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Chiral susceptibility in a dense thermomagnetic QCD medium
within the hard thermal loop approximation
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We compute the chiral susceptibility in quark-gluon plasma in the presence of a finite chemical potential
and a weak magnetic field within hard thermal loop approximation. First we construct the massive effective
quark propagator in a thermomagnetic medium. Then we obtain a completely analytic expression for the
chiral susceptibility in the weak magnetic field approximation. In the absence of a magnetic field,
the thermal chiral susceptibility increases in the presence of a finite chemical potential. The effect of the
thermomagnetic correction is found to be very marginal as temperature is the dominant scale in a weak field

approximation.
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I. INTRODUCTION

It has been a long-standing quest of the heavy ion
collision community to explore the phase diagram of QCD.
Several large scale experiments such as the Large Hadron
Collider (LHC) at CERN and the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory
(BNL) have been designed and performed for this purpose.
Upcoming experiments at Facility for Antiproton and Ion
Research (FAIR), Nuclotron-based Ion Collider fAcility
(NICA), Japan Proton Accelerator Research Complex
(JPARC) are expected to examine the phase diagram of
QCD at high baryon density. Two nonperturbative features
of QCD vacuum are confinement and chiral symmetry
breaking. With increasing temperature and/or baryon den-
sity, the QCD vacuum undergoes a phase transition to a
deconfined and chiral symmetry restored phase. Besides
the ongoing experiments, there are several theoretical tools
such as lattice calculations [1,2], various effective models
[3,4], AdS/QCD correspondence [5], and the functional
renormalization-group method [6,7] used to study the
phase diagram of QCD. Lattice results conclusively dem-
onstrated that the phase transition at a vanishing baryon
chemical potential is a crossover. The order parameter of
chiral symmetry breaking is a quark-antiquark condensate
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which vanishes above the critical temperature in the chiral
limit. Chiral susceptibility is the measure of fluctuation of the
order parameter. It estimates the response of the chiral
condensate with the variation of current quark mass.
Measurement of fluctuations is an essential tool used to
investigate the properties of QCD matter at extreme con-
ditions e.g., electric charge fluctuation and quark number
susceptibility can give insight to the degrees of freedom of
the system. Chiral susceptibility has been studied in the
framework of lattice QCD [8-12], hard thermal loop
approximation [13], chiral perturbation theory [14], NJL
model [15,16], the Dyson-Schwinger equation [17], and
SO on.

Besides, production of a magnetic field in noncentral
heavy ion collisions has added a new dimension to the
understanding of QCD matter. This extremely strong
magnetic field is created by the spectator particles in a
direction perpendicular to the reaction plane. This magnetic
field can have detectable consequences like chiral magnetic
effect (CME) [18,19]. Other influences of the magnetic
field on the QCD matter viz. change in equation of state
(EOS) [20-23], modification in the transport properties
[24-30], dilepton production rate [31-35], heavy quark
potential [36,37], and damping rate of photons [38] have
been studied by different groups of the heavy ion collision
community. The magnetic field can also affect the dynami-
cal chiral symmetry breaking.

Some studies suggest that the chiral condensate increases
in the presence of a magnetic field. It is argued that in case
of a neutral spin-zero pair of a fermion and antifermion,
magnetic moments of both point along the same direction.
As a result, both magnetic moments can align along the
magnetic field direction without creating any frustration in
the fermion-antifermion pair [39]. This effect is linked
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to the increase in the phase transition temperature which is
known as magnetic catalysis. However, several lattice
studies [40] have found the opposite nature i.e., the
decrease in phase transition temperature at least for small
magnetic fields. This effect has been named as inverse
magnetic catalysis. Also these studies revealed that the
change in the chiral condensate strongly depends on the
temperature and the quark mass. Recently, the chiral
susceptibility was calculated using the NJL model in
Ref. [41] in the presence of chiral chemical potential
and nonzero magnetic field. The magnetic field breaks
the flavor symmetry. Hence two distinct peaks of chiral
susceptibility for u and d quarks have been observed at
large magnetic field.

The strong magnetic field produced in heavy ion
collision sharply decays with time [42,43]. However,
some studies [31,32] have shown that the presence of
finite conductivity can make the strong magnetic field
survive for a long time. The QCD matter cools down after
the collision and undergoes the chiral phase transition
at a temperature around 160 MeV. In this region the effect
of a weak magnetic field is particularly important. In this
paper, we consider the magnetic field to be small and use
the scale hierarchy /|q;B| < gT < T. In Ref. [13] the
chiral susceptibility was computed with zero chemical
potential within the hard thermal loop (HTL) approxima-
tion. In this paper we, considering a recently obtained
effective quark propagator in the presence of a weak
magnetic field [44], determine the chiral susceptibility
with finite chemical potential in the QCD medium using
HTL approximation.

The paper is organized as follows. In Sec. II we describe
the static chiral susceptibility. We obtain the general
structure of fermion self-energy in the presence of a weak
magnetic field and compute the effective propagator in
Sec. III. The free chiral susceptibility is calculated in
Sec. IV. We compute the HTL chiral susceptibility within
a weak magnetic field approximation in Sec. V. The results
are described in Sec. VI and we summarize in Sec. VIL

II. DEFINITION
The chiral condensate is defined as

Tr[gge ]  0Q
<ZIQ> = T[;I[Z_ﬂH] ] =

= (1)

8m f
where H is the Hamiltonian of the system. Q = —éan is
the thermodynamic potential where Z is the partition

function of a quark-antiquark gas. The quark condensate
also can be written using a quark propagator as

(@) = -NN, Y IS () @)
{P}

where N. and N, are the numbers of quark colors and
flavors respectively. Susceptibility is the measure of the
response of a system to a small external force. Chiral
susceptibility measures the response of the chiral conden-
sate to the infinitesimal change of the current quark mass
m f as

_0{aq)

(3)

Xe = .
my=0

ITII. GENERAL STRUCTURE OF FERMIONIC
TWO-POINT FUNCTION

Recently the covariant structure of fermion self-energy
has been constructed in the presence of temperature and a
magnetic field in Ref. [44]. The general covariant structure
of fermion self-energy in a weak thermomagnetic field can
be written as

Z(P) = —ap — by — c'ysi — d'ysi, (4)

where u, is the four velocity of fluid. The direction of
magnetic field n, can be written in terms of electromagnetic
field tensor F* or its dual F* and fluid velocity u, as

1 .
n eﬂv/)ﬂuDFM = EMUF#U' (5)

n=5p
For simplicity we have chosen the fluid rest frame and the
magnetic field along the z direction as

w = (1,0,0,0), (6)
n, = (0,0,0, 1). (7)

The self-energy structure functions a, b, ¢/, and d’ in Eq. (4)
can be calculated using Egs. (A1), (A2), (A3), and (A4).
The structure functions in the presence of a weak magnetic
field are calculated up to O(qB) for zero quark chemical
potential in Ref. [44]. The calculations are generalized for
finite quark chemical potential in Ref. [21]. Here, we
compute the structure functions up to O(g;B)* in the
presence of a chemical potential in Appendix A.
Following the Dyson-Schwinger equation, the effective
inverse propagator of a massive fermion can be written as

ar =P —mI-X. (8)

Using Eq. (4) the structure of the inverse propagator of a
massive fermion in a thermomagnetic medium can be
written as

Sab(P)=(1+a)P+bjf+c'ysif+dysp—mg.  (9)

To compute the chiral susceptibility in the presence of a
weak magnetic field one requires the effective fermion

074019-2



CHIRAL SUSCEPTIBILITY IN A DENSE THERMOMAGNETIC ...

PHYS. REV. D 103, 074019 (2021)

propagator as given in Egs. (2) and (3). So we need to invert
Eq. (9) to get the effective fermion propagator. For a
massless case, it is very easy to invert the effective inverse
propagator to obtain the general structure of the effective
propagator in terms of P, #, ysi, andysp. To get the
structure of the effective propagator in the massive case
involving the Dirac matrices, P, #, ysi, ysit. and I, we adopt
the following trick used in Ref. [45].

Let us assume that we need to find the inverse of a matrix
M. Now we need to choose a matrix R and multiply it with
M to get a matrix U as

U=MR. (10)

Now we can write the inverse of the matrix M as
M'=RU. (11)

In our case we need to find the inverse of the matrix S}
Now it is essential to choose R in such a way that we get U
in Eq. (10) in a very simple form. Then it would be easy to
invert the matrix U and to find the inverse of our desired
matrix Se_f%.

Thus we choose R as

R=(1+a)P+bh—cysh—dysh—m/lL (12)
From Egs. (9) and (10), we have
U= SiR = ap + P + &ys + AL, (13)
where

a==2(1+a)my,

B =—2bmy,

6=2((1+a)c'po+bc"+ (1+a)dps),

A= (1+a)P> +b* 4 ¢ = d? + m} + 2(1 + a)bp,.
(14)

We can now easily invert the matrix U to get

1
U™ = 5 (P + By + 5rs = A1), (15)
where
N? = &?P? + 2afpy + > + & — 1°. (16)

Following Eq. (11), we get the effective fermion propagator
Seff as

Seit = RU™" = (1 + a)P + b — 'ys — d'ysif — my)
8 ap + pu + oys — AL
P+ 2afpy + P+ 8 = A

(17)

The dispersion relation for a massive fermion in a
weakly magnetized thermal medium can be obtained from
the denominator of the effective propagator by setting it
to zero.

IV. CHIRAL SUSCEPTIBILITY FOR FREE
FERMION IN THE PRESENCE OF A WEAK
MAGNETIC FIELD

We consider a weakly magnetized QCD medium. In
the weak magnetic field limit, we work with the scale
hierarchy, /[q;B| < my, ~ gT < T. Now treating ;B as
perturbation, the Schwinger propagator for a fermion in the
presence of a weak magnetic field can be expanded and
written up to O[(q,;B)?*] as [46]

S(K) = I’;J:'Z% Fiyly? U’j%n’gf)z (4/B)
) {(K-u)ff = (K-n)f} =K KL(K +my)
(K =)} (K = n2)?
X (CIfB)2 + O[(‘Z/'B)3]

We can write the chiral condensate for a free fermion in a
weak magnetic field up to O[(¢,B)?] from Eq. (18) as

(Gq), = —NCNf;Yfrr[SdP) +5,(P) + 8,(P)].
{P}
2
- —4mfNCNfZ:{ﬁ - 2(qu)2(Pz’_’7Lm2)4 .
i) / /
(19)

Using the definition in Eq. (3) the chiral susceptibility for a
free fermion in a weak magnetic field can be calculated as

9(gq) [ 1 i
Y e ~— _4N¢NI__2<QB)2_
8mf =0 f i p2? f ( P2)4
_ NNy 2 » Az)
= T [1 + 12p% - (qu) AT (20)

where fi = u/2xT. u is the quark chemical potential. The
sum integrals are calculated in Appendix B and 1(z) is
given in Eq. (B16).

V. HTL CHIRAL SUSCEPTIBILITY IN THE
PRESENCE OF A WEAK MAGNETIC FIELD

Using the effective quark propagator in Eq. (17) chiral
condensate (gq) takes the form
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(aq) = —NcNf-ITr[seﬁ(P)]
{P}

1+a)*P* +2(1 + a)bpy + b* + d? — ¢ — m?
:4mfNNfI( ) 22( )p°2 — L. (21)
a P> +2afpy+p-+6"—1
{P}
Chiral susceptibility in the massless limit can be calculated from Eq. (21) as
_9aq)
¢ 8mf
(1+a)*P>+2(1+a)bpy+b*+d?—c?
=—4N.N; 3 T (22
4[(1+a)c' po+ b+ (1+a)d psP ~[(1+a)"P> + b2+ ? —d® +2(1 +a)bpy)

{P}

where the expressions of various structure functions are obtained in Appendix A. Now we expand the expression in Eq. (22)
in the series of coupling constant g and keep up to O(g)* as

1 1 4 1 2
_ 4 ___c 2
)(c_4NcNfI{ +2m”‘P4+m‘h<ﬁ+p2P4_p2P4T +p2p2PZT>
{P}

2 2p? 2 2
_m/2 <__&__Tp+ p3 T)

eff 3P4 p2P4 P4 2P4
4p3s | p3 2p3 P3 4p
4 3 3 3 T T2 3 T2 _r3 7'2 23
meff<p2P6+p4P4 PP pt 2P4 + PP 2P4 (23)
where
2 2
g CpT N
mg, = (14 4p2),
n _ 9CrlesB)’T
eff 32ﬂm} ’
q/B | 1 T vE
m2y = 4g°Cy 1622 [—1 R(z) - 2, 5 (24)

with ®(z) defined in Eq. (B15) and Cr = (N2 — 1)/2N,. is the QCD Casimir factor. Using the sum integrals listed in
Appendix B we find the expression for the chiral susceptibility as

N.N; 3 AN\*/1 mg
=i+ 122 +=(—— B —th
e 6 [ T <47rT> (6 (Z)> T°

L/ AN*1 4 m%  (z) mi  A(z) m?
[ — 1+ —_—N eff 2 _ th 2 _ eff . 2
T (4;:T> (e 37N ) 2 g T O T e (T O (25)

We note that the logarithmic divergence comes from the thermal part. A new divergence appears in the presence of the magnetic
field. We renormalize the chiral susceptibility within the MS renormalization scheme using the following counterterm:

counter N f
Ayt = o2 (3mth+meff) (26)

The renormalized chiral susceptibility is given as
N.N; 3 i
ye==L T 12 + 5 (2IA-2In2 - N(z ))%

Az mi Az m?
Gk e 0

1 /2
+32(4- 3G 2) +6InA —61n2) et 2t =

T
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FIG. 1.

Variation of chiral susceptibility scaled with 72 as a
function of temperature for chemical potential 0, 100, and
200 MeV with zero magnetic field.

with A = A/2zT and ji = u/2zT. The obtained result is
completely analytic in the presence of a chemical potential
and a weak magnetic field. Here we note that Eq. (27)
consists of O[(¢;B)°] and O[(¢B)?] terms. The O[(¢;B)"]
reproduces the thermal chiral susceptibility without the
chemical potential obtained in Ref. [13]. The O[(¢;B)?]

terms are the thermomagnetic correction to the thermal chiral
susceptibility.
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VI. RESULTS
We consider a magnetic field dependent running cou-
pling [47] as
a,(A%)

a, (A2,
( [t by (A In

B|) =

(28)

A? ) ’
A%+|eB]

where the one-loop running coupling at renormalization
scale reads as

B 1

A=
a;(A7) by In (A7/A2)’

(29)

with by = 12V AL — 204 MeV requiring a, = 0.326

at 1.5 GeV [48]. We choose the renormalization scale as

A =2m\/T? + y?/n*. The following results are shown
considering two light quark flavors u and d.

In Fig. 1 the chiral susceptibility scaled with temperature
squared is plotted with temperature in the absence of a
magnetic field for zero and nonzero quark chemical
potential. The effect of the quark chemical potential is
prominent in the low temperature region as can be seen
from the figure. A similar plot for a thermal QCD medium
and zero chemical potential was obtained in Ref. [13]. For
low temperature the chiral susceptibility increases rapidly
for both zero and nonzero chemical potential. Here we note
that the increase of the chiral susceptibility in the low
temperature region does not indicate the chiral phase
transition. It is due to the temperature dependence of the
coupling constant and for the choice of the renormalization
scale [13]. At very high temperature the chiral susceptibil-
ity reaches the free value asymptotically.

2.2
20
181
N
=
~
Q
oy
161
14 1
A =2m\/T? 4+ p?/72 p = 100 MeV
1.2
0.0 0.2 0.4 0.6 0.8
T [GeV]

FIG. 2. Variation of chiral susceptibility scaled with 72 as a function of T for magnetic field strength |eB| = 0, m2 with u = 0 MeV

(left) and p = 100 MeV (right).
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1.70 \ ‘ ‘
A =27w\/T? + p?2/72, T = 200 MeV
est e ]
.
~ 1.60 1
=
155 | 1
— p=0MeV
- =100 MeV
1.50 : : :
0.00 0.01 0.02 0.03 0.04
leB| [GeV?]
FIG. 3. Scaled chiral susceptibility is plotted as a function of

magnetic field strength |eB| for temperature 7 = 0.2 GeV and
1 =0 MeV and 100 MeV.

The variation of chiral susceptibility scaled with temper-
ature squared for a zero and finite magnetic field is plotted
with temperature in Fig. 2. In the left panel of Fig. 2 we
have shown the effect of a weak magnetic field on the chiral
susceptibility for a zero quark chemical potential, whereas,
the same for finite quark chemical potential is shown in the
right panel. In the presence of a magnetic field, chiral
susceptibility is slightly increased than that of thermal
medium in the low temperature region. Since we are

2.2

20

18|

e L

-

Pt Ll
P et
prs

161

X/ T?

121

10}

[eB|* = m2, p = 0 MeV

0.8 ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0

T [GeV]

working in a weak magnetic field limit, the increase in
susceptibility due to the magnetic field is small. As
temperature increases the effect of the magnetic field
reduces as temperature becomes the dominant scale.

It should be noted that the scale hierarchy of a weakly

magnetized medium is \/|q;B| < gT < T. This particular
condition is satisfied for around 7 > 0.14 GeV as we have
considered |eB| = m2 = 0.14> GeV? in Fig. 2. Thus the
weak field and HTL approximations are valid at high
temperature. This is consistent with our study because we
calculate the chiral susceptibility of the medium in a
perturbative region.

The effect of the magnetic field can be seen clearly from
Fig. 3 where the variation of the scaled chiral susceptibility
is shown with a magnetic field for fixed temperature
T =200 MeV. Here we notice the slow increase in the
chiral susceptibility with increasing magnetic field for both
with and without chemical potential. Here we note that the
weak field approximation is valid in this case because
V/1asB| < T is satisfied.

In Fig. 4 the sensitivity of the chiral susceptibility with
renormalization scale is shown in the presence of a constant
weak magnetic field. Here chiral susceptibility scaled with
T? is plotted with temperature for zero (left panel) and finite
(right panel) chemical potential by varying renormali-
zation scale A by factor 2 around its central value
2/ T? + u?/7°.

Here we note that HTL approximation is valid above the
phase transition temperature where the scale hierarchy
V/|asB| < gT < T is maintained. We have shown the plots
of chiral susceptibilities at low temperature just to show the
steep increase in the plots.

2.2 r :
i — A=7nyT?+ p? /w2
[
20f i A= 2m TR
18 “'- s A=A /T? + p? /w2
1.6

1.0
[eB|?> = m2, p = 100 MeV
0.8 ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0

T [GeV]

FIG. 4. Variation of chiral susceptibility scaled with 72 as a function of temperature for magnetic field strength m2 for different values

of renormalization scale.
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VII. SUMMARY

We have investigated the effect of a magnetic field on the
chiral susceptibility of quark-gluon plasma within HTL
approximation in the presence of a finite chemical poten-
tial. The general structure of an effective massive fermion
propagator is constructed for a thermomagnetic medium.
Then the self-energy structure functions up to O[(¢,B)?] in
the presence of a chemical potential have been calculated in
the weak magnetic field regime using the scale hierarchy
\/|asB| < gT <T. The quark condensate is computed
using an effective quark propagator in the presence of a
magnetic field. Finally we obtain a completely analytic
expression for chiral susceptibility in a hot and dense
weakly magnetized QCD medium. We have subtracted the
UV divergence via the MS renormalization scheme. It is
found that the chiral susceptibility is increased due to the
presence of the chemical potential as well as the back-
ground magnetic field. At high temperature the effect of a
magnetic field on chiral susceptibility becomes feeble.
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APPENDIX A: STRUCTURE FUNCTIONS

The general form of the various structure functions can
be written from Eq. (4) as

| LTR(EP) = (P u)Tr(ZH)

+ (P-u)*—P? ’ (A1)
_1—(P-u)Tr(ZP) + P°Tr(ZH)

b=3 (P-u)?>—P? ’ (42)

¢ =~ Tr(HS7s), (A3)

&' = Tr(H7s). (A4)

The structure functions in the presence of a magnetic field
depends on three Lorentz scalars:

Po = P”M”, (AS)

pP3 = Pﬂnﬂ = Pz (A6)

py=[=(PP,)? + (P'u,)* = (P'n,)*]'V? = (pT + p3)'/2.
(A7)

A free quark propagator in a weak magnetic field is given
in Eq. (18). Now the one-loop quark self-energy up to
Ol(gsB)?] can be written as

2(P) = CrY 1 (50(K) + Si(K) + 2K e
{K}
=T+ 3 + 3, (A8)

From (A1), the structure function a can be written up to
O[(qu)z] as

ITR(EP) — (P ) Tr(Zop)

4 (P-u)*>-p?
1 Tr(Z,P) — (P - u)Tr(Zo4)
4 2(13-u)2—P2 = (49)
= a + a, (A10)

where a is a purely thermal contribution (B = 0) and ap is
the magnetic correction of O[(¢;B)?| coming from %,. The
Ol[(qsB)] corrections coming from X, vanish due to the
trace of odd number of gamma matrices.

Similarly structure function b can be written as

1=(P - u)Tr(ZoP) + P°Tr(Zo4)

b=3 (P-u)? - P?
1=(P - u)Te(Z,P) + P>Tr (o)
+7 Poaro P . (AlD)
= by + by. (A12)

The thermal part of the structure functions a and b can be
calculated using the quark self-energy diagramin Fig. 5 as [44]

5 R
my [dQp-k
,p)=—""F [ ———, Al3
ao(pos p) p2 iz p-k ( )
mi [ dQ(P-u)(p-k) - p?

b , :—‘h/— - , Al4

o(Po. P) D dn Pk ( )
where thermal mass is given as
2C T2

m’, :gTF(l +4p2) (A15)

with i = /22T and Cr = (N? — 1)/2N...

Now we derive the O[(q,B)?] corrections to the structure
functions a and b. To get the expression of az and by we
need to perform the following sum-integrations:

K-P

>
P K P

FIG. 5. Self-energy diagram for a quark in the presence of a
background magnetic field. The double line indicates the modi-
fied quark propagator in the presence of a weak magnetic field.
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K2 ko
Tr(Zo4) = 1692CF(‘]]"B)2TI(K2_LW

{K}

16 k*dkdQ ?
ZKQZCF(CIfB)Z/

(mrt* mrr )
X ~+ x
po—p-k potp-k

)" 9} ", fie s (ne (/12 m3) - na (/12 4 )

2 2 3 22
g CF(qu) a‘ / kJ_
= e h dQ—
671'3T2 ( )8()12)3[ S(y)+f5(y)] P.-R
_ FCiT(qsB)’ / dQ ki (A16)
Sﬂm} 4z p-K’
where we have used well-known functions Oh,. h,_,
n — _ n— . A20
oo n ayz on ( )
Fror() 1 dx x ( [ n 2)
n+1\Y) = nr X y
P+ Jo Va2 +)? Expressions for f(y) and &, (y) are given as
(A17)
z 1 y
and fl()’):2—y+51n<a>+"',
Byt (y) = 1 ©  dxx" n ( /x2+y2) h](y)z—;ln(éLy)—l—iN(z)jL-'w (A21)
n+1 F(I’l + 1) 0 m B s T
(A18)  where R(z) is defined in Eq. (B12).
Now we compute the following trace as
which satisfy the recursion relations [21]
Tr(5,P) = X1 + X + X3 + Xy, (A22)
8fl’l+l — _fn—l (Alg)
dy? 2n where
k(p.lAc)
X, = -16¢°Cr(qsB 217
1 g F(Qf ) (Kz_mzf)3Q2
{K} ‘
KdkdQ  0? k(p.k
= _ngCF(qu)Z/ . oRe) (p-H) (n,v<1 [k + m%) + nB(1 [k + m]%))
(27)" O(my) 4q./k* + mj% '
i m=rd)
X - — =
potp-k po—p-k
_Mi[h o) + f1( )]/dg k
N 83T 0y? A - P-K
_GCeT(qrB)* [dQp-k (A23)
87[171;- Az p-K’

074019-8



CHIRAL SUSCEPTIBILITY IN A DENSE THERMOMAGNETIC ...

PHYS. REV. D 103, 074019 (2021)

By performing similar calculations we get

kks ps
X, = 1692CF(6]‘,"B)2IW
% (K* - mf) o

_ QZCFT(‘IJ'B)2
8ﬂm;-

de3]%3
4r P-K’

(A24)
ki kopo
%= 190G Y G e
{K} '

_ 92CFT(‘]fB)2 /@Poﬁ
Sﬂm} 4z P-K’

(A25)

& k(p - k)

X4 = —16g2CF(CIfB)2Im
Ky !

_§°CrT(qsB)’ / dQ ki (p - k)

= A26
87Tm]3c dr P-K ( )

So we obtain the expression of ap and by as

. _ PCrT(qrB)* 1 /dﬂl%(p-/%)—m%
= Crta By 1 [dQKs(p-K) = psks

327m} 4r P-K '
y _TCrT(aB)’ 1 /d%(P ) (p3 — p - kks) — pit
B 327m’} 4r P-K '
(A27)
Two other structure functions are given as [44]
¢ =-m @ K-n
- eff A7 p. f(’
dQK - u

d = m? _—, A28
Mege WP K ( )

where the contribution comes only from the X; term. The
contributions from X, and X, vanish due the trace of odd
number of gamma matrices.

Here we note that

m2y = 4g?CrM3¥(T. my. qB). (A29)

where the thermomagnetic mass for flavor f is given as

162%| 4

where R(z) is defined in Eq. (B15).
We rearrange the inverse of effective propagator in
different way,

Sat(P) = (1 +a)P + b + c'yshh + d'ysif — myI
= cporo —dpiyi + c'ysh + d'ysf —mgL,  (A31)
where
b b
c=1+ <a0+0) + <a3+3> =1-aj—ap,
Do Po
d=1+ay+ apg, (A32)
with
2h
ag=—(1-7,),
0 pz 14
2
m
ay=-—47
O ptt
mész 31’% 3P0
a3:6—p2<1—7 p (1—7,1)—2—’—37—,, s
i — e <3p0”3(1—7 )+ T
b 2Po P r
1
AT, = 1= 7).
2
¢ = p3;';eff (1 _ Tp)’
2
d=—LT, (A33)
Po

We expressed all the structure functions in terms of

dQ
T,= —LA (A34)
47 po—p -k
Here we have defined
2 2
»  9°CrlqB)°T
=2 A35
Megp 327rm} ( )

with Cr = (N2 —1)/2N,. We can see that m'2; and m2;
diverge when the current quark mass vanishes (m; — 0). It

is regulated by thermal mass m,, of the fermion as
discussed in Refs. [49,50].

APPENDIX B: SUM INTEGRALS

The dimensionally regularized sum integrals are

defined as
eyEAZ € dd—2€p
()7 % e @
P po=02n+1)xTi+u

where A can be identified as the MS renormalization scale
which also introduces the factor (4-)¢ along with it where
v is the Euler-Mascheroni constant.
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The sum integrals are related by the following equations:

1 d-2 1

— =Y ——, B2
IP“ 2 Z:szz (B2)
{P} {P}

1 d—4 1

= - . B
IP2P4 2 IP4P2 ( 3)
{P} {P}
1. One-loop sum integrals
We list the fermionic sum integrals as [13,21]

1 T2 A 2¢

—=—|-— 14 1247 B4
IPZ 24(4;:T> 1+ 1277 (B4
{P}

1 1 A\ 1
— — - =N , B5
IP“ (4n)? <4 T) [e (Z)} (B5)
{P}
2 2
D3 1 AN\ 1 2
= — —+-—N , (B6
Z::sz4 3(4rx)? (47[T> L+3 (2) (B6)
{P}

1 1 A \2% A(z)

— = — ==, B7
IPG (2r)* <4nT> 3272 (B7)
P

A 2¢ J(Z)
I (w) a9
A 2¢ J(Z)
— B
i <475T> 872’ (B9)
{P}
A\ 2 A(2)
Bl
I 2P6 <4nT) 9672’ (B10)
P
A\ 2% A(z)
. Bl11
I apt <47rT> 2417 (B11)
P

Here we list the frequently used functions in the sum
integrals

R(z) =¥(z) + ¥(z"), (B12)

A(z) = j—; (Y(z) + ¥(z")), (B13)

where z is a general complex number; here z = 1/2 —
¢ and ¥ denote the Riemann zeta function and the

digamma function respectively. The digamma function
can be written as

_T'(@
¥(z) = o) (B14)
We write the functional form of N(1/2—ia) and
2(1/2 = ifr) for small i below:

R(z) = —2yp — 4In2 + 142(3)i? — 62£(5)i

+254¢(7)ab + O(@?), (B15)
AMz) = —4[7£(3) — 186¢(5)i? + 1905¢(7) i

— 14308(9)a°] + O(a®). (B16)

2. One-loop HTL sum integrals used
in the magnetic case

We also need one-loop HTL sum integrals which involve
the angular average defined earlier in Eq. (A34). For
brevity, henceforth we will use the notation ¢ = cos@
for single angular average and c; = cos#; for multiple
angular averages. We list the sum integrals below:

d—4 1
Lok e
{P} {P}
1 d—4 1
IWT” — <A1 _TA2>IW’ (B18)
{P} Py
2
D3 d—4 2 1
IPQPJ,, <ﬂ(1+AO) 5 AL A =
P} {P}
(B19)
7'2 1
Z:p pzpz A4;’_6174]32 > (BZO)
{P} {P}
2
D3 d—4 1
IP4P4TP - <A1 _TAZ)A%IW, (B21)
{P} {P}
1 1
IWT%’ — Ajiﬁ, (B22)
{r} {P}
P3 7—2 1
p4P4 A3A6 W , (B23)
{P} {P}
) 1
2P4 T = A3;A; ipr (B24)
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where A’s are the various angular averages which we list below. The symbol (),. in the angular averages depicts the standard

definition used in Ref. [51].

c? 1
A g _ —_-— 3
0 <1—02>C 2€+O[€] '

2

b4 —¢? 11 3. =
A={" "N = im24e|l-24+" 4 (In2?=2In2| + O],
‘ <(1—c2)2>c A +€[ st Hina 22Ol

1 1
A=(—5) =—7—+1
: <1—c2>c 2" + 0l

1 2e
A = 2 = — _— (9 2’
3 <C >C 3 + 9 + [6]
1—c¢*d 1 1 3¢ 3é
A/ g _— —_— —— —_ —_— 3
4 <(1_62)2>C 4€+4+ ey + Ole)?,

1
A, = =—[24In2 - 7] + Olel,
' <<c%—c%><1—c%>”1662>” 22l ol
1,62

A5:< b —c? _d-4 1
(cf—e)(I—cf)* 2

A — 1-2c7+ 4
* G- =)

1
+C1 <—>C2> = —
(C% - C%)(l - C%) c1,¢y 24

[6 — 7% + Ole],

d—4
2 (cf=c3)(1=c7)

1
= 2-7 416102+ Oel.

cy,0

+cy <—>c2>

Using the expressions of angular averages we obtain the results of HTL sum integrals for a magnetic case as

YT - e (4%)2 [l+ - x<z>],

{P}

1 1 A\ A(z)
Z LI S A —1+41n2).
2P T T (20 <4ﬂT) g2 1 H4In2)
ir)

2 2
3 1 AN*[1 5
7o (22w
Z\:sz4 P6(4x)? <4JTT> L * 3 @)

{P}

I 1 (A \* ()
s T2 = = 2 _241n2
I PP " (2n)f (47:T> agrz (™ T2 Im2).

ir)
2 2e
P3 1 A AM(z)
Py A 1442
IP4P4 P T 2n) <47‘L’T> g7z (71 4n2),
ir)

1 1A\ 3(2)
T2 = . 2_6),
I PP T (2n)? <4ﬂT> o672 ™ ~O)
i#)
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Z: o 1 (A
ptPt P (2m)* \4nT

{P}

2
1

i 2p; 775 = 4
p P (27)

{P}

2e b

96(;)2 (=2 + 22 — 161n2), (B39)
A 2¢ l(Z) )
=) =2 (22— o). B4
47rT) 28872 ™ ~O) (B40)
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