
 

Hð4Þ tensor representations for the lattice Landau gauge gluon propagator
and the estimation of lattice artefacts
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Lattice tensor representations are explored to investigate the lattice Landau gauge gluon propagator for
the pure SU(3) Yang-Mills gauge theory in four dimensions. The analysis of several tensor bases allows to
quantify the completeness of the tensor bases considered and the deviations of the lattice results from the
continuum theory, and to estimate the theoretical uncertainty in the propagator. Furthermore, our analysis
tests continuum-based relations with the lattice data and shows that the lattice Landau gauge gluon
propagator is described by a unique form factor, as in the continuum formulation.
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I. INTRODUCTION AND MOTIVATION

The gluon propagator is a gauge-dependent fundamental
two-point QCD Green function that has been thoroughly
studied in the Landau gauge using nonperturbative tech-
niques to solve the theory, namely, lattice QCD simulations
[1–43] and continuum-based approaches [44–102]. All
approaches reveal a Landau gauge gluon propagator that
is finite for all momenta including its zero-momentum
value. This means that QCD has a dynamical mechanism
that generates mass scales and regularizes the gluon
propagator, making it finite, in contrast to the prediction
of perturbation theory where it diverges at zero momentum.
From the good agreement of all of the nonperturbative
results one can claim to have a good understanding of the
gluon propagator from the low-momentum region up to the
ultraviolet limit.
For lattice simulations, the continuum limit of the gauge

theory should be performed to produce a proper estimation
of the propagator [103,104]. However, the lattice compu-
tation of non-gauge-invariant correlation functions requires
rotating the links, obtained by importance sampling using,
e.g., the Wilson action, to a given gauge [105]. This is a
very time-consuming operation from the computational
point of view [106]. The difficulties with the continuum
extrapolation of the propagator comes not only from the
gauge-fixing process itself, but also from the extrapolation

towards the continuum limit of the propagators, which is a
nontrivial task [23]. Indeed, a change in the volume or
number of lattice points changes the momentum accessed
in the simulation, preventing a straightforward extrapola-
tion towards the continuum limit. However, it is crucial to
have good control of the systematics, i.e., the finite-volume
and lattice-spacing effects referred to as lattice artefacts, to
deliver a reliable propagator. In a typical measurement of a
propagator, instead of performing the various limits,
various lattice spacings and volumes are considered and
the results are compared to check for finite-volume and
lattice-spacing effects.
The standard approach to the lattice evaluation of the

Landau gauge gluon propagator assumes that the simu-
lations are performed close to continuum physics and,
therefore, that the tensor structure for the lattice propagator
follows the same structure as in the continuum theory. In
momentum space, the propagator is written as

Dab
μνðpÞ ¼ δabDμνðpÞ ¼ δab

�
δμν −

pμpν

p2

�
Dðp2Þ; ð1Þ

where latin letters refer to color indices and greek letters
refer to Lorentz components. It is well known that, due to
the breaking of rotational invariance, the tensor structure of
the lattice gluon propagator does not match the tensor
structure of the continuum theory given in Eq. (1). Indeed,
the lattice data for the gluon dressing function dðp2Þ ¼
p2Dðp2Þ reveals a structure [1] that can be understood in
terms of the breaking of the rotational group Oð4Þ into
Hð4Þ [2,107], the symmetry group associated with a
hypercubic lattice.1
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1This group includes rotations of multiples of π=2 around any
lattice axis and the corresponding reflection operations. More
about the Hð4Þ group later.
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For the Landau gauge gluon propagator, two main
approaches have been devised to handle the lattice artefacts
in the results obtained assuming the continuum tensor
structure (1). A common choice is to use an alternative
definition of the lattice momentum combined with a proper
choice of the available momentum configurations, where
only a subset of the kinematical configurations—the
momenta that are closer to the diagonal configuration
ðp; p; p; pÞ—are considered. In the literature this pro-
cedure is called momentum cuts [1]. To have better access
to the deep infrared region, sometimes all momenta below a
given threshold are also considered [23,40]. The introduc-
tion of momentum cuts implies that a great deal of
information on the propagator is lost.
In what concerns the choice of momenta to reduce the

effects due to the breaking of rotational symmetry, instead
of using the lattice momenta (also called naive momentum
below)

pμ ¼
2π

aLμ
nμ; nμ ¼−

Lμ

2
þ1;…;−1;0;1;…;

Lμ

2
; ð2Þ

where Lμ is the number of lattice points along direction μ
and a is the lattice spacing, it is common to consider the
improved lattice momenta

p̂μ ¼
2

a
sin

�
π

Lμ
nμ

�
; nμ ¼−

Lμ

2
þ1;…;−1;0;1;…;

Lμ

2

ð3Þ

that appear in the perturbative solution for the gluon
propagator when the lattice is used as a regulator. Other
definitions for the momentum have also been considered by
several authors. The use of the improved momentum
combined with the momentum cuts considerably reduces
the observed structures in dðp2Þ seen in lattice simulations.
Last but not least, in general the Landau gauge condition
pμAμðpÞ ¼ 0 is better fulfilled for the improved momen-
tum, with jp̂μAμðpÞj ≪ jpμAμðpÞj by several orders of
magnitude.
Another way to handle the lattice artefacts uses the lattice

momentum pμ and explores the invariants of the remnant
Hð4Þ symmetry group [2,107] associated with a hypercubic
lattice,

p2 ¼ p½2� ¼
X
μ

p2
μ; p½4� ¼

X
μ

p4
μ;

p½6� ¼
X
μ

p6
μ; p½8� ¼

X
μ

p8
μ: ð4Þ

Any other Hð4Þ invariant can be expressed in terms of p½2�,
p½4�, p½6�, and p½8� and, in this sense, the above invariants
define the minimal set of lattice scalars in four dimensions.
It follows that a lattice calculation of any scalar quantity F

is a function of all Hð4Þ invariants, i.e., FLat ¼
Fðp½2�; p½4�; p½6�; p½8�Þ, and its continuum limit is given by
Fðp½2�; 0; 0; 0Þ, modulo possible p2 corrections. If the
lattice corrections are sufficiently small, extrapolations of
FLat to the continuum limit can be performed assuming that
FLat can be written as a power series of the scalar invariants
(4). This approach was successfully applied to the Landau
gauge gluon propagator [2,107] and the quark propagator
[108]. The extrapolation cannot be applied to all momenta
accessed in a simulation as it requires data with the same p2

but different p½4�, p½6�, p½8�. The infrared momenta and the
highest momenta accessed in a simulation have a unique
momenta for each p2 and, therefore, for these momenta the
extrapolation cannot be applied.
The procedures sketched above are the two main

approaches to handle lattice artefacts for the gluon propa-
gator. However, there are other possibilities and, for example,
it is also possible to rely on lattice perturbation theory
[109,110] to estimate the corrections to the nonperturbative
lattice propagators and vertices [108,111–114].
In the continuum formulation of QCD, the gluon

propagator is a second-order symmetric tensor, in
Lorentz space, with respect to the transformations of the
Oð4Þ group. The symmetry group of the lattice formulation
of QCD is Hð4Þ and the lattice gluon propagator is a
second-order symmetric tensor with respect to the trans-
formations associated with this group. Then, the tensor
structure of the lattice gluon propagator differs from the
continuum tensor structure given in Eq. (1). For simulations
close to the continuum limit, such as those performed in the
perturbative scaling regime, one expects the deviations
from the continuum to be small, but they do not necessarily
vanish. In order to build a second-order symmetric tensor
that can be associated with the lattice gluon propagator it is
necessary to identify the lattice vectors, i.e., those quantities
that behave as vectors with respect to Hð4Þ transforma-
tions, and then build the possible two-dimensional sym-
metric tensors.
In color space, the lattice and continuum propagators are

second-order color tensors and the identity Dab
μνðpÞ ¼

δabDμνðpÞ holds for both formulations of QCD. Indeed,
δab is the only symmetric second-order SU(3) color tensor
available. It remains to identify the tensor basis that
describes DμνðpÞ, a second-order symmetric Hð4Þ tensor.
We aim to explore the tensor representations of Hð4Þ to
measure the Landau gauge lattice gluon propagator in four-
dimensional simulations, to quantify the lattice artefacts,
and to see if the tensor representations can improve the
description of the lattice Landau gauge gluon propagator.
As will be discussed below, the use of the tensor repre-
sentations also allows to test the Slavnov-Taylor identity for
the gluon propagator with lattice simulations.
In the continuum formulation of QCD, the Slavnov-

Taylor identity for the gluon determines its tensor structure.
For the Landau gauge, this identity requires the gluon
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propagator to be orthogonal and described by a unique
form factor as given by Eq. (1). In the lattice formulation of
QCD, the continuum Slavnov-Taylor identity for the gluon
does not necessarily apply. The orthogonality of the lattice
Landau gluon propagator follows from the definition of the
Landau gauge. However, the gauge definition does not
imply a tensor structure for the gluon propagator as that
given by Eq. (1). Indeed, as will be discussed below, the
lattice Landau gluon propagator has more than a single
form factor and the definition of the Landau gauge, i.e., its
orthogonality, implies that the form factors associated with
the gluon propagator are not all independent. The relations
between the form factors can be used to test for lattice
artefacts and also to check if the Slavnov-Taylor identity for
the gluon is verified, implying a unique form factor to
describe the lattice gluon propagator.
The Hð4Þ tensor representations were introduced in

Ref. [115] and used to explore and quantify the lattice
artefact effects in momentum space for two- and three-point
correlation functions in pure Yang-Mills theories in lower
spacetime dimensions. In Ref. [116] similar reasonings
were applied to the lattice three-gluon vertex for spacetime
dimensions lower than four. These studies concluded that
the class of momenta with the smaller lattice artefacts are
those momenta configurations that are close to the diagonal
configuration ðp; p; p; pÞ. Their results confirmed that the
momentum cuts introduced in Ref. [1] provide a Dðp2Þ
with the smallest lattice artefacts. A similar conclusion was
also achieved in Refs. [2,107] when trying to understand
the lattice artefacts based on Hð4Þ invariants.
In the current article, we explore the use of Hð4Þ tensor

bases in the description of the lattice Landau gauge gluon
propagator. Although the focus is on the Landau gauge, the
procedure can be extended to other gauges and correlation
functions. By using different tensor bases we test their
faithfulness, i.e., how accurately they reproduce the lattice
data, how many form factors are necessary to describe the
lattice DμνðpÞ, and whether they satisfy the orthogonality
condition of the lattice data for the Landau gauge. By
looking at the faithfulness of the tensor bases one also
touches the problem of the evaluation of the lattice artefacts
for the Landau gauge gluon propagator. Furthermore, by
combining the Hð4Þ tensor representations with extrapo-
lations towards the continuum that explore the Hð4Þ scalar
invariants mentioned above, we have another look at the
evaluation of the lattice artefacts. The various approaches
explored to describe the gluon propagator produce essen-
tially the same results and are in good agreement with the
standard analysis that relies on the use of momentum cuts.
The combination of the various techniques also allows for
an estimation of the theoretical uncertainty in the calcu-
lation. This theoretical uncertainty should be evaluated in a
precision era that we are arriving in the computation of the
lattice propagators. Moreover, as mentioned previously by
calling for the use of Hð4Þ tensor representations, different

properties associated with the definition of the Landau
gauge on the lattice can be tested, such as the orthogonality
of the gluon field and how well the continuum Slavnov-
Taylor identity for the gluon is fulfilled by the lattice data.
In general, we find that the expected properties for the
Landau gauge gluon propagator are well reproduced by the
lattice data.
The manuscript is organized as follows. In Sec. II we

review the computation of the Landau gauge gluon propa-
gator and introduce the definitions to be used later on. In
Sec. III the usual procedure to measure the lattice gluon
propagator is described, together with the way the lattice
data is treated before accessing the lattice form factors. The
tensor bases used to investigate the lattice Landau gauge
gluon propagator are mentioned, followed by a discussion
on how to compute the form factors for the largest tensorial
basis. The orthogonality condition of the Landau gauge
gluon propagator for our largest tensor basis is also studied.
The results for the various tensor basis form factors,
together with the test of the continuum inspired relations,
can be found in Sec. IV, which also includes a comparison
with the already published data for Dðp2Þ. In Sec. V the
orthogonality of the propagator is discussed and related to
the completeness of the tensor basis. Finally, in Sec. VI we
summarize our results and conclude.

II. GETTING THE LATTICE GLUON
PROPAGATOR

In the formulation of QCD on a spacetime lattice, the
fundamental bosonic variables are the gauge links UμðxÞ.
These are related to the gluon field AμðxÞ by

UμðxÞ ¼ expfigaAμðxþ aêμ=2Þg; ð5Þ

where g is the bare coupling constant, a is the lattice
spacing, and êμ the unit vector along direction μ. In order to
compute the lattice Landau gauge propagators, after the
importance sampling2 the gauge configurations are rotated
to maximize, over the gauge orbits, the functional

F½g;U� ¼ 1

NDV

X
μ;μ

ℜTr½gðxÞUμðxÞg†ðxþ aêμÞ�; ð6Þ

where N is the number of colors, D is the number of
spacetime dimensions, V is the number of lattice points,
and g ∈ SUð3Þ are the matrices that define a gauge trans-
formation. In our work, for the maximization of F½g;U� we
use a Fourier-accelerated steepest-descent method and the
maximization process is stopped when the average value,
over the lattice, of the lattice equivalent to j∂AðxÞj2 is below
10−15. As will be discussed later, for this precision the

2For the lattice data analyzed in the current work, the
importance sampling is done with the Wilson gauge action.
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orthogonality of the gluon field (see the definition below)
and, therefore, of the gluon propagator (at least in a given
range of momenta) seems to be enough to deliver infor-
mation on the continuum propagator.
From the rotated links, the gluon field is computed using

the definition

Aμðxþ aêμ=2Þ ¼
UμðxÞ −U†

μðxÞ
2iag

����
traceless

; ð7Þ

the momentum space gluon field is

AμðpÞ ¼
1

V

X
x

e−ip·ðxþaêμ=2ÞAμðxþ aêμ=2Þ; ð8Þ

and the lattice gluon propagator is given by

hAa
μðpÞAb

νðp0Þi ¼ Dab
μνðpÞVδðpþ p0Þ; ð9Þ

where h� � �i stands for the ensemble average and

Dab
μνðpÞ ¼ δabDμνðpÞ; ð10Þ

where p stands for either the naive lattice momentum (2) or
the lattice-improved momentum (3). Further details on the
definitions and gauge-fixing procedure can be found
in Ref. [5].
The problem of the spacetime tensor structure of the

gluon propagator is now reduced to the evaluation of the
tensor decomposition of DμνðpÞ. As already mentioned, on
the lattice there is a minimum set of scalar invariants
associated with the Hð4Þ symmetry group and the lattice
gluon propagator can be written as

DμνðpÞ ¼
X
i

DðiÞðp½2�; p½4�; p½6�; p½8�ÞDðiÞ
μν ðpÞ; ð11Þ

where DðiÞðp½2�; p½4�; p½6�; p½8�Þ are Hð4Þ scalar form factors

and DðiÞ
μν ðpÞ are the elements of a tensor basis of operators

built fromHð4Þ tensors. It is only after we have defined the
tensor basis that it is possible to access the form factors
DðiÞ, identify thoseDðiÞ that do not vanish in the continuum
limit, and quantify their deviations from the continuum
limit due to the lattice artefacts.

III. TENSOR BASES FOR THE GLUON
PROPAGATOR

The elements of the hypercubic symmetry group Hð4Þ
are rotations by π=2, rotations by multiples of π=2 around
any of the hypercube axes, and the corresponding reflection
operations. As discussed in Ref. [115], the vectors with
respect to Hð4Þ transformations are the naive lattice
momentum pμ, the improved lattice momentum p̂μ, or
any odd power of these quantities. Although in this section

we will use the notation pμ to refer to a vector, the reader
should keep in mind that pμ can be read either as the naive
momentum p, the improved lattice momentum p̂, or any
odd power of any of these momenta. In the following
discussion, we ignore the case where products of different
types of vectors are considered. This is not a limitation of
the approach as the improved momenta can be written as a
power series of odd powers of the naive momenta.
In our discussion of the Landau gauge gluon propagator

we consider different tensor bases, including the continuum
tensor basis (1). The reported data is compared with the
single form factor Dðp2Þ associated with the continuum
basis (1) obtained by applying the momentum cuts, where
Dðp2Þ is described as a function of the improved momenta
(3). This data, which is used here as reference data for the
propagator, was published in Ref. [40]. Note that in this
work the propagator is calculated by performing a Z4

average where, for each gauge configuration, an average
over equivalent momenta (obtained from permutations over
the momentum components) is performed.
Herein, we recompute the propagator by relying on the

continuum tensor basis and exploring the Hð4Þ invariants.
In the new calculation the propagator is computed as a
function of p and evaluated after (i) grouping all of the data
points with the same set of scalar invariants, (ii) performing
a data average on this equivalent class of data for each
gauge configuration and only then computing the form
factors, and (iii) performing the ensemble average. This
approach, which explores the Hð4Þ symmetry group,
produces a much clearer and smoother signal for the
propagator due to the increase in the number of operations
that wash out the fluctuations of the Monte Carlo simu-
lation. Furthermore, for the case where the analysis of the
lattice data is performed in terms of the lattice momentum
p, a linear extrapolation in p½4� (towards p½4� ¼ 0) for the
form factors is also considered. We remind the reader that
the extrapolation is not possible for the lowest and highest
momenta. The extrapolation ignores the dependence on p½6�

and p½8� of the form factors and also takes the various p½4�
data points as independent variables. The values reported
for the form factors after the extrapolation are the pre-
dictions of a linear regression at p½4� ¼ 0, with the quoted
errors being those of the linear regression, i.e., the statistical
errors for the final results do not rely on bootstrapping. This
difference in the estimation of the statistical errors under-
estimates the fluctuations, and therefore the reported errors
for the final results are smaller.
The standard approach to compute the Landau gauge

lattice gluon propagator assumes that the continuum tensor
structure (1) also describes the lattice propagator. Then, the
unique form factor can be computed from3

3Note that a different normalization constant is used for zero
momentum.
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Dðp2Þ ¼ 1

ðN2 − 1ÞðD − 1Þ
X
a;μ

Daa
μμðpÞ: ð12Þ

The above relation (12) holds independently of the choice
of momenta, i.e., for either p or p̂. The lattice gluon
propagator is a function not only of p2 but of all Hð4Þ
scalars. However, we have omitted this dependence in
Eq. (12) to simplify the notation.
Following Ref. [115], a minimal tensor basis to describe

the lattice propagator reads

Dab
μμðpÞ ¼ δabðEðp2Þδμμ þ Fðp2Þp2

μÞ ðno sumÞ;
Dab

μνðpÞ ¼ δabHðp2Þpμpν; μ ≠ ν: ð13Þ

All three form factors are functions of the full set of lattice
scalars p½n� with n ¼ 2, 4, 6, 8 but, to simplify the
notation, only the p½2� ¼ p2 dependence of the form
factors is written explicitly. This minimal tensor basis
for the gluon propagator is independent of the gauge. The
gauge condition establishes a relation between the form
factors, and therefore the total number of independent
form factors for this basis is smaller than three. For the
Landau gauge we expect to recover Fðp2Þ ¼ Hðp2Þ ¼
−Eðp2Þ=p2 to reproduce the continuum tensor structure
that is seen in Eq. (1).
TheHð4Þ tensor bases can be further extended to include

higher powers of the momenta. The simplest extension of
Eq. (13), already mentioned in Ref. [115], is

Dab
μμðpÞ ¼ δabðEðp2Þδμμ þ Fðp2Þp2

μ þGðp2Þp4
μÞ ðno sumÞ;

Dab
μνðpÞ ¼ δabðHðp2Þpμpν þ Iðp2Þpμpνðp2

μ þ p2
νÞÞ μ ≠ ν ð14Þ

and requires five form factors. Straightforward algebra shows that the projectors used to extract the form factors that are
associated with the diagonal components of the propagator read

Eðp2Þ ¼ ðPμDμμðpÞÞðp½4�p½8� − ðp½6�Þ2Þ þ ðPμp
2
μDμμðpÞÞðp½4�p½6� − p2p½8�Þ þ ðPμp

4
μDμμðpÞÞðp2p½6� − ðp½4�Þ2Þ

Δ1

; ð15Þ

Fðp2Þ ¼ ðPμDμμðpÞÞðp½4�p½6� − p2p½8�Þ þ ðPμp
2
μDμμðpÞÞðdp½8� − ðp½4�Þ2Þ þ ðPμp

4
μDμμðpÞÞðp2p½4� − dp½6�Þ

Δ1

; ð16Þ

and

Gðp2Þ ¼ ðPμDμμðpÞÞðp2p½6� − ðp½4�Þ2Þ þ ðPμp
2
μDμμðpÞÞðp2p½4� − dp½6�Þ þ ðPμp

4
μDμμðpÞÞðdp½4� − ðp2Þ2Þ

Δ1

; ð17Þ

where

Δ1 ¼ dðp½4�p½8� − ðp½6�Þ2Þ þ p2ðp½4�p½6� − p2p½8�Þ þ p½4�ðp2p½6� − ðp½4�Þ2Þ: ð18Þ

The projectors used to compute the form factors for the components with μ ≠ ν are

Hðp2Þ ¼
2ðP μ;ν

μ≠ν
pμpνDμνðpÞÞðp½4�p½6� − p½10�Þ − 2ðP μ;ν

μ≠ν
p3
μp3

νDμνðpÞÞðp2p½4� − p½6�Þ
Δ2

; ð19Þ

Iðp2Þ ¼
ðP μ;ν

μ≠ν
pμpνDμνðpÞÞðp½8� − ðp½4�Þ2Þ þ ðP μ;ν

μ≠ν
p3
μp3

νDμνðpÞÞððp2Þ2 − p½4�Þ
Δ2

; ð20Þ

with

Δ2 ¼ 2ðp2p½4� − p½6�Þðp½8� − ðp½4�Þ2Þ þ 2ððp2Þ2 − p½4�Þðp½4�p½6� − p½10�Þ: ð21Þ

The full set of form factors cannot be computed for all kinematics. For example, it follows from the definitions ofΔ1 andΔ2

that for on-axis and diagonal momentaΔ1 ¼ Δ2 ¼ 0, and therefore the above relations cannot be used for these two classes
of kinematic configurations. Moreover, for momenta of type ðm; n; n; nÞ and ðm;m; n; nÞ, in four dimensions,Δ1 ¼ 0 and it
is not possible to independently access Eðp2Þ, Fðp2Þ, and Gðp2Þ.
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The form factorDðp2Þ that describes the gluon propagator when one uses the continuum tensor basis is a combination of
Eðp2Þ;…; Gðp2Þ. From its definition, we see that

Dðp2Þ ¼ 1

3
ð4Eðp2; p½4�; p½6�; p½8�Þ þ Fðp2; p½4�; p½6�; p½8�Þp2 þGðp2; p½4�; p½6�; p½8�Þp½4�Þ ð22Þ

≈
1

3

�
4Eðp2; 0; 0; 0Þ þ Fðp2; 0; 0; 0Þp2 þ

�
4
∂Eðp2; 0; 0; 0Þ

∂p½4� þ ∂Fðp2; 0; 0; 0Þ
∂p½4� p2 þ Gðp2; 0; 0; 0Þ

�
p½4� þ…

�

¼ Eðp2Þ þ Gðp2Þp
½4�

3
; ð23Þ

where in the last line the continuum relation Fðp2Þp½2� ¼ −Eðp2Þwas used, and a weak dependence on p½4� for F and Ewas
assumed. If Gðp2Þ is small enough, this relation tells us that E ≈D. We will check the validity of this relation in Sec. IV.

A. Orthogonality constraints for a general kinematical configuration

In the Landau gauge the gluon field is orthogonal to its momentum, i.e., p · AðpÞ ¼ 0. This condition constrains the
tensor structure of the propagator. For the tensor basis considered in Eq. (14), the orthogonality condition requires that

X
μ

pμDμνðpÞ ¼Eðp2ÞpνþFðp2Þp3
ν þGðp2Þp5

ν þHðp2Þðp2−p2
νÞpνþ Iðp2Þððp½4� −p4

νÞpνþðp2−p2
νÞp3

νÞ ¼ 0: ð24Þ

If pν ¼ 0, this condition is automatically satisfied. However, if pν ≠ 0, then Eq. (24) translates to

Eðp2Þ þ Fðp2Þp2
ν þGðp2Þp4

ν þHðp2Þðp2 − p2
νÞ þ Iðp2Þðp½4� þ p2p2

ν − 2p4
νÞ ¼ 0; ð25Þ

which is a relation between the various form factors that can be tested in a lattice simulation. The computation of Eq. (25)
using the lattice form factors also tests the completeness of the tensor basis.

B. Special kinematical configurations

As mentioned before, there are special momentum configurations where it is not possible to access all of the form factors
of the tensor basis given in Eq. (14). For on-axis momenta ðp; 0; 0; 0Þ the propagator is diagonal and its spacetime tensor
structure reads

ðDμμðpÞÞ ¼ ðEðp2Þ þ Fðp2Þp2 þ Gðp2Þp4; Eðp2Þ; Eðp2Þ; Eðp2ÞÞ ðno sumÞ: ð26Þ

Then, only the combinations of the lattice form factors

Eðp2Þ ¼
X4
μ¼2

DμμðpÞ
3

and Fðp2Þp2 þGðp2Þp4 ¼ D11ðpÞ − Eðp2Þ ð27Þ

can be computed in a simulation. In the continuum limit Eðp2Þ and Fðp2Þp2 are identified with Dðp2Þ, and Gðp2Þp4

measures the deviations of the lattice propagator from its “continuum” tensorial structure. The form factor measured in
Eq. (12) is

Dðp2Þ ¼ 4Eðp2Þ þ Fðp2Þp2 þ Gðp2Þp4

3
¼ Eðp2Þ þ Gðp2Þp4

3
; ð28Þ

where in the last term the continuum inspired relation p2Fðp2Þ ¼ −Eðp2Þ was used.
If the orthogonality condition p · AðpÞ ¼ 0 holds, it requires that

X
μ

pμDμνðpÞ ¼ Eðp2Þpþ Fðp2Þp3 þGðp2Þp5 ¼ 0: ð29Þ
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This expression allows to test the orthogonality condition
associated with the Landau gauge for on-axis momenta. If
Gðp2Þ is small enough (see Sec. IV) the orthogonality
condition implies Fðp2Þ ¼ −Eðp2Þ=p2 and the usual
tensor structure of the continuum theory is recovered.
Note that in this case Dðp2Þ ¼ Eðp2Þ, with a correction
given by Gðp2Þp4. For on-axis momenta, the nondiagonal
components of the propagator vanish for both the con-
tinuum theory and its lattice formulation as they are
proportional to pμpν, with μ ≠ ν. Unless Gðp2Þp4 diverges
for small p2, the deviations from the continuum tensor
structure for small momenta should be small or even vanish
for this class of momenta. The data for the gluon propagator
for two- and three-dimensional theories reported in
Ref. [115] suggest that the lattice gluon propagator recovers
the continuum tensor structure for on-axis momenta, i.e.,
the data supports a small finite value for Gðp2Þ.
Let us now turn our attention to diagonal momenta

ðp; p; p; pÞ. Recall that in lattice simulations (and having
in mind the suppression of lattice artefacts) this is the
preferred class of momenta used to measure Dðp2 ¼ p½2�Þ.
The diagonal elements of the propagator are

DμμðpÞ ¼ Eðp½2�Þ þ Fðp½2�Þp2 þ Gðp½2�Þp4 ðno sumÞ;
ð30Þ

while the nondiagonal elements read

DμνðpÞ ¼ p2ðHðp½2�Þ þ 2Iðp½2�Þp2Þ μ ≠ ν: ð31Þ

The combination of the form factors given in Eqs. (30) and
(31) are the quantities that can be measured in a lattice
simulation. The continuum limit implies that Eðp½2�Þ →
Dðp½2�Þ and 4p2Fðp½2�Þ → 4p2Hðp½2�Þ → −Dðp½2�Þ and
that the contributions associated with G and I should
vanish as a → 0.
For diagonal momenta, the orthogonality condition

relates the measurable form factors as

X
μ

pμDμνðpÞ ¼ pðEðp½2�Þ þ Fðp½2�Þp2 þGðp½2�Þp4

þ 3p2Hðp½2�Þ þ 6Iðp½2�Þp4Þ ¼ 0 ð32Þ

or

ðEðp½2�Þ þ Fðp½2�Þp2 þ Gðp½2�Þp4Þ þ 3p2ðHðp½2�Þ
þ 2Iðp½2�Þp2Þ ¼ 0: ð33Þ

Again, a measure of this quantity tests the Landau gauge
condition on the lattice. If the contributions of p4Gðp½2�Þ
and p4Iðp½2�Þ are small or negligible, this condition
becomes

Eðp½2�Þ þ p2ðFðp½2�Þ þ 3Hðp½2�ÞÞ ¼ 0: ð34Þ

Further, if Fðp½2�Þ ¼ Hðp½2�Þ holds, the continuum tensor
structure is recovered for the diagonal momenta.
Unfortunately, for this kinematical configuration it is
impossible to access all of the form factors and the only
test that can be performed is the orthogonality condition as
given in Eq. (34).
The on-axis and diagonal momenta are not the only

kinematical configurations that haveΔ1 ¼ 0 or Δ2 ¼ 0 and
prevent the use of the projectors (15)–(20) to measure all of
the form factors. For momenta of type p ¼ ða; b; b; bÞ,
which have p2 ¼ a2 þ 3b2, it turns out that in four
dimensions Δ1 ¼ 0 and Δ2 ¼ 36a2b8ðb2 − a2Þ2. The form
factors Hðp2Þ and Iðp2Þ can be computed as usual, but not
the remaining ones. Looking at the Lorentz components of
the gluon propagator [see Eq. (A1) in the Appendix], it
follows that

D11ðpÞ ¼ Eðp2Þ þ Fðp2Þa2 þ Gðp2Þa4 and

D22ðpÞ ¼ D33ðpÞ ¼ D44ðpÞ
¼ Eðp2Þ þ Fðp2Þb2 þ Gðp2Þb4 ð35Þ

are the only combinations related to the diagonal compo-
nents that can be measured directly in a simulation. The
continuum tensor structure implies Eðp2Þ ¼ −p2Hðp2Þ.
The form factor Hðp2Þ can be measured using the off-
diagonal components and, combined with the diagonal
components, it is possible to access both Gðp2Þ and Fðp2Þ.
This last form factor should reproduce Hðp2Þ if the lattice
propagator reproduces the continuum tensor structure. For
this kinematical configuration, the orthogonality of the
propagator translates into the two conditions

� ½Eðp2Þ þ a2Fðp2Þ þ a4Gðp2Þ� þ b2Hðp2Þ þ b2ða2 þ b2ÞIðp2Þ ¼ 0;

½Eðp2Þ þ b2Fðp2Þ þ b4Gðp2Þ� þ ða2 þ 2b2ÞHðp2Þ þ ða2ða2 þ b2Þ þ 4b4Þ Iðp2Þ ¼ 0
ð36Þ

that can be tested in lattice simulations. For momenta of type p ¼ ða; a; b; bÞ, which have p2 ¼ 2ða2 þ b2Þ, the
denominators in Eqs. (15) and (19) are Δ1 ¼ 0 and Δ2 ¼ 8a2b2ðb − aÞ2ðbþ aÞ2ðb2 þ a2Þð2b4 − a2b2 þ 2a4Þ, respec-
tively. As in the previous case, the projectors (19) and (20) can be used to measureHðp2Þ and Iðp2Þ. The diagonal terms of
the propagator are given by
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D11ðpÞ ¼ D22ðpÞ ¼ Eðp2Þ þ Fðp2Þa2 þ Gðp2Þa4 and D33ðpÞ ¼ D44ðpÞ ¼ Eðp2Þ þ Fðp2Þb2 þ Gðp2Þb4; ð37Þ

and these are the only combinations of form factors that can be measured in a lattice simulation for this class of momenta.
Continuum physics requires Eðp2Þ ¼ −p2Hðp2Þ and, assuming that this condition holds, Fðp2Þ and Gðp2Þ can be
measured using Eq. (37). The continuum tensor structure of the propagator also requires that Fðp2Þ ¼ Hðp2Þ and, in this
case, the two quasi-independent measures of F andH can be used to test how well the continuum basis describes the lattice
data. The orthogonality condition relates the form factors, and these relations can be used to once more test the outcome of
the simulations. The last special kinematical configuration that we have identified that belongs to the class of kinematics
under analysis is p ¼ ða; b; 0; 0Þ, which has p2 ¼ a2 þ b2. The nonvanishing components of the gluon propagator are

D11ðpÞ ¼ Eðp2Þ þ a2Fðp2Þ þ a4Gðp2Þ; D22ðpÞ ¼ Eðp2Þ þ b2Fðp2Þ þ b4Gðp2Þ;
D33ðpÞ ¼ D44ðpÞ ¼ Eðp2Þ; D12ðpÞ ¼ ab½Hðp2Þ þ Iðp2Þða2 þ b2Þ�; ð38Þ

and therefore it is only possible to measure Eðp2Þ, Fðp2Þ,
Gðp2Þ, and Hðp2Þ þ Iðp2Þða2 þ b2Þ directly in a lattice
simulation. If one assumes that the continuum relations
hold and sets Hðp2Þ ¼ Fðp2Þ, then one can extract the
form factor Iðp2Þ. Once more, the Landau gauge ortho-
gonality condition translates into two equations for the full
set of form factors that can be tested with lattice data.
All of the relations that we have mentioned so far assume

that the simulations have infinite statistics and therefore
that they can be used to measure all of the form factors and/
or its combinations. In a real simulation, where only a finite
number of gauge configurations are accessed for each
ensemble, the limited statistics translates into large stat-
istical errors for some of the form factors and, in practice,
some of the relations derived do not provide any valuable
information on the lattice propagator.

IV. LANDAU GAUGE LATTICE GLUON
PROPAGATOR

As stated before, one of the goals of the current work is
to check whether it is possible to arrive at a faithful
description of the lattice gluon propagator. To do so, we
explore various tensor bases of operators and measure the
associated form factors. We will investigate the continuum
tensor basis given in Eq. (1), i.e.,

Dab
μνðpÞ ¼ δabDμνðpÞ ¼ δab

�
δμν −

pμpν

p2

�
Dðp2Þ

(which requires a unique form factor), the modified
continuum basis

DμνðpÞ ¼ AðpÞδμν þ BðpÞpμpν ð39Þ

(which calls for two form factors), an extended basis

DμμðpÞ ¼ JðpÞδμμ þ KðpÞp2
μ ðno sumÞ;

DμνðpÞ ¼ LðpÞpμpν; μ ≠ ν ð40Þ

(which uses three form factors), and the enlarged tensor
basis given in Eq. (14), i.e.,

DμμðpÞ ¼ Eðp2Þδμμ þ Fðp2Þp2
μ þ Gðp2Þp4

μ ðno sumÞ;
DμνðpÞ ¼ Hðp2Þpμpν þ Iðp2Þpμpνðp2

μ þ p2
νÞ μ ≠ ν

(which requires five different form factors). All form
factors are functions of all of the lattice scalar invariants,
but to simplify the notation we only explicitly write the p2

dependence.
The various tensor basis representations are analyzed

using the lattice data for the Landau gauge gluon propa-
gator generated with the Wilson action, at β ¼ 6.0, for a
Monte Carlo simulation performed on a 804 lattice and that
uses 550 gauge configurations. For this simulation the
lattice spacing, measured from the string tension [117], is
a ¼ 0.1016ð25Þ fm or 1=a ¼ 1.943ð47Þ GeV. In physical
units the length of each lattice side is 8.13(20) fm. In all
cases except for theHð4Þ extrapolation, statistical errors are
computed with the bootstrap method with a 67.5% con-
fidence level. The quoted errors for the p½4� extrapolation
are the exception and the numbers reported are those
obtained by doing a linear regression.

A. Results with the continuum tensor basis and
diagonal-like momenta

Let us start our analysis by looking at the results for the
Landau gauge gluon propagator based on the use of the
continuum tensor basis (1). The propagator is described by
a single form factor Dðp2Þ, whose value is computed with
the help of Eq. (12). We report different calculations for
Dðp2Þ together with the data already published in Ref. [40],
which is used as reference data. The evaluation of the
reference data relies on the Z4 average of equivalent
momenta, with Dðp2Þ given in terms of the improved
lattice momenta p̂μ, and only the subset of those lattice
momenta that verify the cylindrical and conical cuts defined
in Ref. [1] (for momenta above 0.7 GeV) is considered. For
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the infrared momenta (i.e., for those momenta below
0.7 GeV), all available lattice data is taken into account.
In Fig. 1 we show the gluon dressing function for the

data published in Ref. [40], i.e., those momentum con-
figurations that satisfy the cuts (black points), together with
all of the momenta accessed in the simulations (orange
points). The figure shows the spread of the data due to the
lattice artefacts for the full range of improved lattice
momenta and illustrates the type of data that is selected
by the momentum cuts.
The lattice gluon dressing function dðp2Þ ¼ p2Dðp2Þ is

shown in Fig. 2 for different definitions of the momenta that
appear in the projectors. The data labeled as “Ann. Phys.
(2018)” is the data published in Ref. [40] and is, in all
cases, plotted as a function of the improved momentum p̂.
The data labeled as “New Calc.” is represented as a function
of the improved momentum p̂ (top left), the lattice
momentum p (top right), and the lattice momentum after

FIG. 2. Landau gauge gluon dressing function computed using the continuum-like tensor basis written in terms of the improved
momenta (top left), in terms of the lattice momenta (top right), and after performing the Hð4Þ extrapolation (bottom). Note that the data
with the Hð4Þ extrapolation covers a smaller range of p. See text for details.

FIG. 1. Gluon dressing function dðp2Þ ¼ p2Dðp2Þ as a func-
tion of the improved momentum for the continuum tensor basis
and the momentum configurations that verify the momentum cuts
and all of the kinematical configurations.
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a linear extrapolation in p½4� (bottom). The “New Calc.”
data includes momenta of type ðn; 0; 0; 0Þ, ðn; n; 0; 0Þ,
ðn; n; n; 0Þ, and ðn; n; n; nÞ, and an average over the
momenta with the same set of lattice invariants p2, p½4�,
p½6�, and p½8� was performed before doing the ensemble
average. The data “New Calc:þ H4 Ext:” is the same as
“New Calc.” after a linear extrapolation in p½4�. Recall
that for the class of momenta considered, which involves
a single momentum scale, the Landau gauge condition
p · AðpÞ ≈ 0 is verified independently of the type of
momentum considered, i.e., independently of using either
p or p̂. Indeed, for the class of momentum configurations
considered, which have a unique scale, the gauge condition
translates into a condition on the sum of the gauge field
components.
The plots in Fig. 2 depict the new calculation of the gluon

propagator obtained by exploring the H(4) invariants. The
top left plot shows that the “NewCalc.” data agrees well with
the reference data but has smaller statistical errors, as
expected. Therefore, it is worthwhile to take averages over
the lattice data with the same set of scalar invariants.
However, there is a significant difference betweenDðp̂2Þ

and Dðp2Þ; see top right plot. The difference is relevant for
p≳ 1.5 GeV and is clearly visible for p≳ 2 GeV. The
linear extrapolation in p½4� of the “New Calc.” data returns a
propagator that essentially reproduces the Dðp̂2Þ from the
“Ann. Phys. 2018” data. Note, however, that there are small
deviations between the two sets of results. The good
agreement of these two estimates for Dðp2Þ gives us
confidence that the procedure devised in Ref. [1] and used
in many calculations for the gluon propagator provides a
proper estimation of Dðp2Þ.
The data in Fig. 2 also shows that the use of the Hð4Þ

extrapolation has an advantage over the momentum cuts,
providing a larger number of data points over a large range

of momenta. Recall that the extrapolation does not work for
low and large momenta, where the number of data points
with the same p2 but different p½4� is not enough to allow
for a reliable estimation of the form factor at p½4� ¼ 0. For
momenta above ∼5 GeV the linearly extrapolated data and
our reference data are no longer compatible within one
standard deviation.

B. On the completeness of the tensor bases

Let us now investigate the faithfulness of the description
of the lattice Landau gauge gluon propagator when
the continuum tensor basis of Eq. (1) is used. Due to
the breaking of the rotational symmetry one expects
deviations relative to the continuum tensor basis. The
deviations can be tested through the ratio

R ¼
P

μνjTrDLat
μν ðpÞjP

μνjTrDrec
μν ðpÞj

; ð41Þ

where DLat
μν ðpÞ is the lattice propagator as given by the

simulation, i.e., as measured from Eq. (9), and Drec
μν ðpÞ is

the reconstructed propagator using the form factor Dðp2Þ
and assuming the tensor structure as in Eq. (1). A complete
tensor basis should describe the lattice propagator with
great accuracy and the corresponding R should be one.
In Fig. 3 the ratio R is reported for the class of momenta

that have a single momentum scale p and for the continuum
tensor basis. Note that in the plots the data for R is reported
as a function of the improved momentum p̂. There is no
significant difference in R if one uses either the improved
momenta p̂ or the lattice momenta p. As seen, R deviates
significantly from unity and can reach values just below
∼1.4 for on-axis and ðp; p; 0; 0Þ-type momenta. For the
ðp; p; p; 0Þ class of momenta R drops to ∼1.2, and for
diagonal momenta it is close to the ideal value.

FIG. 3. R for different classes of momenta that are defined by a single momentum scale p as a function of the improved momenta when
using the continuum tensor basis (left) and for the extended tensor basis defined in Eq. (14) (right). As discussed in the main text, for
diagonal momenta and the extended tensor basis it is not always possible to measure the full set of form factors.
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Let us now see if the use of larger tensor bases can help
to improve R and provide a more faithful description of the
lattice data. In Fig. 4 we report on R, for all available
momenta where one can measure the corresponding basis
form factors, computed using the continuum basis (1) (top
left), the basis with two form factors (39) (top right), the
extended basis (40) that requires three form factors (bottom
left), and the enlarged basis (13) that calls for five form
factors (bottom right), for each of the sets of plots. The
three sets of plots show R as a function of the improved
momentum p̂ (top left), lattice momentum p (top right),
and lattice momentum afterHð4Þ extrapolation.4 Recall that
the Hð4Þ extrapolation is not possible at small and high
momenta. This is the rationale for why the extrapolated
data in Fig. 4 includes only momenta with p≲ 6 GeV. As
seen, the results for R are slightly improved, more in the
reduction of the interval of values taken than by bringing R

towards its optimal value, as one considers larger tensor
bases. The worst scenario occurs when the lattice data is
described in terms of the naive lattice momentum p. The
use of the improved latticemomentum p̂ reduces the spread
ofR but it does not bring it closer to one. On the other hand,
the use of the naive lattice momentum combined with the
Hð4Þ extrapolation has a large impact on R, resulting in R
values that are clearly close to its optimal value. Recall that
the errors associated with the extrapolation do not rely on
the bootstrap method and are underestimated. Moreover,
looking at the extrapolation data for R, it is for the enlarged
basis (14) that the extrapolation returns R values closer
to unity.
In what concerns the faithfulness of the description of the

Landau gauge gluon propagator, the results of Fig. 4
suggest that one should use large tensor bases combined
with Hð4Þ extrapolations. Eventually, at least in the infinite
limit statistics, a sufficiently large tensor basis will exempt
the extrapolation. Notice, however, that the results sum-
marized in Figs. 3 and 4 have little to do with the quality of

FIG. 4. R for the continuum basis (1) (top left), the basis with two form factors (39) (top right), the extended basis (40) that requires
three form factors (bottom left), and the enlarged basis (13) that calls for five form factors (bottom right). The three sets of plots use the
improved momentum p̂ (top left), lattice momentum p (top right), and lattice momentum after Hð4Þ extrapolation.

4We postpone the computation of the form factors for the
extended tensor basis to Sec. IV C.
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the measured form factor Dðp2Þ. They are essentially a test
of the (un)completeness of the lattice tensor basis.
The results summarized in Fig. 3 show that the con-

tinuum tensor structure is not suitable to describe, with
precision, the lattice propagator. The relative lack of
precision on the reconstruction of the lattice propagator
can be due to large corrections to the form factor Dðp2Þ
(previous studies suggest that this does not occur), that
large lattice corrections should occur mainly in the non-
diagonal components, or that the definition used for the
gluon field needs to be changed. We have tested the latter
case by improving the orthogonality of the gluon field, i.e.,
by replacing AμðpÞ with

AðortÞ
μ ðpÞ ¼

�
δμν −

pμpν

p2

�
AμðpÞ: ð42Þ

The corresponding analysis of the data with this new
definition for the gluon field does not change either the
propagator or R. This procedure tests the orthogonality
condition on the lattice and suggests that orthogonality is
well satisfied by the conventional definitionof thegluon field.
Our analysis of R shows that, for the class of momenta

considered, the extended tensor is not yet a complete basis
in the sense that it is not able to provide a faithful
reconstruction of the lattice propagator. This can probably
be achieved by considering larger tensor bases. However
(see the discussion below), the statistical errors for the form
factors G and I are large and oftentimes these form factors
are compatible, within one standard deviation, with zero.
This prevents us from considering other larger tensor bases
with larger sets of form factors.

C. Results for the largest tensor basis

Let us now look at the form factors Eðp2Þ, Fðp2Þ,
Gðp2Þ,Hðp2Þ, and Iðp2Þ that appear in the extended tensor

basis defined in Eq. (14). Only those kinematical configu-
rations where the full set of form factors [as given by
Eqs. (15)–(20)] can be accessed will be considered.
The extended basis given in Eq. (14) reduces to the

continuum tensor basis (1) if the relations

Dðp2Þ ¼ Eðp2Þ ¼ −p2Fðp2Þ ¼ −p2Hðp2Þ and

Gðp2Þ ¼ Iðp2Þ ¼ 0 ð43Þ

are verified. These conditions, together with the compari-
son with the standard computation of Dðp2Þ, are used to
benchmark the measurement of the form factors. Similar
relations can be defined to analyze the other tensor bases
mentioned previously.
In Fig. 5 the form factors p4Gðp2Þ and p4Iðp2Þ are

reported as a function of the improved momentum (left
plot) for all of the kinematical configurations, and of the
lattice momentum p after Hð4Þ extrapolation (right plot).
p4Iðp2Þ is compatible with zero for the two cases consid-
ered, while p4Gðp2Þ is compatible with zero in the full
range of momenta only when the computation uses the
improved momentum. Indeed, p4Gðp2Þ deviates slightly
from zero when the data is represented in terms of the
lattice momentum, after the linear extrapolation in p½4� at
the smallest momenta. Once more, we remind the reader
that the evaluation of the statistical errors with the extrapo-
lation does not use the bootstrap method and relies only on
the error evaluation of the linear regression, which under-
estimates the statistical errors.
The fluctuations of the data are smaller for p4Iðp2Þwhen

compared to the fluctuations of p4Gðp2Þ. The pattern of the
fluctuations is as expected given that Gðp2Þ mixes with
Eðp2Þ and Fðp2Þ which, in principle, are the most relevant
form factors for the Landau gauge gluon propagator. As
seen below, the data confirms the relative importance of the

FIG. 5. p4Gðp2Þ and p4Iðp2Þ (dimensionless quantities) as functions of the improved momentum (left) and lattice momentum after
Hð4Þ extrapolation (right). The large fluctuations observed at high p̂ for Gðp2Þ are associated with small values of Δ1.
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form factors. Moreover, Fig. 5 also suggests that, within the
statistical precision of the current simulation, it is difficult
to go beyond the extended tensor basis (40) to describe the
lattice gluon propagator in the Landau gauge.
The small observed values for the form factors repre-

sented in Fig. 5 suggest that p4Iðp2Þ ≈ p4Gðp2Þ ≈ 0 for all
momenta. In this case, it follows from the discussion in
Sec. III A [see Eq. (25)] that the orthogonality condition for
a general kinematical configuration implies for the lattice
data

Eðp2Þ þ Fðp2Þp2 ¼ 0; ð44Þ
and, from Eq. (23), that the continuum form factor
Dðp2Þ ¼ Eðp2Þ. Similar relations also hold for on-axis
momenta; see Eqs. (28) and (27). For diagonal momenta, if

the relation Hðp2Þ ¼ Fðp2Þ applies, then once more
Dðp2Þ ¼ Eðp2Þ; see Eqs. (30) and (34).
In Fig. 6 we show the lattice data for all form factors and

test the relations (43) that are required to reproduce the
continuum tensor basis structure. In all cases, the quantities
represented are dimensionless. The data is given in terms of
the improved momentum p̂ in the upper plots, and as a
function of the lattice momentum p after performing the
linear extrapolation in p½4� in the bottom plots. Recall that
the form factor Dðp2Þ obtained using the continuum tensor
basis and momentum cuts is always given as a function of
the improved momentum. The combinations reported in
Fig. 6 are such that in the continuum limit they should
become equal. Any deviation between the form factors is a
manifestation of finite-volume and/or finite-spacing effects.

FIG. 6. Form factors (dimensionless units) as functions of the improved momentum (upper) and the lattice momentum after Hð4Þ
extrapolation (bottom). The functionDðp2Þ is always plotted as a function of the improved momentum p̂. The left plots refer to the form
factors that, in the continuum, should be equal, while the right plots refer to the same form factors after multiplication by momentum
squared. The right plots do not include all of the form factors as the lattice data associated with those not represented in the right plots
have large statistical errors. The inclusion of this data does not add any useful information and it overshadows the plots reading.
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FIG. 7. Dimensionless form factors for all of the different tensor bases, compared to Dðp2Þ (black circles in all of the panels). The top
line shows the form factors as functions of the lattice improved momentum. The bottom line is the same results but using the lattice
momentum followed by a linear p½4� extrapolation. The Dðp2Þ data is given as a function of the improved momentum.
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For the gluon dressing function seen as a function of the
improved momentum p̂, p2Eðp2Þ follows the behavior of
the full data set observed in Fig. 1, and therefore it seems
that the use of the extended tensor basis does not disen-
tangle the lattice artefacts. These are pruned when we
consider the lattice data as a function of the naive
momentum after performing the Hð4Þ extrapolation. In
general, the form factors are compatible with each other,
within one standard deviation. Together with the observa-
tions that Gðp2Þ and Iðp2Þ are essentially vanishing or
quite small functions of the momenta, these results imply
that the simulation reproduces essentially the continuum
relations between the form factors.
This can also be viewed as an indication that the tensor

structure of the continuum propagator, or the Slavnov-
Taylor identity for the gluon, holds for the lattice data. This
result confirms the conclusion reached in Ref. [23] that for
the simulation under discussion the lattice results reproduce
continuum physics.
The data in Fig. 6 also shows a hierarchy in the quality of

the lattice data associated with each of the form factors for
the extended tensor basis (14). Eðp2Þ has the smallest
statistical errors, while −p2Fðp2Þ and −p2Hðp2Þ have the
largest statistical errors. From the point of view of access-
ing useful information on the gluon propagator, it is Eðp2Þ
that delivers the best Monte Carlo signal.

D. Comparing the tensor bases

So far, we have observed that by enlarging the tensor
basis the accuracy of the description of the Landau gauge
lattice gluon propagator increases slightly and that the
linear Hð4Þ extrapolation has a major impact on the

faithfulness and the handling of the lattice artefacts. In
this section, we look at the results obtained with the bases
(39) and (40), and compare them to the standard approach
to the gluon propagator and with the results of the extended
tensor basis (14). The analysis of the various bases requires
the computation of the projection operators, which are
similar to those already quoted in the main text.
In Fig. 7 we show the form factors associated with the

various tensor bases. The form factors are compared to
Dðp2Þ computed in Ref. [40] given as a function of the
improved lattice momentum. The results reported in Fig. 7
use either the lattice-improved momentum (top plots) or the
lattice momentum after a linear extrapolation in p½4� of the
form factors (bottom plots). For each set of plots, the form
factors associated with the metric tensor are reported in the
top line, while the remaining ones appear in the bottom
line. For comparison, we always show Dðp2Þ, as a function
of the improved momentum, for the momentum configu-
rations that verify the cuts mentioned previously.
If one describes the form factors in terms of the improved

momentum p̂, the data for all of the form factors seems to
follow the functional dependence observed in Dðp̂2Þ and,
in this sense, one can claim that they reproduce Dðp2Þ. In
general, for p̂2Aðp̂2Þ, p̂2Jðp̂2Þ, p̂4Bðp̂2Þ, and p̂4Lðp̂2Þ the
structure observed in Fig. 1 when considering the full set of
momenta is also observed in the top plots of Fig. 7. The
analysis of the remaining form factors, i.e., p̂2Eðp̂2Þ,
p̂4Kðp̂2Þ, p̂4Fðp̂2Þ, and p̂4Hðp̂2Þ, is more difficult to
disentangle as the statistical errors are larger.5 However,
there is a difference in the data for the p̂2Aðp̂2Þ, p̂2Jðp̂2Þ,
p̂4Bðp̂2Þ, and p̂4Lðp̂2Þ form factors and p̂4Kðp̂2Þ,
p̂2Eðp̂2Þ, p̂4Fðp̂2Þ, and p̂4Hðp̂2Þ. If the first set is typically
below the reference data, represented by p̂2Dðp̂2Þ, the latter
ones fluctuate around p̂2Dðp̂2Þ.
On the other hand, the description of the form factors

using the naive lattice momentum combined with the Hð4Þ
extrapolation shows a much cleaner behavior, with smaller
statistical errors and with the various form factors repro-
ducing the reference data up to ∼4 GeV but not above it.
Note also that the Hð4Þ extrapolated data does not produce
a smooth curve but rather a not so large band of values for
each p. Once more, the extrapolation seems to be able to
take into account and remove the lattice artefacts, at least in
a range of momenta.
At least partially, the problem of the noise level in the

computation of the various form factors can be overcome
by recalling that there is an error in the scale setting of
about 2.5%. This 2.5% ambiguity can be used to define
bins in the momentum and to replace all of the data points
in each bin by a weighted average of the data points. For
each bin, we take the central value of the interval as the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
p [GeV]

0

1

2

3

All Data
Moment Cuts

FIG. 8. Gluon dressing function dðp2Þ ¼ p2Dðp2Þ as a func-
tion of the improved momentum for the continuum tensor basis
for the momentum configurations that verify the momentum cuts
(black points) and all of the kinematical configurations (orange
points). The data for the full set is obtained by binning the lattice
data, as described in the main text.

5Note that in Figs. 6 and 7 the range used in the vertical scale is
not exactly the same.
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FIG. 9. Same as Fig. 7 but after performing a binning on the horizontal axis using an interval of 2.5%.
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momentum. The outcome of performing the binning can be
seen in Figs. 8 and 9. In this way, one obtains smoother
curves for all of the form factors. In particular, in Fig. 8
which reports the full data set for the continuum basis, the
differences between considering the momentum cuts and
the complete set of momentum are clearly observed. These
differences between the two data sets of momenta, i.e., the
lattice artefacts, are clearly seen in the range p̂ ∼ 2–5 GeV.
The binned data (see Fig. 9) for the description that uses

the improved lattice momentum results in a smooth curve
that essentially follows the reference data reported in
Ref. [40]. However, the data in the upper part of Fig. 9
also shows a consistent pattern where almost all of the form
factors are consistently below the momenta cut evaluation
ofDðp2Þ. Indeed, a zoom in of any of the subplots in Fig. 9
shows a pattern for the binned data that follows the pattern
observed for the full momenta set given in Fig. 8. The
exceptions are the data points associated with −p̂4Fðp̂2Þ
and −p̂4Hðp̂2Þ. Figure 10 illustrates this behavior by
zooming in on the plots for p̂2Eðp̂2Þ and −p̂4Fðp̂2Þ. A
similar plot can be shown for −p̂4Hðp̂2Þ. The data for
p̂2Eðp̂2Þ overlaps with the full momenta data set computed
with the continuum tensor basis, while the data for
−p̂4Fðp̂2Þ is slightly closer to the reference data (called
“Momentum Cuts” in Fig. 10).
The description of the form factors in terms of the naive

momentum, combined with the extrapolation, is closer to
the reference data in comparison with the description in
terms of the improved momentum. However, significant
deviations occur for p≳ 3 GeV. Furthermore, a close look
at the data in Fig. 10 shows that the extrapolated data is not
on top of the reference data, but rather (typically) exceeds
it. Once more, it is for −p̂4Fðp̂2Þ that the agreement with
Dðp2Þ is better for momenta up to ∼4 GeV.

For the continuum basis, the description of Dðp2Þ in
terms of the naive momentum combined with a linear
extrapolation are illustrated in Fig. 2. The linear extrapo-
lation recovers the functional form seen in the reference
gluon data. Note, however, that even after the p½4� extrapo-
lation there are small discrepancies between the two
data sets.

V. ORTHOGONALITY AND COMPLETENESS OF
THE TENSOR BASIS

The orthogonality of the lattice gluon propagator was
discussed in Sec. III A for a general kinematical configu-
ration and in Sec. III B for the special kinematical con-
figurations where the projection operators (15)–(20) are not
all well defined. The so-called continuum relations between
the form factors mentioned previously are a manifestation
of the orthogonality of the gluon field and, therefore, of the
gluon propagator. In the continuum formulation, they are a
consequence of the Slavnov-Taylor identity for the gluon.
The orthogonality of the gluon propagator was partially

studied in the previous section and we conclude that, in
general, there is a range of momenta (which depends on the
tensor basis) where the lattice gluon propagator is orthogo-
nal and, therefore, the continuum Slavnov-Taylor identity is
satisfied by the lattice gluon propagator data.
The orthogonality condition, as given by Eq. (24), tests

the relations between the various form factors measured in
the Monte Carlo simulation. The relation (24), computed
using the lattice form factors, is given in Fig. 11 for the
tensor basis with the largest number of form factors. The
upper plot refers to the results when the improved momen-
tum p̂ is used, while the bottom plot reports the results of
computing the orthogonality condition with the lattice
momentum p and ignoring the Hð4Þ extrapolation. Note
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FIG. 10. Binned gluon dressing function for the form factors p2Eðp2Þ (left) and −p4Fðp2Þ (right) associated with the enlarged basis
(14) as a function of the improved momentum p̂ and of the naive momentum p after Hð4Þ extrapolation. Note that for p ≈ 5.8 GeV
onwards, theHð4Þ extrapolation is no longer possible and the points reported do not take into account the linear extrapolation in p½4�. We
call the reader’s attention to the magnitude of the correction.
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that the momenta in Fig. 11 do not include diagonal and on-
axis momenta.
The data in Fig. 11 also tests the completeness of the

tensor basis. As discussed in Sec. IVA [see text around
Eq. (42)] the replacement of the standard definition of the
gluon field by a definition where the gluon field is exactly
orthogonal does not change the measured propagator.
As Fig. 11 shows, the gluon propagator form factors do

not fulfil the relation given in Eq. (24) exactly and, in
general, it is when the improved momentum is used to build
the projectors that the above condition is better satisfied. As
a test of the completeness of the tensor basis, these results
suggest the range of momenta where one should expected
the larger deviations from the continuum result. A com-
parison of Fig. 11 with Figs. 6, 7, and 9 shows a consistent
pattern of deviations that are certainly a manifestation of
the lattice artefacts.

VI. SUMMARY AND CONCLUSION

In this work we have used tensor representations of the
Hð4Þ symmetry group of the lattice formulation of QCD in
the computation of the Landau gauge gluon propagator.
Clearly, probing this symmetry impacts the quality of the
Monte Carlo signal when compared to the Z4 symmetry
used in previous simulations, which selects a subset of
Hð4Þ equivalent momenta.
Our analysis of the lattice data describes the form factors

associated with different tensor bases as a function of either

the naive lattice momentum p or the improved momentum
p̂. The description of the form factors in terms of the lattice
momenta shows severe lattice artefacts that can be solved,
for a limited range of momenta, by performing a linear
extrapolation of the form factors in terms of the Hð4Þ
invariants defined in Eq. (4). This can be seen, for a
particular class of momentum configurations and assuming
that the continuum tensor structure is valid on the lattice, in
Fig. 2. For the continuum tensor basis, the lattice data is
better described in terms of p̂, where the gauge condition is
satisfied but whose lattice artefacts are resolved with the
help of the momentum cuts; see Fig. 1.
The investigation of R—defined in Eq. (41) and which

measures how well a given tensor basis describes the full
lattice data—shows that the continuum tensor structure of the
propagator does not apply to the lattice Landau gauge gluon
propagator; see Figs. 3 and 4. A faithful description of the
lattice data requires R ≈ 1 which, as seen in Fig. 4, is
recovered only when the data is described in terms of p
and after performing the extrapolation top½4� ¼ 0. As seen in
Fig. 4, the increase in the number of components of the tensor
basis takes R closer to unity, but the approach to its optimal
value seems to be slow. This result motivated us to look at the
definition of the gluon field and, in particular, at the
orthogonality condition of the propagator. Our analysis
showed that the deviations from R ¼ 1 are not related to
the definition of the gluon field and that imposing exact
orthogonality on the gluon field does not change either R or
the final outcome of the propagator.

FIG. 11. Orthogonality condition (24) for a general kinematical configuration written in terms of the improved momentum (upper
plot) and lattice momentum (lower plot). For the lattice momentum, no Hð4Þ extrapolation is considered.

CATUMBA, OLIVEIRA, and SILVA PHYS. REV. D 103, 074501 (2021)

074501-18



The analysis of the form factors for the various tensor
bases summarized in Figs. 5–10 shows that the lattice form
factors follow, in general, the expected behavior derived
from the gluon Slavnov-Taylor identity. Indeed, the various
functions are compatible within one standard deviation and
reproduce the reference data set, i.e., the lattice Landau
gauge gluon propagator is described by a unique form
factor. Furthermore, by combining the different estimations
of the form factors and also taking into account the
uncertainties associated with the definition of the lattice
spacing, one can obtain a continuum form factorDðp2Þ and
estimate a theoretical uncertainty in the final result; see
Figs. 9 and 10. The data in these figures show that for the
description of the lattice data in terms of p̂, the best
agreement with the reference data set, over a wide range of
momenta, is achieved for the largest tensor basis and for
p̂4Fðp̂2Þ and p̂4Hðp̂2Þ. On the other hand, a description of
the lattice data in terms of the naive momentum p,
combined with the linear extrapolation in p½4�, results in
a set of form factors that have a better overlap with the
reference data set when compared with the outcome of
using the same tensor basis but written in terms of p̂.
However, due to the requirements of the extrapolation, the
range of momenta accessed by the extrapolated data is
smaller; see, once more, Figs. 9 and 10.
In Fig. 10 we show a detailed comparison of various

estimations of the continuum propagator using the largest
tensor basis and compare the form factors to the reference
data set, which is now called “p2Dðp2Þ—Momentum
Cuts.” For the data plotted on the lhs, the form factor
Eðp̂2Þ reproduces the full reference data set obtained using
the continuum tensor structure, but the data is below the
reference data. On the other hand, the data for Eðp2Þ
follows closely the reference data, although it is typically
slightly above it. However, the extrapolation produces
unreliable results above p ∼ 4.5 GeV (ap ∼ 2.3). The rhs
of Fig. 10 shows that the data associated with F is closer to
the reference data, when compared with the data on the lhs.
The data associated with Fðp̂2Þ is clearly closer to the
reference data and the data associated with Fðp2Þ deviates
from the reference data earlier than the Eðp2Þ data on the
lhs. The matching between the various estimations of the
form factors is not perfect, with both methods following
closely the reference data set over a wide range of
momenta. The differences in the estimated form factors
are a measure of the theoretical uncertainty in the con-
tinuum propagator. Moreover, the data also shows that the
traditional approach to the computation of the gluon
propagator, which is based on the use of the continuum
tensor structure combined with the use of the improved
momentum and momentum cuts, provides a reliable esti-
mation of the continuum limit for Dðp2Þ.
Finally, in the last section we performed an analysis of

the orthogonality condition, whose results are summarized

in Fig. 11, confirming that the condition is better fulfilled
when written in terms of the improved lattice momentum.
The analysis of the gluon propagator performed here

considered a single lattice spacing that corresponds to
β ¼ 6.0. According to Ref. [23], for this β value or higher
values and for sufficiently large volumes [which the authors
claim to be larger than ∼ð6.5 fmÞ4], the finite-volume and
finite-lattice-spacing effects are small. However, for smaller
β (such as those used to access the infrared gluon propagator
with the Wilson action), the lattice-spacing effects are
sizable, and certainly an analysis based on the tensor
representations, preferably combinedwith the extrapolations
in p½4�, can introduce significant corrections to the standard
approach. In what concerns the use of the extrapolation,
unfortunately, it does not work for the extreme momenta. In
this case, the corrections can only be computed by looking at
different tensor bases. However, if the tensor basis consid-
ered has a large number of operators, the calculation of the
corresponding form factors is more involved and, in practice,
it is difficult to access the form factors with smaller
ensembles of configurations. The analysis of the form factors
performed here can provide, at most, an estimation of the
error on the theoretical analysis.
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APPENDIX: LORENTZ COMPONENTS OF THE
GLUON PROPAGATOR

The Lorentz components of the lattice gluon propagator
in the extended tensor basis (14) are
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