
 

Fluctuations of the order parameter in an SUðNcÞ effective model
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We investigate features of the deconfinement phase transition in an SUðNcÞ gauge theory as revealed by
fluctuations of the order parameter. The tool of choice is an effective model built from one-loop expressions
of the field determinants of gluon and ghost, in the presence of a Polyakov loop background field. We show
that the curvature masses associated with the Cartan angles, which serve as a proxy to study the A0-gluon
screening mass, show a characteristic dip in the vicinity of the transition temperature. The strength of the
observables, which reflects a competition between the confining and the deconfining forces, is sensitive to
assumptions of dynamics, and thus provides an interesting link between the ZðNcÞ vacuum structure and
the properties of gluon and ghost propagators.

DOI: 10.1103/PhysRevD.103.074026

I. INTRODUCTION

In this work we study the fluctuations of the order
parameter in an SUðNcÞ gauge theory within an effective
model. Unlike the order parameter, these observables are
finite and temperature dependent even in the confined
phase, thus providing important diagnostic information
about the mechanism of deconfinement phase transition,
and the properties of gluons (and ghosts) in relation to the
structure of ZðNcÞ vacuum.
Even when powerful numerical methods such as lattice

QCD (LQCD) are available to perform ab initio calculations
of the full theory [1–3], it is instructive, and sometimes
essential, to work on an effective model description of a
dynamical system. First of all, it provides clear links between
the observables and the underlying symmetry. Second, it
enables straightforward application of the model to other
extreme conditions [4,5], or as a building block to study
further coupling to other dynamical fields [6–11].
A common strategy to constructing an effective potential

is via a polynomial of the order parameter field [12–14],
i.e., the Ginzburg-Landau theory. Symmetry restricts the
kind of terms that can appear in the potential. The
coefficients are generally smooth functions of temperatures
(and other external fields), which need to be separately
determined, e.g., by fitting observables to LQCD results.
While a polynomial type potential is convenient to work

with, the relation between model parameters and the

properties of the underlying gluons (and ghosts) is not
transparent. In this study, we employ an effective potential
built from one-loop expressions of the field determinants of
gluon and ghost described in Ref. [15]. (See also Ref. [16].)
The model naturally describes both the confined and the
deconfined phases, as related to the spontaneous breaking
of ZðNcÞ symmetry. In particular, the ghost term gives a
confining, i.e., ZðNcÞ restoring, potential. The effective
model, as a tool, allows us to gain insights into the interplay
between vacuum structure and dynamics.
The thermal properties of a pure gauge system have been

analyzed previously by effective models [13,14,16–23].
However, features of gluons in the confined phase are usually
not examined, and the importance of fluctuation observables
[24] has not been fully realized. We therefore focus on these
observables in this work and study how features of decon-
finement manifest through them. We also use this oppor-
tunity to clarify the connection of these observables to
eigenvalues of the Polyakov loop operator in a matrix model
[13,17,18]. We show that the curvature masses associated
with the Cartan angles, which serve as a proxy to study the
A0-gluon screening mass, shows a characteristic trend of a
rapid drop in the vicinity of transition temperatureTd. Such a
behavior is traceable to the competing effect of Zð3Þ
restoring (confining) and Zð3Þ breaking (deconfining)
forces. The strength of the masses is sensitive to the
assumptions made on the dynamical properties of gluon
and ghost propagators. Finally we present a possible relation
between the glueball mass and Td suggested by the model.

II. GROUP STRUCTURE OF SUðNcÞ
The Polyakov loop operator in the fundamental repre-

sentation, after a diagonalizing unitary transformation, can
be expressed by the Nc eigenphases q⃗:
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l̂F ¼ diagðeiq1 ; eiq2 ;…; eiqNcÞ: ð1Þ

The first Nc − 1 phases may be taken as independent, and
unitarity is enforced by requiring

qNc
¼ −

XNc−1

j¼1

qj: ð2Þ

Alternatively, the angles can be expressed in terms of the
Nc − 1 group angles of the maximal ZðNcÞ Cartan sub-
group, (γj’s),

q⃗ ¼
XNc−1

j¼1

γjv⃗j; ð3Þ

where fv⃗jg is a set of basis vectors, each being an Nc

dimensional vector with its sum of elements zero. The order
parameter field is obtained from a trace of l̂F,

l ¼ 1

Nc
Trl̂F: ð4Þ

For Nc ≥ 3, the order parameter is complex, and one can
explore its real and imaginary parts:

l ¼ X þ iY;

X ¼ 1

Nc

XNc

j¼1

cosðqjÞ;

Y ¼ 1

Nc

XNc

j¼1

sinðqjÞ: ð5Þ

Note that X, Y are regarded as a scalar function of the
Nc − 1 Cartan angles γ⃗’s.
To study the fluctuations of the order parameter in an

effective model, we need to perform X, Y-field derivatives
of a potential. Equation (5) provides a connection between
these derivatives with those acting on γj’s,

d
dX

¼
XNc−1

j¼1

C1jðγ⃗Þ
d
dγj

;

d
dY

¼
XNc−1

j¼1

C2jðγ⃗Þ
d
dγj

; ð6Þ

where the 2 × ðNc − 1Þ matrix C is obtained by (left)
inverting the transpose of the Jacobian J:

J ¼ ∂fX; Yg
∂fγ1; γ2;…; γNc−1g

;

C ¼ ½Jt�−1: ð7Þ
Finally, starting with a potential expressed in terms of the

Cartan angles, Uðγ⃗Þ, the susceptibilities can be computed
by forming the curvature matrix Ūð2Þ [10,25,26]

Ūð2Þ ¼ 1

T4

� ∂2U
∂X∂X

∂2U
∂X∂Y

∂2U
∂Y∂X

∂2U
∂Y∂Y

�
: ð8Þ

The various ðX; YÞ-field derivatives are calculated accord-
ing to Eq. (6). Inverting the curvature matrix gives

T3χ̃ ¼ ðŪð2ÞÞ−1; ð9Þ
with

T3χL ¼ T3χ̃11;

T3χT ¼ T3χ̃22: ð10Þ
Note that the notions of longitudinal and transverse
directions [24] correspond to real and imaginary compo-
nents along the real line, but this is not so for other
ZðNcÞ vacua.
To illustrate the computation of fluctuations, we consider

a schematic effective potential (model A) of the form

U ¼ Uconf: þ Uglue; ð11Þ

where the confining part is modeled by the group invariant
measure H [27],

Uconf: ¼ −
b
2
T lnH: ð12Þ

This potential is confining in the sense that it tends to drive
the system toward the ZðNcÞ symmetric vacuum (l ¼ 0).
The deconfining part, which prefers the spontaneously
broken ZðNcÞ vacuum, is modeled as

Uglue ¼ nglueT
Z

d3k
ð2πÞ3

×TrA lnðI − l̂Ae−βEAðkÞÞ; ð13Þ

with EAðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

A

p
. In Sec. IV, we shall investigate

some alternative forms of the potential and discuss issues of
gauge dependence and inclusion of wave function
renormalizations.
As we are mainly interested in studying the influence

from group structure, we shall keep the model parameters
as simple as possible. In fact, we shall start with the
parametrization: b ¼ ð0.1745 GeVÞ3, nglue ¼ 2, and
mA ≈ 0.756 GeV.1 Two group structures appear in this
schematic model: the adjoint operator l̂A and the group
invariant measureH. It is useful to express them in terms of
the eigenphases. For the former,

1Such a value of gluon mass (≈0.7 GeV) is supported by
calculations in different gauges. We have also checked that using
the Gribov dispersion relation EðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm4

A=k
2

p
[28] or

imposing a UV cutoff for mA → mAe−k
2=Λ2

[29] does not lead to
significant differences in the observables studied.
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l̂A ¼ diagðeiQ1 ; eiQ2 ;…; eiQNc2−1Þ; ð14Þ

with

Q⃗ ¼ ð0;…; 0; qj − qk;−ðqj − qkÞÞ; ð15Þ

for j < k, j; k ¼ 1; 2;…; Nc. The adjoint angles are con-
structed from the root system [13,30], classified into Cartan
and non-Cartan parts: (a) Nc − 1 zeros, representing the
identity matrix element in l̂A; (b) NcðNc − 1Þ=2 pairs of
qi − qj’s for i > j and terms with the opposite sign.
An intuitive way to understand the form of potential

Eq. (13) is to realize that the adjoint derivative operator for
the gluon field, in the presence of a diagonal background
field q̂ ¼ iβgĀ0 ¼ βgĀ4, reads

D̄adj
μ M ¼ ∂μMþ δμ0

1

β
½q̂;M�: ð16Þ

The adjoint operator acts on an arbitrary SUðNcÞmatrixM,
and the latter has N2

c − 1 independent entries. As q̂ is
diagonal, the ijth component of the commutator ½q̂;M� is
given by [31,32]

ðqi − qjÞMij: ð17Þ

For i ≠ j, the multiplying factors are exactly the nontrivial
entries of the adjoint angles Q⃗ in Eq. (15). The remaining
Nc diagonal elements of M, of which Nc − 1 are inde-
pendent, are multiplied by 0, i.e., the Cartan part of Q⃗. The
effects of the background field is thus similar to introducing
an imaginary chemical potential for theN2

c − 1 independent
components. In particular, the gauge field determinant can
be constructed:

Tr lnD̄2
adj¼

X
a

V
XZ

ln

��
ωnþ

Qa

β

�
2

þðk⃗Þ2
�

¼2V
Z

d3k
ð2πÞ3TrA lnðI−l̂Ae−βkÞþðT¼0Þ; ð18Þ

where
PR

denotes a Matsubara sum over the bosonic
frequencies and an integral over momenta. From now
on, we shall retain only the finite temperature piece.
Equation (13) is its simple extension to introducing a finite
gluon mass.
Another group structure of interest is the invariant

measure. This can also be expressed in terms of the
eigenphases qj’s via

H ¼
Y
j>k

jeiqj − eiqk j2

¼
Y
j>k

4sin2
�
qj − qk

2

�
: ð19Þ

Note that there are NcðNc − 1Þ=2 pairs of ðj > kÞ in the
product. A fact that would prove useful later is the
construction of the (logarithm of) invariant measure from

lnH ¼ Tr0A ln ðI − l̂AÞ; ð20Þ

where Tr0 denotes the partial trace over the non-Cartan
roots to avoid irrelevant divergences from vanishing ele-
ments. Hence the effective potential can be expressed as

Uconf: ¼ −
b
2
TTr0A lnð1 − l̂AÞ; ð21Þ

with l̂A in Eqs. (14) and (15). This establishes that an
invariant measure term behaves as the glue potential (13)
with EAðkÞ → 0, but of the opposite sign, and should be
formally understood as a ghost contribution [33,34].
Here we explicitly work out the case for Nc ¼ 2, 3, 4.

A. Nc = 2

In this case there is only a single independent eigenphase
q⃗ ¼ ðq1;−q1Þ for the Polyakov loop operator l̂F,

l̂F ¼ diagðeiq1 ; e−iq1Þ; ð22Þ

and the order parameter field is purely real,

l ¼ cos q1: ð23Þ

The adjoint angles can be constructed

Q⃗ ¼ ð0; 2q1;−2q1Þ; ð24Þ

and from Eq. (20) the invariant measure works out to be

Hðq1Þ ¼ 4 sin2 q1

¼ 4ð1 − l2Þ: ð25Þ

The same result may be obtained from a slightly different
starting point. Consider the parametrization of SUð2Þ
matrices fug by ða0; a⃗Þ via

u ¼ a0I þ ia⃗ · σ⃗;

where I and σ⃗ are the 2 × 2 identity and Pauli matrices. The
invariant measure is given by

Z
dμSUð2Þ ¼

Z
d4aδða2 − 1Þ

¼
Z

da0dja⃗jd3n̂ja⃗j2δða20 þ a⃗2 − 1Þ

∝
Z

da0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a20

q
:
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The last line assumes a uniform distribution of d3n̂. We see
that a0 plays the role of l ¼ cosðq1Þ: The change of
coordinates from l to q1 gives an extra factor of the square
root term, leading to the same expression of the invariant
measure in Eq. (25).

B. Nc = 3

For the SU(3) gauge group there are two independent
eigenphases q⃗ ¼ ðq1; q2;−q1 − q2Þ; hence

l̂F ¼ diagðeiq1 ; eiq2 ; e−iðq1þq2ÞÞ; ð26Þ

and the order parameter field is

l ¼ X þ iY;

X ¼ 1

3
ðcos q1 þ cos q2 þ cosðq1 þ q2ÞÞ;

Y ¼ 1

3
ðsin q1 þ sin q2 − sinðq1 þ q2ÞÞ:

The adjoint angles are shown in Table I. Using these with
Eq. (20) the invariant measure can be computed

Hðq1; q2Þ ¼ 64 sin2
ðq1 − q2Þ

2

× sin2
ð2q1 þ q2Þ

2
sin2

ðq1 þ 2q2Þ
2

: ð27Þ

We can also express the result in terms of the Cartan
parameters. The two independent directions can be chosen
to be

v⃗1 ¼ ð1; 0;−1Þ;
v⃗2 ¼ ð1=2;−1; 1=2Þ; ð28Þ

γ1 ¼ q1 þ q2=2;

γ2 ¼ −q2 ð29Þ

can be taken as independent variables; and the invariant
measure reads

Hðγ1; γ2Þ ∝ sin2
ðγ1 − 3=2γ2Þ

2

× sin2γ1sin2
ðγ1 þ 3=2γ2Þ

2
: ð30Þ

Specific to the SU(3) gauge group, the two independent
degrees of freedom can be identified with the trace of the
Polyakov loop operator in the fundamental representation
l, and the invariant measure can be expressed via X, Y:

HðX; YÞ ¼ 27 × ð1 − 6ðX2 þ Y2Þ
þ 8ðX3 − 3XY2Þ − 3ðX2 þ Y2Þ2Þ: ð31Þ

For Nc > 3, the invariant measure generally depends on
Nc − 1 independent angles, and therefore is not expressible
solely in terms of ðX; YÞ.

C. Nc = 4

The analysis for Nc ¼ 4 and beyond proceeds in a
similar fashion. For the SU(4) gauge group there are three
independent eigenphases:

q⃗ ¼ ðq1; q2; q3; q4Þ ð32Þ

with q4 ¼ −ðq1 þ q2 þ q3Þ.
The order parameter field is given by

l¼Xþ iY;

X¼ 1

4
ðcosq1þ cosq2þ cosq3þ cosðq1þq2þq3ÞÞ;

Y ¼ 1

4
ðsinq1þ sinq2þ sinq3− sinðq1þq2þq3ÞÞ: ð33Þ

The 15 ¼ 3þ 6þ 6 adjoint angles are composed of three
zeros, six nontrivial angles, and their negative values (see
Table II).
The invariant measure can be constructed from the

nontrivial adjoint angles:

Hðq⃗Þ ∝
Y

j¼4−9
sin2Qj: ð34Þ

To translate this into the Cartan γ⃗, we can use the following
basis vectors:

v⃗1 ¼ ð1; 1=3;−1=3;−1Þ;
v⃗2 ¼ ð1;−1;−1; 1Þ;
v⃗3 ¼ ð1=3;−1; 1;−1=3Þ: ð35Þ

In particular, going along v⃗1, corresponding to the uniform
eigenvalue ansatz [13], the order parameter field is purely
real, and through γ1 we can relate the invariant measure to
the Polyakov loop:

TABLE I. Adjoint angles of the Polyakov loop operator for the
SUð3Þ group.
Q1 Q2

0 0

Q3 ¼ −Q6 Q4 ¼ −Q7 Q5 ¼ −Q8

q1 − q2 2q1 þ q2 q1 þ 2q2
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X ¼ 1

2
ðcos γ1 þ cosðγ1=3ÞÞ;

Y ¼ 0; ð36Þ

and

Hðq⃗ → γ1v⃗1Þ ∝ sin6ðγ1=3Þ sin4ð2γ1=3Þ sin2ðγ1Þ; ð37Þ

compared to a similar projection in the SUð3Þ case

Hðq⃗ → γ1v⃗1ÞÞ ∝ sin2
γ1
2
sin2 γ1 sin2

γ1
2
: ð38Þ

III. POLYAKOV LOOP AND THE
SUSCEPTIBILITIES

A. General results

Once an effective potential is specified, its minimization
and the extraction of various observables are standard
procedure [14]. Here we simply display the results in
Fig. 1 and highlight some observations:

(i) First, the order of the phase transition naturally
changes from second order for Nc ¼ 2 to first order
for Nc ≥ 3. Note that the same set of model
parameters has been used in the calculations.

(ii) Second, the two susceptibilities derived for Nc ≥ 3
are equal in the confined phase, and a narrow aspect
ratio for the shape of the potential, i.e., χT ≪ χL in
the deconfined phase. This case is known forNc ¼ 3
[24]. Equation (6) makes it possible to study the
fluctuations beyondNc ¼ 3, and for the first time we
can verify a similar trend is observed in this class of
model for Nc ≥ 4 under the uniform eigenvalue
ansatz [13].

(iii) It is expected that the first order phase transition
becomes stronger as Nc increases. This is the case in
this model, and comparing the Nc ¼ 4 case with
Nc ¼ 3, we observe the Polyakov loop at Td
increases, while the magnitudes of the susceptibil-
ities decrease. The latter suggests larger curvatures
of the potential around the minima, which sets the
stage for a stronger phase transition. As Nc increases

further, we find that lðTdÞ tends to ≈0.5, while the
decreasing trend of the susceptibilities continues.2

The Landau parameters can be directly extracted in this
model. For the case of SUð3Þ along the real line, we write

U
T4

¼ ū0 þ ū2X2 þ ū3X3 þ ū4X4 þ � � � : ð39Þ

Expanding potentials (12) and (13) in powers of X, we
obtain (in the Boltzmann limit)

ū0 ¼
1

π2

�
mA

T

�
2

K2

�
mA

T

�
;

ū2 ¼
3b
T3

−
9

π2

�
mA

T

�
2

K2

�
mA

T

�
;

ū3 ¼ −
4b
T3

þ 27

π2

�
mA

T

�
2

K2

�
2mA

T

�
;

ū4 ¼
21b
2T3

−
81

4π2

�
mA

T

�
2

K2

�
2mA

T

�
; ð40Þ

where K2 is the modified Bessel function of the second
kind (order 2). These relations link the Landau parameters
to properties of the underlying gluons. To derive these
results we have used the fact that

Trl̂A ¼ ðTrl̂FÞ2 − 1

!SUð3Þ
9X2 − 1;

Trl̂2
A ¼ ðTrl̂2

FÞ2 − 1

!SUð3Þ
36X2 − 108X3 þ 81X4 − 1 ð41Þ

along the real line. The expansion works best in the
confined phase, where X ≪ 1. Note that the cubic term
arises naturally from Trl̂2

A, and we can readily verify the
standard scenario of a first order phase transition: ū3 < 0,
ū4 > 0, and ū2 changes sign (from positive to negative)
close to Td. See Fig. 2. The susceptibilities can be simply
constructed from

ðT3χL;TÞ−1 ≈ ð2ū2Þ: ð42Þ

Thus, the observables are driven by a competition between
the confining and the deconfining potentials. This is a
general observation for the class of models we study. Also
the condition

ū2ðTÞ ¼ 0 ð43Þ

is useful for a qualitative understanding of Td, giving T ≈
0.29 GeV instead of the true value Td ¼ 0.274 GeV,
calculated numerically.

TABLE II. Adjoint angles of the Polyakov loop operator for the
SUð4Þ group.
Q1 Q2 Q3

0 0 0

Q4 ¼ −Q10 Q5 ¼ −Q11 Q6 ¼ −Q12

q1 − q2 q1 − q3 q2 − q3

Q7 ¼ −Q13 Q8 ¼ −Q14 Q9 ¼ −Q15

2q1 þ q2 þ q3 q1 þ 2q2 þ q3 q1 þ q2 þ 2q3

2The value becomes lðTd; Nc → ∞Þ ≈ 0.6 for models B and C
introduced later. See Eq. (83).
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B. Gluon density in the presence of Polyakov loop

A key feature of an effective Polyakov loop model is a
description of the thermal densities of gluons and quarks in
the presence of a Polyakov loop mean field. These can be
conveniently expressed in terms of the eigenphases. Take,

for example, the case for SU(3), along the real line, they
depend only on a single angle variable γ1 (i.e., γ2 ¼ 0),

l̂F → diagðeiγ1 ; 1; e−iγ1Þ ð44Þ

FIG. 1. The Polyakov loop potentials (11) (left) and the derived observables: the Polyakov loop expectation values, the longitudinal
and the transverse susceptibilities (right) for Nc ¼ 2, 3, 4.
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and

l̂A → diagð1; 1; eiγ1 ; e2iγ1 ; eiγ1 ;
e−iγ1 ; e−2iγ1 ; e−iγ1Þ; ð45Þ

such that

nglueðγ1Þ ¼
Z

d3k
ð2πÞ3

X
i¼1−8

l̂ðjÞ
A

eβEA − l̂ðjÞ
A

: ð46Þ

Note that as γ1 → 0, l̂A becomes an identity in the 8 × 8
adjoint space, and Eq. (46) recovers the free quantum Bose
gas limit,

nglueðγ1 → 0Þ ¼ 8 ×
Z

d3k
ð2πÞ3

1

eβEAðkÞ − 1
: ð47Þ

An analogous expression can be derived for quarks,
except that the trace is over the entries of the Polyakov loop
operator in the fundamental representation l̂F. It can also
be expressed as a function of γ1:

nquarksðγ1Þ ¼
Z

d3k
ð2πÞ3

X
i¼1−3

l̂ðjÞ
F

eβEQðkÞ þ l̂ðjÞ
F

: ð48Þ

Similarly the free quantum fermion gas limit is recovered at
γ1 → 0,

nquarksðγ1 → 0Þ ¼ 3 ×
Z

d3k
ð2πÞ3

1

eβEQðkÞ þ 1
: ð49Þ

A plot of these thermal densities are shown in Fig. 3,
illustrated for the case of Nc ¼ 2, 3, 4. Note that the x axis
is the corresponding traced Polyakov loops, projected
along the real line:

lSUð2Þðγ1Þ ¼ cos γ1;

lSUð3Þðγ1Þ ¼
1

3
ð1þ 2 cos γ1Þ;

lSUð4Þðγ1Þ ¼
1

2
ðcos γ1 þ cosðγ1=3ÞÞ: ð50Þ

An important observation is that both densities are
substantially suppressed at l → 0 compared to the free
gas limits l → 1. This is how confinement is represented in
this class of models: a statistical confinement that relates
the thermal abundances of quarks and gluons to the
expectation value of the ZðNcÞ order parameter, i.e., the
Polyakov loop.
For gluons, the l ¼ 0 limit turns mildly negative. This

does not necessarily mean we have a negative pressure in
the bulk, since other contributions, such as those coming
from the confining ghosts, can reverse this negative value.
The thermal distribution of confining gluons in the QCD
medium is still an open issue, and a small negative value in
some momentum range is not ruled out. Nevertheless, it is
likely that the beyond one-loop, nonperturbative inter-
actions will produce further corrections to this quantity.3

A similar plot from a nonperturbative study, such as
Schwinger Dyson equations in a given gauge, can help
to clarify the issue [35–42].
In any case the suppression discussed here, linked to an

order parameter for the spontaneous ZðNcÞ breaking, is an

FIG. 2. Landau parameters [Eq. (40)] derived from the effective
potential (11) as functions of temperature.

FIG. 3. Thermal densities of quarks and gluons in the presence
of a background Polyakov loop field for Nc ¼ 2, 3, 4. The results
are evaluated at T ¼ 0.24 GeV with an effective gluon mass
mA ¼ 0.756 GeV and a quark mass mQ ¼ 0.1 GeV.

3The standard prescription in an effective model is to simply
subtract the potential at l ¼ 0. This fixes the problem of negative
partial pressure and density of gluons in the confined phase. Of
course, results for the Polyakov loops and their fluctuations are
not affected. However, one then needs to correct for the right
number of gluonic degrees of freedom in the deconfined phase at
high temperatures.

FLUCTUATIONS OF THE ORDER PARAMETER IN AN … PHYS. REV. D 103, 074026 (2021)

074026-7



effective description. There are interesting differences from
models which predict the suppression in the spectrum via
an infrared divergent mass (and wave function) renormal-
izations [43]. The task remains to understand the con-
nections between various models of confinement, and to
further explore the dynamical aspects of confining quasi-
gluons in the QCD medium, practical for building phe-
nomenology of the thermal system of glueballs and other
objects.

IV. CURVATURE MASSES OF CARTAN ANGLES

A. Gauge dependence and effects of wave function
renormalization

In Ref. [15] the phase transition of the pure Yang-Mills
system is studied using the background field method in the
Landau-DeWitt gauge. A confining potential is motivated
from the ghost determinant:

Tr ln D̄2
adj: ð51Þ

This gives a potential of exactly the same form as Uglue in
Eq. (13), but with an opposite sign, and is hence ZðNcÞ
restoring. Note that the correct way to account for a ghost
contribution to the thermodynamic potential involves a
bosonic Matsubara sum of the relevant operator (with a
factor of −1), instead of a fermionic Matsubara sum [44].
The total potential can be written as

Utot ¼ 3U1ðmAÞ − U1ð0Þ: ð52Þ

This form makes it obvious that we are considering three
gluons and one ghost. Both terms can be expressed withU1

that reads

U1ðmAÞ ¼
1

2β

X
a

XZ
ln ðk̃2a þm2

AÞ

¼ T
Z

d3k
ð2πÞ3 TrA lnðI − l̂Ae−βEAðkÞÞ ð53Þ

with

k̃2a ¼
�
ωn þ

Qa

β

�
2

þ ðk⃗Þ2: ð54Þ

Note that the invariant measure term (20) can be regarded
as a limiting case of U1 with EA → 0.4 One can speculate
the form of potential in the ’t Hooft-Feynman gauge to read

Utot ¼ 2U1ðmAÞ þ ΔUξ;

ΔUξ ¼ ð1þ ΔnξÞ × ðU1ðmAÞ − U1ð0ÞÞ: ð55Þ

The subscript ξ signifies the possible gauge dependence,
e.g., Δnξ ¼ 0ð1Þ in Landau-DeWitt (’t Hooft-Feynman)
gauge. Note that the gluon massmA itself can depend on the
gauge choice. Nevertheless, in all cases the physical limit of
2 gluonic degrees of freedom at high temperature (the
Stefan-Boltzmann limit) is recovered when we set mA ¼ 0,
l̂A ¼ I in the perturbative vacuum.
We next expand the model to include effects of wave

function renormalizations of gluons and ghosts [23].
Assuming the background field continues to enter as
Eq. (54), e.g., when the ghost propagator is modified by

1

k̃2
→

Zghðk̃2Þ
k̃2

; ð56Þ

the corresponding change in the potential reads

Tr ln k̃2 → Trðln k̃2 − lnZghðk̃2ÞÞ: ð57Þ

A further simplification is possible if we approximate Zgh
in the Gribov-Stingl form [23]:

Zgh ∝
�
k̃2 þ R2

1

k̃2 þ R2
2

�
ð58Þ

with some mass scales R1;2. Note that Zghðk̃2 → ∞Þ → 1.
The corresponding modification in the effective Polyakov
loop potential is given by

U1ð0Þ → U1ð0Þ − ðU1ðR1Þ −U1ðR2ÞÞ ð59Þ

for each ghost field. For demonstration, we fit the result of
the lattice determination of the wave function renormaliza-
tion of the ghost propagator [45] (in Landau gauge) with
the parametrization (58). A reasonable fit is obtained with
parameters R1 ¼ 1.335 GeV and R2 ¼ 0.732 GeV. A sim-
ilar scheme can be applied to the gluons, with a slightly
modified form:

Zglue ¼
�
k̃2 þ R2

1

k̃2 þ R2
2

�
g1
�
k̃2 þ R2

3

k̃2 þ R2
4

�
g2
;

Dglue ¼
Zglue

k̃2 þm2
A

: ð60Þ

The parameters are ðg1; R1; R2Þ ¼ ð4; 2.615; 1.660Þ,
ðg2; R3; R4Þ ¼ ð1; 2.616; 6.794Þ, and mA ¼ 0.756, all in
appropriate units of GeVs. The results are shown in Fig. 4.
The change in the effective potential can be intuitively

understood as follows: The enhancement of Zgh at low
momenta dictates R1 > R2, with a stronger Boltzmann
suppression gives jU1ðR1Þj < jU1ðR2Þj, and finally leads to
a strengthening of the ghost potential (while preserving its

4In the axial gauge [33], it was argued the invariant measure
term is canceled by a similar term in the glue potential. The case
of massive gluons remains to be explored.
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sign). See Eq. (59).5 A stronger potential is also found when
implementing the lattice result of the gluon propagator with a
wave function renormalization. On the other hand, the value
of Td depends on the competition between the two and
requires an actual calculation to deduce the trend.
We thus obtain a unified framework to discuss the

modeling of an effective potential in different approxima-
tion schemes:

Utot ¼ 2U1ðmAÞ þ ΔUξ ð61Þ

with

ΔUξ ¼ ð1þ ΔnξÞðU1ðmAÞ −U1ð0ÞÞ
þ
X
j

gjðU1ðRðjÞ
1 Þ −U1ðRðjÞ

2 ÞÞ: ð62Þ

The key observation is that the same group structure
appears in various contributions to the potential, and details
of gluon and ghost propagators are subsumed into the
model parameters. The effective framework thus provides a
transparent way to link the Polyakov loop observables with
those of the gauge-fixed correlators [37,42].
In the following, we investigate how different model

assumptions of the gauge-fixed correlators affect the
fluctuations of the Polyakov loop.

B. Susceptibilities and masses of Cartan angles

We choose to focus on the physical case of Nc ¼ 3. This
case is unique in the sense that the two Cartan angles γ1;2
can be directly identified with the two degrees of freedom
of the Polyakov loop, i.e., X, Y. The (2 × 2) Jacobian
matrix allows the translation between ðγ1; γ2Þ ↔ ðX; YÞ:

J ¼ ∂fX;Yg
∂fγ1; γ2g ;

J11 ¼
1

3

�
− sin

2γ1 þ γ2
2

− sin
2γ1 − γ2

2

�
;

J12 ¼
1

3

�
−
1

2
sin

2γ1 þ γ2
2

þ 1

2
sin

2γ1 − γ2
2

− sin γ2

�
;

J21 ¼
1

3

�
cos

2γ1 þ γ2
2

− cos
2γ1 − γ2

2

�
;

J22 ¼
1

3

�
−
1

2
cos

2γ1 þ γ2
2

þ 1

2
cos

2γ1 − γ2
2

− cos γ2

�
: ð63Þ

We stress that studying the order parameter and its
fluctuations along two independent directions is mandated
by the existence of two independent Cartan generators,
both relevant to describing the gauge group SUð3Þ. Many
existing works have neglected the imaginary direction in
the potential, and hence the appropriate field derivatives
cannot be performed.
We define the (dimensionless) curvature mass tensor for

the Cartan angles as [52]

m̄2
ij ¼

∂2Uðγ1; γ2Þ
∂γi∂γj

1

T4
: ð64Þ

The tensor elements are to be evaluated with values of γ1
which minimize the potential, and γ2 → 0. For the class of
potentials considered the off-diagonal terms vanish. The
relation to the curvature masses associated with the ðX; YÞ
fields [53] is thus

m̄2
11 ¼ J211m̄

2
XX þ J221m̄

2
YY;

m̄2
22 ¼ J212m̄

2
XX þ J222m̄

2
YY; ð65Þ

where

m̄2
XX ¼ ∂2U

∂X∂X
1

T4
;

m̄2
YY ¼ ∂2U

∂Y∂Y
1

T4
: ð66Þ

A further simplification comes from the fact that the
Jacobian matrix, evaluated along the real line (arbitrary
γ1, γ2 ¼ 0), is also diagonal:

FIG. 4. Fits of (T ¼ 0) LQCD results [45] of gluon propagator
and ghost wave function renormalization with the generalized
Gribov-Stingl form in Eqs. (58) and (60).

5It is also possible that the function drops rapidly to zero in the
deep infrared, and hence the form (59) needs to be modified
[37,46–49]. Furthermore, there are more refined studies on
decomposing the gluon propagators into ZglueðkÞ and mass
function mAðkÞ [50,51]. The scenario in other gauges, and the
efficacy of the commonly used approximation schemes, such as
static approximation or expansions around simple poles, should
be investigated in the future.

FLUCTUATIONS OF THE ORDER PARAMETER IN AN … PHYS. REV. D 103, 074026 (2021)

074026-9



J11 ¼ −
2

3
sin γ1 ¼ −

1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − lÞð1þ 3lÞ

p
;

J22 ¼ −
2

3

�
sin

γ1
2

�
2

¼ −
1

2
ð1 − lÞ;

J12 ¼ 0;

J21 ¼ 0; ð67Þ

where l ¼ 1
3
ð1þ 2 cos γ1Þ. Note that in the confined phase

γ1 → 2π=3,

J11 → −1=
ffiffiffi
3

p
;

J22 → −1=2; ð68Þ
and in the deconfined phase γ1 → 0 they vanish as

J11 → −
2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − lÞ

p
;

J22 → −
1

2
ð1 − lÞ; ð69Þ

with l → 1. Note that jJ22j ≪ jJ11j in this limit. We thus
obtain the following relation between the curvature masses
of Cartan angles and the Polyakov loop susceptibilities:

m̄2
11 ¼

4

9
ðsin γ1Þ2m̄2

XX;

m̄2
22 ¼

4

9

�
sin

γ1
2

�
4

m̄2
YY; ð70Þ

with the Polyakov loop susceptibilities identified as

ðT3χLÞ ¼
1

m̄2
XX

¼ ð1 − lÞð1þ 3lÞ
3m̄2

11

;

ðT3χTÞ ¼
1

m̄2
YY

¼ ð1 − lÞ2
4m̄2

22

: ð71Þ

This is a useful relation linking the Polyakov loop observ-
ables to those based on the Cartan angles. The latter can
eventually be linked to A0 and the transverse gluons. Note
that such a clean separation of contributions to T3χL;T from
m̄2

ii is only true for Nc ¼ 3. Each susceptibility generally
receives contributions from all Cartan curvature masses m̄2

ii.
We derive an analytic expression for these Cartan

curvature masses at ultrahigh temperatures. The effective
potential is expected to approach

Uðγ1; γ2Þ ≈ 2U1ðmA ¼ 0Þ: ð72Þ
Using the exact result of the integral

UaðQaÞ ¼ T
Z

d3k
ð2πÞ3 lnðI − eiQae−βkÞ

¼ −
T4

π2
PolyLogð4; eiQaÞ; ð73Þ

and the polynomial expansion of the PolyLog function
(valid in the restricted range of Qa ∈ ½0; π�)
UaðQaÞ þ Uað−QaÞ

T4
¼ −

π2

45
þQ2

a

6
−
Q3

a

6π
þ Q4

a

24π2
; ð74Þ

we obtain the potential [see Table I and Eq. (29)]

Uðγ1; γ2Þ
T4

≈ −
16π2

90
þ 2γ21 þ

3

2
γ22

þ 3ð4γ21 þ 3γ22Þ2
32π2

−
20γ31 þ 27γ1γ

2
2

6π
: ð75Þ

The curvature masses (64) can be readily deduced:

m̄2
11 → 4;

m̄2
22 → 3: ð76Þ

It follows from Eq. (71) that while both susceptibilities
approach zero at high temperatures, with χT ≪ χL, one can
extract a finite limit for the curvature masses. Note that if
we take

γ1;2 → r1;2βgA4; ð77Þ
these curvature masses are related to the dimensionful
mA4

via

m̄2
ii ¼

m2
A4

g2T2r2i
;

m2
A4

¼ ∂2U
∂A4∂A4

ð78Þ

for i ¼ 1, 2. The fact that m̄2
ii has a finite limit forces

mA4
∝ gT; ð79Þ

as expected for a Debye screening mass. We stress thatmA4

should be distinguished from the effective gluon mass mA
introduced. The latter captures the infrared enhancement
originated from the nonperturbative vacuum and exists
even at vanishing temperature.
The behaviors of these curvature masses at low temper-

atures are lesser known. In the confined phase, Zð3Þ
symmetry requires [24], in addition to hl̂Fi ¼ 0,

hl̂F
2i ¼ 0

⇒ hðX2 − Y2Þi ¼ 0: ð80Þ

This means the two susceptibilities are equal in this phase.
It follows from Eq. (71) that

m̄2
22

m̄2
11

¼ 3

4
ð81Þ
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in the confined phase. Note that the same ratio is observed
in the high temperature limit (76).
Other than the constraint (81) on the ratio, there is no

restriction from symmetry concerning their magnitudes. In
the language of an effective model, they reflect a com-
petition between the confining (ghost) and the deconfining
(glue) parts of the potential. And unlike hl̂Fi, they are finite
and temperature dependent even in the confined phase.
To examine how the curvature masses associated with

the Cartan angles depend on the assumed properties of the
gluons and ghosts, we compute the observables in the
following arrangements of the effective potential:

(i) model A: an invariant measure term (12) with two
transverse gluons:

U ¼ −
1

2
b lnH þ 2U1ðmAÞ: ð82Þ

(ii) model B: a ghost field term and three transverse
gluons:

U ¼ −U1ðmA ¼ 0Þ þ 3U1ðmAÞ: ð83Þ

(iii) model C: model B implemented with wave function
renormalization effects discussed.

With no further tuning of model parameters, we obtain
Td ≈ ð0.274; 0.274; 0.27Þ GeV for models A, B, and C.
The results of Cartan masses are shown in Fig. 5.
We first report that Eq. (71) works: i.e., the same results

of the susceptibilities are obtained when the curvature
tensor [Eq. (8)] is directly constructed by taking the
appropriate ðX; YÞ-field derivatives on the potential derived
in Ref. [22]. This gives some confidence for the general
applicability of Eq. (6) for the general Nc problem.
The most obvious feature of the curvature masses is the

dip around Td. Note that a very similar behavior is found
for the A0-gluon screening mass extracted from LQCD
when studying the inverse of the longitudinal propagator
[54]. See also the discussion in Ref. [55]. In the effective
model, this follows from the relation to the Polyakov loop
susceptibilities. While the gluon (and ghost) parameters
employed are smooth, the discontinuity is inherited from
minimizing the mean-field potential. Note that a strong
temperature dependence of these observables naturally
arises without the need of introducing temperature depen-
dent model parameters. In fact, in an improved scheme, the
model parameters, including the additional temperature
dependence, should be determined self-consistently.
The high temperature limits (76) are approached very

gradually: at T ≈ 30Td and from above (below) for models
A, C (B). Note that model B has a known issue in the
deconfined phase that the Polyakov loop reaches unity too
rapidly and the model may not be reliable beyond this
point. Apparently, the existence of a secondary dip in the
curvature masses in model B (also in model C) also comes

with this problem. This does not happen to Model A, where
the invariant measure term prevents this problematic
behavior. It has been suggested that a two-loop calculation
may remove this artifact [56]. It would be interesting to see
the corresponding modification in the curvature masses.
There is no strict theoretical constraint on the low

temperature behaviors of these curvature masses. The
constraint (81) on their ratio is verified in all cases.
What is clear from the effective model study is that they
depend strongly on the choice of the confining potential.
This is particularly obvious in the T → 0 limit: In model A,
they diverge as [see Eqs. (40) and (70)]

m̄2
11 →

2b
T3

;

m̄2
22 →

3b
2T3

: ð84Þ

In model B we get instead the finite results:

m̄2
11 →

2

3
;

m̄2
22 →

1

2
: ð85Þ

The effect of wave function renormalization (model C),
with the parameters chosen, is found to be small at low
temperatures, but becomes substantial close to and
above Td.
If we insist on imposing the matching condition (78) and

identify the A0-gluon screening mass with mA, we would
obtain a ∝ 1

T2 behavior for these curvature masses. It would
thus be interesting to examine these observables with other
gauge choices [57,58]: to see whether the differences are
due to gauge artifacts, and to gain insights in reliably
describing the low temperature behavior of the Polyakov
loop potential.

FIG. 5. Curvature masses associated with the Cartan angles
calculated for different models (see text).
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C. The appearance of glueballs

Finally we speculate how the glueballs may enter the
effective description. In the current model a phenomeno-
logical gluon mass mA is introduced, which serves to
suppress the gluon contribution (deconfining) in the poten-
tial at low temperatures. This also sets the scale for the
critical temperature Td.
In Refs. [29,59], a robust theoretical framework to

introducing quasigluonic excitation is proposed via a
constituent Fock space expansion. There, a nontrivial
QCD vacuum, as in the Bardeen-Cooper-Schrieffer
(BCS) theory, is postulated, and with a Bogoliubov-
Valatin transformation the (massive) quasigluons are
derived from the effective one-body Hamiltonian. This
mirrors the one-loop gluon potential considered here.
In addition, glueball spectra can be derived with the same

Hamiltonian using the two-gluon states built from these
quasigluons. A key observation is that the lowest lying states
receive most of their masses from the quasigluons, i.e.,

mGB ≈ 2mA; ð86Þ

e.g., mGB ≈ 1.7ð2.1Þ GeV for the lowest 0þþð0þ−Þ state,
with mA ¼ 0.8 GeV in Ref. [29]. This naturally suggests a
constituent model for the glueball states. Neglecting their
interactions with the Polyakov loops, we may consider free
gas of glueballs as an approximation for the 2 → 2 con-
tribution to the partition function.6 See Ref. [60] for an
elaborate treatment of thermal glueballs.
A nontrivial relation suggested by the effective model is

a link between TdðNcÞ and mAðNcÞ. Model B is ideal for

this illustration as mA is the only adjustable parameter of
the model. Tuning mA to match the model Td with the
LQCD results [61] for variousNc’s, we extract the expected
Nc dependence of mA. See Fig. 6.
The mAðNcÞ’s show a similar trend exhibited by a fit to

LQCD 0þþ glueball masses [62]. The fit employs the
functional form

mLQCD
GB ðNcÞ=

ffiffiffi
σ

p
≈m∞ þ c=N2

c ð87Þ

with (dimensionless) parameters m∞ ¼ 3.307, c ¼ 2.187,
based on the LQCD calculation in Ref. [62] and fixing c to
the Nc ¼ 3 result. We also take σ ¼ 0.18 GeV2.
The general trend can easily be understood by studying

the second Landau parameter (40). For model B, it reads

ū2 ≈
N2

c

π2

�
1 − 3

1

2

�
mA

T

�
2

K2ðmA=TÞ
�
: ð88Þ

Solving for mAðNcÞ from

ū2ðmAðNcÞ; T ¼ TdðNcÞÞ ¼ 0; ð89Þ

we obtain the gray dashed line in Fig. 6 (right).
Equation (88) suggests that the leading Nc dependence
comes not from the prefactor but from the Nc dependence
of Td.

7 While it is not surprising that the observables are
related, the effective model offers a simple approximate
connection such as (88).

FIG. 6. The critical temperatures Td of model B (83) (left) using the input masses mAðNcÞ indicated in the right panel. The latter are
adjusted to fit the LQCD results on TdðNcÞ [61] and are compared to a fit to the LQCD of (half the) 0þþ glueball mass [62]. The gray
dashed line shows the result based on Landau parameter analysis (88) (ū2).

6This is similar to the case where a σ-meson is generated in an
Nambu–Jona-Lasinio model and approximating its partial ther-
mal pressure by a free Bose gas of mass mσ ≈ 2MQ.

7Relation (88) assumes theBoltzmann approximation. Thismay
be justified for the massive gluons, but may not be the case for the
ghost. The corrections, however, are Nc dependent. For Nc ¼ 3,
this amounts to replacing 1 → π2

9
≈ 1.097 in the right bracket. The

corresponding result for Nc ¼ 2 is 1 → π2

12
≈ 0.822.
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V. CONCLUSION

We have examined the fluctuations of the order param-
eter, measured by the Polyakov loop susceptibilities in the
SUðNcÞ pure gauge theory, using an effective potential
built from one-loop expressions of the field determinants of
gluon and ghost. The connection between these observ-
ables with the Cartan angles and their curvature masses are
derived. The latter can serve as a proxy for the A0-gluon
screening mass and are strongly influenced by the ZðNcÞ
structure of the vacuum.
The Cartan curvature masses thus provide useful diag-

nostic information concerning the competition of gluons
and ghosts in the QCD medium. While we expect gauge
invariance for all observables based on the Polyakov loops,
it is unlikely for the model potential in the current state to
achieve this goal. For example, we see that the predictions
of these curvature masses depend strongly on the assump-
tions of the gluon and ghost propagators, and the choice of
gauge. Another essential limitation of the present model is
that the propagators and wave function renormalizations we
fitted are not LQCD computation in the background-field
gauge. A more constructive way to proceed is to explore the
potential, and more generally the problem of how confine-
ment manifests, in various gauges, and check whether there
could be nontrivial relations among the model parameters
such that the gauge dependence would be removed or
reduced when computing physical observables.
A natural progression of this work is a consistent treat-

ment of the finite temperature behaviors ofmA and the wave
function renormalizations within the model. A crude assess-
ment gives the following competing effects: (1) slightly
(Boltzmann-)suppressed deconfining force from transverse

gluons due to an increased mA at finite temperatures, (2) an
increase in confining force by the ghost due to the enhanced
ghost form factor, (3) an increase in deconfining force from
the longitudinal gluons due to the characteristic dip inmA0

. It
is possible that while Td would not be strongly affected, the
curvature masses will be substantially modifed.
What is clear from the model study is that the longi-

tudinal gluon propagator and the Cartan curvature masses
are connected [via Eqs. (71) and (78)], and should be
determined self-consistently in model calculations. This
makes for a more meaningful comparison with the finite
temperature LQCD data [54,63–65]. For the transverse
gluons, we find no evidence for a substantial change in their
masses across the phase transition, nor the need for the
value to approach infinity in the confined phase. In fact,
they serve as constituents of the glueballs.
A possible future application of the relations between the

Polyakov loop observables with those from the gluon
propagators could be in formulating a nonperturbative
renormalization scheme for the former as composite
operators. This is a necessary first step to properly compare
effective model results with LQCD data of the Polyakov
loops and the susceptibilities. This will be explored in a
future work.
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