÞ. ▪
Finally, using Lemma 1, we can prove our main result.
Proposition 2.—Assume W ∈ G has two different

decompositions W ¼ XDX−1 ¼ YEY−1, where D and E
are diagonal matrices. Then

XfðDÞX−1 ¼ YfðEÞY−1: ðA4Þ
Proof.—There exists P in NðTÞ such that E ¼ PDP−1,

which implies fðEÞ ¼ PfðDÞP−1. This means Eq. (A4) is
equivalent to

XfðDÞX−1 ¼ ZfðDÞZ−1; ðA5Þ
where Z ¼ YP. The above equation is equivalent to saying
that X−1Z commutes with fðDÞ, and by Lemma 1 this will
be the case if X−1Z commutes withD. This is easy to prove,

X−1ZDZ−1X ¼ X−1YPDP−1Y−1X

¼ X−1YEY−1X

¼ X−1WX

¼ D: ðA6Þ
▪
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Example 1.—In the case of G ¼ SUð2Þ, the maximal
torus is isomorphic to U(1), the Weyl group has size 2, and
its only nontrivial element transforms ðλ

0
0
λ̄Þ to ðλ̄0 0λÞ; thus, any

bijection f∶Uð1Þ → Uð1Þ that satisfies fðz̄Þ ¼ fðzÞ defines
an equivariant bijection of SU(2).
According to Proposition 2, any matrix conjugation

equivariant function on T can be extended to an equivariant
function on G. If the function was invertible on T, then it is
easy to see that it will also be invertible on G.

APPENDIX B: DETAILS OF PERMUTATION
EQUIVARIANCE OF SUðNÞ SPECTRAL FLOWS

1. Proof that Eq. (21) defines a cell

We demonstrate that the vertices from Eq. (21) define an
(N − 1)-simplex Ψ corresponding to a cell C. In practice,
this means showing that any point on the boundary of Ψ
maps to a point in C with repeated eigenvalues, while any
point in the interior of Ψ maps to a regular point, i.e., one
without repeated eigenvalues.
Proposition 3.—The vertices y1;…; yN from Eq. (21)

define an (N − 1)-simplex Ψ that maps to a cell C ¼
expðΨÞ in the maximal torus.
Proof.—Let θ be a point in Ψ, the convex hull of

y1;…; yN , given by

θj ¼ 2π
X
k

γk

�
k
N
− δk≥j

�
;

where γk ≥ 0 and
P

k γk ¼ 1. The boundary ∂Ψ is the
simplicial complex formed by all points θ such that at least
one γk is zero.
We consider the difference between two points θi and θj,

for j > i,

θj − θi ¼ 2π
X
k

γkðδk≥i − δk≥jÞ ðB1Þ

¼ 2π
Xj−1
k¼i

γk: ðB2Þ

If γk ¼ 0 for some k such that 1≤k<N, then θkþ1 − θk ¼ 0
and expðθÞ has a repeated eigenvalue. If γN¼0, we have
that θN − θ1 ¼ 2π

P
N−1
k¼1 γk, but since γN ¼ 0, we haveP

N−1
k¼1 γk ¼ 1. Thus, θN − θ1 ¼ 2π. This shows that a point

in ∂Ψ is exponentiated to a point with repeated eigenvalues.
Finally, we need to show that a point in the interior of Ψ

is exponentiated to a regular point. Such a point corresponds
to γk > 0; ∀ k. As a consequence of Eq. (B2), no pair θi, θj
is equivalent modulo 2π: for an interior point, the sumPj−1

k¼1 γk is strictly positive and also strictly smaller than 1. ▪

2. More on Eq. (21)

In this section, we explain where the points yk in Eq. (21)
come from. In particular, we draw some parallel between

our construction of the simplex Ψ and fundamental
domains in Bravais lattices. Figure 19 depicts the steps
described below.
Recall that we defined a cell in Sec. III D as the

closure of a connected component in T of the set of regular
points. These cells are separated by regions where the
eigenvalues λi are degenerated. That is, for every point
ðλ1;…; λNÞ in the boundary of a cell, there exists at least
one pair i; j ∈ f1;…; Ng such that θi − θj ¼ 0 mod 2π,
where θi ¼ arg λi. The inverse image of these boundaries
under the exponential map are affine hyperplanes in t
that bound simplexes. The set of vertices of these simplexes
(and all their translated copies) form a Bravais lattice Λ
given by

P
i ziui,where z ∈ ZN−1 and the primitive vectors

ui ∈ RN are defined by ½ui�k ¼ 2πð1N−δðiþ1ÞkÞ. In the theory
of lattices, the canonical cell is known as the fundamental
simplex and its orbit under the Weyl group is known as the
root polytope [71].
Recall that we identified twith the hyperplane

P
i θi ¼ 0

in RN . Assume Δ is an (N − 1)-simplex with N vertices
qi ∈ t, defined by the components

½qi�j ¼ 2π

�
1

N
− δij

�
;

where ½qi�j indicates the jth component of the ith vertex.
Based on the observation that Weyl chambers in the Lie

algebra of SUðNÞ are open cones determined by the
barycentric subdivision of Δ [72], we then apply a barycen-
tric transformation to the vertices qi. Generally, a barycentric
transformation is achieved by sending fvkg to fwkg by

wk ¼
1

k

Xk
i¼1

vi: ðB3Þ

FIG. 19. Illustration of the steps to derive Eq. (21) for SU(3)
(top row) and SU(4) (bottom row). Columns correspond, from
left to right, to the steps: (i) starting simplex Δ on the hyperplaneP

j θj ¼ 0; (ii) barycentric subdivison, and (iii) edge-length
adjustment to cover the cell. For SU(3), we overlay the simplexes
on top of the Haar measure for reference.
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Applying this to Δ gives a new simplex Δ̃ with vertices xk,

½xk�j ¼
2π

k

Xk
i¼1

�
1

N
− δij

�
¼ 2π

k

�
k
N
− δk≥j

�
;

where δk≥j is equal to one when k ≥ j and zero otherwise.
The simplex Δ̃ is correctly aligned with a cell; however,

it does not contain the full cell. To fix this, we adjust the
length of the edges of Δ̃, resulting in the final simplex C.
Let αk ∈ Rþ be an arbitrary scaling of the kth edge of Δ̃, so
that the rescaled coordinates of the vertices are given by

½yk�j ¼ αk
2π

k

�
k
N
− δk≥j

�
:

We want the vertices fy1;…; yNg of C to correspond
to neighboring points of the Bravais lattice Λ, so that
the orbit of the simplex C with respect to the Weyl group
tiles the torus without leaving holes and without overlaps.
More precisely, this constraint is equivalent to imposing
½yk�j − ½yk�i ∈ f0; 2πg; ∀ j > i. Substituting the expres-
sion for ½yk�j, we obtain the constraint

½yk�j− ½yk�i¼ αk
2π

k
ðδk≥i−δk≥jÞ¼ 0 mod 2π; ∀ j> i:

The term δk≥i − δk≥j can have values 0 or 1, so that the
constraint can be satisfied for all j > i if αk ¼ k. With this
choice, the coordinates of the vertices of C are given by

½yk�j ¼ 2π

�
k
N
− δk≥j

�
: ðB4Þ

3. Proof that Algorithm 1 projects into Ψ
In this section, we will show the output of Algorithm 1 is

always a point in Ψ.
The output of Algorithm 1 is a set of angles θcanon. In this

section, we will write θc as an abbreviation for θcanon. We
wish to prove that θc is in the convex hull of the yk defined
in Eq. (21). We will do so by explicitly exhibiting the
weights of the convex combination. In essence, our proof is
the opposite of what lead to Eq. (B2).
Define

γk ¼
(

1
2π ðθckþ1 − θckÞ k < N;

1 −
P

N−1
j¼1 γj k ¼ N:

ðB5Þ

The sum
P

N−1
j¼1 γj simplifies to 1

2π ðθcN − θc1Þ. By construc-
tion, the difference θcN − θc1 cannot be more than 2π. It
follows that γk ≥ 0; ∀ k and

P
k γk ¼ 1.

Let θ0 ¼ P
k γkyk be in Ψ. We will now prove that

θ0 ¼ θc, which will conclude the proof. Using the definition
of yk in Eq. (21), it follows that

θ0j ¼ 2π
X
k

γk

�
k
N
− δk≥j

�

¼ 2π

�XN−1

k¼1

1

2π
ðθckþ1 − θckÞ

�
k
N
− δk≥j

��
þ 2πγN ½yN �j:

ðB6Þ
The extra term after the initial sum above is 0 because
½yN �j ¼ 0. We continue

θ0j ¼
XN−1

k¼1

ðθckþ1−θckÞ
�
k
N
−δk≥j

�

¼
XN
k¼2

θck

�
k−1

N
−δk−1≥j

�
−
XN−1

k¼1

θck

�
k
N
−δk≥j

�

¼ θcN

�
N−1

N
−δN−1≥j

�
þ
XN−1

k¼2

θck

�
−
1

N
þδk≥j−δk≥jþ1

�

−θc1

�
1

N
−δ1≥j

�
: ðB7Þ

In the last line above, note that we can simplify N−1
N −

δN≥1þj to −1
N þ δj;N , and δk≥j − δk≥jþ1 to δk;j, and also δ1≥j

to δ1;j. It follows that

θ0j ¼ θcNδN;j þ
XN
k¼2

θckδk;j þ θc1δ1;j −
1

N

XN
k¼1

θck ¼ θcj : ðB8Þ

The last line above was obtained using that the sum of θck
is 0. This concludes our proof.

4. Full algorithm

Algorithm 2. Equivariant SUðNÞ coupling layer.

Given U ∈ SUðNÞ
1. λ; fv⃗ig ¼ eigendecompðUÞ.
2. Project to canonical cell Ψ: I ¼ canonicalizeðargðλÞÞ.
3. Map to axis-aligned simplex Δ: β ¼ ζ−1ðIÞ.
4. Map to box Ω: α ¼ ϕ−1ðβÞ.
5. Apply box flow: α0 ¼ χðαÞ.
6. β0 ¼ ϕðα0Þ.
7. I0 ¼ ζðβ0Þ.
8. λ0 ¼ uncanonicalizeðI0Þ.
9. U0 ¼ eigenrecompðλ0; fv⃗igÞ.
10. Accumulate all log-det-Jacobians,

LDJ ¼ log Haarðλ0Þ − logHaarðλÞ
þ LDJχ þ LDJϕ−1 − LDJϕ

11. U0 is equivariant to SUðNÞ matrix conjugations and LDJ
is invariant to matrix conjugations.

12. Return U0 and LDJ.
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Above, there are no terms in LDJ for the map ζ because
the Jacobian factor acquired from the forward and back-
ward maps are constants that cancel. The term HaarðλÞ
gives the density of the Haar measure with respect to the
Lebesgue measure in the space of eigenvalues, as defined in
Eq. (19). The normalization of this term is unimportant as it
cancels in the above algorithm.

APPENDIX C: BACKPROPAGATION THROUGH
UNITARY MATRIX DIAGONALIZATION

We define the backpropagation of gradients through
application of a black-box (unitary) diagonalization oper-
ation on unitarymatrices, i.e., the steps required to produce a
gradient of a scalar loss function L with respect to the
matrices, given the gradient of L with respect to their
eigenvalues and (unit-norm) eigenvectors. It is assumed
that the loss function L is independent of the details
of the diagonalization procedure, including the overall
complex phase of each eigenvector and the permutation
of eigenvalues and eigenvectors; this assumption is
true for our spectral flows, for example. A gradient back-
propagation algorithm suitable for a black-box diagonaliza-
tion procedure allows us to implement the diagonalization
using any approach that is efficient and numerically stable.
Given the N × N unitary matrix U, we define the eigen-

values and eigenvectors returned by the black-box diagonal-
ization step to be w ¼ ðw1;…; wNÞ and P ¼ ðv⃗1;…; v⃗NÞ,
respectively. By definition of unitary diagonalization, they
satisfy

U ¼ PDP†; D ≔ diagðwÞ: ðC1Þ

Equation (C1) does not fully constrain d andP, so theymay
further depend on U; such dependence (e.g., how the
overall phases on each v⃗i are chosen) is an implementation
detail of the diagonalization procedure. We define the
vector of gradients given as input to the backpropagation
step to be

g ≔
� ∂L
∂Rew ;

∂L
∂Imw

;
∂L

∂ReP ;
∂L

∂ImP

�
; ðC2Þ

where we implicitly bundle the components of the gra-
dients with respect to w and P into one row vector.11

To proceed, we use Eq. (C1) to relate the differential
elements dP and dw to dU, and ultimately solve for the
Jacobian elements ∂Rew=∂ReU; ∂Imw=∂ReU; …;
∂ImP=∂ImU. Ambiguity due to the implementation details
of the diagonalization procedure corresponds to ambiguities
in components of the Jacobian that cannot affect L by our
assumption above. Therefore, in what follows we simply
make a valid choice.
From the unitarity of P and diagonal nature of D, we

know

PdP†þdPP† ¼ 0; dP†PþP†dP¼ 0;

dwi ¼ dDii; and dDij¼ 0; ∀ i≠ j: ðC4Þ

From Eq. (C1), we can derive

U ¼ PDP† ⇒ P†UP ¼ D

dP†UPþ P†dUPþ P†UdP ¼ dD

dP†PDþ P†dUPþDP†dP ¼ dD: ðC5Þ

Introducing

dH ≔ P†dP ¼ −dP†P; ðC6Þ

which represents the differential of P translated to the
identity, we simplify the relation of differential elements to

P†dUP − dD ¼ −DdH þ dHD ¼ ½dH;D�: ðC7Þ

However, since D is diagonal, we know ½dH;D�ii ¼ 0 and
therefore have an explicit expression for dwi,

dwi ¼ dDii ¼ ½P†dUP�ii: ðC8Þ

We can similarly compute the off-diagonal components
of dH,

½P†dUP�ij ¼ ðwj − wiÞdHij; ∀ i ≠ j

dHij ¼
½P†dUP�ij
wj − wi

: ðC9Þ

The imaginary components of the diagonal elements of dH
are unconstrained (dH is anti-Hermitian so the real com-
ponents are zero), reflecting the fact that the only undefined
(continuous) degrees of freedom are the phases on the
eigenvectors. We are free to set them to zero, giving a valid
choice of dP,

11Note that machine learning libraries with support for com-
plex numbers may provide such gradients in different formats.
For example, the convention used by JAX [73] is to provide the
complex-valued gradient vector

gjax ¼
� ∂L
∂Rew − i

∂L
∂Imw

;
∂L

∂ReP − i
∂L

∂ImP

�
; ðC3Þ

which packs the gradient components into complex values,
matching the type of w and P [74].
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dPmn ¼ ½PdH�mn ¼ PmiP
†
ijdUjkPknV in;

where V in ¼
� 1

wn−wi
i ≠ n

0 else
: ðC10Þ

Having defined a valid solution of the differentials dP
and dw in terms of dU, we can solve for all the components
of the Jacobian,

∂Rewi

∂ReUjk
¼ ReðP�

jiPkiÞ

∂Imwi

∂ReUjk
¼ ImðP�

jiPkiÞ

∂Rewi

∂ImUjk
¼ −ImðP�

jiPkiÞ

∂Imwi

∂ImUjk
¼ ReðP�

jiPkiÞ

∂RePmn

∂ReUjk
¼ ReðPmiP�

jiPknVinÞ

∂ImPmn

∂ReUjk
¼ ImðPmiP�

jiPknVinÞ

∂RePmn

∂ImUjk
¼ −ImðPmiP�

jiPknVinÞ

∂ImPmn

∂ImUjk
¼ ReðPmiP�

jiPknVinÞ: ðC11Þ

Together these components form the Jacobian matrix

J ¼

0
BBBBB@

∂Rew
∂ReU

∂Rew
∂ImU

∂Imw
∂ReU

∂Imw
∂ImU

∂ReP
∂ReU

∂ReP
∂ReU

∂ImP
∂ReU

∂ImP
∂ReU

1
CCCCCA; ðC12Þ

which allows us to backpropagate the gradients by right
multiplication,

g0 ≔
� ∂L
∂ReU ;

∂L
∂ImU

�
¼ gJ: ðC13Þ

APPENDIX D: CONJUGATION EQUIVARIANT
MAPS ON SU(3) VIA AVERAGING

We are interested in building diffeomorphisms of SU(3)
that are equivariant under the action by conjugation of
SU(3) on itself. We already know from Appendix A that it
is enough to build diffeomorphisms of T that are equiv-
ariant under the action of its Weyl group. Our goal here is to
tackle that problem by lifting it to the Lie algebra t of T,
where we will average diffeomorphisms of t to force the

equivariance. We will then identify certain sufficient
properties that guarantee this still leads to diffeomorphisms
of t that descend to diffeomorphisms of T.
In this section, we identify the Lie algebra of T with R2

via the map

ðx; yÞ↦exp Diagðe2πix; e2πiy; e−2πiðxþyÞÞ: ðD1Þ
Given a map h̃∶t → t, we say that this map descends to a
map on T if there exists h such that the following diagram is
commutative:

ðD2Þ

If h̃ is equivariant with respect to the action of the Weyl
group, then so is h since exp is equivariant and surjective.
Given ðx; yÞ ∈ R2, we define z ¼ −x − y.
The Weyl group W associated with T is the group of

permutations over three elements. This group acts on both
T and its Lie algebra t, and the exponential map is
equivariant under these actions. Denote σ0;…; σ5 the
elements of W.
A map h̃∶t → t descends to a map h∶T → T iff

∀x;y∈t; ∀ a;b∈Z2;h̃ðxþa;yþbÞ− h̃ðx;yÞ∈Z2: ðD3Þ
Also, h̃∶t → t if a local diffeomorphism iff its descended
map T → T is a local diffeomorphism.
Proposition 4.—Let h̃∶t → t be any map that satisfies

Eq. (D3), then

Gh̃ ¼
1

6

X
k

σ−1k h̃σk ðD4Þ

also satisfies Eq. (D3) and is equivariant under the action of
the Weyl group.
Proof.—The set of maps that satisfy Eq. (D3) is stable

under convex combination and composition. It follows that
Gh̃ satisfies Eq. (D3).
Let us check it is equivariant. Let σi be in W. In

particular, σi is an affine map, and it will preserve bary-
centers, so that

σi∘Gh̃ ¼
1

6

X
k

σiσ
−1
k h̃σk

¼ 1

6

X
k

ðσkσ−1i Þ−1h̃σk

¼ 1

6

X
k

σ−1k h̃σkσi

¼ Gh̃∘σi: ðD5Þ
▪
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Note that if h̃ is the identity map, then Gh̃ is also the
identity map. If we start with a h̃ that is close to the identity,
we will have constructed an equivariant diffeomorphism of
t, that descends to an equivariant diffeomorphism of T.
In order to ensure that Gh̃ is a diffeomorphism, we

will now restrict h̃ to a particular form. Namely, assume
f∶R → R is a diffeomorphism obtained by lifting a
diffeomorphism of S1 to its Lie algebra R, and define
h̃ðx; yÞ ¼ ðfðxÞ; fðyÞÞ. This is a diffeomorphism of t, and
Gh̃ is equivariant and descends to an equivariant map
Gh∶T → T. We would like to find sufficient conditions for
Gh̃ to descend to a diffeomorphism of T.
Let us start by computing the Jacobian of Gh̃.
Proposition 5.—The Jacobian JðGÞ of Gh̃ is given by

JðGÞðx; yÞ ¼ 1

3

�
2f0ðxÞ þ f0ðzÞ f0ðzÞ − f0ðyÞ
f0ðzÞ − f0ðxÞ 2f0ðyÞ þ f0ðzÞ

�
: ðD6Þ

Proof.—This is a direct, albeit a bit tedious, computation
using the Jacobians of the elements of the Weyl group. ▪
Corollary 1.—The map Gh̃ is a diffeomorphism of t.
Proof.—Let us start by checking that Gh̃ is a local

diffeomorphism. We only need to check that its Jacobian
is always invertible. The determinant of the Jacobian in
Proposition 5 simplifies nicely to 1

3
ðf0ðxÞf0ðyÞþf0ðyÞf0ðzÞþ

f0ðzÞf0ðxÞÞ. Since we assumed that f comes from a diffeo-
morphism of S1, its derivative is either always strictly
positive, or always strictly negative, and the determinant
cannot vanish.
Since t is simply connected, this means Gh̃ is indeed a

diffeomorphism of t that satisfies Eq. (D3). ▪
Corollary 2.—If f is connected to the identity by a path

of diffeomorphisms, thenGh̃ descends to a diffeomorphism
Gh of T that is equivariant under the Weyl group.
Proof.—We already know that Gh̃ descends to a local

diffeomorphism of T. This is necessarily a covering of T by
itself. We only need to prove this covering is trivial. We
cannot use the same argument with T as we did with t,
because T is not simply connected.

We have assumed that f is homotopic to the identity of
R. This immediately gives us a homotopy from Gh̃ to the
identity of t. This descends to a map k∶½0; 1� × T → T.
Using local coordinates, we can see that this map is
continuous. It therefore defines a homotopy from Gh to
the identity of T. In particular, we conclude that Gh must
induce the identity map on the fundamental group and is
necessarily a trivial covering. ▪
Corollary 3.—Any circle diffeomorphism from

Ref. [15], such as a mixture of non-compact projections,
Möbius, or a spline, can be used to define an equivariant
diffeomorphism
of SU(3).
We tested flows based on the equivariant diffeomor-

phisms suggested by Corollary 3 but found that networks
built this way did not perform as well as those used in the
main body of the paper. This is likely because using a single
circle diffeomorphism in Eq. (D4) is too restrictive. An
alternative would be to build a diffeomorphism of the torus
from two circle diffeomorphisms by autoregressivity. In
that case, Corollary 1 does not apply and one needs to be
careful that averaging still leads to a diffeomorphism.

APPENDIX E: THE CASE OF UðNÞ
The case of UðNÞ is simpler than SUðNÞ because we do

not have the constraint that the determinant must be
equal to 1. We could apply the same strategy used for
the SUðNÞ flows via a canonicalization map to map
every point to a canonical cell and then build a flow in
the N-simplex cell (in contrast to the (N − 1)-simplex cell
for SUðNÞ). An alternative and simpler direction is to
directly build a permutation equivariant flow on the torus
TN . This can be achieved by first mapping TN to RN using
a noncompact projection [15,75], then stacking layers
alternating between those defined by Eqs. (13) and (15) or
Eq. (16) in Ref. [42], before finally projecting back to TN .
We tested this flow on U(3) using the target action given in
Eq. (18) with coefficients cð0Þ from Table I and β ¼ 1, 5, 9.
The flow quickly converged with ESS of more than 95%
in each case.
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