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Evolution of spin polarization in the Gubser-expanding conformal perfect-fluid hydrodynamic back-
ground is studied. The analysis of the conformal transformation properties of the conservation laws is
extended to the case of the angular momentum conservation. The explicit forms of equations of motion for
spin components are derived and analyzed, and some special solutions are found.
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I. INTRODUCTION

In the last decades, relativistic hydrodynamics has
proven to be very successful in describing the evolution
of the strongly interacting matter produced in relativistic
heavy-ion collisions [1–8]. Recent measurements of spin
polarization of Λ hyperons have shown that the spacetime
evolution of the quantum spin should also be included in
this framework in order to properly capture effects seen in
the experiment [9–15].
The first attempt to formulate relativistic hydrodynamics

with spin has been done in Ref. [16]; see also the follow-up
papers [17–24], as well as reviews [25,26]. In contrast to
previous theoretical studies which considered the gener-
ation of spin polarization of matter at freeze-out due to
spin-vorticity coupling [27–47] (see also related studies
[48–89]), the spin hydrodynamic approach has been for-
mulated entirely based on the conservation laws and
assumption of local thermal equilibrium. In this case,
enforcement of total angular momentum conservation leads
to the need for introducing additional Lagrange multipliers
which comprise the so-called spin polarization tensor ωμν

that, in the case of global equilibrium with rigid rotation,
reduces to the thermal vorticity tensor ϖμν ¼ − 1

2
ð∂μβν −

∂νβμÞ (here βμ ¼ Uμ=T is the ratio of the fluid flow vector
Uμ and the local temperature T) [90–92]. The resulting spin
hydrodynamic framework extends the standard one by
adding additional dynamic equations which, in general,
have to be solved numerically.

In the present paper we use the formalism of relativistic
hydrodynamics with spin proposed in Refs. [22,25] to
study the evolution of spin polarization in the Gubser-
expanding perfect-fluid hydrodynamic background [93,94].
The current work is an extension of the study presented in
Ref. [22] where the spacetime evolution of the spin polari-
zation was considered in a boost-invariant and transversely
homogeneous background, also known as Bjorken flow.
Following other works [95–104] we first solve the perfect-
fluid hydrodynamical equations using the Gubser symmetry
arguments in the de Sitter coordinates and obtain analytical
solutions for hydrodynamic variables. Subsequently, we
extend the analysis of the properties of the conservation
laws with respect to the conformal transformation to the case
of the angular momentum conservation. We find that the
latter is conformally invariant only if the spin tensor is
antisymmetric in all indices and the particles composing the
fluid are massless. As the de Groot-van Leeuwen-van Weert
(GLW) spin tensor [105] considered in this work is not, in
general, satisfying these requirements, we relax the con-
straints related to the symmetry with respect to the special
conformal transformations exploiting only the cylindrical
symmetry and boost invariance. Using expressions for
temperature, chemical potential, and velocity obtained for
the Gubser-flowing background, we derive the equations of
motion for spin polarization components which, as expected,
exhibit nontrivial dynamics in both de Sitter time and angle,
as well as a (small) sensitivity to the mass of the constituent
particles. As in the formulation used herein, we keep the
assumption of a small amplitude of polarization effects
[22,25], the background equations expressing the baryon
charge and energy-momentum conservation decouple com-
pletely from the angular momentum conservation, and the
background solutions are not spoiled by the breaking of the
symmetry at the level of angular momentum conservation.
For the special case of massless particles, we find a set of
special solutions which, in general, have a powerlike
dependence on the temperature of the system. Finally, we
also present some full numerical solutions with finite masses

*rajeev.singh@ifj.edu.pl
†gabriel.sophys@ifj.edu.pl
‡radoslaw.ryblewski@ifj.edu.pl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 074024 (2021)

2470-0010=2021=103(7)=074024(14) 074024-1 Published by the American Physical Society

https://orcid.org/0000-0001-5855-4039
https://orcid.org/0000-0003-1539-8528
https://orcid.org/0000-0003-3094-7863
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.074024&domain=pdf&date_stamp=2021-04-27
https://doi.org/10.1103/PhysRevD.103.074024
https://doi.org/10.1103/PhysRevD.103.074024
https://doi.org/10.1103/PhysRevD.103.074024
https://doi.org/10.1103/PhysRevD.103.074024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


in Milne spacetime. The solutions obtained in this work may
be used for describing the collisions of systems with initial
spin polarization as well as for testing the full 3þ 1D
geometry codes.
The structure of the paper is as follows: We start by

briefly reviewing the framework of relativistic hydrody-
namics with spin for polarized systems of spin-1

2
particles in

Sec. III. In Sec. IV we introduce the boost invariance and
cylindrical symmetry, which is followed in Sec. V by the
details about Gubser symmetry, Weyl rescaling of various
thermodynamical and hydrodynamical quantities, and the
information about the de Sitter basis vectors. Conformal
transformation of the conservation equations is studied in
Sec. VI. In Sec. VII we derive the Gubser-symmetric
evolution equations for the background which we then use
to find the evolution equations of spin polarization com-
ponents in the de Sitter spacetime. The resulting equations
of motion are studied both analytically and numerically and
transformed back to Milne spacetime. We conclude and
summarize in Sec. VIII. Some additional information
and details are given in the Appendixes.

II. CONVENTIONS

We use the following shorthand notation for the scalar
product between two four-vectors: aμbμ ≡ a · b. For the
Levi-Civita tensor ϵαβγδ, the sign convention used through-
out the paper is ϵ0123 ¼ −ϵ0123 ¼ 1. Throughout the text we
use natural units with c ¼ ℏ ¼ kB ¼ 1. The antisymmet-
rization of arbitrary rank-two tensor A is denoted as
A½μν� ¼ 1

2!
ðAμν − AνμÞ. Also, we are using “mostly plus”

metric signature.

III. PERFECT-FLUID HYDRODYNAMICS FOR
SYSTEMS OF PARTICLES WITH SPIN 1=2

For the reader’s convenience, in this section we briefly
review the recently developed formalism of relativistic
perfect-fluid hydrodynamics for polarized systems of par-
ticles with spin 1

2
[22]. We use the approximation of small

polarization which, in the leading order, leads to decoupling
of the background hydrodynamic equations for velocity,
temperature, and chemical potential (given by the standard
net baryon number and energy-momentum conservation
laws) from the dynamics of spin degrees of freedom (result-
ing from the conservation of angular momentum).

A. Conservation of net baryon number

The conservation law of the net baryon number can be
expressed in the following way:

dαNαðxÞ ¼ 0; ð1Þ

where, in the case of no dissipative effects, the net baryon
current Nα reads

Nα ¼ NUα; ð2Þ

with the net baryon density being given by

N ¼ 4 sinh αN ð0Þ: ð3Þ

The fluid four-velocity Uα in Eq. (2) is normalized as
U · U ¼ −1 and d denotes the covariant derivative (see
Appendix A for more information on the definitions of
covariant derivative). The quantity α is the ratio of baryon
chemical potential μ and temperature T, α≡ μ=T. For an
ideal relativistic gas of classical massive particles (and
antiparticles) the auxiliary number densityN ð0Þ is given by
the well-known expression [1]

N ð0Þ ¼ kT3z2K2ðzÞ; ð4Þ

where z≡m=T with m being the mass of the particles (and
antiparticles), k≡ 1=ð2π2Þ. and Kn denotes the nth modi-
fied Bessel function of the second kind.

B. Conservation of energy and linear momentum

The conservation of energy and linear momentum is
given by the expression

dαTαβðxÞ ¼ 0; ð5Þ

where, for perfect fluid, the energy-momentum tensor Tαβ

takes the following standard form:

Tαβ ¼ EUαUβ þ PΔαβ; ð6Þ

with Δαβ ≡ gαβ þ UαUβ being the spatial projection oper-
ator orthogonal to the fluid flow vector and the energy
density and pressure being defined as

E ¼ 4 cosh αEð0Þ; ð7Þ

P ¼ 4 cosh αPð0Þ; ð8Þ

respectively. In the case of ideal relativistic gas of spinless
and neutral massive Boltzmann particles. the auxiliary
energy density and pressure are [1]

Eð0Þ ¼ kT4z2½zK1ðzÞ þ 3K2ðzÞ�; ð9Þ

Pð0Þ ¼ TN ð0Þ; ð10Þ

respectively. The thermodynamic quantities defined above
satisfy the standard thermodynamic relations, namely,

E þ P ¼ TS þ μN ; ð11Þ
Eð0Þ þ Pð0Þ ¼ TSð0Þ; ð12Þ

with S ¼ ð∂P∂TÞμ, N ¼ ð∂P∂μÞT , and Sð0Þ ¼ ∂Pð0Þ
∂T .
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C. Conservation of angular momentum

Total angular momentum may be expressed as a sum of
the orbital angular momentum part Lα;βγ and spin angular
momentum part Sα;βγ as follows:

Jα;βγ ¼ Lα;βγ þ Sα;βγ ¼ xβTαγ − xγTαβ þ Sα;βγ; ð13Þ

where, in the second equality, we expressed the orbital part
in terms of the energy-momentum tensor. The conservation
of the total angular momentum is given by the expression

dαJα;βγ ¼ dαSα;βγ þ 2T ½βγ� ¼ 0: ð14Þ

Since the energy-momentum tensor used herein is sym-
metric T ½βγ� ¼ 0 [see Eq. (6)], the conservation of the total
angular momentum implies separate conservation of its
spin part.
The spin tensor in Eq. (14) is given by the following

expression [22]:

Sα;βγ ¼ CUαωβγ þ Sα;βγΔ ; ð15Þ

where the auxiliary spin tensor is defined as

Sα;βγΔ ¼ AUαUδU½βωγ�
δ

þ BðU½βΔαδωγ�
δ þ UαΔδ½βωγ�

δ þUδΔα½βωγ�
δÞ;

ð16Þ

with the quantity ωαβðxÞ being the spin polarization tensor
(to be discussed in the next section). The thermodynamic
quantities A, B, and C in Eqs. (15) and (16) are

A ¼ 2C − 3B; ð17Þ

B ¼ −
E þ P
2Tz2

; ð18Þ

C ¼ P
4T

: ð19Þ

In what follows, here onwards we will refer to Eqs. (15) and
(16) as the GLW spin tensor [105].

D. Spin polarization tensor

The spin polarization tensor ωαβ is an asymmetric rank-
two tensor which can be decomposed with respect to the
fluid four-velocity in the following way:

ωαβ ¼ καUβ − κβUα þ ϵαβγδUγωδ: ð20Þ

Any part of the auxiliary four-vectors κα and ωα parallel to
Uα does not contribute to the right-hand side of Eq. (20)
hence, without the loss of generality, we can assume that κα

and ωα satisfy the following orthogonality conditions:

κ ·U ¼ 0; ω · U ¼ 0: ð21Þ

Using the above conditions, κα and ωα can be expressed in
terms of the spin polarization tensor ωαβ as follows:

κα ¼ ωαβUβ; ωα ¼
1

2
ϵαβγδω

βγUδ: ð22Þ

IV. IMPLEMENTATION OF BOOST INVARIANCE
AND CYLINDRICAL SYMMETRY

Let us consider central high-energy heavy-ion collisions
which are boost invariant and cylindrically symmetric with
respect to the beam (z) axis. Their dynamics is most
conveniently described in the polar-hyperbolic coordinates
xμ ¼ ðτ; r;ϕ; ηÞ where the line element reads

ds2 ¼ −dτ2 þ dr2 þ r2dϕ2 þ τ2dη2; ð23Þ

with τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
being the longitudinal proper time, η ¼

tanh−1ðz=tÞ being the longitudinal spacetime rapidity, and
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ϕ ¼ tan−1ðy=xÞ denoting the radial

distance and the azimuthal angle, respectively, parametriz-
ing the transverse plane perpendicular to the beam
direction.
For convenience. we introduce the following orthogonal

four-vector basis in the laboratory frame:

Uμ ¼ ðcoshϑ; sinhϑ; 0; 0Þ;
Rμ ¼ ðsinhϑ; coshϑ; 0; 0Þ;
Φμ ¼ ð0; 0; 1=r; 0Þ;
Zμ ¼ ð0; 0; 0; 1=τÞ; ð24Þ

which allows us to express the polar-hyperbolic metric
tensor, gμν ¼ diagð−1; 1; 1=r2; 1=τ2Þ, in the following
form:

gμν ¼ −UμUν þ RμRν þΦμΦν þ ZμZν: ð25Þ

It is straightforward to check that the basis vectors (24)
satisfy the following normalization conditions:

U ·U ¼ −1; R · R ¼ 1; ð26Þ

Φ ·Φ ¼ 1; Z · Z ¼ 1; ð27Þ

while all mixed scalar products vanish. One can convince
himself that in the local rest frame U, R, Φ, and Z are the
unit vectors pointing in the τ, r, ϕ, and η directions,
respectively.
Using the basis vectors (24) and orthogonality conditions

(21), four-vectors κα and ωα may be decomposed as
follows:
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κα ¼ aRRα þ aΦΦα þ aZZα; ð28Þ

ωα ¼ bRRα þ bΦΦα þ bZZα; ð29Þ

where aiðτ; rÞ and biðτ; rÞ are scalar coefficients character-
izing the components of the spin polarization tensor along
the basis vectors.

V. GUBSER SYMMETRY AND CONFORMAL
MAPPING TO DE SITTER SPACE

For boost-invariant and cylindrically symmetric systems,
one can construct a nontrivial four-velocity profile in
Minkowski space R3 ⊗ R which is invariant with respect
to the SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2 conformal symmetry
group, also known as “Gubser’s symmetry” [93,94]. The
latter is composed of rotations in the r − ϕ plane coupled
with two special conformal transformations parametrized
by an arbitrary inverse length scale q [SOð3Þq], boosts in
the η direction [SOð1; 1Þ], and reflections with respect to
the r − ϕ plane (Z2). The procedure of finding the flow
pattern invariant with respect to this symmetry, while being
intricate in Minkowski space, is quite transparent when
considered in the curved spacetime formed by the product
of the three-dimensional de Sitter space and a line,
dS3 ⊗ R—hereafter we will shortly refer to it as “de
Sitter space.” The conformal map used to transform from
one to the other constitutes the Weyl rescaling of the line
element

ds2 →
ds2

Ω2
¼ −dτ2 þ dr2 þ r2dϕ2

τ2
þ dη2; ð30Þ

where the conformal factor is Ω ¼ τ, combined with the
change from polar Milne coordinates xμ ¼ ðτ; r;ϕ; ηÞ to de
Sitter coordinates x̂μ ¼ ðρ; θ;ϕ; ηÞ using

sinh ρðτ; rÞ ¼ −
1 − ðqτÞ2 þ ðqrÞ2

2qτ
; ð31Þ

tan θðτ; rÞ ¼ 2qr
1þ ðqτÞ2 − ðqrÞ2 : ð32Þ

The resulting rescaled line element of the de Sitter
spacetime reads

dŝ2 ¼ −dρ2 þ cosh2ρðdθ2 þ sin2θdϕ2Þ þ dη2; ð33Þ

with the metric ĝμν ¼ diagð−1; cosh2ρ; cosh2ρsin2θ; 1Þ
(hereafter all quantities defined in the de Sitter space will
be denoted with a hat). Clearly, based on Eq. (33), we
observe that the Weyl rescaling (30) combined with passing
to the standard global coordinates on dS3 (31)–(32)
promotes the [SOð3Þq] conformal isometry to a manifest
isometry [SOð3Þ] in ðθ;ϕÞ.

In general, for a system to respect conformal symmetry,
its dynamics should be invariant under Weyl rescaling
[93,94,106–108]. It implies that the ðm; nÞ-type tensors
[including scalars with ðm; nÞ ¼ ð0; 0Þ] transform homo-
geneously, namely,

Aμ1…μm
ν1…νn ðxÞ → ΩΔAAμ1…μm

ν1…νn ðxÞ; ð34Þ

where Ω≡ e−φðxÞ with φðxÞ being function of spacetime
coordinates and ΔA ¼ ½A� þm − n is the conformal weight
of the quantity A, where [A] is its mass dimension, and m
and n are the numbers of contravariant and covariant
indices, respectively. For instance, the metric tensor gμν
is a rank-two (0,2) dimensionless tensor, ½gμν� ¼ 0, for
which one finds Δgμν ¼ −2. Hence, gμν transforms under
Weyl rescaling as follows [94,106]:

gμν → Ω−2gμν: ð35Þ

Using rules for general coordinate transformations of
tensors and Eq. (35) the relation between the R3 ⊗ R
metric and the dS3 ⊗ R metric is

ĝμν ¼
1

τ2
∂xα
∂x̂μ

∂xβ
∂x̂ν gαβ: ð36Þ

Using the information that Δgμν ¼ −2 and the unit norm
constraint gμνUμUν ¼ −1, one obtains ΔUμ ¼ 1 which
results in the transformation rule

Ûν ¼
1

τ

∂xμ
∂x̂ν Uμ: ð37Þ

Using Eq. (37) one can show that the four-velocity profile
from Eq. (24) in the de Sitter space is static,

Ûμ ¼ ð1; 0; 0; 0Þ;

meaning it is invariant with respect to the Gubser symmetry
group, provided the transverse rapidity profile has the form
[93,94]

ϑðτ; rÞ ¼ tanh−1
�

2qτqr
1þ ðqτÞ2 þ ðqrÞ2

�
: ð38Þ

In a similar manner, the remaining basis vectors (24) in the
de Sitter space are

R̂μ ¼ ð0; ðcosh ρÞ−1; 0; 0Þ;
Φ̂μ ¼ ð0; 0; ðcosh ρ sin θÞ−1; 0Þ;
Ẑμ ¼ ð0; 0; 0; 1Þ: ð39Þ

The metric ĝμν can be expressed as
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ĝμν ¼ −ÛμÛν þ R̂μR̂ν þ Φ̂μΦ̂ν þ ẐμẐν; ð40Þ

while the determinant of ĝμν is

ĝ≡ detðĝμνÞ ¼ − cosh4 ρ sin2 θ: ð41Þ

Using the fact that the energy density equation (7) and
pressure equation (8) have the mass dimension
½E�≡ ½P� ¼ 4, their conformal weight is ΔE ¼ ΔP ¼ 4.
In a similar way, for the net baryon density, one has ½N � ¼
3 and hence ΔN ¼ 3. Since both temperature and baryon
chemical potential have the mass dimension ½T� ¼ ½μ� ¼ 1,
their conformal weight is ΔT ¼ Δμ ¼ 1. Using an analo-
gous technique to that leading to Eq. (37), the trans-
formation rules needed to map the quantities expressed
in de Sitter coordinates back to the polar Milne coordinates
can be written as

Uμðτ; rÞ ¼ τ
∂x̂ν
∂xμ ÛνðρÞ;

Eðτ; rÞ ¼ ÊðρÞ
τ4

; Pðτ; rÞ ¼ P̂ðρÞ
τ4

; N ðτ; rÞ ¼ N̂ ðρÞ
τ3

;

Tðτ; rÞ ¼ T̂ðρÞ
τ

; μðτ; rÞ ¼ μ̂ðρÞ
τ

: ð42Þ

In Eq. (13), xβ have mass dimension ½xβ� ¼ −1 with one
contravariant index, hence Δxβ ¼ 0, and using the infor-
mation about the conformal weight of E andUα and Eq. (6),
one can find that the stress energy tensor should have the
conformal weight ΔTαβ ¼ 6. As a result one observes that
the conformal weight of the spin tensor is ΔSαβγ ¼ 6, since
each term in Eq. (13) should have the same conformal
weight. Hence the GLW spin tensor in Eq. (15) [105], as
well as canonical spin tensor [109], and the Hilgevoord-
Wouthuysen (HW) spin tensor [110,111] should all have
the same conformal weight. For instance, for a free Dirac
field the canonical spin tensor Sα;βγC , the GLW spin tensor
Sα;βγGLW, and the HW spin tensor Sα;βγHW are defined as
[110,111]

Sα;βγC ¼ i
8
ψ̄fγα; ½γβ; γγ�gψ ; ð43Þ

Sα;βγGLW ¼ i
4m

ðψ̄σβγ ∂↔ αψ − ∂ρϵ
βγαρψγ5ψÞ; ð44Þ

Sα;βγHW ¼ Sα;βγC −
1

4m
ðψ̄σβγσαρ∂ρψ þ ∂ρψ̄σ

αρσβγψÞ; ð45Þ

respectively, with σμν ¼ i
2
½γμ; γν�. Since the conformal

weight of both spinor ψ and dual spinor ψ̄ ≡ ψ†γ0 is Δψ ¼
Δψ̄ ¼ 3

2
and the conformal weight of theDirac gammamatrix

is Δγμ ¼ 1 [112,113], then ΔSαβγ ¼ ΔSαβγC
¼ ΔSαβγHW

¼ 6.

Similarly, using the information about the conformal
weight of N in Eq. (2), we find that the conformal weight
of the net baryon number current is ΔNα ¼ 4.
The conformalweight of the spin polarization tensorωαβ is

easily found if one notices the fact that the first term in
Eq. (15) should have the same conformal weight as the spin
tensor in Eq. (13). In this case for the rank-two dimensionless
spin polarization tensor with two contravariant indices, one
can find the conformal weight to be Δωαβ ¼ 2. Using this
result in Eq. (22), we see thatΔκα ¼ 1 andΔωα ¼ 1. Herewe
used the fact that ϵαβγδ has zero mass dimension and four
contravariant indices, giving Δϵαβγδ ¼ 4. From the informa-
tion of how κα, ωα and basis vectors (24) transform under
Weyl rescaling and that all the spin polarization components
ai and bi are dimensionless scalars, we see that Δai ¼
Δbi ¼ 0. Hence, they are conformally invariant quantities.
Using Eq. (34), we summarize the transformation rules

under Weyl rescaling (for four-dimensional spacetime) as
follows:

Nα → Ω4Nα; ð46Þ

Tαβ → Ω6Tαβ; ð47Þ

Sαβγ → Ω6Sαβγ: ð48Þ

Finally, we note that the similar results may be found for the
quantities with covariant indices. In particular, one may
find that ΔTαβ

¼ 2. The latter result is in agreement with the
fact that raising (lowering) the Lorentz index with the
metric tensor changes the conformal measure by a factor
of 2ð−2Þ.

VI. CONFORMAL INVARIANCE OF
CONSERVATION EQUATIONS

Considering four-dimensional conformal fluid dynam-
ics, we aim at finding the conformal transformation of the
conservation equations for net the baryon number, energy
and linear momentum, and spin, whose coordinates are, in
general, expressed as

dαNαðxÞ ¼ ∂αNα þ Γα
αβN

β ¼ 0; ð49Þ

dαTαβðxÞ ¼ ∂αTαβ þ Γα
αλT

λβ þ Γβ
αλT

αλ ¼ 0; ð50Þ

dαSαβγðxÞ ¼ ∂αSαβγ þ Γα
αλS

λβγ þ Γβ
αλS

αλγ þ Γγ
αλS

αβλ ¼ 0;

ð51Þ

respectively, where Γβ
αλ are Christoffel symbols defined

in Eq. (A8).
To find the conformal transformations of the conserva-

tion laws, (49), (50), and (51), we need to know the
conformal transformation of the Christoffel symbols, which
is given as [108,114,115]
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Γβ
λα ¼ Γ̂β

λα þ δβλ∂αφþ δβα∂λφ − ĝλαĝβσ∂σφ; ð52Þ

where δβλ is the Kronecker delta function and φ is a function
of spacetime coordinates defined through Eq. (34) [for the
derivation of Eq. (52) we refer the reader to Appendix C].
One can show that for the four-dimensional spacetime,

the conservation law for the net baryon number (49) is
already conformal-frame independent [93,94,106–108], i.e.,
the net baryon number is conserved in both Minkowski and
de Sitter spacetimes. In this case, since the conformal weight
of the net baryon number is ΔNα ¼ 4, one can write

dαNα ¼ Ω4d̂αN̂
α: ð53Þ

Using Eq. (47) and Eq. (52) in Eq. (50), we find that the
conservation of energy and linear momentum transforms as
[107,108,114]

dαTαβ ¼ Ω6½d̂αT̂αβ − T̂λ
λĝβδ∂δφ�: ð54Þ

Hence, we observe that T̂αβ needs to be traceless in order to
be conserved in de Sitter spacetime. Therefore, the breaking
of conformal invariance is characterized only by the trace of
the energy-momentum tensor1 [116–119].
Furthermore, using Eq. (48) and Eq. (52) in Eq. (51), the

conformal transformation of the conservation law for spin
takes the form

dαSαβγ ¼ Ω6½d̂αŜαβγ − ðŜλλγ ĝβσ þ ŜαβαĝσγÞ∂σφ�: ð55Þ

From Eq. (55) we find that the conformal invariance of
the spin conservation law requires the spin tensor to satisfy
the condition Ŝα

αβ ¼ 0. It is straightforward to show that
the GLW (15), (44) and HW (45) definitions do not satisfy
this condition, and hence, explicitly break the conformal
invariance of Eq. (55). The consequences of this issue will
be discussed in the next section.

VII. DYNAMICS IN DE SITTER COORDINATES

In this section we explore the dynamics of the spin
polarization on top of the conformal Gubser-expanding
hydrodynamic background in the de Sitter spacetime. Our
final results are obtained by transforming back to the
Minkowski spacetime using Eq. (42).

A. Conformal symmetry breaking
and the equation of state

In Sec. VI we have shown that Eqs. (1) and (5) are
conformally invariant, i.e., they transform homogeneously
under the Weyl transformation provided the constitutive
relations do so and the energy-momentum tensor is

traceless. As the presence of finite masses breaks the
tracelessness condition [(in our case T̂λ

λ ¼ 3P̂ − Ê ≈
Oðm2Þ], in order to respect Gubser symmetry and keep
the four-velocity pattern invariant, the energy density (7),
pressure (8), and net baryon density (3) have to be treated in
the massless limit, meaning

Ê ¼ 24k cosh αT̂4; ð56Þ

P̂ ¼ 8k cosh αT̂4; ð57Þ

N̂ ¼ 8k sinhαT̂3; ð58Þ

respectively. Obviously, in this case one has Ê ¼ 3P̂.
On the other hand, for the conservation of spin to respect

conformal invariance, it is sufficient that the spin tensor in
Eq. (55) is totally antisymmetric.2 As noticed in Sec. VI,
the GLW form (15) of the spin tensor considered in this
work does not satisfy this requirement. In general, if
Eqs. (1), (5), and (14) were fully coupled, this would lead
to the breaking of the Gubser symmetry and, in conse-
quence, of the flow invariance. However, in the particular
case studied herein, this is not the case since the spin
dynamics given by Eq. (14) is treated only perturbatively
[22], and hence decouples from the background hydro-
dynamic fields. This allows for a separate solution of
background equations of motion (1) and (5) and the
subsequent solution of the spin part (14). As there is no
backreaction to the background from the evolution of spin
dynamics [the polarization tensor does not enter Eqs. (1)
and (5)], the conformal-breaking dynamics of spin polari-
zation does not spoil the flow invariance (a similar issue
was encountered also in other recent works, see, for
instance, Ref. [120]). At this point, it is important to
mention that, despite this issue, we are still allowed to
investigate the spin dynamics in the de Sitter coordinates,
which we will do for the sake of convenience. Using the
same arguments as given above, we will also keep finite
masses in expressions for A, B, and C defining the GLW
spin tensor in Eqs. (15) and (16).

B. Perfect-fluid background

Using Eq. (2) in Eq. (1) the conservation law for charge
in the de Sitter coordinates can be written as

Ûα∂αN̂ þ N̂ ∂αÛ
α þ N̂ Ûα ∂α

ffiffiffiffiffiffi
−ĝ

p
ffiffiffiffiffiffi
−ĝ

p ¼ 0; ð59Þ

where ĝ is the determinant of the de Sitter metric (41) and
we employed definitions of the covariant derivative from

1Note that the latter holds regardless of the symmetry of the
energy-momentum tensor.

2Note that this is not the case for the GLWand HW definitions
whose additional terms ∼1=m make them ill-defined in the
massless limit as well as break the conformal invariance of the
spin conservation.
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Appendix A. Identifying expansion scalar as θ̂≡ 2 tanh ρ,
one may rewrite Eq. (59) in the following form:

∂ρN̂ þ N̂ θ̂ ¼ 0: ð60Þ
In a similar way, transforming Eq. (5) to dS3 ⊗ R, using
Eq. (6), and contracting it with Ûβ, we get the conservation
law for energy as follows:

∂ρÊ þ ðÊ þ P̂Þθ̂ ¼ 0: ð61Þ
One may check that all other projections of Eq. (5) are
satisfied identically.
The solutions of Eq. (60) and Eq. (61) can be found

analytically giving [93,94],

Ê ¼ Ê0

�
cosh ρ0
cosh ρ

�
8=3

; ð62Þ

N̂ ¼ N̂ 0

�
cosh ρ0
cosh ρ

�
2

; ð63Þ

respectively, where Ê0 ≡ Êðρ0Þ and N̂ 0 ≡ N̂ ðρ0Þ are inte-
gration constants and ρ0 is the initial de Sitter time. Using
Eqs. (56)–(58), the corresponding solutions for temperature
and baryon chemical potential in de Sitter space are

T̂ ¼ T̂0

�
cosh ρ0
cosh ρ

�
2=3

; ð64Þ

μ̂ ¼ μ̂0

�
cosh ρ0
cosh ρ

�
2=3

; ð65Þ

where, again, T̂0 ≡ T̂ðρ0Þ and μ̂0 ≡ μ̂ðρ0Þ are constants of
integration. Based on the above solutions, we observe that
α̂ is a ρ independent quantity. Moreover, as shown in
[93,94] one can see that the Gubser symmetry restricts the
dynamics of the system in such a way that it depends only
on the de Sitter time ρ.
The spacetime evolution of temperature as given

by Eq. (64) and flow-vector components ðUτ; UrÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUτÞ2 þ ðUrÞ2

p
is shown in Fig. 1. For setting initial

temperature parameters we followed Ref. [121] where it

was assumed that T̂0 ≡ T̂ðρ0Þ ¼ 1.2 at ρ0 ¼ 0 so that
choosing q ¼ 1 fm−1 results in Tðτ0 ¼ 1 fm; r ¼ 0Þ ¼
1.2 fm−1. One can observe that the temperature and flow
profiles are strongly correlated.

C. Spin evolution

In this section we derive the spin evolution equations
which we use to study spin dynamics in the Gubser-flowing
perfect-fluid background presented in the previous section.
Herein, we assume that the spin polarization components,
apart from ρ dependence, also exhibit θ dependence. Hence,
following the findings in Sec. VI, we assume that, in general,
spin equations of motion break the conformal invariance. In
such a case ρ and θ coordinates in the de Sitter space serve
just as an alternative parametrization of the directions (τ, r) in
polar Milne coordinates. By substituting Eq. (15) with
Eq. (16), Eq. (28) and Eq. (29) in Eq. (14), employing
Eqs. (64)–(65), and subsequently projecting the resulting
tensorial equation on ÛβR̂γ , ÛβΦ̂γ, ÛβẐγ , Φ̂βẐγ, R̂βẐγ , and
R̂βΦ̂γ we obtain the following equations of motion for the
spin polarization components:

B̂ _̂aR ¼ −âR
�
_̂B þ 5

2
B̂ tanh ρ

�
; ð66Þ

B̂ _̂aΦ þ B̂
2
cosh ρ sin θb̂

∘
Z ¼ −âΦ

�
_̂B þ 5

2
B̂ tanh ρ

�
− b̂Z

B̂
2
cosh ρ cos θ; ð67Þ

B̂ _̂aZ −
B̂
2
cosh ρ sin θb̂

∘
Φ ¼ −âZ½ _̂B þ 3B̂ tanh ρ� þ b̂ΦB̂ cosh ρ cos θ; ð68Þ

ðB̂ − ĈÞ _̂bR ¼ −b̂R
�
ð _̂B − _̂CÞ þ

�
9B̂
2

− 4Ĉ
�
tanh ρ

�
; ð69Þ

FIG. 1. The spacetime dependence of temperature (contours)
and flow-vector components ðUτ; UrÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUτÞ2 þ ðUrÞ2

p
(stream

lines: the coloring of arrows is given by the rapidity ϑ); see the bar
legends for the scalings.
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ðB̂ − ĈÞ _̂bΦ −
B̂

2 sin θ
ðsechρÞ3â

∘
Z ¼ −b̂Φ

�
ð _̂B − _̂CÞ þ

�
9B̂
2

− 4Ĉ
�
tanh ρ

�
; ð70Þ

ðB̂ − ĈÞ _̂bZ þ B̂
2 sin θ

ðsechρÞ3â
∘
Φ ¼ −b̂Z½ð _̂B − _̂CÞ þ ð5B̂ − 4ĈÞ tanh ρ� − B̂

2 sin θ
cot θðsechρÞ3âΦ; ð71Þ

respectively, where ð_Þ≡ ∂ρ, ð ∘Þ≡ ∂θ, and B̂ and Ĉ are
defined in Eq. (18) and Eq. (19). In the latter expressions,
unlike in the case of hydrodynamic background, we use full
expressions for energy density (7) and pressure (8) ex-
pressed in terms of finite particle masses.

1. Massless limit

From Eqs. (66)–(71) we observe that, unlike in the case
of Bjorken expansion [22], only spin polarization compo-
nents along Rμ evolve independently when expressed in de
Sitter coordinates. On the other hand âΦ (b̂Φ) and b̂Z (âZ),
respectively, are coupled to each other. The coupling
between the components emerge due to the conformal
symmetry breaking, and manifests itself through the θ
dependence of the latter.
In the massless case, the solutions to Eqs. (66) and (69)

may be found analytically giving

âR ¼ â0R

�
cosh ρ
cosh ρ0

�
5=6

; ð72Þ

b̂R ¼ b̂0R

�
cosh ρ0
cosh ρ

�
7=6

; ð73Þ

where â0R ≡ âRðρ0Þ and b̂0R ≡ b̂Rðρ0Þ. The characteristic
concave dependence of b̂R on de Sitter time is qualitatively
similar to that of temperature and baryon chemical potential
(in the case of âR one deals with the convex function of ρ).
The dynamics of b̂Φ and âZ components following from

Eqs. (68) and (70) is more complicated, however, it shows
certain characteristic features. In particular, if b̂Φ is initially
negligible, the âZ component is approximately θ indepen-
dent, yielding

âZjb̂Φ¼0 ¼ â0Z

�
cosh ρ
cosh ρ0

�
1=3

; ð74Þ

with â0Z ≡ âZðρ0Þ, i.e., giving âZðρÞ ∼ 1=
ffiffiffiffiffiffiffiffiffiffi
T̂ðρÞ

q
.

In the general case where b̂Φ ≠ 0, one may use the fact
that âZ is a slowly varying function of θ and the second
term on the left-hand side of Eq. (70) may be neglected. In
this case, the solution to the b̂Φ component has the
approximate form

b̂Φ ≈ b̂0Φ

�
cosh ρ0
cosh ρ

�
7=6

; ð75Þ

where b̂0Φ ≡ b̂Φðρ0Þ. Using the exact numerical solutions,
one can show that, indeed, b̂Φ is a weakly dependent
function of θ and hence approximately proportional to b̂R.
In the case of the remaining âΦ and b̂Z components,

simple solutions cannot be found and, in general, Eqs. (67)

FIG. 2. Numerical solutions for aR and bR components of the
spin polarization tensor as functions of proper time τ and radial
distance r.
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and (71) have to be solved numerically. However, due to the
specific structure of Eqs. (67) and (71) one may find some
special solutions by requiring the θ terms to vanish, thus
making the âΦ and b̂Z independent of each other. The latter
takes place for the following solutions:

âΦ ≈ â0Φ

�
cosh ρ
cosh ρ0

�
5=6

csc θ; ð76Þ

b̂Z ≈ b̂0Z

�
cosh ρ0
cosh ρ

�
5=3

csc θ; ð77Þ

where, again, â0Φ ≡ âΦðρ0Þ and b̂0Z ≡ b̂Zðρ0Þ, and hence
âΦ ∼ âR. Finally, we observe that, in the cases discussed

above all components exhibit the universal dependence of
the type ðcosh ρÞc, with c being positive constant for ai and
negative for bi.

2. Numerical results

Let us turn to some numerical solutions of the spin
equations ofmotion. In Fig. 2 we present the exact numerical
solutions of Eqs. (66) and (69) for aR and bR components
as functions of proper time τ and radial distance r. The initial
values of the âR and b̂R components are chosen in such a
way so that â0R ¼ 0.1 and b̂0R ¼ 0.1, which implies
aRðτ0 ¼ 1 fm; r ¼ 0Þ ¼ bRðτ0 ¼ 1 fm; r ¼ 0Þ ¼ 0.1. The
mass in the calculations is set to m ¼ 0.5T̂0. We find that
the dynamics of aR and bR components is qualitatively
different with aR having minimum and bR having a maxi-
mum at ρ0 (the black dotted lines). Moreover, by comparing
with the massless casewe checked (see dashed lines) that the
mass isweakly affecting the polarization dynamics as long as
the mass is small, i.e., z < 1.
In Fig. 3 we present analogous plots to Fig. 2 but for aZ

and bΦ components using the numerical solutions of
Eqs. (68) and (70). In this case we initialize the components
in a similar way as previously assuming â0Z ¼ 0.1 and
b̂0Φ ¼ 0.1. We observe a weak θ dependence of the solu-
tions which is due to mixing of the two components.
A comparison to the massless case (dashed lines) confirms
a small sensitivity of the solution to the mass of the
particles. Moreover, we find that the increase of mass in
general increases the values of the spin polarization
components within the considered region. Similar conclu-
sions hold for the remaining aΦ and bZ components.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have used the formalism of hydro-
dynamics with spin [22,25] to derive the equations of
motion for spin polarization in the Gubser-expanding
conformal hydrodynamic background [93,94]. Following
previous works on this topic we have first solved the
perfect-fluid hydrodynamical equations using the Gubser
symmetry arguments in the de Sitter coordinates and
obtained analytical solutions for hydrodynamic variables;
see Eqs. (62)–(65). Subsequently, we have extended the
analysis of the properties of the conservation laws with
respect to the conformal transformation to the case of the
angular momentum conservation. We have found that the
latter is conformally invariant provided the spin tensor is
completely antisymmetric and the particles are massless.
As, in general, the currents in the GLW framework studied
here break these requirements, we have solved the spin
dynamics in the Gubser-expanding background in the de
Sitter coordinates (for the sake of convenience) allowing,
however, for both ρ and θ dependence, of the spin
polarization components. As there is no backreaction of
the latter on the background, we performed this analysis inFIG. 3. Same as Fig. 2 but for aZ and bΦ components.
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the general massive case. The solutions obtained in this
way are mapped back to the Milne coordinates, giving us
the complete spatiotemporal evolution for the system with
boost invariance and cylindrical symmetry. In the massless
limit we have found certain special solutions which, to a
large extent, exhibit power-law type dependence on tem-
perature. We have found that, unlike in the Bjorken case,
only radial components behave independently.
The framework used herein might be used, for instance,

for the description of head-on collisions of initially polar-
ized particles/ions at high energies [122,123], describing
the mixing between polarization components along beam
and in the azimuthal direction. Moreover, the formalism
worked out here can be used for cross-checking the
numerical simulations within the full 3þ 1D geometry
framework, which is now being developed.
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APPENDIX A: THE COVARIANT DERIVATIVE

In amore general spacetime, the partial derivative operator
is not a good tensorial operator; therefore, wewould need the
covariant derivative operator which is an extension of the
partial derivative to arbitrarymanifolds, andwhich reduces to
a partial derivative operator in flat spacetime in Cartesian
coordinates. Its action on an arbitrary scalar V, rank-one Vμ,
and rank-two Vμν tensors is

dμV ¼ ∂μV; ðA1Þ

dμVν ¼ ∂μVν − Γσ
μνVσ; ðA2Þ

dλVμν ¼ ∂λVμν − Γσ
λμVσν − Γσ

λνVμσ; ðA3Þ

dμVν ¼ ∂μVν þ Γν
μσVσ; ðA4Þ

dμVμ ¼ ∂μVμ þ Γμ
μσVσ; ðA5Þ

dμVμν ¼ ∂μVμν þ Γμ
μσVσν þ Γν

μσVμσ; ðA6Þ

dλVμν ¼ ∂λVμν þ Γμ
λσV

σν þ Γν
λσV

μσ; ðA7Þ

where d denotes covariant derivative, ∂ is partial derivative,
g ¼ det gμν and Γν

μλ are Christoffel symbols which are
expressed as

Γν
μλ ≡ Γν

λμ ¼
1

2
gνσð∂μgσλ þ ∂λgσμ − ∂σgμλÞ: ðA8Þ

APPENDIX B: CHRISTOFFEL SYMBOLS IN DE
SITTER COORDINATES

Starting from the definition of the Christoffel symbol
(A8) and using the de Sitter spacetime metric (33), the
following Christoffel symbols, which do not vanish, can be
obtained:

Γρ
θθ ¼ sinh ρ cosh ρ; ðB1Þ

Γρ
ϕϕ ¼ sin2 θ sinh ρ cosh ρ; ðB2Þ
Γθ
ρθ ¼ Γθ

θρ ¼ tanh ρ; ðB3Þ
Γθ
ϕϕ ¼ − sin θ cos θ; ðB4Þ

Γϕ
ρϕ ¼ Γϕ

ϕρ ¼ tanh ρ; ðB5Þ
Γϕ
θϕ ¼ Γϕ

ϕθ ¼ cot θ: ðB6Þ

APPENDIX C: CONFORMAL
TRANSFORMATION OF
CHRISTOFFEL SYMBOLS

In the de Sitter spacetime metric, the Christoffel symbol
equation (A8) is written as below where we use the trans-
formation law of themetric tensor equation (35) to obtain the
conformal transformation of the Christoffel symbol

Γ̂ν
μλ ¼

1

2
ĝνσ½∂μĝσλ þ ∂λĝσμ − ∂σ ĝμλ�;

using Eq: ð35Þ;

Γ̂ν
μλ ¼

1

2
Ω−2gνσ½∂μðΩ2gσλÞ þ ∂λðΩ2gσμÞ − ∂σðΩ2gμλÞ�;

¼ e2φgνσ

2
½∂μðe−2φgσλÞ þ ∂λðe−2φgσμÞ − ∂σðe−2φgμλÞ�;

¼ e2φgνσ

2
½2e−φ∂μðe−φÞgσλ þ e−2φ∂μðgσλÞ

þ 2e−φ∂λðe−φÞgσμ þ e−2φ∂λðgσμÞ
− 2e−φ∂σðe−φÞgμλ − e−2φ∂σðgμλÞ�;

¼ gνσ

2
½∂μðgσλÞ þ ∂λðgσμÞ − ∂σðgμλÞ

þ eφð∂μðe−φÞgσλ þ ∂λðe−φÞgσμ − ∂σðe−φÞgμλÞ�;
¼ Γν

μλ þ eφ½δνλ∂μðe−φÞ þ δνμ∂λðe−φÞ − ∂σðe−φÞgνσgμλ�;
Γν
μλ ¼ Γ̂ν

μλ þ δνλ∂μφþ δνμ∂λφ − ĝνσ ĝμλ∂σφ: ðC1Þ

Here we note that for φðxÞ ¼ const:, one has Γ̂ν
μλ ¼ Γν

μλ.
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