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In the present work, it is intended to calculate and study the single and double differential cross sections
of the prompt single-photon production as a function of produced single-photon transverse momentum and
rapidity, in the high-energy p − pðp̄Þ colliders, such as LHC and TEVATRON. The differential cross
sections of prompt single-photon production are calculated in the kt-factorization frameworks using various
angular ordering unintegrated parton distribution functions (UPDF), namely the Kimber et al. and Martin
et al. procedures. These scheme-dependent UPDF are generated in the leading and next-to-leading order
levels to predict and analyze the different partonic contributions to the above cross sections. The above two
procedures utilize the phenomenological parton distribution functions (PDF) libraries of Martin et al., i.e.,
MMHT2014. It is shown that the calculated prompt single-photon production differential cross sections in
the above frameworks are relatively successful in generating satisfactory results compared to the
experimental data of different collaborations, i.e., CDF (2017), ATLAS (2017), CMS (2011) and D0
(2006), as well as the other theoretical predictions such as collinear factorization Monte Carlo calculations
(the JETPHOX, SHERPA, PYTHIA, and MCFM methods). Also, for a closer precision, the differential
cross section for the NLO gluon-gluon, quark-gluon, and quark-(anti)quark processes are calculated. An
extensive discussion and comparison are made regarding (i) the behavior of the contributing partonic
subprocesses, (ii) the possible double-counting between the 2 → 2 and 2 → 3 subprocesses, i.e., gluons-
fusion, in our calculated prompt single-photon production differential cross-sections and (iii) the sensibility
check of our results to the different angular ordering constraints.
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I. INTRODUCTION

The measurement of prompt single-photon production
differential cross sections in the proton-(anti)proton colli-
sions is a powerful and vital test for a scrutiny check of
theoretical pQCD. The results of these measurements are
used to: (1) determine and study the QCD strong coupling
constant, αs, [1–4], (2) investigate the resummation of
threshold logarithmic behavior in the pQCD and electro-
weak corrections [5] and, (3) to analyze the background
processes for the measurements of the Higgs boson [6], as
well as the study of photon isolations and fragmentation
behaviors [7,8].
The dominant prompt single-photon production in the

hadron-hadron collisions at the CERN (LHC) and Fermilab
(TEVATRON) laboratories proceeds via the qðq̄Þ þ g →
γ þ qðq̄Þ Compton scattering process [9] in the large
photon transverse momentum. But this is not the case at
the small momentum regions [10]. Therefore, these

measurements are sensitive to the gluon density of proton
or antiproton, in the leading order (LO) [11–20]. The
results of these reactions play an important role in deter-
mining the parton distribution functions (PDF), i.e.,
aiðx; μ2Þ, where x and μ2 are the longitudinal momentum
fraction and the hard scale, respectively. On the other hand,
because of the above transverse momentum dependent,
they can also provide a useful piece of information about
the unintegrated PDF (UPDF), fiðx; k2t ; μ2Þ, where kt is the
parton transverse momentum [21,22].
The present report is the extension of our recent

calculations for the prompt photon pair production [21].
It is intended to evaluate and analyze the behaviors of
different UPDF and angular ordering constraints in calcu-
lating the prompt single-photon production differential
cross sections, i.e., Pþ PðP̄Þ → γ þ X. This process
mostly happens in the parton-(anti)parton high-energy
scattering. The analysis of the single and double differential
cross sections of prompt single-photon production data are
performed at the LHC and TEVATRON colliders by many
experimental collaborations, at the some center-of-mass
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energies. At LHC, the ATLAS and CMS collaborations
measure the prompt single-photon production events at
7, 8, and, 13 TeV center of mass energies [9,23–29].
Similar measurements were also performed at the
TEVATRON at Fermilab by the D0 and CDF collaborations
at 1.96 TeV [30–33]. However, we intend to focus on the
recent ones, such as the CDF and D0, CMS and ATLAS
collaborations at the center of mass energies of 1.96, 7, and
13 TeV [9,29,32,33], respectively.
Today, different experimental collaborations convention-

ally use the PDF to describe and predict their data by
performing the collinear factorization simulation and the
Monte Carlo techniques, such as JETPHOX, SHERPA,
PYTHIA, and MCFM [34–37]. The SHERPAMonte Carlo
event generator provides the simulation of high energy
reactions of particles in the hadron-hadron collisions. The
SHERPA results include all of the tree-level matrix element
amplitudes with the one-photon and up to the three partons.
This method features a parton-jet matching procedure to
avoid an overlap between the phase-space descriptions
given by the fixed-order matrix-element subprocesses and
the showering/hadronization, in the multijet simulation
[32,34]. The JETPHOX technique is designed to calculate
the differential cross section of hadron-hadron reactions to
the photon/hadron plus jet. By integrating over the jet, one
can also get the single inclusive photon-hadron cross
section at the next-to-leading order (NLO) level [33,36].
The PYTHIA program is a standard tool for the generation of
events in the high-energy collisions and, its predictions
include the 2 → 2 matrix-element of subprocesses, in
which the higher-order collinear factorization corrections
are included by the initial and final-state parton showers
[32,35]. Finally, the MCFM is a parton-level Monte Carlo
computing code that gives the NLO predictions by includ-
ing the nonperturbative fragmentation at the LO level for a
range of processes at the hadron colliders [29,37].
The above PDF are the solutions of the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
equations [38–41], enriched by the extended collinear
factorization supplements like the parton fragmentation
and the parton showers effects. The DGLAP evolution
equations, however, are based on the strong ordering
assumption, which generally neglects the transversemomen-
tum, kt, of the emitted partons. It is frequently pointed out
that undermining the contributions coming from the trans-
verse momentum of partons may severely harm the accuracy
of calculations. This indicates the necessity of introducing
some transverse momentum dependent (TMD) PDF, e.g.,
through the Catani-Ciafaloni-Fiorani-Marchesini, (CCFM)
[42–48] or the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [49–
53] evolution equations. In general, using and solving the
CCFM and BFKL equations are difficult and proved to face
complexity.On the other hand, themain feature of theCCFM
equation, i.e., angular ordering constraint, can be particularly
used for the gluon evolution.

One should note that, in the most of high energy hadron-
hadron collisions, the x values of colliding partons are

rather small (x1x2 ≅
μ2

s ≪ 1, where s is the center of mass
energy), since the fraction of the incoming longitudinal
momentum becomes large only when the very massive
states near the threshold are produced. So, besides collinear
factorization calculations, the kt-factorization approach can
be applied for resumming the hard cross sections at the
same order. The UPDF kt-factorization scheme is specially
designed for the small x limit in which the hard scale is
fixed, and the energies are rather very high. However, there
are also various transverse momentum dependent factori-
zation (TMDF) [21,54], which are usually used in the semi-
inclusive processes in the nonperturbative region [21].
To overcome these problems, the Martin group

developed the Kimber-Martin-Ryskin (KMR) and the
Martin-Ryskin-Watt (MRW) approaches [55–59] in the
kt-factorization framework. Each approach is built based
on the (LO and NLO) DGLAP evolution equations and
improved with different visualizations of the angular order-
ing constraint. The KMR and MRW formalisms in the LO
and NLO levels were investigated intensely in the recent
years; see the Refs. [21,60–71].
The kt-factorization becomes more accurate by using

doubly UPDF (DUPDF), i.e., (z; kt)-factorization, in which

the partons have the virtuality − k2t
ð1−zÞ [72]. It is based on the

DDT formula [73] in the pQCD with this difference that it
goes beyond the double-leading-logarithmic approximation
(DLLA) [72,73]. We hope in our future works we could
examine the effect of DUPDF on different observables [74].
On the other hand, as it is mentioned in the Ref. [72], the
application of the integrated PDF in the last evolution
step, should be generated through a new global fit to the
experimental data using the kt-factorization procedure.
In the Ref. [72], this effect was estimated to lower the
proton structure functions by 10 percent. However, we
should make this note that, as it is discussed in the
Refs. [21,58,72], the kt-factorization should not be as good
as collinear factorization approaches, on the other hand, it
is more simplistic in this scenes that it saves an enormous
computational time [21,58,72].
As we said before, we intend to study the prompt single-

photon production and calculate the differential cross
sections numerically to investigate the different behaviors
of the cross section by implementing various angular
ordering constraints. For this purpose, we use the lowest
order sets of matrix elements and the kt-factorization with
the input KMR [55], and the MRW UPDF in the LO and
NLO levels [58]. Afterward, our results are compared to the
existing experimental data given by the D0, CDF, ATLAS,
and CMS collaborations [9,29,32,33], as well as some of
the collinear factorization works based on the Monte Carlo
simulations [34–37] (JETPHOX, SHERPA, PYTHIA,
and MCFM).
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There exist some articles in which the single-photon
productions were investigated with the kt-factorization
formalism [22,56,57,75–81], where some conflicts acquire
in their calculations. We present some details about these
open problems in the Sec. III. It is also noted in the
Ref. [22] that the UPDF generated in some of the above
Refs. [75–81], are not the original version introduced by
Kimber et al. [55] nor the one suggested by Martin et al.
[58]. So these discrepancies should be investigated in
details, as it is pointed out in the Refs. [21,22]. Also, a
detailed study of the impact of the NLO subprocesses, i.e.,
the gluon-gluon, quark-gluon, and quark-(anti)quark (see
Fig. 10) are performed and the results are presented for
comparison in Sec. III. It should be noted that this prompt is
calculated directly from the NLO perturbation of these
processes. However, there are other methods that can
indirectly calculate the share of these subprocesses. In
these methods, the effects of higher-order perturbation are
considered as an effective correction in the LO order [82].
Similar to the discussion made in our photon pair report

[21]: (1) The off-shell matrix elements that are needed for
differential cross sections calculations are gauge invariance,
especially since we are working in the small x region (see,
e.g., the Refs. [21,76] for details). (2) There is not any
double-counting between the 2 → 2 and 2 → 3 subpro-
cesses [69]. Because one should consider the KMR or
MRW parton densities in the kt-factorization formalism
correspond to the probability functions similar to the PDF
in the collinear case, since all the splittings and the real
emissions of the partons, including the last emission, are
factorized in the UPDF [83] (note that the DGLAP
evolution equation derived by integrating over the trans-
verse momentum of partons by ignoring the kt dependent of
the PDF). On the other hand, any changes into the UPDF
certainly influence the normalization relation between the
UPDF and the original PDF [see the Eq. (24)]. However,
similar to the Ref. [21], both points (1) and (2) will be
discussed through this paper.
In the following, first, the theoretical framework of

prompt single-photon production events (II A), a brief
introduction to the KMR and LO and NLO MRW pre-
scriptions (II B) and, the experimental conditions (II C) are
presented in the Sec. II. The Sec. III is devoted to our
numerical results (III A) and discussions (III B). Finally, a
brief conclusion is presented in the Sec. IV.

II. THE THEORETICAL FRAMEWORK OF
DIFFERENTIAL CROSS SECTIONS PROMPT

SINGLE-PHOTON PRODUCTION

A. The cross section

The prompt single-photon production events are an
important and useful process to study the PDF. Therefore,
it would be interesting to investigate the partonic structure of
the proton at each energy while applying the necessary

constraints on the experiments. According to Ref. [33] the
photons generated in the hard interaction between two
partons mainly come from the quark-gluon Compton
scattering or the quark-anti-quark annihilation in the hadron
collisions. Generally, the photons are so-called prompt, if
they are coupled to the interacting quarks [12,84–86].On the
other hand, these photons do not produce from the meson
decays. Such events are mostly happened in the collinear
factorization directly through the qðq̄Þ þ g → γ þ qðq̄Þ and
qþ q̄ → γ þ g processes [87]. Usually, in the experimental
measurements and theoretical calculations, it is focused on
those processes which provide a direct probe of the hard
subprocess dynamics, since the produced photons are
mostly insensitive to the final-state hadronization
[7,33,88–95]. At the LO collinear factorization and in
the prompt single-photon production where the photon
transverse momentum is rather large, the quark-gluon
Compton scattering has a larger contribution with respect
to the quark-antiquark annihilation process. However, this
calculation was done up to the NLO collinear factorization
[36,96–98] and the results are in agreement to the data, but
some open questions are remaining [99–101].
In general, the prompt single-photon production in the

hadron-hadron colliders can be described as follows:

Aþ B → aþ b → γ þ X;

where a and b are the incoming partons which are emitted
by the parent hadrons (A and B). In this work, the sets of
LO 2 → 2 and NLO 2 → 3 (see the Figs. 1, 9 and 10 for the
LO and NLO level subprocesses and the related discussion
about the very small contributions of NLO level processes
given in the Eq. (2) to cross section in the last part of
Sec. III B). The Feynman diagrams are used to demonstrate
the partonic sector of the above processes. These are
represented as the following two LO partonic and one
NLO subprocesses, respectively:

qðq̄Þ þ g → γ þ qðq̄Þ;
qþ q̄ → γ þ g;

gþ g → γ þ qþ q̄; ð1Þ

namely “qg” (LO level), “qq” (LO level), and “gg” (NLO
Level) subprocesses. Also, the share of the other three NLO
level subparatonic contributions such as, quark-gluon and
quark-(anti)quark subprocesses:

qðq̄Þ þ g → γ þ qðq̄Þ þ g;

qðq̄Þ þ qðq̄Þ → γ þ qðq̄Þ þ qðq̄Þ;
qþ q̄ → γ þ gþ g; ð2Þ

are calculated separately (see Figs. 9, 10 and 11). It should
be noted that in the present work, we did not intend to
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calculate the prompt single-photon production cross
section at the NLO level. Only to show that there is
not any double-counting between the 2 → 2 and 2 → 3
subprocesses, the gg subprocess which is very small
compared to qg and qq subprocesses in the LO level, is
added to the all of prompt single-photon production cross
section calculations. However, as we stated above the rest
of NLO level subprocesses are discussed in Sec. III B and
Fig. 11, which have much smaller effects to the differ-
ential cross sections. It is also worth mentioning that for
extracting the set of 2 → 3 NLO Feynman diagrams
according to the reference [102–107], one can use the
set of 2 → 2 LO Feynman diagrams by adding an

additional parton emitted from the initial or final partons
(collinear factorization approach).
In the case of NLO contributions, the real and virtual

corrections should be considered to reach to the finite
results and avoid the possible UV-divergence. One can
follow this issue for example in the recent review by Konig
[108] as well as Passarino-Veltman reduction [109,110]
(also see, QCDLoop [111] or LoopTools [112] numerical
libraries). Some divergences also appear because of the
small kt (≪ μ) of the outgoing parton [110]. But since this
parton is in the direction of outgoing photons, it is
eliminated by excluding the above mentioned regions in
our calculation and also implementing isolated and

(a)

(b)

(c)

FIG. 1. The different Feynman diagrams of prompt single-photon production in the lowest order in each subprocess, i.e.,
(a) qðq̄Þ þ g → γ þ qðq̄Þ, (b) qþ q̄ → γ þ g and (c) gþ g → γ þ qþ q̄.
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separated cones in this computation. In this work, we
applied the same method as Refs. [21,36] for the phase
space cut.
To carry out the necessary calculations, one should fix

the kinematics of these processes. Therefore, the 4-momen-
tum vectors of the colliding protons are written as:

P1 ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ; P2 ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ;

where s is the center-of-mass energy.
Using the modified Sudakov decomposition in the high

energy [113,114],

ki ¼ xiPi þ ki;t; ð3Þ

then, the 4-momenta of the ith parton can be written as a
function of the transverse momenta, ki;t, and the longi-
tudinal fraction of the momentum, xi. These are assumed
as inherited parameters for a given parton. Considering
the subprocesses in the equations (2) and (2) and the
conservation law of energy-momentum, the relation
between the Bjorken variable (x), the transfer momentum
(kit), and the rapidity (yi) is obtained for the 2 → 2
subprocesses as:

x1 ¼
1ffiffiffi
s

p ðkγt eyγ þmt;1ey1Þ; ð4Þ

x2 ¼
1ffiffiffi
s

p ðkγt e−yγ þmt;1e−y1Þ ð5Þ

and for the 2 → 3 subprocesses as:

x1 ¼
1ffiffiffi
s

p ðkγt eyγ þmt;1ey1 þmt;2ey2Þ; ð6Þ

x2 ¼
1ffiffiffi
s

p ðkγt e−yγ þmt;1e−y1 þmt;2e−y2Þ; ð7Þ

where yγ and y1 and y2 are the photon and the outgoing
partons rapidities, respectively. Also, mt;1 and mt;2 are the
transverse masses of outgoing partons:

m2
t;i ¼ m2

i þ k2t;i: ð8Þ
Note that mt;1 becomes kt;1 for the gluons [113,114].
So the incoming partons are off-shell, i.e., they carry

transverse momentum and should be described by the
corresponding UPDF of the kt-factorization. As a result, the
prompt single-photon production differential cross sections
in the kt-factorization frameworks for the 2 → 2 subpro-
cesses are [21,76,81]:

σqgðP1 þ P2 → qðq̄Þ þ g → γ þ qðq̄ÞÞ ¼
Z

dk21;t
k21;t

dk22;t
k22;t

dp2
γ;tdyγdy1

dφ1

2π

dφ2

2π

dφγ

2π

×
jMðq�ðq̄�Þ þ g� → γ þ qðq̄ÞÞj2

16πðx1x2sÞ2
fqðq̄Þðx1; k21;t; μ2Þfgðx2; k22;t; μ2Þ; ð9Þ

σqq̄ðP1 þ P2 → qþ q̄ → γ þ gÞ ¼
Z

dk21;t
k21;t

dk22;t
k22;t

dp2
γ;tdyγdy1

dφ1

2π

dφ2

2π

dφγ

2π

×
jMðq� þ q̄� → γ þ gÞj2

16πðx1x2sÞ2
fqðx1; k21;t; μ2Þfq̄ðx2; k22;t; μ2Þ; ð10Þ

and for the 2 → 3 subprocess is,

σggðP1 þ P2 → gþ g → γ þ qþ q̄Þ ¼
Z

dk21;t
k21;t

dk22;t
k22;t

dp2
γ;tdp2

1;tdyγdy1dy2
dφ1

2π

dφ2

2π

dφγ

2π

dψ1

2π

×
jMðg� þ g� → γ þ qþ q̄Þj2

256π3ðx1x2sÞ2
fgðx1; k21;t; μ2Þfgðx2; k22;t; μ2Þ; ð11Þ

where the total differential cross sections can be written as:

σT ¼ σqg þ σqq̄ þ σgg

The various dispute about the consideration of above 2 → 2 and 2 → 3 subprocesses, as it was mentioned in the
introduction will be discussed in Sec. III [21,69,76,78,81,83].
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For calculating the single and double-differential
cross section of prompt single-photon production in the
Eqs. (9), (10), and (11), the matrix element squared, jMj2,
of the subprocesses of the Eq. (1) must be calculated.
By considering that the incoming partons must be off-
shell, the matrix element, M, for the subprocesses,
which introduced in these equations are defined in the
Appendix A and, their Feynman diagrams are displayed
in Fig. 1. Some of the squared matrix elements are also
given in Refs. [22,76,81]. The VEGAS algorithm is
considered for performing the multidimensional integra-
tion of the total differential cross section in Eqs. (9)
to (11).

B. The choice of UPDF

The UPDF can be directly generated from the PDF, by
using different prescriptions. In this work, we use three
approaches, the so called KMR [55], LO and NLO MRW
[58], to obtain the UPDF from the corresponding PDF and
substitute them in Eqs. (9), (10), and (11).
The KMR UPDF are generated such that the partons

evolve from the starting PDF parametrization up to the
scale kt according to the DGLAP evolution equations [55].
In the KMR method, the partons emit in the single
evolution ladder (carrying only the k2t dependency) and
get convoluted with the second scale, μ2, at the hard
process. The kt is assumed to be depend on the scale μ2,
without any real emission, and by summing over the virtual
contributions via the Sudakov form factor, Taðk2t ; μ2Þ. So,
the general forms of the KMR UPDF are

faðx;k2t ;μ2Þ

¼Taðk2t ;μ2Þ
X
b¼q;g

�
αSðk2t Þ
2π

Z
1−Δ

x
dzPðLOÞ

ab ðzÞb
�
x
z
;k2t

��
;

ð12Þ

where Taðk2t ; μ2Þ are
Taðk2t ;μ2Þ

¼exp

�
−
Z

μ2

k2t

αSðk2Þ
2π

dk2

k2
X
b¼q;g

Z
1−Δ

0

dz0PðLOÞ
ab ðz0Þ

�
: ð13Þ

Ta are considered to be unity for kt > μ. Δ is proposed for
the soft gluon and the quark radiations.
To determine Δ, the angular ordering constraint is

imposed. The angular ordering originates from the color
coherence effects of the gluon radiations [55]. So Δ is

Δ ¼ kt
μþ kt

:

There is also the strong ordering constraint, i.e., Δ ¼ kt
μ

[21,57,72,115].PðLOÞ
ab ðzÞ are the LO splitting functions [54].

The LO MRW UPDF are similar to the KMR ones, but
with the different treatment of the angular ordering con-
straint. In this approach angular ordering constraint cor-
rectly imposed only on the soft gluon radiations, i.e., the
diagonal splitting functions PqqðzÞ and PggðzÞ [58]. So, the
LO MRW prescription is written as:

fLOq ðx; k2t ; μ2Þ ¼ Tqðk2t ; μ2Þ
αSðk2t Þ
2π

Z
1

x
dz

�
PðLOÞ
qq ðzÞ x

z
q

�
x
z
; k2t

�
Θ
�

μ

μþ kt
− z

�
þPðLOÞ

qg ðzÞ x
z
g

�
x
z
; k2t

��
; ð14Þ

with

Tqðk2t ; μ2Þ ¼ exp

�
−
Z

μ2

k2t

αSðk2Þ
2π

dk2

k2

Z
zmax

0

dz0PðLOÞ
qq ðz0Þ

�
; ð15Þ

for the quarks and

fLOg ðx; k2t ; μ2Þ ¼ Tgðk2t ; μ2Þ
αSðk2t Þ
2π

Z
1

x
dz

�
PðLOÞ
gq ðzÞ

X
q

x
z
q

�
x
z
; k2t

�
þPðLOÞ

gg ðzÞ x
z
g

�
x
z
; k2t

�
Θ
�

μ

μþ kt
− z

��
; ð16Þ

with

Tgðk2t ; μ2Þ ¼ exp

�
−
Z

μ2

k2t

αSðk2Þ
2π

dk2

k2

�Z
zmax

zmin

dz0z0PðLOÞ
gg ðz0Þ þ nf

Z
1

0

dz0PðLOÞ
qg ðz0Þ

��
; ð17Þ

for the gluons. In Eqs. (15) and (17), zmax ¼ 1 − zmin ¼ μ=ðμþ ktÞ [59].
Martin et al. [58] also proposed the NLO MRW formalism. This method is based on the DGLAP evolution equation,

utilizing the NLO PDF and the corresponding splitting functions [58]. The general form of the NLO MRW UPDF is
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fNLOa ðx; k2t ; μ2Þ ¼
Z

1

x
dzTa

�
k2 ¼ k2t

ð1 − zÞ ; μ
2

�
αSðk2Þ
2π

X
b¼q;g

P̃ðLOþNLOÞ
ab ðzÞ × bNLO

�
x
z
; k2

�
Θ
�
1 − z −

k2t
μ2

�
; ð18Þ

with the “extended” NLO splitting functions, P̃ðiÞ
abðzÞ, being defined as:

P̃ðLOþNLOÞ
ab ðzÞ ¼ P̃ðLOÞ

ab ðzÞ þ αS
2π

P̃ðNLOÞ
ab ðzÞ; ð19Þ

and

P̃ðiÞ
abðzÞ ¼ Pi

abðzÞ − Θðz − ð1 − ΔÞÞδabFi
abPabðzÞ; ð20Þ

where i ¼ 0 and 1 stand for the LO and the NLO, respectively. Also, the angular ordering constraint is defined via the
Θðz − ð1 − ΔÞÞ in which Δ is defined as [58]:

Δ ¼ k
ffiffiffiffiffiffiffiffiffiffi
1 − z

p

k
ffiffiffiffiffiffiffiffiffiffi
1 − z

p þ μ
:

Finally, the Sudakov form factors in the NLO MRW approach are defined as:

Tqðk2; μ2Þ ¼ exp

�
−
Z

μ2

k2

αSðq2Þ
2π

dq2

q2

Z
1

0

dz0z0½P̃ð0þ1Þ
qq ðz0Þ þ P̃ð0þ1Þ

gq ðz0Þ�
�
; ð21Þ

Tgðk2; μ2Þ ¼ exp

�
−
Z

μ2

k2

αSðq2Þ
2π

dq2

q2

Z
1

0

dz0z0½P̃ð0þ1Þ
gg ðz0Þ þ 2nfP̃

ð0þ1Þ
qg ðz0Þ�

�
: ð22Þ

Note that the integral intervals for dkt integration, i.e.,
the Eqs. (9), (10) are ð0;∞Þ, so one can choose an upper
limit for these integrations, say ki;max, several times bigger
than the hard scale μ. Also, kt;min ¼ μ0 ∼ 1 GeV, is
considered as the lower limit that separates the nonpertur-
bative and the perturbative regions, by assuming that,

1

k2t
faðx; k2t ; μ2Þjkt<μ0 ¼

1

μ20
aðx; μ20ÞTaðμ20; μ2Þ: ð23Þ

Eventually, the density of patrons are constant for kt < μ0
at fix x and μ [58]. For the above calculations, we use the
LO-MMHT2014 PDF libraries [116] for the KMR and the
LOMRWUPDF schemes, and the NLO-MMHT2014 PDF
libraries [116] for the NLO MRW formalism. A more
complicated extrapolation of the contribution from kt ≤ μ0,
which ensures the continuity of faðx; k2t ; μ2Þjkt≤μ0 , is given
in Refs. [58,72]. This is done by a polynomial expansion of
faðx; k2t ; μ2Þ for the requirement of k2t behavior of the
UPDF at the small k2t .

C. The experimental conditions

The fragmentation contributions [10] are neglected in
our calculations, since the isolation cut application [32,33]
reduces these contributions to less than 10 percent of
the cross section. Furthermore, the isolation cuts and
additional conditions which preserve our calculations from

divergences were specially discussed in Refs. [21,80]
as follows: The isolated-cone is responsible for distinguish-
ing the “nonprompt decay photons” from the prompt-
photons. This constraint requires that the transverse
energy EHadron

t (in a cone with the angular radius

R ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη − ηγÞ2 þ ðϕ − ϕγÞ2

q
) to be less than a few GeV

according to each experiment, where η and ϕ are the
pseudorapidities and the azimuthal angle plane of the
hadron and R ∼ 0.4–0.7, depending on each experimental
collaborations. Other constraints, such as the pt-threshold
of prompt-photons, the pseudorapidity regions, etc., are
imposed according to the settings of the individual
experiments.

III. RESULTS AND DISCUSSIONS

A. The numerical results

We perform a set of numerical calculations for the
production of the single-photon at the LHC and
TEVATRON colliders, using Eqs. (9), (10) and (11), within
the kt-factorization and the different UPDF approaches.
The results are separated into the 1.96, 7, and 13 TeV
center-of-mass energy (ECM ¼ ffiffiffi

s
p

), in accordance with the
specifications of existing experimental data [9,29,32,33].
The ratio of our prompt single-photon production differ-
ential cross sections calculation to those of experimental
data at each bin (R) are separately presented (see the
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panels (d) of our figures). We also compare our results with
those of Monte Carlo simulations which were introduced in
the introduction.
In the Figs. 2 and 3 the reader is presented with the

double differential cross sections for the production of a
single-photon (d2σ=dpγ;tdy) as a function of its transverse
momentum (pγ;t) at ECM ¼ 1.96 TeV. These results are in
accordance with the experimental data of the D0 [33] and
CDF [32] collaborations by applying specific experimental
conditions. Similarly, in Figs. 4–8, the same results are
present for ATLAS measurements [9] at ECM ¼ 13 TeV
and CMS collaboration at ECM ¼ 7 TeV, respectively.
Within each of these figures, the panel (a) illustrates

our results from the utilization of the KMR UPDF, while
the panels (b) and (c) exhibit those of the LO and NLO
MRW UPDF, respectively. In each of these panels,
the contributions from the partonic subprocesses are
demonstrated as follows: the red dashed histograms for
qðq̄Þþg→γþqðq̄Þ, the green dotted lines for qþ q̄ →
γ þ g and the blue dotted-dash lines for gþ g → γ þ qþ q̄.
The sum of these contributions for each approaches, i.e.,
KMR and LO and NLO MRW, are shown with the black
solid lines. The corresponding uncertainty regions [see the
blue hatched areas in the panel (a)] are calculated, only for
the KMR framework, by manipulating the hard-scale μ by a
factor of 2, i.e., 1

2
μ to 2μ. A comparison is also made

between all three UPDF approaches and the results of
others theoretical calculations, as explained in the corre-
sponding captions of figures [see the panels (d)]. Since the
experimental results are given at different bins, only in the
panels (d) in which the our final differential cross sections
are presented, we average over our results corresponding to
each experimental bin.
In the ATLAS collaboration data [9], the corresponding

measurements were carried out within the following
rapidity regions:
(1) jyj < 0.6,
(2) 0.6 < jyj < 1.37,
(3) 1.56 < jyj < 1.81,
(4) 1.81 < jyj < 2.37,

which presented in Figs. 4–7, respectively.

B. Discussions

In the panel (a) of Figs. 2 and 3, it is clear that the qg
subprocess has large contribution, which confirms the
behavior that was reported in Refs. [9,33]. Also, in the
small pγ;t, the contribution of gg subprocesses is larger than
those of qq. However, their values become close together
around pγ;t ¼ 30–50 GeV, but in the large photon momen-
tum transfer, the portion of qq contribution becomes
enhanced with respect to the gg subprocess. The same
behavior is observed in the panels (b) and (c), which
corresponds to utilizing the LO and NLO MRW kt-
factorization frameworks. Although, the qg subprocesses
still have a dominant contribution, but the crossing interval

of gg and qq curves behave differently in each framework.
In the panel (d), the final result of three approaches are
displayed for the comparison related to the experimental
data [33]. It becomes clear that, there is no significant
difference between each kt-factorization scheme. Despite
differences in the behavior of the partonic subprocesses,
these results are relatively similar and in agreement with the
experimental findings. However, the small differences
which originated from the application of above three
schemes, are the effects of different angular ordering
constraints. The ratios of our results to those of exper-
imental data are demonstrated at the bottom of these panels
(R). It is observed that at the small photon transverse
momentum regions there are good agreement between the
present calculation and the data.
Similar calculations are also made for ECM ¼ 13 TeV,

corresponding to the experimental data of Ref. [9]. The
results are presented in the Figs. 4–7. Here, the rapidity
region is separated into 4 sectors. The general behaviors of
the contributing subprocesses are similar to the 1.96 TeV
case. With increasing the center-of-mass energy of the
hadronic collision, the results coming from the NLO MRW
framework maintain their relative success in predicting of
the experimental data. On the other hand, a tangible
difference in the precision of the LO MRW and KMR
predictions can be observed.
By moving up between the rapidity regions, it is evident

that by increasing the rapidity, the crossing intervals
between the qq and gg subprocesses are moved to the
small transverse momentum regions. However, they com-
pletely disappear in the 1.81 < jyj < 2.37 rapidity interval.
Actually, the portion of qq contribution is enhanced with
respect to the gg subprocesses, while the qg contribution is
strongly dominated.
Similar conclusion as above can be made aboutR in the

panels (d) of these figures with this difference that the NLO
MRW differential cross sections are closer to the data.
The same discussion, as the one given above, can be

made about Fig. 8, but with this difference that the
contribution of gg becomes larger in the small photon
transverse momentum. This is expected since the center
of mass energy is much high with respect to Figs. 2 and 3.
Note that in Figs. 4–7, the ATLAS data probing the
photon transverse momentum form much lager values,
i.e., 125 GeV. On the other hand, as it was pointed
out in the reference [21], in the fragmentation region
(pγ;t ≤ 30 GeV) the LO MRW can support the data
much better.
In all of our figures, we also present the results of

theoretical prompt single-photon production differential
cross section calculations of different theoretical groups
mentioned in the introduction, such as, JETPHOX,
SHERPA, PYTHIA, and MCFM. A good agreement can
be seen between our different kt-factorizations calculations
and these collinear factorization simulation methods.
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FIG. 2. The double-differential cross section for the production of a single-photon as a function of the transverse momentum of the
resulting photon. The corresponding numerical calculations are carried out within the given rapidity region, utilizing the UPDF of KMR,
LO and NLOMRW for ECM ¼ 1.96 TeV. The results are shown in the panels (a), (b) and (c), respectively. These panels also outline the
contributions of the involving partonic subprocesses. The uncertainty regions are designated via manipulating of the hard-scale of the
processes by a factor of 2. The panel (d) presents a comparison between these results against each other and those of the experimental
data of the D0 collaboration at each bin, [33] as well as those of JETPHOX [33,36]. In the bottom of this panel the ratio of differential
cross sections (R) to that of experimental data is also presented (red-circle, green-triangle and blue-square are for KMR, LO MRW, and
NLO-MRW, respectively).
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Similar to our photon pair report they are in the kt-angular
ordering constraint bound [21].
It should be pointed out that beside the NLO gg-fusion

process [see Eq. (2)], the channels qþ g → qþ gþ γ

(similar to its Compton LO counterpart), q� þ q̄� → γ þ
qþ q̄ and q� þ q̄� → γ þ gþ g also appears at the NLO
level. On the other hand, when considering the inclusive
photon production, the NLO diagrams can contain
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FIG. 3. The double-differential cross section for the production of a single-photon as a function of the transverse momentum of the
resulting photon. The notion of the figure is as in Fig. 2 with this difference that the data are selected from the CDF collaboration [32]
and also in the panel (d) the comparison is made with the results of SHERPA, PYTHIA and MCFM [32,34,35,37].

AMINZADEH NIK, MODARRES, OLANJ, and TAGHAVI PHYS. REV. D 103, 074020 (2021)

074020-10



(d)(c)

(a) (b)

1000

10-5

10-4

10-3

10-2

10-1

100

101

Atlas(2017)

dσ
/d

p t,γ
(p

b/
G

eV
)

p
t,γ

 (GeV)

NLO-MRW
q g
q q
g g

Total

|ηγ
|<0.6

√s=13 TeV

1000

0.5
1.0
1.5

R
at

io

p
t,γ

 (GeV)

1000

10-5

10-4

10-3

10-2

10-1

100

101

p
t,γ

 (GeV)

Atlas(2017)

LO-MRW

|ηγ
|<0.6

√s=13 TeV

dσ
/d

p t,γ
(p

b/
G

eV
)

q g
q q
g g

Total

1000

10-5

10-4

10-3

10-2

10-1

100

101

Atlas(2017)
Uncertainty

dσ
/d

p t,γ
(p

b/
G

eV
)

p
t,γ

 (GeV)

|ηγ
|<0.6

√s=13 TeV

q g

q q

g g

Total

KMR

10-5

10-4

10-3

10-2

10-1

100

101

dσ
/d

p t,γ
(p

b/
G

eV
)

√s=13 TeV

KMR
LO-MRW
NLO-MRW
SHERPA
PYTHIA8

• Atlas(2017)

|ηγ
|<0.6

FIG. 4. The differential cross section for the production of a single-photon as a function of the transverse momentum of the resulting
photon. The corresponding numerical calculations are carried out within the given rapidity boundaries (see the legends of the plots),
utilizing the UPDF of KMR, LO, and NLO MRW for ECM ¼ 13 TeV. The results are shown in the panels (a), (b), and (c) respectively.
These panels also outline the contributions of the involving partonic subprocesses. The uncertainty regions are designated via
manipulating of the hard-scale of the processes by a factor of 2. The panel (d) presents a comparison between these results against each
other and those of the experimental data of the ATLAS collaboration at each bin, as well as SHERPA and PYTHIA, [9,34,35]. In the
bottom of this panel the ratio of differential cross sections (R) to that of experimental data is also presented (red-circle, green-triangle
and blue-square are for KMR, LO MRW and NLO MRW, respectively).
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collinearly enhanced productions that should be factorized
properly [102–107,113]. Therefore, to increase the accu-
racy of the cross section calculations, the above subpro-
cesses are also computed at NLO level separately and their
diagrams are shown in Figs. 9 and 10 [the mathematical
formula of the cross sections for these processes are very
similar to that of Eq. (11)]. The result of this calculation is

presented in Fig. 11 which is based on the specific
condition that depicted at each panel. However, the shares
of these NLO subprocesses are clearly much less than
LO level and gluons-fusion NLO subprocesses, but in
over all these portions make the results better in the
small photon transverse momentum. In the Fig. 12, the
different contributions of the LO and NLO levels to
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FIG. 5. The differential cross section for the production of a single-photon as a function of the transverse momentum of the resulting
photon. The notion of the figure is as in Fig. 4.
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the differential cross sections as in the Fig. 11 are
shown separately. It is observed that the NLO subpro-
cesses have very small contributions and the LO level
mainly contribute to the cross sections. However for very
small photon transverse momentum the gluons-fusion
has sizeable contribution to the cross sections, as
it is pointed out by the CMS collaboration [29]. We
did not calculate the NLO virtual corrections to the

LO quark-gluon process. But they could be the same
order as the quark-gluon NLO process, which we have
already calculated. On the other hand, one should note that
we are not working in the collinear factorization frame
work, but the kt-factorization. There are quark, antiquark,
and gluon degrees of freedom inside of the UPDF such
that at LO level one can argue that, e.g., the KMR is a
semi-NLO approach.
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FIG. 6. The differential cross section for the production of a single-photon as a function of the transverse momentum of the resulting
photon. The notion of the figure is as Fig. 4.
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As it was pointed out in the introduction, we should also
discuss about the possible double-counting between our
2 → 2 and 2 → 3 subprocesses, which were presented in
our results. In some of the Refs. [75–81], the 2 → 3
subprocess is neglected, or if it is considered, only the
sea-quarks contributions in the UPDF are omitted on the

basis of double-counting, e.g., in the region where the
transverse momentum of one of the parton is as large as the
hard scale and the additional parton is highly separated in
the rapidity, from the hard process (multi-Regge region),
while the additional emission in the 2 → 3 subprocess was
subtracted. But, in general, one should consider the KMR
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FIG. 7. The differential cross section for the production of a single-photon as a function of the transverse momentum of the resulting
photon. The notion of the figure is as in Fig. 4.
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FIG. 8. The double-differential cross section for the production of a single-photon as a function of the transverse momentum of the
resulting photon. The corresponding numerical calculations are carried out within the given rapidity region, utilizing the UPDF of KMR,
LO, and NLO MRW for ECM ¼ 7 TeV. The results are shown in the panels (a), (b) and (c), respectively. These panels also outline the
contributions of the involving partonic subprocesses. The uncertainty regions are designated via manipulating the hard-scale of the
processes by factor of 2. The panel (d) presents a comparison between these results against each other and those of the experimental data
of the CMS collaboration at each bin, [29] as well as JETPHOX [29,36]. In the bottom of this panel the ratio of differential cross sections
(R) to that of experimental data is also presented (red-circle, green-triangle, and blue-square are for KMR, LO MRW, and NLO MRW,
respectively).
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or MRW UPDF in the kt-factorization calculations corre-
sponds to the non-normalized probability functions. They
are used as the weight of the given transition amplitudes
(the matrix elements in these cases). The transverse
momentum dependence of the UPDF come from consid-
ering all possible splittings up to and including the last
splitting, see Refs. [55,56,59,72], while the evolution up to
the hard scale without a change in the kt, due to virtual
contributions, is encapsulated in the Sudakov-like survival
form factor. Therefore, all splittings and real emissions of
the partons, including the last emission, are factorized in
the function fgðx; k2t ; μ2Þ, as its definition. The last emis-
sion from the generated UPDF, can not be disassociated and
to be count as the part of the 2 → 3 diagrams [69,83].
Recently, a detailed investigation of the above possible
double counting is also reported in Ref. [117], which
confirms our conclusions. One should also note that the
UPDF have to satisfy the condition given in the identity
equation:

xaðx;Q2Þ ≃
Z

Q2

dk2t k−2t fðx; k2t ; Q2Þ: ð24Þ

So any changes in the UPDF certainly affect the original
PDF definitions and it alters the whole formalism.

However, as it was discussed in the argument in
connection to our results, depending on the value of the
photon transverse momentum the 2 → 2 (large pγ;t) or
2 → 3 process, i.e., only gluons-fusion (small pγ;t) make
the main contributions to the prompt single-photon pro-
duction differential cross sections. To check our results, we
also made an approximation and modified our UPDF
according to Ref. [78] and found that the results are still
in the uncertainty bound region.
In the small x limit, see Ref. [21] and the reference

therein, the off-shell matrix element satisfies the gauge
invariance. However, there are Reggeization methods to
evaluate the off-shell quark density matrix elements which
inherently satisfy the gauge invariance in all regions [77]
or the vertex modification [118], using the auxiliary

(1) (2)

(3) (4)

(5) (6)

(7) (8)

FIG. 9. The different Feynman diagrams of prompt single-
photon production in the NLO order for the qðq̄Þ þ g → γ þ
qðq̄Þ þ g subprocess.
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FIG. 10. The different Feynman diagrams of prompt single-
photon production in the NLO level for the (a) qðq̄Þ þ qðq̄Þ →
γ þ qðq̄Þ þ qðq̄Þ and (b) qþ q̄ → γ þ gþ g subprocesses.
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photons and quarks. To be sure about the above problem,
we checked our result numerically similar to Ref. [76] as
well as imposing the on-shell matrix elements but with
the kt-factorization dynamics [56,57]. We did not find

much difference between the off-shell and on-shell
matrix elements calculations of differential cross sections,
especially in the large photon momentum transverse,
i.e., ≥30 GeV.
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FIG. 11. The differential cross sections for the production of a single-photon as a function of the transverse momentum of the resulting
photon. The corresponding numerical calculations are carried out within the given rapidity boundaries (see the legends of the plots),
utilizing the UPDF of KMR. The results of qðq̄Þ þ g → γ þ qðq̄Þ þ g, qðq̄Þ þ qðq̄Þ → γ þ qðq̄Þ þ qðq̄Þ and qþ q̄ → γ þ gþ g
subprocesses in the NLO level are shown in the legend of panels (a), (b), (c) and (d) by qg, qq and qqg, respectively.
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IV. CONCLUSION

Throughout this work, using the UPDF of kt-factoriza-
tion, i.e., the KMR and the LO andNLOMRW frameworks,
we calculated the rate of prompt single-photon production at
the LHC and TEVATRON colliders for the center-of-mass
energies of 7 and 13 and 1.96 TeV, respectively. We

compared our numerical results against each other and those
of the experimental data from the D0, CDF, CMS, and
ATLAS collaborations. Our aim was generally to illustrate
capability of the above UPDF to describe the experimental
measurements but do not to increase the precision of such
predictions, especially compared towell developed collinear
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FIG. 12. As Fig. 11 but for different contributions of the LO and NLO levels to the differential cross sections, see the legend of the
figure and the explanations in text.
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frameworks that are currently used by different collabora-
tions. It was demonstrated that the despite of the simplicity
of our model, (on the numerical sense), the UPDF of
kt-factorization are able to successfully describe the exper-
imental measurements. The further increase in the precision
of our calculations is achievable by adding the higher-order
and radiation corrections into the matrix elements as well as
providing more accurate UPDF via undergoing a complete
phenomenological global fit to the existing deep inelastic
data [72,115]. Also, for increasing the accuracy, we added
the other NLO level subprocesses contributions to the
differential cross sections by using the Feynman rules.
These processes increased the precision of result only in
the small pt;γ .
As it was mentioned in Secs. I and II, the difference in

calculating the differential cross sections with the on-shell
or the off-shell matrix element, can affect the results at the
small photon momentum transverse regions (≤30 GeV)
and one can conclude that in this region the gauge
invariance of the off-shell matrix elements become
important. So, on this basis, we are interested to repeat
present calculations, using the method introduced in the

reference [118], concerning the gauge invariance of
the off shell matrix element in whole x region. It
would be also interesting to investigate the influence of
different modifications of UPDF and to use the various
angular ordering constraints to examine their behavior in
order to check the possible double-counting as well as to
consider the differential method to generate the UPDF
[58,59,72,115,119]. We hope to report these points in our
future works.
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APPENDIX

The various matrix elements of the processes defined in
Eqs. (1) and (2) and Figs. 1, 9, and 10, respectively, are
given as:

(1) q�ðq̄�Þ þ g� → γ þ qðq̄Þ (LO, Fig. 1):

Ma ¼ egŪðp1Þtaϵμðk2ÞϵνðpÞ
�
γμ

k1 − pþm
ðk1 − pÞ2 −m2

γν þ γν
k1 þ k2 þm

ðk1 þ k2Þ2 −m2
γμ
�
Uðk1Þ;

(2) q� þ q̄� → γ þ g (LO, Fig. 1):

Mb ¼ egŪðk2Þtaϵμðp1ÞϵνðpÞ
�
γμ

k1 − pþm
ðk1 − pÞ2 −m2

γν þ γν
k1 − p1 þm

ðk1 − p1Þ2 −m2
γμ
�
Uðk1Þ

(3) g� þ g� → γ þ qþ q̄ [76] (NLO, Fig. 1):

M1 ¼ eg2Ūðp1Þtαγμϵμðk1Þ
p1 − k1 þm

ðp1 − k1Þ2 −m2
γξϵξðpÞ

k2 − p2 þm
ðk2 − p2Þ2 −m2

tβγνϵνðk2ÞUðp2Þ;

M2 ¼ eg2Ūðp1Þtβγνϵνðk2Þ
p1 − k2 þm

ðp1 − k2Þ2 −m2
γξϵξðpÞ

k1 − p2 þm
ðk1 − p2Þ2 −m2

tαγμϵμðk1ÞUðp2Þ;

M3 ¼ eg2Ūðp1Þtαγμϵμðk1Þ
p1 − k1 þm

ðp1 − k1Þ2 −m2
tβγνϵνðk2Þ

−p2 − pþm
ð−p − p2Þ2 −m2

γξϵξðpÞUðp2Þ;

M4 ¼ eg2Ūðp1Þtβγνϵνðk2Þ
p1 − k2 þm

ðp1 − k2Þ2 −m2
tαγμϵμðk1Þ;

−p2 − pþm
ð−p − p2Þ2 −m2

γξϵξðpÞUðp2Þ;

M5 ¼ eg2Ūðp1ÞγξϵξðpÞ
p1 þ pþm

ðp1 þ pÞ2 −m2
tαγμϵμðk1Þ

k2 − p2 þm
ðk2 − p2Þ2 −m2

tβγνϵνðk2ÞUðp2Þ;

M6 ¼ eg2Ūðp1ÞγξϵξðpÞ
p1 þ pþm

ðp1 þ pÞ2 −m2
tβγνϵνðk2Þ

k1 − p2 þm
ðk1 − p2Þ2 −m2

tαγμϵμðk1ÞUðp2Þ;
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M7 ¼ −eg2Ūðp1ÞγρCμνρðk1; k2;−k1 − k2Þ
ϵμðk1Þϵνðk2Þ
ðk1 þ k2Þ2

fabctc
−p2 − pþm

ð−p2 − pÞ2 −m2
γξϵξðpÞUðp2Þ;

M8 ¼ −eg2Ūðp1ÞγξϵξðpÞ
p1 þ pþm

ðp1 þ pÞ2 −m2
γρCμνρðk1; k2;−k1 − k2Þ

ϵμðk1Þϵνðk2Þ
ðk1 þ k2Þ2

fabctcUðp2Þ:

(4) q�ðq̄�Þ þ g� → γ þ qðq̄Þ þ g, (NLO, Fig. 9):

M1 ¼ eg2Ūðp1ÞγξϵξðpÞ
p1 þ pþm

ðp1 þ pÞ2 −m2
tαγμϵμðp2Þ

k1 þ k2 þm
ðk1 þ k2Þ2 −m2

tβγνϵνðk2ÞUðk1Þ;

M2 ¼ eg2Ūðp1Þtαγμϵμðp2Þ
p1 þ p2 þm

ðp1 þ p2Þ2 −m2
γξϵξðpÞ

k1 þ k2 þm
ðk1 þ k2Þ2 −m2

tβγνϵνðk2ÞUðk1Þ;

M3 ¼ eg2Ūðp1Þtαγμϵμðp2Þ
p1 þ p2 þm

ðp1 þ p2Þ2 −m2
tβγνϵνðk2Þ

k1 − pþm
ðk1 − pÞ2 −m2

γξϵξðpÞUðk1Þ;

M4 ¼ eg2Ūðp1Þtβγνϵνðk2Þ
k2 − p1 þm

ðk2 − p1Þ2 −m2
γξϵξðpÞ

k1 − p2 þm
ðk1 − p2Þ2 −m2

tαγμϵμðp2ÞUðk1Þ;

M5 ¼ eg2Ūðp1Þtβγνϵνðk2Þ
k2 − p2 þm

ðk2 − p2Þ2 −m2
tαγμϵμðp2Þ

k1 − pþm
ðk1 − pÞ2 −m2

γξϵξðpÞUðk1Þ;

M6 ¼ −eg2Ūðp1ÞγξϵξðpÞ
p1 þ pþm

ðp1 þ pÞ2 −m2
γρCμνρðk1; k2; pÞ

ϵμðp2Þϵνðk2Þ
ðk1 − p1Þ2

fabctcUðk1Þ;

M7 ¼ eg2Ūðp1ÞγξϵξðpÞ
k1 þ pþm

ðk1 þ pÞ2 −m2
tβγνϵνðk2Þ

k1 − p2 þm
ðk1 − p2Þ2 −m2

tαγμϵμðp2ÞUðk1Þ;

M8 ¼ −eg2Uðk1ÞγξϵξðpÞ
k1 − pþm

ðk1 − pÞ2 −m2
γρCμνρðk1; k2; pÞ

ϵμðp2Þϵνðk2Þ
ðk1 − p1Þ2

fabctcŪðp1Þ;

(5) q� þ q̄� → γ þ qþ q̄ (NLO, Fig. 10)

Ma:1 ¼ eg2Ūðp2ÞγμϵμðpÞ
p2 þ pþm

ðp2 þ pÞ2 −m2
Uðp1Þtαγξ

gξνδαβ

ðk1 þ k2Þ2
tβŪðk2ÞγνUðk1Þ;

Ma:2 ¼ eg2Ūðp2ÞγμϵμðpÞ
p2 þ pþm

ðp2 þ pÞ2 −m2
Ūðk2Þtβγν

gξνδαβ

ðk1 − p1Þ2Uðp1ÞtαγξUðk1Þ;

Ma:3 ¼ eg2Ūðp2ÞtαγξUðp1Þ
gξνδαβ

ðp2 þ p1Þ2
Ūðk2Þtβγν

k1 − pþm
ðk1 − pÞ2 −m2

ϵμðpÞγμUðk1Þ;

Ma:4 ¼ eg2Uðp1ÞγξϵξðpÞ
p1 þ pþm

ðp1 þ pÞ2 −m2
Ūðp2Þγμtα

gμνδαβ

ðk2 þ k1Þ2
tβŪðk2ÞγξUðk1Þ;

Ma:5 ¼ eg2Uðp1ÞγξtαUðk1Þ
gμξδαβ

ðk1 − p1Þ2
Ūðp2Þγμtβ

k2 − pþm
ðk2 − pÞ2 −m2

ϵνðpÞγνŪðk2Þ;

Ma:6 ¼ eg2Ūðp2ÞtαγξUðp1Þ
gξνδαβ

ðp2 þ p1Þ2
tβUðk1Þγν

k1 − pþm
ðk1 − pÞ2 −m2

γμϵμðpÞŪðk2Þ;
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Ma:7 ¼ eg2Uðp1ÞγνtαŪðk2Þ
gνξδαβ

ðk2 − p1Þ2
Ūðp2Þγξtβ

k1 − pþm
ðk1 − pÞ2 −m2

ϵνðpÞγμUðk1Þ;

Ma:8 ¼ eg2Ūðp2ÞγξϵξðpÞ
p2 þ pþm

ðp2 þ pÞ2 −m2
Uðk1Þγνtα

gννδαβ

ðk2 − p − p2Þ2
tβUðp1ÞγμŪðk2Þ;

(6) q� þ q̄� → γ þ gþ g (NLO, Fig. 10):

Mb:1 ¼ eg2Uðk1Þγμϵμðp2Þ
k1 − p2 þm

ðk1 − p2Þ2 −m2
γνϵνðp1Þ

k2 − pþm
ðk2 − pÞ2 −m2

ϵξðpÞγξŪðk2Þ;

Mb:2 ¼ eg2Uðk1Þγμϵμðp2Þ
k1 − p2 þm

ðk1 − p2Þ2 −m2
ϵξðpÞγξ

k2 − p1 þm
ðk2 − p1Þ2 −m2

γνϵνðp1ÞŪðk2Þ;

Mb:3 ¼ eg2Uðk1Þγμϵμðp1Þ
k1 − p1 þm

ðk1 − p1Þ2 −m2
ϵξðpÞγξ

k2 − p2 þm
ðk2 − p2Þ2 −m2

γνϵνðp2ÞŪðk2Þ;

Mb:4 ¼ eg2Ūðk2Þγμϵμðp2Þ
k1 − p2 þm

ðk1 − p2Þ2 −m2
γνϵνðp1Þ

k2 − pþm
ðk2 − pÞ2 −m2

ϵξðpÞγξUðk1Þ;

Mb:5 ¼ eg2Uðk1Þγνϵνðp1Þ
k1 − p1 þm

ðk1 − p1Þ2 −m2
ϵμðp2Þγμ

k2 − pþm
ðk2 − pÞ2 −m2

γξϵξðpÞŪðk2Þ;

Mb:6 ¼ eg2Uðk1ÞγξϵξðpÞ
k1 − pþm

ðk1 − pÞ2 −m2
ϵμðp2Þγμ

k2 − p2 þm
ðk2 − p2Þ2 −m2

γξϵξðpÞŪðk2Þ;

Mb:7 ¼ eg2Uðk1ÞγνϵνðpÞCνμρðp1; p2; ðp1 þ p2ÞÞ
ϵμðp1Þϵρðp2Þ
ðp1 þ p2Þ2

fabcta
k2 − pþm

ðk2 − pÞ2 −m2
γξϵξðpÞŪðk2Þ;

Mb:8 ¼ eg2Ūðk2ÞγνϵνðpÞCνμρðp1; p2; ðp1 þ p2ÞÞ
ϵμðp1Þϵρðp2Þ
ðp1 þ p2Þ2

fabcta
k2 − pþm

ðk2 − pÞ2 −m2
γξϵξðpÞUðk1Þ:

where ta ¼ λa

2
, λa are the Gell-Mann matrices and

Cμνρðk1; k2; k3Þ stand for the standard three gluon coupling
vertex:

gμνðk2 − k1Þρ þ gνρðk3 − k2Þμ þ gρμðk1 − k3Þν:

m and e are the mass and the fractional electric charge of
the quark q. We use the algebraic manipulation system
FORM [120] to compute the squared of the above amplitude
in the equations (9), (10) and (11) with the small x
approximation, e.g., UðpÞŪðpÞ ¼ xp. The polarization
4-vectors of the outgoing photon and gluon in the above
squared amplitude, e.g., ϵξðpÞ, that satisfy the covariant
equation [21] (note that they give only the transverse part
with respect to their momentums):

X
ϵμðpÞϵ�νðpÞ ¼ −gμν⊥ : ðA1Þ

On the other hand, ϵμðkiÞ is the polarization vector of the
incoming off-shell gluons which should be modified with
the eikonal vertex (i.e., the BFKL prescription, see the
reference [121]). One choice is to impose the so called
nonsense polarization conditions on ϵμðkiÞ which is not
normalized to one [54,121] (and it will not be used in the
present work):

ϵμðkiÞ ¼
2kμiffiffiffi
s

p :

But in the case of kt-factorization scheme and the off-shell

gluons, the better choice is ϵμðkiÞ ¼ kμi;t
jki;tj, which leads to the

following identity and can be easily implemented in our
calculations [21,54,121]:

X
ϵμðkiÞϵ�νðkiÞ ¼

kμi;tk
ν
i;t

k2i;t
: ðA2Þ
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