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Pionless effective field theory in a finite volume (FVEFTπ) is investigated as a framework for the
analysis of multinucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining
FVEFTπ with the stochastic variational method, the spectra of nuclei with atomic number A ∈ f2; 3g are
matched to existing finite-volume LQCD calculations at heavier-than-physical quark masses corresponding
to a pion mass mπ ¼ 806 MeV, thereby enabling infinite-volume binding energies to be determined using
infinite-volume variational calculations. Based on the variational wave functions that are constructed in this
approach, the finite-volume matrix elements of various local operators are computed in FVEFTπ and
matched to LQCD calculations of the corresponding QCD operators in the same volume, thereby
determining the relevant one- and two-body effective field theory counterterms and enabling an
extrapolation of the LQCD matrix elements to infinite volume. As examples, the scalar, tensor, and
axial matrix elements are considered, in addition to the magnetic moments and the isovector longitudinal
momentum fraction.
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I. INTRODUCTION

Over the last 30 years, effective field theories have
revolutionized nuclear physics, systematizing the study
of nucleon-nucleon interactions and the properties of light
nuclei. Pionless effective field theory for few-nucleon
systems (EFTπ) in particular, which focuses on momenta
below the pion mass, has emerged as a powerful tool with
which to understand low-energy nuclear processes in many
contexts [1–5] (see Ref. [6] for a recent review). Notably,
in addition to its use in the analysis of experimental data,
EFTπ has found a key role in the analysis of lattice
Quantum Chromodynamics (LQCD) calculations of
nuclear systems, providing a direct bridge between QCD
and nuclear physics.
For example, in Ref. [7], LQCD calculations of A ∈

f2; 3g nuclei at heavier-than-physical quark masses [8] are
matched to auxiliary field diffusion Monte Carlo calcu-
lations with EFTπ interactions to constrain the two- and
three-body counterterms of the EFT; these were then used
to make predictions for larger nuclei of atomic number
A ≤ 6. Further developments were presented in Ref. [9],
and this approach was extended to the next order in
the EFT, and to still larger nuclei, in Refs. [10,11].
Reference [12] presents studies of the quark-mass depend-
ence of the magnetic moments and polarizabilities of
A ∈ f2; 3g nuclear systems, with both experimental results
and LQCD calculations at larger-than-physical values of

the pion mass used to constrain the counterterms of EFTπ .
Similarly, an early application of finite-volume EFTπ to
electroweak matrix elements was presented in Ref. [13] and
extended in Ref. [14], and Ref. [15] implemented numeri-
cal studies of two- and three-body systems in discretized
EFTπ . Furthermore, EFTπ provided a powerful approach to
analyzing LQCD calculations of second order weak proc-
esses [16–20].
Recently, Eliyahu et al. [21] have taken the next steps in

this approach and used EFTπ implemented via the stochas-
tic variational method (SVM) [22,23] in a finite cubic
volume to analyze the binding energies of atomic number
A ∈ f2; 3g systems in that finite volume. Since the effects
of a finite volume manifest in the infrared domain, they can
be captured in low-energy effective descriptions of QCD
such as that provided by EFTπ.

1 Since LQCD calculations
are typically performed in multiple volumes to enable an
infinite-volume extrapolation, performing the EFT in the
same volumes also maximizes the constraining power of
the LQCD results. As input, Ref. [21] utilizes the NPLQCD
Collaboration’s LQCD computations of the ground-state
energies and finite-volume energy shifts of these systems
in three different lattice volumes with spatial extents

1In this work, the continuum limit is assumed to have been
taken in the LQCD calculations; extensions to EFTπ that
incorporate polynomial lattice spacing artifacts are possible
following the method proposed in Ref. [24].
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L ∈ f3.4; 4.5; 6.7g fm at unphysical quark masses corre-
sponding to the SUð3Þf flavor-symmetric point where the
up, down, and strange quark masses are degenerate and
correspond to a pion mass mπ ¼ mK ¼ 806 MeV [25].
Using EFTπ in the same volumes to determine counter-
terms, the binding energies were extrapolated to infinite
volume. As this exemplifies, the finite-volume pionless
effective field theory (FVEFTπ) approach provides a
powerful alternative to Lüscher’s method [26], in which
finite-volume energies from LQCD calculations are used to
determine infinite-volume scattering phase shifts and
bound-state energies. While Lüscher’s method and its
generalizations are model independent, the existing for-
malism is limited to two- and three-particle [27] energies
and matrix elements [28–30].2 The matching of LQCD
results to EFTπ , on the other hand, requires an underlying
EFT but can be applied to any system that the EFT can
address.
In this work, the application of FVEFTπ is extended to

nuclear matrix elements for the first time. After a brief
summary of the relevant EFTπ Lagrangians in Sec. II, the
SVM is introduced in Sec. III. Section IV presents the
results of tuning the relevant two- and three-body counter-
terms of FVEFT to reproduce the ground-state energies of
A ∈ f2; 3g nuclei computed in LQCD, paralleling the
analysis of Ref. [21]. Having determined these counter-
terms, Sec. V presents the tuning of the counterterms
describing the interactions of external currents to reproduce
LQCD calculations of nuclear matrix elements, thereby
enabling an extrapolation of the finite-volume matrix
elements to infinite volume. In particular, LQCD calcu-
lations of scalar, tensor, and axial matrix elements, as well
as magnetic moments and isovector longitudinal momen-
tum fractions, of A ∈ f2; 3g states are investigated. To
conclude, the outlook for these calculations is discussed
in Sec. VI.

II. PIONLESS EFFECTIVE FIELD THEORY

The pionless EFT Lagrangian describing the low-energy
interactions of nucleons is given by

L ¼ L1 þ L2 þ L3 þ � � � ; ð1Þ

where

L1 ¼ N†
�
iD0 þ

D2

2MN

�
N þ � � � ð2Þ

contains the single-nucleon kinetic operator expanded in
the nonrelativistic limit. Here, N represents the nucleon
field, MN is the nucleon mass, and the ellipsis denotes

higher-order terms. The leading-order two-nucleon inter-
actions enter as

L2 ¼ −CSðNTPiNÞ†ðNTPiNÞ
− CTðNTP̄aNÞ†ðNTP̄aNÞ þ � � � ; ð3Þ

where

Pi ≡ 1ffiffiffi
8

p σ2σiτ2; P̄a ≡ 1ffiffiffi
8

p σ2τ2τa ð4Þ

are projectors onto spin-triplet and spin-singlet two-
nucleon states, respectively, and CS and CT are the relevant
two-body low-energy constants (LECs). Here, σk and τa are
the Pauli matrices acting in spin and isospin space,
respectively. Equation (3) can be reexpressed in a different
basis as [40]

L2 ¼ −
1

2
½C0ðN†NÞ2 þ C1ðN†σ⃗NÞ2� þ � � � ; ð5Þ

where

CT ¼ C0 − 3C1 and CS ¼ C0 þ C1: ð6Þ
Three-body interactions naively enter at higher order
but must be promoted to leading order as argued in
Refs. [41,42], and the relevant contribution to the
Lagrangian is

L3 ¼ −
D0

6
ðN†NÞ3 þ � � � ; ð7Þ

where D0 is the leading-order three-body LEC.

A. Weak interactions

The weak decays and interactions of nuclear states arise,
after integrating out the weak gauge boson, through the
effective Lagrangian (valid for energies E ≪ MW)

LW ¼ −
GFffiffiffi
2

p lμþJ−μ þ H:c:þ � � � ; ð8Þ

where GF is the Fermi constant, lμþ involves a charged
lepton and neutrino, and the hadronic weak current can be
expressed in terms of the vector (Vμ) and axial-vector (Aμ)
currents as

Ji;μ ¼ Vi;μ − Ai;μ; ð9Þ

with J�μ ¼ J1;μ � iJ2;μ. The isovector axial-vector current
in EFTπ is given by [43]3

2The Lüscher approach has been extended to n-particle
systems under certain assumptions in Refs. [31–39].

3Note that the normalization of L1;A used here is the same as in
Ref. [43] but differs from Ref. [44], which uses a different
projector definition.
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Ai;a ¼
gA
2
N†τaσiN þ L1;AðNTPiNÞ†ðNTP̄aNÞ

þ H:c:þ � � � ; ð10Þ

where the ellipsis denotes higher-order terms. In this
expression, gA is the nucleon axial charge, and the term
proportional to the two-nucleon LEC L1;A provides the
next-to-leading-order corrections to the pp → deþν fusion
process, for example.
The isoscalar axial current is similarly given by [44]4

Ai;0 ¼ −
gA;0
2

N†σiN

− 2iL2;AϵijkðNTPjNÞ†ðNTPkNÞ þ � � � ; ð11Þ

where the isoscalar nucleon axial charge is gA;0 and the
LEC L2;A enters at the same order.

B. Electromagnetic interactions

In the presence of an external electromagnetic (EM)
field, the Lagrangians defined above are modified such that
the derivatives are replaced by EM-covariant derivatives
Dμ ¼ ∂μ þ iQAμ, where Aμ is the vector potential and Q is
the electric charge operator and also by the addition of
terms depending on the magnetic field B,5

L1;EM þ L2;EM ¼ JEMi Bi; ð12Þ

where the isoscalar and isovector currents coupling to the
magnetic field are

JEMi ¼ e
2MN

N†ðκ0 þ τ3κ1ÞσiN

− eL2iϵijkðNTPkNÞ†ðNTPjNÞ
þ eL1ðNTPiNÞ†ðNTP̄3NÞ þ H:c:; ð13Þ

where L1 and L2 are two-body LECs and

κ0 ¼
1

2
ðκp þ κnÞ and κ1 ¼

1

2
ðκp − κnÞ ð14Þ

are the isoscalar and isovector nucleon magnetic moments.
Note that electric field contributions and EM three-body
interactions enter at higher order.

C. Scalar and tensor currents

The isovector and isoscalar scalar currents that arise from
Higgs couplings and from potential dark matter interactions
are given by

S0 ¼ gS;0N†N − C̃SðNTPiNÞ†ðNTPiNÞ;
− C̃TðNTP̄aNÞ†ðNTP̄aNÞ þ � � � ; ð15Þ

Sa ¼ gS;3N†τaN

þ iC̃VϵabcðNTP̄bNÞ†ðNTP̄cNÞ þ � � � : ð16Þ

Here, gS;0 and gS;3 are the isoscalar and isovector one-body
LECs that are related to the nucleon σ terms. As discussed
in Ref. [46], the two-body terms in the isoscalar scalar
current are related to the corresponding terms in the strong
Lagrangian, Eq. (3). In particular, the LECs C̃S;T are the
quark-mass–independent pieces of the Lagrangian cou-
plings CS;T .
For the isoscalar and isovector antisymmetric tensor

currents, the relevant EFTπ expressions are

Tij;0 ¼
gT;0
2

ϵijkN†σkN

þ iL2;TðNTPiNÞ†ðNTPjNÞ þ H:c:þ � � � ; ð17Þ

Tij;a ¼
gT;3
2

ϵijkN†τaσkN

þ L1;TϵijkðNTPkNÞ†ðNTP̄aNÞ þ H:c:þ � � � ; ð18Þ

where the one- and two-body isoscalar (isovector) tensor
LECs are gT;0 and L2;T (gT;3 and L1;T).

D. Twist-2 operators

The unpolarized twist-2 operators that define moments
of parton distributions enter in EFTπ as [47,48]

OðnÞ
0 ¼ hxni0vμ0 � � � vμnN†N½1þ αn;0N†N�; ð19Þ

OðnÞ
3 ¼ hxni3vμ0 � � � vμnN†τ3N½1þ αn;3N†N�; ð20Þ

where the explicit Lorentz indices of the operators are
suppressed on the left-hand side of the definitions for
compactness of notation. Subleading contributions from
terms involving derivatives are suppressed in the power
counting, and contributions from additional two-body
terms that are not Wigner SU(4) symmetric are suppressed
in the large Nc limit. The subscripts 0 and 3 denote the
isoscalar and isovector combinations. Note that the iso-
scalar contributions arise from matching to both quark and
gluon matrix elements (which mix under QCD renormal-
ization) and will give rise to finite-volume effects that are
the same in both cases.

III. STOCHASTIC VARIATIONAL METHOD
IN A PERIODIC CUBIC VOLUME

In order to address finite-volume effects in few-nucleon
systems in EFT, few-body wave functions must be deter-
mined subject to the EFT interactions and the given

4Note that Ref. [44] uses a different projector definition than
here and correspondingly a different normalization of L2;A.

5The notation of Ref. [45] is used.
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boundary conditions. There are multiple many-body
approaches that could be pursued for this task. Two
approaches that have been successfully applied are solving
the three-dimensional finite-volume Schrödinger equation
via discretization [8] and the SVM for two- and three-body
systems [21]. The former approach works well for two-
body interactions and was effectively used in Ref. [8] to
analyze hyperon-nucleon interactions where the effective
range was not small compared to the spatial extent of the
finite volume, L, and as such the more direct Lüscher
method [26] could not be applied. However, this coordinate
space–based approach scales poorly to larger systems.
The SVM was introduced in nuclear physics [22] as a

way to sample the possible spatial, spin, and isospin
wave functions for an A-nucleon system in a space that
is impractically large for an exhaustive approach; see
Refs. [23,49] for reviews. This approach, detailed below
(and applied to EFTπ in Ref. [50], for example) involves the
construction of a wave function by sequential proposals of
new stochastically generated terms and the optimization of
the linear coefficients of the terms by solving the gener-
alized eigenvalue problem of the variational method. The
SVM for a finite volume was first introduced in Ref. [51] in
which systems of bosons in periodic cubic potentials were
considered. Periodicity is imposed on the wave functions
by considering all periodic copies of the infinite-volume
potential. The method was first used for nuclei in Ref. [21],
and a similar approach is used here.

A. Finite-volume Hamiltonian

The n-particle nonrelativistic Hamiltonian that corre-
sponds to the EFTπ Lagrangian of Eq. (1) is

H¼−
1

2MN

X
i

∇2
i þ

X
i<j

V2ðrijÞþ
X
i<j<k

V3ðrij;rjkÞ; ð21Þ

where i; j; k ∈ f1;…; ng label the particle, rij ¼ ri − rj is
the displacement between particles i and j, and ∇2

i denotes
the Laplacian for particle i. The two- and three-particle
potentials are

V2ðrijÞ ¼ ðC0 þ C1σ
ðiÞ · σðjÞÞgΛðrijÞ ð22Þ

and

V3ðrij; rjkÞ ¼ D0

X
cyc

gΛðrijÞgΛðrjkÞ; ð23Þ

where the interactions have been regulated using Gaussian
smearing. This smearing function is given by

gΛðrÞ ¼
Λ3

8π3=2
expð−Λ2jrj2=4Þ

¼ Λ3

8π3=2

Y
α∈fx;y;zg

expð−Λ2rðαÞ2=4Þ; ð24Þ

where r ¼ ðrðxÞ; rðyÞ; rðzÞÞ and is dependant on the regulator
parameter Λ (also commonly expressed in terms of a length
scale r0, related as Λ ¼ ffiffiffi

2
p

=r0). In a finite volume,
periodicity can be imposed by replacing gΛðrÞ by a
regulator which is periodic in each of the spatial directions,

gΛðr;LÞ¼
Λ3

8π3=2

Y
α∈fx;y;zg

X∞
qðαÞ¼−∞

expð−Λ2ðrðαÞ−LqðαÞÞ2=4Þ;

ð25Þ

in which the sums run over all periodic copies of the finite
volume.

B. Wave function ansatz in a finite volume

While in many applications of the SVM to nuclear
systems the angular momentum structure of the wave
function is tied to the spatial structure due to orbital
motion, in a cubic box, orbital angular momentum is not
a well-defined quantum number. As will be discussed
below, one approach in this context is to build wave
functions with particular transformation properties under
the cubic group, again coupling spatial and spin degrees
of freedom. However, since there is a finite number of
irreducible representations of the cubic group, a simpler
approach is to consider a factorization of the spatial and
spin-isospin wave functions.

In this work, a trial wave function, ΨðNÞ
h , is built from

linear combinations of symmetrized spatial wave functions
Ψsym

L which satisfy periodic boundary conditions, coupled
to the appropriate spin-flavor wave function jχhi, i.e.,

ΨðNÞ
h ðxÞ ¼

XN
j¼1

cjΨ
sym
L ðAj; Bj;dj;xÞjχhi; ð26Þ

where the superscript ðNÞ denotes the total number of terms
in the wave function and the dependence of the spatial
wave function on h is suppressed. The coordinate x ¼
ðr1;…; rnÞ collects the spatial coordinates of the n particles
with xj ¼ rj. The spatial wave functions Ψ

sym
L are detailed

in Sec. III B 1; the cj, j ∈ f1;…; Ng, are coefficients,
and the Aj, Bj, and dj are the parameters of the jth spatial
wave function included in the sum. The spin-flavor wave
function jχhi is a vector6 in spin-flavor space for the given
nucleus h; the particular spin-flavor wave functions that are
used in this work are given in Sec. III B 3.

6Note that χ is common to all terms in Eq. (26) in the current
implementation. In other approaches for larger systems than will
be considered here, χ is also part of the stochastic sampling and
would be indexed by j [49].
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1. Shifted correlated Gaussian spatial wave functions

To account for the anisotropy in the spatial wave
function due to the boundary conditions in a cubic volume,
a shifted correlated-Gaussian basis for the trial wave
functions is used, following the approach introduced in
Ref. [51]. States are constructed to be antisymmetric under
interchange of the spin-flavor degrees of freedom of pairs
of nucleons and thus must have symmetric spatial wave
functions under particle interchange.
The basic Gaussian structure underlying these wave

functions is

ΨðαÞ
∞ ðAðαÞ; BðαÞ;dðαÞ;xðαÞÞ ¼ exp

�
−
1

2
xðαÞTAðαÞxðαÞ −

1

2
ðxðαÞ

− dðαÞÞTBðαÞðxðαÞ − dðαÞÞ
�
;

ð27Þ

where xðαÞ is an n-component vector collecting the αth
Cartesian component of the position of each particle. The
n × n matrices AðαÞ and BðαÞ and n-component vector dðαÞ
contain the parameters defining the wave function. The
matrices AðαÞ are symmetric, containing nðn − 1Þ=2 real
parameters, while BðαÞ are diagonal matrices with n real
parameters. The finite-volume approach introduced by Yin
and Blume [51] is implemented through sums of periodic
copies of the intrinsic wave function over shifted volumes
to define a finite-volume wave function,

ΨLðA;B;d;xÞ ¼
Y

α∈fx;y;zg
ΨðαÞ

L ðAðαÞ; BðαÞ;dðαÞ;xðαÞÞ; ð28Þ

where A ¼ diagfAðxÞ; AðyÞ; AðzÞg is a block-diagonal
3n × 3n matrix that combines the AðαÞ matrices for each
direction, and similarly B and d combine the BðαÞ and dðαÞ
for each direction. The wave function for the αth
direction is

ΨðαÞ
L ðAðαÞ; BðαÞ;dðαÞ;xðαÞÞ
¼

X
bðαÞ

ΨðαÞ
∞ ðAðαÞ; BðαÞ;dðαÞ;xðαÞ − bðαÞLÞ; ð29Þ

where the n-component vector bðαÞ has components

bðαÞj ∈ Z. The resulting wave function ΨLðA;B;d;xÞ
satisfies the periodic constraint

ΨLðA;B;d;xÞ ¼ ΨLðA;B;d;xþ nLÞ ð30Þ

for all integer 3n-tuples,7 n ∈ Z3n. In order to symmetrize
the wave function under particle exchange, the rows and

columns of each AðαÞ and BðαÞ and rows of dðαÞ are
interchanged under all n! possible permutations, P, of
particles. That is,

Ψsym
L ðA; B;d;xÞ ¼

X
P

ΨLðAP ; BP;dP ;xÞ; ð31Þ

where AP is the permuted form of A and similarly for BP
and dP . As discussed in Appendix B, the shifted Gaussian
basis is able to describe scattering states at finite volume as
well as compact bound states.

2. Cubic harmonics

A periodic spatial volume with identical extent in each
direction has an underlying cubic symmetry and is invariant
under action of elements of the cubic group, H3. By
imposing cubic symmetry, wave functions that transform
in particular representations of H3 can be constructed,
potentially allowing more efficient exploration of the space
of correlated shifted Gaussians. Each term in the variational
wave function can be constructed to respect the given
transformation properties rather than relying on stochastic
sampling of a sum of terms to discover the symmetry
approximately. The H3-covariant wave function transform-
ing in the representation R of H3 is given by

Ψsym;R
L ðA;B;d;xÞ ¼

X
p

cðRÞp Ψsym
L ðAp; Bp;dp;xpÞ; ð32Þ

where p indexes the permutations of the Cartesian direc-

tions, cðRÞp are constants defining the representation, and Ap

is the appropriately block-permuted form of the matrix A
and similarly for Bp and dp. For the ground states that are
considered here, the A1 (trivial) representation of H3 is

assumed, for which cðA1Þ
p ¼ 1. The utility of using Eq. (32),

instead of Eq. (31), has been investigated. Overall, it is
found that N-term wave functions constructed from terms
of the form Ψsym;R

L are about a factor of 5 better approx-
imations than N-term wave functions constructed from
terms from Eq. (31), measured in terms of the number of
wave function terms required to achieve convergence
within a given tolerance. However, the cost of evaluation
of the matrix elements needed in the SVM is a factor of 6
slower using Eq. (32) than using Eq. (31). In the primary
studies of this work, trial wave functions are thus con-
structed using the simpler ansatz in Eq. (31).

3. Spin-flavor wave functions

The simplest spin-flavor wave functions for the small
nuclei that are considered in this work are straightforward
to construct explicitly. In particular, the necessary states are
defined as7In practice, these sums are truncated as discussed inAppendix C.

FEW-NUCLEON MATRIX ELEMENTS IN PIONLESS EFFECTIVE … PHYS. REV. D 103, 074503 (2021)

074503-5



jχd;jz¼þ1i ¼
1ffiffiffi
2

p ½jp↑n↑i − jn↑p↑i�;

jχd;jz¼0i ¼
1

2
½jp↑n↓i − jn↑p↓i þ jp↓n↑i − jn↓p↑i�;

jχppi ¼
1ffiffiffi
2

p ½jp↑p↓i − jp↓p↑i�;

jχnp;j¼0i ¼
1

2
½jp↑n↓i þ jn↑p↓i − jp↓n↑i − jn↓p↑i�;

jχ3H;jz¼1=2i ¼
1ffiffiffi
6

p ½jn↑p↑n↓i − jn↓p↑n↑i − jp↑n↑n↓i

þ jp↑n↓n↑i − jn↑n↓p↑i þ jn↓n↑p↑i�;

jχ3He;jz¼1=2i ¼
1ffiffiffi
6

p ½jp↑n↑p↓i − jp↓n↑p↑i − jn↑p↑p↓i

þ jn↑p↓p↑i − jp↑p↓n↑i þ jp↓p↑n↑i�;
ð33Þ

where p↑ð↓Þ and n↑ð↓Þ denote proton and neutron states of
the given spin.

C. Implementation of the stochastic variational method

The trial wave functionΨðNÞ of Eq. (26) is constructed so
as to minimize the bound which it provides on the ground-
state energy:

Eh
0 ≤

R
ΨðNÞ

h ðxÞ�HΨðNÞ
h ðxÞdxR

ΨðNÞ
h ðxÞ�ΨðNÞ

h ðxÞdx
: ð34Þ

Because of the Gaussian structure of the trial wave
function, the various contributions to the Hamiltonian
matrix element, which are 3n-dimensional integrals, can
be evaluated analytically [51], as shown in Appendix C.
In the current application of the SVM, ΨðNÞ is built up

from 1 to N terms via an iterative procedure as follows:
(1) Given an M-term wave function (where M < N)

defined by matrices Aj, Bj, dj for j ∈ f1;…;Mg,
Nproposal proposed candidates for the (M þ 1)th term
are constructed by randomly choosing matrices
AMþ1, BMþ1 and dMþ1. For simplicity of notation,
the spatial wave function of the jth term is denoted
as ΨjðxÞ≡ Ψsym

L ðAj; Bj;dj;xÞ.
(2) For each candidate termΨMþ1ðxÞ, the normalization

integrals

½NðMþ1Þ�ij≡
Z

ΨiðxÞ�ΨjðxÞ dx ð35Þ

and Hamiltonian matrix elements

½HðMþ1Þ�ij≡
Z

ΨiðxÞ�hχhjHjχhiΨjðxÞdx ð36Þ

are computed for fi; jg ∈ f1;…;M þ 1g and used to
definematricesNðMþ1Þ andHðMþ1Þ, respectively. Note
that only the additional (M þ 1)th row and column
must be computed, given that the NðMÞ and HðMÞ
matrices were computed in the previous iteration.

(3) The generalized eigenvalue problem

HðMþ1Þc ¼ λNðMþ1Þc ð37Þ

is solved for the eigenvalues λðMþ1Þ
0 ≤ λðMþ1Þ

1

≤ … ≤ λðMþ1Þ
Mþ1 , and coefficient vectors cðMþ1Þ

l ¼
ðc1;…; cMþ1Þ for l ∈ f1;…;M þ 1g labeling the
eigenvalue.

(4) The wave function, which results in the smallest

eigenvalue λðMþ1Þ
0 , is selected from the set of

Nproposal candidates8 and added to the iteratively
constructed trial wave function to define ΨðMþ1ÞðxÞ.

Naturally, the optimization at each step of this iterative
procedure depends on the Hamiltonian H and hence on the
LECs that define it; to enable optimization of the trial wave
function across a broad range of LECs, in the numerical
study undertaken here, the values of the LECs are varied for
each step of optimization, cycling throughNcouplings choices
that span the relevant parameter spaces. After initializing
the procedure with the first trial wave function (the M ¼ 1

term), for which the matrices Nð1Þ and Hð1Þ are single
numbers and the generalized eigenvalue problem is trivial,
additional terms are added iteratively until the wave
function has a fixed number of terms, N. N must be taken
large enough that the optimization procedure has converged
by some definition. Here, N is set by the criterion that
repeated optimizations based on different random seeds
achieve the same minimum energies within some tolerance
and that adding some fixed number of additional terms to
the trial wave functions does not alter the minimum found,
within the same tolerance. Details of the optimization
procedure for the cases considered in this study are
provided in Sec. IV.

IV. GROUND STATES OF TWO- AND
THREE-NUCLEON SYSTEMS

In this work, the finite-volume SVM is used to match the
LECs of FVEFT=π to the LQCD results for two- and three-

nucleon systems which were obtained in Ref. [8], where
nuclear states with SUð3Þf-symmetric quark masses cor-
responding to mπ ¼ 806 MeV were studied in three
volumes of spatial extents L ∈ f3.4; 4.5; 6.7g fm. The
binding energies extracted in that work, defined as ΔEh ¼
Eh − AEp where A is the atomic number of the state h, are

8Note that each of the Nproposal lowest eigenvalues λðMþ1Þ
0

is smaller than the lowest eigenvalue from the previous
iteration λ̂ðMÞ

0 .
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tabulated in Table I. This matching procedure, used in this
work as a first step in the study of the matrix elements of
various currents in these states in this framework, closely
mirrors, and reproduces, the analysis of Ref. [21].

A. Two-body states

For each of the three finite volumes for which Ref. [8]
provides LQCD data, variational wave functions were
optimized first for the pp and d two-body systems. As
described in Sec. III C, the undetermined coefficient of the
two-body potential in the Hamiltonian (which corresponds
to the LEC CS in the case of the deuteron and CT in the
case of pp) is varied over Ncouplings ¼ 10 different choices
throughout the optimization procedure, which are chosen to
be evenly spaced corresponding approximately to the plot
range of Fig. 2; both two-body systems are thus optimized
simultaneously. Taking Nproposal ¼ 30, it is found for all
two-body optimizations undertaken in this work—at each
finite volume and for each of three choices of the regulator
Λ ¼ ffiffiffi

2
p

=r0 corresponding to r0 ∈ f0.2; 0.3; 0.4g fm—that
after 100 terms have been added to the wave function the
last 20 terms are within 1% (typically, within 0.1%) of the
final value for each of the values of the coupling that are

used in optimization and also that optimizations starting
with different random seeds agree within that same toler-
ance. An example of this convergence is shown in Fig. 1.
The ground-state d and pp binding energies resulting

from the optimized variational wave function are shown as
a function of the relevant undetermined LEC in Fig. 2, for
all three finite volumes and for all choices of the regulator
parameter Λ which are studied. Comparing with the LQCD
results for the binding energies in each lattice volume, it is
clear that for each value of Λ the results in all volumes are
consistent with a single consistent value of the relevant
coupling, indicating that there is no need to introduce
higher-order terms in EFTπ . The best-fit values of the
corresponding couplings, which depend on the regulator
scale, are determined through a combined fit to the three
volumes and are presented in Table II and Fig. 3. Note that
the EFTπ interaction proportional to C1 is suppressed by
1=N2

c relative to the Wigner-symmetric interaction with
coefficient C0 in the large-Nc limit; this hierarchy is born
out in the fitted values of the couplings.

TABLE I. Finite-volume binding energies (MeV) determined in
the LQCD calculations of Ref. [8].

h L ¼ 3.4 fm L ¼ 4.5 fm L ¼ 6.7 fm

pp 17.8(3.3) 15.1(2.8) 15.9(3.8)
d 25.4(5.4) 22.5(3.5) 19.5(4.8)
3H 65.6(6.8) 63.2(8.0) 53.9(10.7)

FIG. 1. Convergence of the eigenvalues λðNÞ
0 to the ground-state

energy of the diproton system as additional terms are added to the
variational wave function. The three colors correspond to wave
functions optimized for the L ¼ 3.4 (blue), 4.5 (orange), and
6.7 fm (green) volumes, with the LEC CT set to its optimized
value after matching to the LQCD results, as discussed in the
main text. The results are shown for one example of the regulator
parameter corresponding to r0 ¼ 0.2 fm. For each volume, the
results of optimization procedures starting with two random seeds
are shown.

FIG. 2. Binding energies of the deuteron (upper panel) and
diproton (lower panel) systems as a function of the relevant two-
body EFT=π LECs. The three sets of curves correspond to the three
different choices of the regulator scale Λ ¼ ffiffiffi

2
p

=r0 corresponding
to r0 ∈ f0.2; 0.3; 0.4g fm (solid, dashed, and dotted), and the
three colors correspond to the three different volumes: L ¼ 3.4
(blue), 4.5 (orange), and 6.7 fm (green). The horizontal bands
show the values of the binding energies for each volume from the
LQCD calculations of Ref. [8].
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Having determined the two-body couplings, wave func-
tions optimized in infinite volume in exactly the same way
are used to determine the binding energies in the infinite-
volume limit. Figure 4 shows the volume dependence of the
binding energies of the deuteron and diproton systems (in
order to show a curve, binding energies computed with
wave functions optimized at additional intermediate vol-
umes are also shown). Extrapolations are shown for
r0 ¼ 0.2 fm, but the extrapolations for other values are
indistinguishable. Although the values of the LECs depend
on the value of the regulator r0, the resulting finite- and
infinite-volume energies are regulator independent.
Table III lists the extrapolated binding energies and
compares them to Refs. [21,25], with which they are in
close agreement.

B. Three-body states

Having determined the two-nucleon couplings, an analo-
gous procedure is repeated for the triton to determine the
coefficient D0 of the leading-order three-nucleon coupling
in Eq. (7). The stochastic optimization of the three-body
wave function is performed with the two-body LECs fixed

TABLE II. The two- and three-body EFT=π LECs determined
from matching the SVM calculations to the LQCD energy shifts
for each value of the cutoff parameter r0. For the two-body case,
CS and CT are determined in terms of C0;1 through Eq. (6).
For D0, three-nucleon optimizations were only performed for
r0 ¼ 0.2 fm.

r0 (fm) 0.2 0.3 0.4

C0 −131ð2Þ −220ð5Þ −330ð9Þ
C1 −2ð1Þ −4ð2Þ −8ð4Þ
CS −133ð2Þ −225ð6Þ −338ð11Þ
CT −126ð2Þ −208ð6Þ −305ð11Þ
D0 17(2) � � � � � �

FIG. 3. The EFTπ couplings C0;1 determined by fitting to the
results of the LQCD calculations. The three sets of intersecting
bands (blue for pp and red for d) and corresponding ellipses
show results obtained with wave functions optimized with the
three different values of the regulator scale Λ ¼ ffiffiffi

2
p

=r0 studied
here. The asterisks show the results of an analogous analysis
undertaken in Ref. [21], with different values of the regulator r0,
as indicated on the figure.

FIG. 4. The volume dependence of the deuteron and diproton
binding energies compared with the LQCD data which was used
to determine the relevant LECs. The infinite-volume extrapola-
tions of the binding energies, computed as described in the text,
are shown in the rightmost subpanel.

TABLE III. The extrapolated infinite-volume binding energies
determined in the SVM approach for the two- and three-body
systems. Also shown are the binding energies determined in the
original LQCD study [25] and in Ref. [21] also using the SVM
method.

h L ¼ ∞ Ref. [25] Ref. [21]

pp −12.5ð2.2Þ −15.9ð3.8Þ −13.8ð1.8Þ
2H −19.9ð2.8Þ −19.5ð4.8Þ −20.2ð2.3Þ
3H : − 60.2ð6.5Þ −53.9ð10.7Þ −58.2ð4.7Þ

FIG. 5. The dependence of the triton binding energy on the
three-body coupling D0 in each of three finite volumes for which
there is LQCD data, L ¼ 3.4 (blue), 4.5 (orange), and 6.7 fm
(green). The curves are shown for a regulator scale r0 ¼ 0.2 fm
and for the values of the two-body couplings determined in
Sec. IVA, with the shading on the bands indicating the un-
certainty which arises as these couplings are varied within their
uncertainties. Other details are as in Fig. 2.
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to their central values determined as discussed in the
previous subsection, for a single value of the Gaussian
regulator parameter r0 ¼ 0.2 fm. As for the two-body case,
Ncouplings ¼ 10 values of the three-body LEC D0 are cycled
through in the wave function construction procedure,
spanning the relevant coupling range (corresponding
approximately to the range of the horizontal axis in
Fig. 5). The same convergence criteria as in the two-body

case are satisfied after wave functions with N ¼ 250 terms
have been constructed.
Figure 5 shows the dependence of the triton binding

energy on the three-body coupling, D0, for the optimal
values of the two-body couplings; the shaded bands
around the curves show the result of varying the two-
body LECs within their uncertainties for wave functions
optimized in each of the three volumes for which there are
LQCD data. Figure 6 and Table III show the infinite-
volume extrapolation of the triton binding energy. As for
the two-body systems, the extrapolations and couplings
reported here are in close agreement with those
of Ref. [21].

V. MATRIX ELEMENTS IN THE STOCHASTIC
VARIATIONAL METHOD

Having determined finite-volume ground-state (or in
principle excited state) wave functions in the SVM, those
wave functions can be used to evaluate finite-volume
matrix elements of operators in FVEFTπ . The transition
matrix element between an initial stateΨi and final stateΨf

is given by

hΨfjOjΨiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΨfjΨfihΨijΨii
p ; ð38Þ

FIG. 6. The volume dependence of the triton binding energy,
compared with the LQCD data. The infinite-volume extrapola-
tion of the binding energy, computed as described in the text, is
shown in the rightmost subpanel.

(a) (b)

FIG. 7. (a) The dependence of the d → np (upper) axial transition matrix element and the 3H (lower) matrix element on the two-body
axial LEC ratio. The horizontal bands show the constraints from the LQCD calculation of Refs. [53,54], with L ¼ 4.5 fm, and the
vertical bands highlight the region of coupling that is consistent at one standard deviation with the LQCD result, for the central values of
C0;1 and D0 determined in Secs. IVA and IV B. (b) The dependence of the matrix elements on the spatial extent of the lattice, L. The
LQCD constraint is shown as the gray data point. The infinite-volume limits are shown at the right edge of the figure.
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where O is a generic local EFT operator and bra-ket
notation is used for concision.9

Here, matrix elements of axial, electromagnetic, scalar,
and tensor currents and the unpolarized twist-2 operators
are studied. In each case, the relevant EFTπ currents of
Sec. II are translated into operators acting on the n-body
states. As with the nucleon-nucleon strong interactions,
two-body contributions to the various currents are regulated
using the Gaussian approach as in Eq. (24) and rendered
periodic using Eq. (25). Specifically, each two-body current
is implemented as

½ðN†ðriÞΣNðriÞÞðNðrjÞ†Σ0NðrjÞÞ þ H:c:�gΛðrij; LÞ; ð39Þ
where Σð0Þ denotes a spin-isospin structure and gΛðr; LÞ,
defined as in Eq. (24), implements a periodic regulated
form of the δ-function implied in local two-body EFT
currents. Since the matrix elements that are considered are
for zero momentum transfer, the current is integrated over
the positions ri;j. For each current, X ∈ fAi;a; JEMi ; Sa;

Tij;a; O
ðnÞ
a g for a ∈ f0; 1; 2; 3g, the zero–momentum-

projected, regulated form is labeled as X .
The evaluation of the relevant matrix elements factorizes

into a spin-isospin calculation that is specific to each type
of operator and a calculation of the matrix element of the
spatial wave function. Since all currents that are considered
enter with the spatial dependence determined by the
Gaussian regulator function, these latter spatial matrix
elements have a common form and are given for diagonal
matrix elements in state h by

hhðΛ; LÞ ¼
R Q

kd
3rk

P
i<j gΛðrij; LÞjψhðRnÞj2R Q
kd

3rkjψhðRnÞj2
; ð40Þ

where Rn ¼ fr1;…; rng indicates dependence on the
coordinates of each of the n particles. For transition matrix
elements between states a and b, the corresponding
expression is

ha←bðΛ; LÞ ¼
R Q

kd
3rk

P
i<j ψ

�
aðRnÞgΛðrij; LÞψbðRnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR Q

kd
3rkjψaðRnÞj2

R Q
kd

3rkjψbðRnÞj2
q :

ð41Þ
The relevant one- and two-body LECs of currents in

FVEFT=π can be tuned such that the EFTπ matrix elements

determined in this way reproduce the matrix elements (or
their ratios to the proton matrix element) determined in
LQCD in a particular lattice volume or set of volumes.
In what follows, the LQCD matrix elements in atomic
number A ¼ f2; 3g systems calculated at mπ ¼ 806 MeV

on the L ¼ 4.5 fm ensemble, discussed above, are used.
The EFTπ counterterms determined in this way are speci-
fied in the Gaussian-regulated scheme and should not be
compared with the corresponding counterterms determined
in dimensional regularization. Indeed, for the current
purposes, the extraction of counterterms can be viewed
simply as an intermediate step in extracting matrix elements
at infinite volume. The infinite-volume–extrapolated matrix
elements can be matched to EFTπ regulated in more
common schemes, such as dimensional regularization or
the power-divergent subtraction scheme [52], to determine
the two-body LECs for comparison to other extractions.

TABLE IV. Nucleus-to-proton ratios of quantities computed at
mπ ¼ 806 MeV in a L ¼ 4.5 fm volume and extrapolated to
infinite volume. Ratios are computed from data presented in the
reference shown at the top of each section of the table. Where
multiple uncertainties are given in the literature, they have been
combined in quadrature, and standard error propagation has been
employed in cases where the ratios are not given in the original
works. For Rd←np

T;3 , the LEC determined from the 3H channel is
used to make a prediction, as there are no LQCD results available.

Quantity O State hð→ h0Þ OðL ¼ 4.5 fmÞ OðL ¼ ∞Þ
δμ̂ðhÞ [55]

dðjz ¼ �1Þ 0.011(80) 0.012(89)
3He −0.34ð10Þ −0.35ð10Þ
3H 0.45(16) 0.46(17)

Rh
A;3 [53]

3H 0.979(10) 0.978(11)
npð→ dÞ 1.978(31) 1.975(36)

Rh
A;0 [54]

d 1.98(1) 1.98(1)
3H 0.999(6) 0.999(6)

Rh
T;3 [54]

3H 1.002(2) 1.002(2)
npð→ dÞ � � � −1.415ð2Þ

Rh
T;0 [54]

d 1.984(4) 1.982(4)
3H 0.990(2) 0.990(2)

Rh
S;3 [54]

pp 1.98(2) 1.98(2)
3H 0.96(2) 0.96(2)

Rh
S;0 [54]

pp 1.98(2) 1.98(2)
d 1.97(2) 1.97(2)
3H 2.87(4) 2.87(4)

Rh
On¼1;3 [56]

pp 1.007(14) 1.008(17)
3H 1.028(15) 1.029(15)

9Matrix elements of nonlocal products of operators (such as
those relevant for double-β decay) can also be approached in the
finite-volume SVM as discussed in Sec. VI.
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A. Axial matrix elements: Proton-proton fusion,
tritium β-decay, and isoscalar charges

In order to evaluate the isovector axial current matrix
elements, the EFT current in Eq. (A1) is used. With the
proton axial matrix element determining gA (up to expo-
nentially small volume effects), ratios of matrix elements of
the relevant current in both two- and three-body states to
that of the proton can be used to determine the two-body
coupling ratio L̃1;A ¼ L1;A=gA,

Rnp←d
A;3 ≡ 2

gA

hΨnpð1S0ÞjA3;3jΨd;jz¼0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨnpð1S0ÞjΨnpð1S0ÞihΨd;jz¼0jΨd;jz¼0i

q

¼ 2

�
1þ L̃1;A

2
hnp←dðΛ; LÞ

�
; ð42Þ

R
3H
A;3 ≡ 2

gA

hΨ3HjA3;3jΨ3Hi
hΨ3HjΨ3Hi

¼
�
1þ L̃1;A

3
h3HðΛ; LÞ

�
; ð43Þ

where the spin-flavor structure of the states used to arrive at
these expressions is given in Sec. III.
Figure 7(a) shows the constraints that the LQCD

calculations [53] of the finite-volume matrix elements
in the two channels place on the coupling combination
L̃1;A. The consistency between the constraints in the
two channels suggests that higher-order terms in the
axial current (two-body operators with derivative inser-
tions [43] or three-body operators) are suppressed as
their power counting would suggest, for this choice of

regulator scheme and scale. Were this to persist for
physical quark masses, it would provide support for
approaches to pp-fusion cross section calculations that
use tritium β-decay to constrain the relevant two-
body LEC.
The values of L̃1;A determined from each channel are

scheme-dependent quantities but can be combined with
infinite-volume SVM wave functions to determine the
infinite-volume matrix elements. Figure 7(b) shows
the infinite-volume extrapolation for both channels, and
the extrapolated values are given in Table IV below.
Analogous analysis of the isoscalar axial matrix elements

in the deuteron and 3He states allows for the determination
of the two-body counterterm in Eq. (11). Ratios of the
isoscalar axial current matrix element in the deuteron and
3He states to that in the proton state can be expressed as

Rd;jz¼1
A;0 ≡ −

2

gA;0

hΨd;jz¼1jA3;0jΨd;jz¼1i
hΨd;jz¼1jΨd;jz¼1i

¼ 2ð1 − L̃2;AhdðΛ; LÞÞ; ð44Þ

R
3H
A;0 ≡ −

2

gA;0

hΨ3HjA3;0jΨ3Hi
hΨ3HjΨ3Hi

¼
�
1 −

2

3
L̃2;Ah3HeðΛ; LÞ

�
: ð45Þ

Figure 8 shows the constraints on L̃2;A obtained by
matching to the LQCD calculation of Ref. [54] and the
corresponding infinite-volume extrapolation of the LQCD

(a) (b)

FIG. 8. (a) The dependence of the matrix elements of the isoscalar axial current in the jz ¼ 1 spin component of deuteron (upper) and
jz ¼ 1=2 component of 3H (lower) on the coupling ratio L̃2;A. (b) The dependence of the matrix elements on the spatial extent of the
lattice, L. The details of the curves and points in the figure are as in Fig. 7.
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matrix elements. The extrapolated values are also reported in
Table IV. A mild tension is found between the values
of L̃2;A extracted from each matrix element, indicating the
potential need for higher-order terms in the EFT description.

B. Magnetic moments

The magnetic moments of light nuclei have been
extracted from the linear response of LQCD calculations
to a constant background magnetic field oriented in the
z-direction [55,57]. In EFT, these quantities are determined
by the couplings in Eq. (13). The differences between the
magnetic moments of the deuteron, 3H, and 3He states and
the relevant naive shell-model predictions in terms of
proton and neutron magnetic moments can be expressed as

δμ̂d ≡ μ̂d − ðμ̂p þ μ̂nÞ

¼ 2MN

e

hΨd;jz¼1jJ EM
3 jΨd;jz¼1i

hΨd;jz¼1jΨd;jz¼1i
− 2κ0

¼ 2MNL2hdðΛ; LÞ; ð46Þ

δμ̂3H ≡ μ̂3H − μ̂n ¼
2MN

e

hΨ3HjJ EM
3 jΨ3Hi

hΨ3HjΨ3Hi
− κn

¼ MN

3
ðL1 þ L2Þh3HðΛ; LÞ; ð47Þ

δμ̂3He ≡ μ̂3He − μ̂p ¼ 2MN

e

hΨ3HejJ EM
3 jΨ3Hei

hΨ3HejΨ3Hei
− κp

¼ −
MN

3
ðL1 − L2Þh3HeðΛ; LÞ; ð48Þ

where μ̂h is the magnetic moment of hadron h in natural
nuclear magnetons e=2MN defined using the nucleon
mass at the quark masses of the lattice calculations,
MN ¼ 1.634ð18Þ GeV [25].

FIG. 9. The dependence of the various magnetic moment differences on the appropriate combinations of the two-body counterterms
L1;2 is shown in the upper row and the lower left panel. The lower right panel shows the combined constraints implied by agreement with
the LQCD results of Ref. [55]. The details of the curves and points in the figure are as in Fig. 7.

FIG. 10. The infinite-volume extrapolations of the magnetic
moment differences for d, 3H, and 3He.
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(a) (b)

FIG. 11. (a) The dependence of the ratios of the pp (upper) and 3H (lower) isovector scalar matrix elements to that of the proton on the

LEC ratio ˜̃CV . (b) The infinite-volume extrapolation of these ratios after constraining the LEC ratio. The details of the curves and points
in the figure are as in Fig. 7.

FIG. 12. The isoscalar scalar current matrix element ratios for d, pp, and 3H as a function of the relevant combinations of LEC

ratios ˜̃C0;1. The lower right panel shows the resulting constraints on these LEC ratios. The details of the curves and points in the
figure are as in Fig. 7.
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In Fig. 9, the LQCD calculations of δμ̂h for h ∈
fd; 3H; 3Heg in Ref. [55] are used to constrain the EFT
couplings L1;2.

10 Since the magnetic moment differences
are dependent of various combinations of the couplings, the
constraints take the form of bands in the L1–L2 plane as
shown in the figure. All three constraints are seen to be
consistent for a range of values of the couplings. This
determination of the LECs allows for extrapolation of the
magnetic moments to infinite volume as shown in Fig. 10
and produces the values shown in Table IV.

C. Scalar matrix elements: Nuclear σ terms

Ratios of the matrix elements of the isoscalar and
isovector scalar currents in hadron h to those in the proton
can be expressed as

Rh
S;0 ≡ 1

gS;0

hΨhjS0jΨhi
hΨhjΨhi

¼
�
Ah −

fhS;0
2gS;0

hhðΛ; LÞ
�
; ð49Þ

and

Rh
S;3 ≡ 1

gS;3

hΨhjS3jΨhi
hΨhjΨhi

¼
�
2Th

3 −
fhS;3
gS;3

hhðΛ; LÞ
�
; ð50Þ

where Ah denotes the atomic number of the nucleus, Th
3 is

its third component of isospin, and

fhS;0 ¼
8<
:

C̃0 þ C̃1; h ¼ d
C̃0 − 3C̃1; h ¼ pp
C̃0 − C̃1; h ¼ 3H

;

fhS;3 ¼
�
C̃V; h ¼ pp
C̃V; h ¼ 3H

:

ð51Þ

The quantity ˜̃CV ¼ C̃V=gS;3 is constrained by comparing
Eq. (55) to LQCD calculations of ratios of isovector scalar
current matrix elements in different nuclei from Ref. [54].
The results of this comparison are shown in Fig. 11.

Determinations of ˜̃CV from both the pp and 3H systems
are consistent, with 3H providing a considerably more
stringent constraint. The extracted values of the LEC are
also used to extrapolate the LQCD matrix elements to
infinite volume, as shown in the figure and presented in
Table IV.
Similarly, Fig. 12 compares LQCD calculations of the

ratio of the scalar isoscalar current matrix element in nuclei
to that in the proton to the expectations of Eq. (49) for

the deuteron, diproton, and 3H. The three states provide
sufficient information to constrain the LEC ratios
˜̃C0;1 ¼ C̃0;1=gS;0, and the constrained values are used to
extrapolate the LQCDmatrix elements to infinite volume as
shown in Fig. 13 and presented in Table IV. As noted in
Sec. II C, the couplings C̃0;1 that occur in the isoscalar
scalar current are related to the Lagrangian counterterms
C0;1 in the limit of massless quarks.

D. Tensor matrix elements

For the tensor current, isoscalar matrix element ratios to
those in the nucleon are given by

Rh
T;0 ≡ 2

gT;0

hΨhjT 12;0jΨhi
hΨhjΨhi

¼ ð2Sh3 − fhT;0hhðΛ; LÞÞ; ð52Þ

for h ∈ fd; 3Hg, where Sh3 is the third component of spin
and

FIG. 13. The infinite-volume extrapolations of the isoscalar
scalar current matrix element ratios for d, pp, and 3H.

10Note that in Ref. [55] the magnetic background field does not
couple to sea quarks, so only isovector quantities are calculated
completely; the error from this quenching of the magnetic field is
ignored here. In principle, the isovector np → dγ M1 transition
can also be used to constrain L1, but it is not used in this work.
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fhT;0 ¼
(
L̃2;T ; h ¼ d; jz ¼ 1

1
3
L̃2;T ; h ¼ 3H

; ð53Þ

where L̃2;T ¼ L2;T=gT;0.
For the isovector case, the corresponding ratio in 3H is

R
3H
T;3 ≡ 2

gT;3

hΨ3HjT 12;3jΨ3Hi
hΨ3HjΨ3Hi

¼
�
1þ L̃1;T

3
h3HðΛ; LÞ

�
;

ð54Þ

in terms of the LEC ratio L̃1;T ¼ L1;T=gT;3

Figures 14 and 15 show the comparisons of Eqs. (52)
and (54) to the respective LQCD calculations [54]. In the
isoscalar case, consistency is seen in the values of L̃2;T that
arise from comparison to either d or 3H matrix element
ratios from LQCD. As for the matrix elements of other
operators considered above, the constrained LECs enable
infinite-volume extrapolations of the matrix elements,
which are presented in Table IV.

E. Twist-2 operators: The quark momentum fraction

The first moment of the isovector unpolarized parton
distribution has been computed in LQCD for nuclei with

(a) (b)

FIG. 14. (a) The dependence of the d (upper) and 3H (lower) isoscalar tensor matrix elements on L̃2;T . (b) The dependence of these
matrix elements on the lattice extent, L. The details of the curves and points in the figure are as in Fig. 7.

(a) (b)

FIG. 15. (a) The dependence of the 3H isovector tensor transition matrix element on L̃1;T . (b) The dependence of this matrix element on
the lattice extent, L. The details of the curves and points in the figure are as in Fig. 7.
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A ∈ f2; 3g in Ref. [56] and corresponds to the difference in
the longitudinal momentum fractions carried by up and
down quarks. In the finite-volume SVM, the matrix
elements of the operators in Eq. (20) contain no spin
structure, and so the finite-volume matching and extrapo-
lation are analogous to those on the isovector scalar current
above. In particular, ratios of the isovector matrix element
in hadron h to the proton matrix elements are given by

Rh
On;3 ≡ Ah

ðZh − NhÞhxni3
hΨhjOðnÞ

3 jΨhi
hΨhjΨhi

¼
�
1þ αn;3

ðZh − NhÞhxni3
hhðΛ; LÞ

�
; ð55Þ

for h ∈ fpp; 3Hg.
LQCD data in a calculation with L ¼ 4.5 fm constrain

the single-nucleon isovector momentum fraction and two-
nucleon counterterm α1;3, as shown in Fig. 16. The
extrapolated infinite-volume matrix elements are reported
in Table IV.

VI. DISCUSSION

Finite-volume pionless effective field theory imple-
mented through the stochastic variational method has been
used to extrapolate EFT wave functions and matrix ele-
ments for A ∈ f2; 3g nuclei, matched to LQCD calcula-
tions in a finite lattice volume, to infinite volume. This
numerical approach can effectively describe bound-state
systems, can cleanly reproduce scattering states, and
furthermore exhibits volume scaling that is consistent with

the predictions of the Lüscher approach to high accuracy.
To some degree, the method circumvents the complexities
of analytic approaches generalizing that of Lüscher for two-
body systems to larger number of particles. However, as the
atomic number of the system increases, the finite-volume
SVM scales relatively poorly, and it does not seem practical
to extend much beyond A ¼ 4 systems or more than three-
body interactions. Given that the use of the finite-volume
aspect of the method is tailored to match LQCD calcu-
lations, for which increasing A is also costly, this is perhaps
not a significant limitation; the finite-volume SVM can be
used to determine EFT counterterms, which can then be
used in the infinite-volume SVM (or other many-body
methods) to perform calculations for larger nuclei.
For all of the matrix elements studied in this work, which

include isoscalar and isovector scalar, axial, and tensor
matrix elements, as well as magnetic moments and the
isovector longitudinal momentum fraction, it is found that
for the large quark masses used in the LQCD calculations
the lattice volume of L ¼ 4.5 fm as used for the calcu-
lations is large enough that there are essentially no finite-
volume corrections. At lighter quark masses, however, one
might anticipate that larger lattice volumes will be required
to achieve the same behavior. For almost all of the matrix
elements investigated in this work, it is also notable that,
although the constraints from LQCD calculations of three-
body systems are typically tighter, the EFTπ LECs deter-
mined from the LQCD calculations of two- and three-body
systems are consistent to within one standard deviation [with
the notable exception of the isoscalar axial LEC L2;A in
Eq. (11), for which there is a slight tension]. This indicates

(a) (b)

FIG. 16. (a) The dependence of the isovector twist-2 matrix elements in pp and 3H on the two-body LEC, α1;3. (b) The dependence of
the matrix element on the lattice extent, L. The details of the curves and points in the figure are as in Fig. 7.
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that higher-order terms in the relevant currents are sup-
pressed in the exponential regulator scheme used in the SVM
at these values of the quark masses. In some cases, this
suppression has particular consequence; for example, for the
isovector axial matrix elements, the LEC L1;A determined
frommeasurements of tritium β-decay is used in calculations
of the pp-fusion cross section [58]. With the LECs
determined from LQCD calculations, predictions can be
made for other quantities for which there are no LQCD
results; in Table IV, as an example, the np ← d tensor
transition matrix element is predicted from the LEC deter-
mined from the triton matrix element of the same current.
Since the finite-volume SVM provides representations of

low-lying excited states as well as the ground states that
have been the focus of this work, it can also be used to
match matrix elements of second-order current insertions
such as in double-β decay. In such processes, a sum over
excited nuclear states occurs for times between those of the
two currents, with the matrix elements of interest being

X
n

hΨfjJ jΨnihΨnjJ jΨii
E − En

: ð56Þ

In the finite-volume EFT context, this corresponds to
inclusion of the discrete states in principle up to energy-
scale of the EFT cutoff. In order to accurately represent
these contributions, care must be taken that these states are
equivalently well optimized. This will require significant
numerical effort but is likely to be feasible. Ultimately,
the finite-volume SVM appears to be a powerful tool to
capitalize on LQCD calculations of systems with small A,
which are approaching a novel era of systematic control.
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APPENDIX A: ALTERNATE FORM
FOR CURRENTS

Currents are derived by first considering the relativistic
form at the quark level, matching onto relativistic nucleon

operators with the same C, P, and T properties, and then
performing a nonrelativistic reduction. In the main text,
the various currents were written using the projectors in
Eq. (4). They can also be written in terms of Pauli matrices
in spin and isospin as follows, where each expression is
given only to the order used in this work:

Ai;a ¼
gA
2
N†τaσiN −

1

2
L1;AðN†σiNÞðN†τaNÞ; ðA1Þ

Ai;0 ¼ −
gA;0
2

N†σiN þ L2;AðN†σiNÞðN†NÞ; ðA2Þ

S0 ¼ gS;0N†N −
1

2
C̃0ðN†NÞðN†NÞ;

−
1

2
C̃1ðN†σiNÞðN†σiNÞ; ðA3Þ

Sa ¼ gS;3N†τaN −
1

2
C̃VðN†τaNÞðN†NÞ; ðA4Þ

Tij;0 ¼
gT;0
2

ϵijkN†σkN −
1

2
L2;TϵijkðN†σkNÞðN†NÞ; ðA5Þ

Tij;a ¼
gT;3
2

ϵijkN†τaσkN

−
1

2
L1;TϵijkðN†σkNÞðN†τaNÞ: ðA6Þ

Note that each of these terms is Hermitian, so no Hermitian
conjugation is implied. For the scalar currents, C̃T ¼ C̃0 −
3C̃1 and C̃S ¼ C̃0 þ C̃1 in Eq. (15), and fC̃0; C̃1g ¼
fC̄S; 4C̄Tg in the convention of Ref. [46].
Similarly, the two-body part of Eq. (12) can be written as

L2;EM ¼ −
e
2
L1ðN†σ · BNÞðN†τ3NÞ

þ e
2
L2ðN†σ ·BNÞðN†NÞ: ðA7Þ

APPENDIX B: SCATTERING STATES FOR FREE
PARTICLES AND WEAK INTERACTIONS

The correlated shifted Gaussian basis is able to accu-
rately describe low-energy finite-volume scattering states
as well as localized bound states. To demonstrate this, SVM
approximations for noninteracting two-particle states are
studied in this Appendix.
Figure 17(a) shows the energy eigenvalues obtained for a

free two-nucleon system using wave functions approxi-
mated using the shifted correlated Gaussian basis functions.
The eigenvalues are shown in units of 2MNL2=4π2, in
which case the expectation is an integer-spaced spectrum.
States are symmetric under particle interchange and should
be ordered in terms of the sum of the squared momenta,
N ¼ jp1j2 þ jp2j2jp1j2, and should have degeneracies
1; 6; 30;… corresponding to fp1¼ð0;0;0Þ;p2¼ð0;0;0Þg
for N ¼0, fp1¼ð1;0;0Þ;p2¼ð0;0;0Þg and permutations
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and sign changes for N ¼1, fp1¼ð1;1;0Þ;p2¼ð0;0;0Þg
or fp1 ¼ ð1; 0; 0Þ; p2 ¼ ð0; 1; 0Þg and permutations and
sign changes forN ¼ 2, and so on. As can be seen from the
figure, the SVM is able to cleanly reproduce the low-energy
part of the spectrum, including its degeneracies; with
further numerical effort, this can be extended further.
Similarly, the free three-particle low-energy spectrum is
well reproduced.
The large L asymptotic behavior of the ground state is

given by an expansion of the two-particle quantization
condition derived by Lüscher [26], namely

λ0 ¼
4πa
MNL3

�
1 − c1

a
L
þ c2

�
a
L

�
2

þ � � �
�
þOðL−6Þ;

ðB1Þ

where a is the scattering length and the geometric
coefficients are c1 ¼ −2.837297 and c2 ¼ þ6.375183.
Figure 17(b) shows the two-body ground-state energy
extracted from the SVM with a small repulsive coupling
[i.e., the energy in the isoscalar channel with CS ¼
31 MeV fm3 and CT ¼ 0 in Eq. (3)] as a function of
volume. Also shown are fits to this data using Eq. (B1) with
the scattering length as a free parameter, as well as fits
treating both the scattering length and the geometric
constant c1 as free parameters. The latter fit returns a
value of cfit1 ¼ −2.63ð19Þ that is consistent with the actual
value, showing that the SVM is correctly able to reproduce
the expected finite-volume asymptotic behavior. Similar
agreement with the expect asymptotic behavior is found for
small attractive interactions.

APPENDIX C: MATRIX ELEMENT FORMULAS

In this section, explicit formulas for the wave function
integrals in Eqs. (35) and (36) are provided. In the

expressions below, Ψsym
L ðAi; Bi;di;xÞ is a symmetric

n-body Gaussian wave function term defined in
Eq. (31). The normalization integral of Eq. (35), corre-
sponding to a cross-term between such n-body Gaussian
wave function terms labeled by the subscripts i and j,
respectively, can be expressed as

½N�ij ≡
Z

Ψsym
L ðAi; Bi;di;xÞ�Ψsym

L ðAj; Bj;dj;xÞdx

¼
X
P;P0

Y
α∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½CðαÞ
iP;jP0 �

vuut XjbðαÞj≤b̃

bðαÞ
exp

�
−
1

2
ΩðαÞ

iP;jP0

�
;

ðC1Þ

where

ΞðαÞ
iP;jP0 ¼ LAðαÞ

iP · bðαÞ þ BðαÞ
iP · ðLbðαÞ þ dðαÞ

iP Þ þ BjP0 · dðαÞ
jP0 ;

ðC2Þ

ΩðαÞ
iP;jP0 ¼ ðLbðαÞÞ · AðαÞ

iP · ðLbðαÞÞ þ ðLbðαÞ þ dðαÞ
iP Þ

· BðαÞ
iP · ðLbðαÞ þ dðαÞ

iP Þ þ dðαÞ
jP0 · B

ðαÞ
jP0 · d

ðαÞ
jP0

− ΞðαÞ · ½CðαÞ
iP;jP0 �−1 · ΞðαÞ; ðC3Þ

and

CðαÞ
iP;jP0 ¼ AðαÞ

iP þ AðαÞ
jP0 þ BðαÞ

iP þ BðαÞ
jP0 ; ðC4Þ

and where superscripts ðαÞ and subscripts P on the wave
function parameters A, B, and d extract the components
of the parameters corresponding to the α direction and

(a) (b)

FIG. 17. (a) Energy eigenvalues, λn, for the free two-nucleon system obtained using the SVM in three different volumes, plotted in
units of 2MNL2=4π2. The colored regions indicate the expected multiplicity of eigenvalues. (b) Energy eigenvalues, λ0, for a weakly
repulsive interaction obtained using the SVM in multiple volumes. The solid and dashed curves correspond to fits using Eq. (B1) with
either fa; c1g or fag as fit parameters, respectively.
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permute the parameters for each of the n particles by the
permutation P, respectively. In the above equations, bðαÞ
is a length-n vector; summing over all n-vectors corre-
sponds to enforcing periodicity. In practice, the infinite
sum is truncated to vectors with a maximum norm b̃, and
in the numerical calculations in this work, the cut is
initially taken to be b̃ ¼ 3 for each term and is iteratively
increased until the fractional change in the total summed
expression from adding an additional term is less
than 10−10.

The spatial integrals involved in the Hamiltonian matrix
elements are separated into the kinetic and two- and three-
body potential terms as

H ¼ hχhjKþ ðC0 þ C1σ · σÞV2 þD0V3jχhi; ðC5Þ

where the spatial integrals for each of K, V2, and V3 can be
performed independently. The integral for the two-body
potential term, again for n-body Gaussian wave function
terms labeled by i and j, is

½V2�ij ≡
Xn
a<b

Z
Ψsym

L ðAi; Bi;di;xÞ�gΛðxa − xb; LÞΨsym
L ðAj; Bj;dj;xÞdx

¼
X
P;P0

Xn
a<b

Y
α∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½CðαÞ
iP;jP0 �

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̃ðαÞ
iP;jP0

C̃ðαÞ
iP;jP0 þ 2ρ

vuut XjbðαÞj≤b̃

bðαÞ
exp

�
−
1

2
ΩðαÞ

iP;jP0

�

×
X̃q

qðαÞ¼−q̃

exp

�
−

ρC̃ðαÞ
iP;jP0

C̃ðαÞ
iP;jP0 þ 2ρ

ð½ðCðαÞ
iP;jP0 Þ−1 · ΞðαÞ�a − ½ðCðαÞ

iP;jP0 Þ−1 · ΞðαÞ�b − LqðαÞÞ2
�
; ðC6Þ

where the constant ρ ¼ 1
2r2

0

¼ Λ2

2
is a rescaling of the Gaussian regulator parameter, and

C̃ðαÞ
iP;jP0 ¼ ð½CðαÞ

iP;jP0 �−1aa þ ½CðαÞ
iP;jP0 �−1bb − ½CðαÞ

iP;jP0 �−1ab − ½CðαÞ
iP;jP0 �−1baÞ−1; ðC7Þ

where ½V�a denotes the ath component of a vector V and ½M�−1ab denotes the ða; bÞ component of the matrix M−1. In this
expression, qðαÞ is an integer; combined with the sum over bðαÞ, summing over all values of qðαÞ corresponds to enforcing
periodicity. In practice, the infinite sum is truncated to integers with absolute value less than q̃ ¼ 40; the fractional change in
the total summed expression from adding an additional term is less than 10−10.
The relevant integral for the three-body potential term, for n-body Gaussian wave function terms labeled by i and j, can

be expressed as

½V3�ij ≡
Xcyc
a≠b≠c

Z
Ψsym

L ðAi; Bi;di;xÞ�gΛðxa − xb; LÞgΛðxb − xc; LÞΨsym
L ðAj; Bj;dj;xÞdx

¼
X
P;P0

Xcyc
a≠b≠c

Y
α∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½ĈðαÞ
iP;jP0 �

vuut exp

�
−
1

2
ðdðαÞ

iP · BðαÞ
iP · dðαÞ

iP þ dðαÞ
jP0 · B

ðαÞ
jP0 · d

ðαÞ
jP0 Þ

�

×
XjbðαÞj≤b̃

bðαÞ
exp

�
−
1

2
ððLbðαÞÞ · ðAðαÞ

iP þ BðαÞ
iP Þ · ðLbðαÞÞ þ 2dðαÞ

iP · BðαÞ
iP · ðLbðαÞÞ − ΞðαÞ · ½ĈðαÞ

iP;jP0 �−1 · ΞðαÞÞ
�

×
X̃q

qðαÞ¼−q̃

exp

�
−
L2

r20
qðαÞ2 þ qðαÞ2L2

2r40
P½a;b�

v · ½ĈðαÞ
iP;jP0 �−1 ·P½a;b�

v þ qðαÞL
r20

ΞðαÞ · ½ĈðαÞ
iP;jP0 �−1 ·P½a;b�

v

�

×
X̃q

tðαÞ¼−q̃

exp

�
−
L2

r20
tðαÞ2 þ tðαÞ2L2

2r40
�P½b;c�

v · ½ĈðαÞ
iP;jP0 �−1 ·P½b;c�

v þ tðαÞL
r20

ΞðαÞ · ½ĈðαÞ
iP;jP0 �−1 ·P½b;c�

v

�

× exp
�
tðαÞqðαÞL2

r40
P½b;c�

v · ½ĈðαÞ
iP;jP0 �−1 ·P½a;b�

v Þ
�
; ðC8Þ

where
Pcyc

a≠b≠c indicates a sum over cyclic permutations of particles a, b, and c,
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ĈðαÞ
iP;jP0 ¼ CðαÞ

iP;jP0 þ 1

r20
ðP½a;b�

m þP½b;c�
m Þ; ðC9Þ

and vector and matrix projectors are defined componentwise as

½P½a;b�
v �c ¼ δac − δbc; ðC10Þ

½P½a;b�
m �cd ¼ δcdðδac þ δbcÞ − δacδbd − δadδbc: ðC11Þ

As in Eqs. (C1) and (C6), the sums over bðαÞ, qðαÞ, and tðαÞ together enforce periodicity. In numerical evaluations of
Eq. (C8), the same cut procedure for fixing b̃ and q̃ is used as for the evaluations of the previous expressions.
Finally, the integral for the kinetic operator, for n-body Gaussian wave function terms labeled by i and j, is

½K�ij ≡ −
1

2MN

Xn
a¼1

Z
Ψsym

L ðAi; Bi;di;xÞ�∇2
aΨ

sym
L ðAj; Bj;dj;xÞdx

¼ 1

2MN

X
P;P0

X
α∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½CðαÞ
iP;jP0 �

vuut XjbðαÞj≤b̃

bðαÞ
ΘðαÞ

iP;jP0 exp

�
−
1

2
ΩðαÞ

iP;jP0

�
×

Yβ≠α
β∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½CðβÞ
iP;jP0 �

vuut XjbðβÞj≤b̃

bðβÞ
exp

�
−
1

2
ΩðβÞ

iP;jP0

�
;

ðC12Þ

where ℏ ¼ 1 is used and

ΘðαÞ
iP;jP0 ¼ Tr½½ðAðαÞ

iP þ BðαÞ
iP Þ · ½CðαÞ

iP;jP0 �−1 · ðAðαÞ
jP0 þ BðαÞ

jP0 Þ�
− jðAðαÞ

jP0 þ BðαÞ
jP0 Þ · ½CðαÞ

iP;jP0 �−1 · ðBðαÞ
iP · ðLbðαÞ þ dðαÞ

iP Þ þ AðαÞ
iP · ðLbðαÞÞÞ

− ðAðαÞ
iP þ BðαÞ

iP Þ · ½CðαÞ
iP;jP0 �−1 · BðαÞ

jP0 · d
ðαÞ
jP0 Þj2: ðC13Þ
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