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We present complete calculations of the electromagnetic form factors of the Ω− in the spacelike region
and in the timelike region. The four elastic form factors: electric charge (GE0), magnetic dipole (GM1),
electric quadrupole (GE2), and magnetic octupole (GM3), are estimated within the covariant spectator quark
model, in terms of the square momentum transfer q2. The free parameters of the Ω− wave function,
including a S-wave state and two independent D-wave states radial wave functions and the admixture
coefficients, are fixed by the comparison with the lattice QCD data in the spacelike region (Q2 ¼ −q2 ≤ 0)
and with the recent eþe− → Ω−Ω̄þ data from CLEO in the timelike region (q2 > 0). The estimates in the
timelike region for square momentum transfer q2 ≥ 4M2

Ω are based on large-q2 asymptotic relations (MΩ is
the Ω− mass). We examine also the impact of the large-Q2 correlations between different form factors and
analyze the possible solutions. The electric quadrupole and the magnetic octupole moments of the Ω− and
the eþe− → Ω−Ω̄þ integrated cross sections for very large q2 are estimated based on the model results.
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I. INTRODUCTION

The study of the electromagnetic structure of the Ω−,
composed by three valence strange quarks, is very chal-
lenging. Although the Ω− is the more stable known baryon
with spin 3=2 [longer mean life than the Δð1232Þ], its
physical properties are almost unknown, apart the charge
and the magnetic moment [1–11]. [The mean life of the
Ω− is 8 × 10−11 s, and the mean life of the Δð1232Þ is
6 × 10−24 s]. The first measurement of the Ω− effective
form factor jGðq2Þj in the timelike region at CLOE
(eþe− → Ω−Ω̄þ reactions) [12] opens a new window to
probe the internal structure of the Ω− and the properties of
the form factors at large jq2j. The effective form factor
jGðq2Þj is determined by a combination of the four Ω−

electromagnetic form factors.
Additional information about the Ω− electromagnetic

structure can be obtained from lattice QCD simulations,
which can today be performed at the physical baryon mass
in the spacelike region (Q2 ≥ 0) [7,13]. These simulations
can be regarded as a good representation of the physical
baryon because they are performed at the physical strange
quark mass and also because the effects of the meson cloud

excitation of the baryon core are expected to be small
(heavy meson excitations are suppressed according with
chiral perturbation theory) [14,15].
The measurement of the Ω− electromagnetic form

factors for finite Q2 ¼ −q2 is a hard task due to the
difficulty in creating strange baryon targets which may
be scattered by electron beams [11,14,16]. The long life of
the Ω− can, however, be used to obtain accurate determi-
nations of the magnetic moment [8–10].
A question that can be raised is how well we can estimate

today the Ω− electromagnetic form factors GE0, GM1, GE2,
andGM3 [7,17–22] in the different kinematic regions. In the
present work, we combine the present knowledge on the
Ω−, including lattice QCD simulations in the spacelike
region, measurements of the Ω− effective form factor in the
timelike region, and the expected analytic behavior for very
large jQ2j, to shed some light on the dependence of the
electric quadrupole and the magnetic octupole form factors
on Q2. The constraints associated with the electromagnetic
form factors at the large jQ2j prove to have an important
role in the shape of the form factors. The timelike data are
very pertinent to the process because they contain infor-
mation about the large-jQ2j region and provide a unique
test to the shape of the form factors in an extreme regime.
Although lattice QCD simulations can be used to infer the
dependence of the form factors on Q2, they are presently
limited in precision above Q2 ¼ 2 GeV2 [7].
The magnetic moment of the Ω−, the electric charge

(GE0), and the magnetic dipole (GM1) form factors have
been estimated using several frameworks [1,4,23–43].
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Although there are a few estimates of the Ω− quadrupole
form factors [44–55], including extrapolations from lattice
QCD simulations [5,7,13], and of the Ω− octupole moment
[52,56–58], the information about the functions GE2 and
GM3 is scarce. Accurate lattice QCD simulations are at the
moment limited to 0 ≤ Q2 ≤ 2 GeV2. The only available
lattice QCD simulation for GM3, gives GM3ð0.23 GeV2Þ ¼
1.25� 7.50 [13]. There is then all the interest in studying
the functionGM3, including the region nearQ2 ¼ 0 and the
respective falloff with Q2. Experiments in facilities like
BABAR [59], BES III [60], CLEO [12,61], and PANDA
[62] based on eþe− collisions can also be used to access the
electromagnetic structure of the Ω− [6,61].
The eþe− → BB̄ experiments, where B is a generic

baryon, opens a new window to probe the electromagnetic
structure of hyperons [12,63], hardly accessed in the
spacelike region [11]. Of particular interest is the oppor-
tunity to study the correlations between different valence
quark compositions, including quark pairs and others
[12,61,64–68]. The first theoretical estimates of the
eþe− → BB̄ cross sections and hyperon effective form
factor, in the timelike region, were based on vector meson
dominance (VMD) models [69,70]. More recently, with the
emergence of accurate data for a variety of hyperons, new
models have been proposed [6,71–74], including improved
VMDmodels [75–80]. Most of these studies focus on theΛ
and Σ systems. Theoretical studies of the Ω− electromag-
netic properties in the timelike region are rare [6,12,61,72].
Our calculations of the Ω− electromagnetic form factors

follow the formalism of the covariant spectator quark
model [15,81–83] for spin-3=2 baryons. In the formalism,
the Ω− wave function is represented by a combination of a
dominate S-wave state and two D-wave states [4,5,21,84].
The mixture parameters and the radial structure of the three
components are determined by fits to the available data (the
magnetic moment, lattice QCD, and effective timelike form
factor) as well by the expected behavior of the form factors
for very large Q2. At large Q2, we consider also a relation
between the form factors GM1 and GM3, derived from the
asymptotic behavior of the helicity transition amplitudes at
large Q2. At the end, we use our best parametrization to
make predictions to the electric quadrupole and magnetic
octupole moments of the Ω− and the effective form factor
jGðq2Þj at large q2.
Although the present analysis is dominated by spacelike

data, we conclude that the information about the function
GM3 and the effective form factor jGðq2Þj is important to
determine the shape of the form factors. The timelike and
GM3 data are represented by three points, while the
remaining data (lattice QCD) are represented by 100 points.
We conclude also that accurate lattice QCD calculations of
GM3, possible with the present state-of-the-art methods, and
measurements of the eþe− → Ω−Ω̄þ cross sections at large
q2 can further help to infer the shape of the form factors at
large jQ2j and to reduce the uncertainty of GM3ð0Þ.

The present article is organized as follows. In the next
section, we discuss in detail the available experimental and
theoretical information about the Ω− form factors. In
Sec. III, we discuss the covariant spectator quark model
and the formalism associated to baryons with spin 3=2 and
positive parity. The calculations of the Ω− electromagnetic
form factors in the spacelike region (Q2 ≥ 0) are presented
in Sec. IV. The extension of the model for the timelike
region (q2 ¼ −Q2 > 0) and our final results are presented
and discussed in Sec. V. In Sec. VI, we present the outlook
and conclusions.

II. ELECTROMAGNETIC STRUCTURE
OF THE Ω− BARYON

The Ω− is a baryon with spin 3=2 and positive parity
(JP ¼ 3

2
þ). As a consequence, the transition current is

characterized by four independent structure functions
dependent on Q2 [7,17–19]. The most common represen-
tation of those structure functions is the multipole form
factor representation, where the Ω− structure is described
by the electric charge (GE0), magnetic dipole (GM1),
electric quadrupole (GE2), and magnetic octupole (GM3)
form factors [5,7,20,21]. The definition of the multipole
form factors is presented in Appendix A. The electric
charge and the magnetic dipole form factors provide
information about the distribution of charge and magnetism
inside the baryons. The electric quadrupole and magnetic
octupole measure the deviations from the distributions
from a symmetrical form (GE2 ≠ 0 and GM3 ≠ 0), provid-
ing a direct evidence of the deformation of the baryons
[7,19,22,49,56,85].
As pointed out already, except for the electron-positron

collisions [6,12], the Ω− baryon is difficult to produce in
the laboratory [8,9,11], due the structure based on three
strange quarks. For this reason, the electromagnetic struc-
ture of the Ω− is almost unknown, except for the charge
(−e) and the magnetic moment μΩ.
We review next our sources of information about the Ω−

electromagnetic structure.

A. Experimental data

The long lifetime (τΩ ≃ 8 × 10−11 s, decay by weak
interaction) [10] allows a precise determination of the
Ω− magnetic moment. The Ω− magnetic moment has been
measured a few times with different precisions [8,9]. The
Particle Data Group (PDG) presents the world’s average,
μΩ ¼ ð−2.02� 0.05ÞμN , in nucleon magnetons (μN ≡ e

2MN
,

where MN is the nucleon mass and e is the elementary
charge). In the present work, we use the result from PDG
[10] corresponding to

GM1ð0Þ ¼ −3.60� 0.09; ð2:1Þ

based on μΩ ≡GM1ð0Þ e
2MΩ

.
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B. Results from lattice QCD simulations

Since the structure of the Ω− is dominated by three
strange valence quarks, one assumes that the electro-
magnetic form factors can in a good approximation be
simulated by lattice QCD calculations at the strange quark
physical mass. These simulations are possible in the
present days, as shown in several lattice QCD simulations
[7,86]. Although it may be argued that the valence quark
structure is not the complete picture and that sea quark
effects must also be taken into account, it is known that
those effects are dominated by the kaon cloud, since the
pions cannot be produced directly by three strange
quark cores. The kaon and eta cloud effects, however,
are suppressed according to chiral perturbation theory
[87–89]. The conclusion is then that the lattice QCD
simulations at the physical strange quark mass can be
interpreted as an accurate simulation of the physical
results and that no extrapolation of the results is necessary
The only limitation of these calculations is the intrinsic
errors associated with lattice QCD simulations, such as
the size of the lattice spacing and the finite volume of the
simulations.
In this work, we consider the more consistent simulation

of the Ω− electromagnetic form factors from Alexandrou
et al. [7], as a reliable representation of the Ω− physical
electromagnetic form factors. Early lattice QCD simula-
tions can be found in Refs. [23,48].
The simulations from Ref. [7] are based on two

unquenched methods: the domain-wall fermions (DWF)
method and the hybrid action method. The simulations
from Ref. [7] are restricted to the form factors GE0, GM1,
and GE2. These simulations provide data for Q2 up to
4 GeV2, but only the data for Q2 ≤ 2 GeV2 are relatively
precise. The hybrid action simulations correspond to
mπ ¼ 0.353 MeV. For the DWF, there are simulations
for mπ ¼ 297, 330, and 355 MeV. Ideally, we should
select the simulations corresponding to the lower pion mass
for each method. Unfortunately, some datasets do not
include results for all form factors, or the data statistic
are poor. To obtain the complete picture of the form factors
GE0, GM1, and GE2, in this work, we use then the four sets
of lattice QCD data from Ref. [7].
The only direct information about the octupole

magnetic form factors come from lattice QCD simu-
lations from Boinepalli et al. [13] for the Δ− form
factors in the SUð3Þ limit, when the pion mass is
mπ ¼ 0.697 GeV. In this point, the d quarks and s
quarks have the same properties and masses, and the Δ−

structure resembles the Ω− structure. The simulation
from Ref. [13] overestimates the physical Ω− mass. It
provides, nevertheless, the only available estimate of the
form factor GM3 based on QCD first principles. These
estimates are performed at one single point Q2 ¼
0.23 GeV2. The result of the magnetic octupole form
factor is GM3ðQ2Þ ¼ 1.25� 7.50 [13].

C. Ω− data in the timelike region

In recent years, there have been important experimental
developments in the study of the baryon structure in the
timelike region, based on the electron-positron collisions in
facilities like BABAR, BES III, and CLEO [12,59–61,90].
From the eþe− → BB̄ reactions, one has access to the
electromagnetic structure of the baryon B, in the region
Q2 ¼ −q2 < 0. The threshold of the transition is q2 ¼
−Q2 ≥ 4M2

B (MB is the baryon mass). Of particular interest
has been the production of Ω− baryon and the respective
antistate in CLEO [61].
In those experiments, the integrated eþe− → BB̄ cross

section in the eþe− center-of-mass frame becomes
[6,61,90]

σðq2Þ ¼ 4πα2βC
3q2

�
1þ 1

2τT

�
jGðq2Þj2; ð2:2Þ

whereGðq2Þ is an effective form factor, τT ¼ q2

4M2
B
, α ≃ 1

137
is

the fine-structure constant, β is a kinematic factor defined

by β ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

τT

q
, and C is a factor which depends on the

charge of B [6,90]. For large q2, one has C ≃ 1.
The effective form factor Gðq2Þ for baryons with spin

1=2 and positive parity (JP ¼ 1
2
þ states) takes the form

[12,59,91–93]

jGðq2Þj2 ¼
�
1þ 1

2τT

�
−1
�
jGMðq2Þj2 þ

1

2τT
jGEðq2Þj2

�
;

¼ 2τT jGMðq2Þj2 þ jGEðq2Þj2
2τT þ 1

; ð2:3Þ

where GE and GM are the electric charge and magnetic
dipole form factors.
Equation (2.3) is still valid for 3

2
þ states, if we use the

replacements [69]

jGEj2 → 2jGE0j2 þ
8

9
ðτTÞ2jGE2j2; ð2:4Þ

jGMj2 →
10

9
jGM1j2 þ

32

5
ðτTÞ2jGM3j2: ð2:5Þ

D. Perturbative QCD constraints

Additional information about the Ω− form factors
come from perturbative QCD (pQCD) for very large Q2

(or q2Þ [94–96]. As for the case of the nucleon, where
pQCD estimates show that GE, GM ∝ 1=Q4, also in
the case of 3

2
þ baryons, one can estimate the falloff of

the form factors for very large Q2. For the 3
2
þ resonances,

one obtains
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GE0; GM1 ∝
1

Q4
; ð2:6Þ

GE2; GM3 ∝
1

Q6
; ð2:7Þ

apart logarithmic corrections [94,96]. [Meaning that the
leading-order dependence can include factors logðQ2Þ, or
powers of logðQ2Þ, which are negligible in comparison
with Q ¼

ffiffiffiffiffiffi
Q2

p
]. The corollary of these results is that

Gðq2Þ ∝ 1=q4 for very large q2, as a consequence of the
asymptotic relations between spacelike and timelike form
factors [6]. Those relations are discussed in Sec. V B.
The analysis of the helicity transition amplitudes at large

Q2 imposes, however, a constraint stronger than (2.6) and
(2.7). From the study of the asymptotic behavior of the
helicity transition amplitudes [94,95], one concludes that the
magnetic-type form factors are related for very large Q2 by

GM1 ¼
4

5
τGM3; ð2:8Þ

where τ ¼ Q2

4M2. In this notation, τ ¼ −τT . The previous
relation is derived in Appendix A. The error expected in the
relation is terms of the order of 1=Q6.
The condition (2.8) may look surprising at first.

One needs to keep in mind, however, that correlations
between transition form factors at large Q2 are common
on electromagnetic transitions between baryon states.
Examples are some γ�N → N� transitions, when N� are
3
2
þ and 3

2
− states, as the Δð1232Þ and the Nð1520Þ. In those

cases, one has GM ≃ −GE, for very large Q2 [84,97–99].
Although those relations are related to the falloff of the
transverse transition amplitudes (A1=2 and A3=2) [100],
those constraints are only taken into account implicitly
in some quark models and in some parametrizations of the
data [99]. The condition (2.8) is also valid for the Δð1232Þ
elastic form factors [20,21] and for the other decuplet
baryon members.
As far as we know, the constraint (2.8) has not been

discussed in the literature, but it has a significant impact on
our final results for the Ω− electromagnetic form factors.
The relation (2.8) is, however, the consequence of the
natural order of the transition amplitudes between 3

2
þ and 3

2
þ

baryon states (see Appendix A).

III. COVARIANT SPECTATOR QUARK MODEL

In the present section, we discuss the formalism asso-
ciated with the covariant spectator quark model [4,15,81].
The model was developed within the covariant spectator
theory [101]. In the framework, the baryons are interpreted
as systems of three-constituent quarks where a quark is
free to interact with electromagnetic probes in relativistic
impulse approximation [4,81,83]. Integrating over the
degrees of freedom of the noninteracting quarks, one

reduces the three-quark system to a quark-diquark system
where the spectator quark pair is represented by an on-
mass-shell diquark with an average mass mD [4,81,82].
One obtains then an effective quark-diquark wave function,
free of singularities which describe the quark confinement
implicitly [81,82].
The wave functions of the baryons are built according to

the spin-flavor-radial symmetries where the radial wave
functions are determined phenomenologically by the exper-
imental data or by lattice QCD data for some ground state
systems [4,14,15,84,102,103]. In the electromagnetic inter-
action with the quarks, we take into account the structure
related to the gluon and quark-antiquark dressing. To
parametrize this structure, we use a form based on VMD
to represent the constituent quark electromagnetic form
factors [4,81,103].
The formalism has been applied extensively to the study

of the electromagnetic structure of several baryons in the
spacelike region (Q2 ≤ 0) [5,81–84,98,103–109] and in the
timelike region (Q2 < 0) [6,110–112]. The formalism has
also been used in the study of the spacelike electromagnetic
form factors of baryons in the lattice QCD regime
[4,102,103,106] and in the nuclear medium [113].

A. Transition current

In the relativistic impulse approximation, the transition
current between two baryon states, B and B0, described
by quark-diquark wave functions, ΨB0 and ΨB, takes the
form [4,81,82]

JμB0;B ¼ 3
X
Γ

Z
k
Ψ̄B0 ðPþ; kÞjμqΨBðP−; kÞ; ð3:1Þ

where Pþ, P−, and k are the final, initial, and diquark
momenta; jμq is the quark current operator; and Γ labels the
diquark scalar and vector components. The factor 3 takes
into account the contributions associated with the different
diquark pairs. The integral symbol represents the covariant
integration on the on-shell diquark momentum.
When we include the explicit form of the wave functions

ΨB0 and ΨB, we reduce JμB0;B to a Lorentz-invariant form
projected into the asymptotic states of B0 and B. Each
gauge-invariant term defines an independent form factor.
For details about the 3

2
þ elastic form factors, check

Refs. [17–21] and Appendix A.
In the following, we consider the elastic case (B0 ¼ B),

since our focus is the electromagnetic form factors of 3
2
þ

baryons.
The quark current operator has the generic form

jμq ¼ j1ðQ2Þγμ þ j2ðQ2Þ iσ
μνqν

2MN
; ð3:2Þ

whereMN is the nucleon mass, as before, and j1 and j2 are
the Dirac and Pauli SUð3Þ flavor operators, respectively.
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Equation (3.2) was defined for the first time for the study of
the nucleon elastic form factors [81]. The quark current jμq
was later extended to baryons with strange quarks
[4,6,103,113].
The operators ji (i ¼ 1, 2) can be decomposed as

jiðQ2Þ¼ 1

6
fiþðQ2Þλ0þ

1

2
fi−ðQ2Þλ3þ

1

2
fi0ðQ2Þλs; ð3:3Þ

where

λ0 ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

λs ¼

0
B@

0 0 0

0 0 0

0 0 −2

1
CA; ð3:4Þ

are the flavor operators acting on the quark wave function
in the flavor space, q¼ ðuds ÞT . The functions fiþ, fi−
(i ¼ 1, 2) represent the quark isoscalar and isovector form
factors, respectively, based on the combinations of the
quarks u and d [81]. The functions fi0 (i ¼ 1, 2) represent
the structure associated with the strange quark [4].
The quark isoscalar and isovector (light) form factors are

important for the study of the nucleon, the octet baryon, the
decuplet baryon, and the transitions between the octet
baryon and decuplet baryon [4,81,103,105,113] but are not
relevant to the present work.
When we consider a baryon composed exclusively of

strange quarks, like the Ω− baryon, only the terms in fi0
survive when we project ji into the flavor wave functions.
To parametrize the strange the strange quark form

factors, we use the form inspired by the VMD
mechanism [4]

f10 ¼ λq þ ð1 − λqÞ
m2

ϕ

m2
ϕ þQ2

þ c0
M2

hQ
2

ðM2
h þQ2Þ2 ; ð3:5Þ

f20 ¼ κs

�
d0

m2
ϕ

m2
ϕ þQ2

þ ð1 − d0Þ
M2

h

M2
h þQ2

�
; ð3:6Þ

where mϕ and Mh are the vector meson masses, corre-
sponding, respectively, to the light vector meson (ϕ meson,
associated with an ss̄ state) and an effective heavy meson
with mass Mh ¼ 2MN , which simulate the short-range
phenomenology. The parameter λq is determined by the
study of deep inelastic scattering [81]; κs, c0, and d0 are
determined by the study of the decuplet baryon electro-
magnetic form factors [4], based on the lattice QCD
simulations from Ref. [13]. The calibration of the strange
quark form factors takes into account also the experimental
value for the Ω− magnetic moment [4]. The numerical

values of the free parameters are λq ¼ 1.21, κs ¼ 1.462,
c0 ¼ 4.427, and d0 ¼ −1.860.

B. Wave functions of spin-32
+ baryons

We now review the formalism associated with the 3
2
þ

baryon states, developed in previous works in the study of
the Δð1232Þ and the Ω− systems [4,5,20,21,83,84,102].
We assume that the state corresponds to the 3

2
þ baryon

ground state (no radial excitations). The differences to the
previous works are in the flavor states (Ω− system) and in
the radial wave functions.
We can decompose the wave functions of the 3

2
þ baryon

B into three main components, associated with a mixture of
an S state and two D states, labeled here as D3 and D1
states, for the quark-diquark relative motion [5]

ΨBðP; kÞ ¼ N½ΨSðP; kÞ þ aΨD3ðP; kÞ þ bΨD1ðP; kÞ�;
ð3:7Þ

where a and b are the D-state mixture coefficients of
the states D3 and D1, respectively, and N is the normali-
zation constant (assuming that the individual states are
properly normalized). The state D3 describes the configu-
ration where the sum of the spin of the three quarks is 3=2.
The state D1 describes the configuration where the sum of
the spin of the three quarks is 1=2.
The interpretation of the states as S- and D-wave

components comes from the structure of the states in the
rest frame. In a moving frame, the intrinsic S- and D-wave
states are modified, and other partial waves are gener-
ated [83,84].
In the following, we refer states of core-spin S to refer to

states where the sum of the spin of the three quarks is S
(ignoring the relative angular momentum). The possible
states for systems of three quarks are then S ¼ 1=2
or S ¼ 3=2.
In the present study, we are not taking into account

contributions associated with P-wave states. Those con-
tributions may be relevant for the nucleon and the octet
baryon [82,114] but appear to not be so relevant for the 3

2
þ

states. Notice that the γ�N → Δð1232Þ transition can be
described accurately by a combination of S and D states on
the Δð1232Þ wave function [84,102,104].
The explicit expressions for the S, D3, and D1 compo-

nents of the wave functions are presented next.

1. S-state wave function

The S-state contribution to the wave function of the
baryon B, corresponding to a quark-diquark system with
relative angular momentum L ¼ 0, can be written as
[4,83,84]

ΨSðP; kÞ ¼ −ψSðP; kÞjBiFεα�λPuαðP; sÞ; ð3:8Þ
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where ψSðP; kÞ is the S-state radial wave function, jBiF is
the baryon B flavor wave function, εα�λP is the diquark
polarization state (λ ¼ 0;�) in the fixed-axis basis [81,115],
uαðP; sÞ is the Rarita-Schwinger spinor [116,117], and s is
the spin projection of the baryon. The indices λ and s are
omitted on ΨSðP; kÞ for simplicity.
Equation (3.8) generalizes the nonrelativistic structure of

a three-quark wave function of the 3
2
þ ground-state baryon

and satisfies the Dirac equation ð=P −MBÞΨSðP; kÞ ¼ 0
[83,84,115].

2. D-state wave functions

The construction of the states associated to quark-
diquark configurations with a relative angular momentum
L ¼ 2 requires the derivation of a D-state operator and also
a consideration of projectors P1=2 and P3=2, which decom-
pose generic states into their components into states of
core-spin 1=2 and states of core-spin 3=2, respectively.
The D-state operator can be expressed in terms of the

momentum [84]

k̃α ¼ kα −
P · k
M2

B
Pα; ð3:9Þ

which can be used for the initial diquark (P ¼ P− and
k̃ → k̃−) or the final diquark (P ¼ Pþ and k̃ → k̃þ). At the
baryon rest frame, k̃ ¼ ð0;kÞ. Using this notation, we can
define the D-state operator [84] as

DαβðP; kÞ ¼ k̃αk̃β −
1

3
k̃2g̃αβ; ð3:10Þ

where

g̃αβ ¼ gαβ −
PαPβ

M2
B

: ð3:11Þ

Note that Eqs. (3.10) and (3.11) can be defined in the initial
state (P−; k̃−) or in the final state (Pþ; k̃þ).
To separate the states of core-spin 1=2 from the states of

core-spin 3=2, we consider the two projectors,

ðP3=2Þαβ ¼ g̃αβ −
1

3
γ̃αγ̃β; ð3:12Þ

ðP1=2Þαβ ¼
1

3
γ̃αγ̃β; ð3:13Þ

where

γ̃α ¼ γα −
=PPα

M2
B
: ð3:14Þ

The properties of these projectors are known in the
literature [83,84,117].

To represent the two D states in a compact form, it is
convenient to define also the state

WαðP; k; sÞ ¼ DαβðP; kÞuβðP; sÞ: ð3:15Þ

One obtains two different states, D3 and D1, when we use
the core-spin projectors P3=2 and P1=2, defined by
Eqs. (3.12) and (3.13):

Wα
D3ðP; k; sÞ ¼ ðP3=2ÞαβWβðP; k; sÞ; ð3:16Þ

Wα
D1ðP; k; sÞ ¼ ðP1=2ÞαβWβðP; k; sÞ: ð3:17Þ

The wave functions of the states D3 and D1 can now be
written as [21,84]

ΨD3ðP; kÞ ¼ −3ψD3ðP; kÞjBiFðε�λPÞαWα
D3ðP; k; sÞ; ð3:18Þ

ΨD1ðP; kÞ ¼ −3ψD1ðP; kÞjBiFðε�λPÞαWα
D1ðP; k; sÞ; ð3:19Þ

where ψD3 and ψD1 are the D3 and D1 radial wave
functions, respectively, and the factor −3 was included
by convenience in order to mimic the form ofΨS from (3.8)
and to simplify the normalization condition of the two D
states [84]. As for the S state, the wave functionsΨD3ðP; kÞ
and ΨD1ðP; kÞ are both solutions of the Dirac equation.
The normalization of the radial wave functions is

discussed in the next section [see Eqs. (4.5)], along with
the discussion of the form of the radial wave functions.
One can demonstrate that the states uαðP; sÞ,

Wα
D3ðP; k; sÞ are states with core-spin 3=2, since the

projection with P1=2 is zero, and the states are unchanged
by the projector P3=2 [84]. As for the state Wα

D1ðP; k; sÞ, it
is a state with core-spin 1=2, since the projection with P3=2

is zero, and it remains unchanged when projected by P1=2

[84]. Furthermore, it was proved that Eqs. (3.18) and (3.19)
generalize the nonrelativistic wave function of three-
quark D states ground state with core-spin 3=2 and 1=2,
respectively [84].

IV. SPACELIKE MODEL FOR THE Ω− BARYON

We discuss now the results of the covariant spectator
quark model for the Ω− electromagnetic form factors in the
spacelike region. We consider the Ω− wave function
described by a combination of an S, a D3, and a D1 state
for a 3

2
þ ground-state baryon, as in Eq. (3.7) with the flavor

state jB >F ¼ jsss >. In the following, we replace B by Ω
in the wave functions and masses.
The explicit expressions for theΩ− electromagnetic form

factors are derived in Refs. [5,84]. The final results depend
on the parametrization of the strange quark form factors
(3.5) and (3.6) and on the form of the radial wave functions
ψS, ψD3, and ψD1.
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Before presenting the final expressions to the electro-
magnetic form factors, we discuss the parametrizations to
the radial wave functions.

A. Radial wave functions

Following the formalism of the covariant spectator quark
model, we express the radial wave functions in terms of the
dimensionless variable

χ ¼ ðMΩ −mDÞ2 − ðP − kÞ2
MΩmD

: ð4:1Þ

This representation is justified in the cases that the baryons
and the diquark are both on mass shell [15,81].
For the S,D3, andD1 states, we consider the radial wave

functions [4],

ψSðP; kÞ ¼
NS

mDðα1 þ χÞðα2 þ χÞ ; ð4:2Þ

ψD3ðP; kÞ ¼
ND3

m3
Dðα3 þ χÞ4 ; ð4:3Þ

ψD1ðP; kÞ ¼
ND1

m3
Dðα4 þ χÞ4 ; ð4:4Þ

whereNS,ND3, andND1 are normalization constants and αi
(i ¼ 1;…; 4) are square momentum range parameters in
units MΩmD. The factors 1=mD and 1=m3

D are included to
ensure appropriate normalizations for the wave functions
(dimensionless overlap integral functions).
The previous radial wave functions are normalized

according with [84,102]

Z
k
jψSðP̄; kÞj2 ¼ 1;

Z
k
k̃4jψD3ðP̄; kÞj2 ¼ 1;

Z
k
k̃4jψD1ðP̄; kÞj2 ¼ 1; ð4:5Þ

where P̄ represents the Ω− momentum at the rest frame:
P̄ ¼ ðMΩ; 0; 0; 0Þ and k̃ ¼ ð0;kÞ.
The inspiration for Eq. (4.2) comes from the represen-

tation of the nucleon radial wave function, since it can be
reduced to the Hulthen form in the nonrelativistic limit in
the configuration space (difference of two Yukawa func-
tions) [81]. Compared to our previous work on the Ω−

baryon with D states [5], we kept the expression for theD3
andD1 radial wave functions but modified the form for ψS,
which is now defined by the product of two different
multipoles on the variable χ.
The motivation to the new form is twofold: generate an

asymptotic form for the S-state contribution compatible

with the leading-order form factors at large Q2 (propor-
tional to 1=Q4), and increase the flexibility of the fit,
including two different momentum scale parameters.
The parametrizations (4.2)–(4.4) are compatible with the
expected falloffs (2.6) and (2.7) of the form factors for large
Q2, as discussed below. In the previous work [5], our main
goal was the description of theΩ− in a limited region ofQ2.
The parametrizations (4.2)–(4.4) may, however, be

incompatible with the relation (2.8). For that reason, we
consider also an alternative parametrization of the S-state
wave function and minor modifications in theD-state radial
wave functions.

B. Alternative parametrizations
for the radial wave functions

Alternative parametrizations for the S,D3, andD1 radial
wave functions can be

ψSðP; kÞ ¼
NS

mD

�
1

ðα01 þ χÞðα02 þ χÞ2 −
rS

ðα1 þ χÞðα2 þ χÞ
�
;

ð4:6Þ

ψD3ðP; kÞ ¼
ND3

m3
D

1

ðα1 þ χÞðα2 þ χÞðα3 þ χÞ2 ; ð4:7Þ

ψD1ðP; kÞ ¼
ND1

m3
D

1

ðα1 þ χÞðα2 þ χÞðα4 þ χÞ2 ; ð4:8Þ

whereNS,ND3, andND1 are newnormalization constants;α01
and α02 are additional square momentum range parameters;
and rS is a new adjustable parameter. The normalization
constants are also determined by the conditions (4.5).
The parametrizations (4.6)–(4.8) are characterized by the

common factors associated with the parameters α1 and α2.
In Sec. V C, we show that in Eq. (4.6) the term associated
with the parameters α1 and α2 dominates over the term with
the associated with parameters α01 and α02, on the overlap
integral, at large Q2.

C. Ω− form factors

The Ω− elastic form factors are calculated in a previous
work [5] for a mixture of S, D3, and D1 states given by
Eq. (3.7), in the first order of the coefficients a and b. The
approximation is justified for small admixture coefficients.
To represent the Ω− elastic form factors, it is convenient

to define the functions [5,20,21]

ẽΩ ¼ −f10ðQ2Þ; κ̃Ω ¼ −
MΩ

MN
f20ðQ2Þ: ð4:9Þ

We use the tilde to represent functions of Q2 without the
explicit inclusion of the argument. Also useful for the
representation of the electric-type and magnetic-type form
factors are the combinations
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g̃Ω ¼ ẽΩ − τκ̃Ω; ð4:10Þ

f̃Ω ¼ ẽΩ þ κ̃Ω; ð4:11Þ

where τ ¼ Q2

4M2
Ω
. Note the similarity with the expressions for

the electric and magnetic form factors of 1
2
þ baryons.

The covariant spectator quark model results for the Ω−

elastic form factors can now be written as [5]

GE0ðQ2Þ ¼ N2g̃ΩIS; ð4:12Þ

GM1ðQ2Þ ¼ N2f̃Ω

�
IS þ

4

5
aID3 −

2

5
bID1

�
; ð4:13Þ

GE2ðQ2Þ ¼ N2g̃Ωð3aÞ
ID3

τ
; ð4:14Þ

GM3ðQ2Þ ¼ N2f̃Ω

�
a
ID3

τ
þ 2b

ID1

τ

�
; ð4:15Þ

where N2 is a normalization factor, and the overlap integral
functions are determined by

IS ¼
Z
k
ψSðPþ; kÞψSðP−; kÞ; ð4:16Þ

ID3 ¼
Z
k
bðk̃þ; q̃þÞψD3ðPþ; kÞψSðP−; kÞ; ð4:17Þ

ID1 ¼
Z
k
bðk̃þ; q̃þÞψD1ðPþ; kÞψSðP−; kÞ: ð4:18Þ

The function bðk̃þ; q̃þÞ has the form

bðk̃þ; q̃þÞ ¼
3

2

ðk̃þ · q̃þÞ
q̃2þ

− k̃2þ; ð4:19Þ

where k̃þ ¼ k − Pþ·k
M2

Ω
Pþ and q̃þ ¼ q − Pþ·q

M2
Ω
Pþ [21].

For future discussion, it is worth mentioning that the
function bðk̃þ; q̃þÞ reduces to − 1

2
k2ð1 − 3z2Þ, in the final-

state rest frame, where z is the cosine of the angle between
k and q. We recover then the dependence on the spherical
harmonic Y20ðzÞ ∝ ð3z2 − 1Þ as in the nonrelativistic limit.
From (4.12)–(4.15), we can conclude that the state D3 is

responsible by the nonzero results of the electric quadru-
pole form factor and that both D3 and D1 contribute to the
magnetic octupole form factor. In the limit a ¼ 0 (no D3
state) and b ¼ 0 (no D1 state), we recover the results of an
S-state model with GE2 ≡ 0 and GM3 ≡ 0 [4,20,22].
In the expressions for the electromagnetic form factors

(4.12)–(4.15), notice that the functions GE2 and GM3

include dependence on ID3=τ and ID1=τ. These form
factors are, however, well defined in the limit τ → 0

(Q2 → 0), since we can show that ID3 ∝ Q2 and ID1 ∝
Q2 near Q2 ¼ 0 [21].

We can now discuss the normalization factor N2.
When the baryon elastic form factors are calculated in
the first order of a and b and drop terms of the order of a2

and b2, one should take N2 ¼ 1. We notice, however, that
in the limit Q2 ¼ 0 we can calculate the baryon charge
using all orders of a and b. In that case, we obtain
N2 ¼ 1=ð1þ a2 þ b2Þ. In the previous work, we choose
to perform the calculations withN2 ¼ 1=ð1þ a2 þ b2Þ and
include a theoretical band where the upper limit is
determined by N2 ¼ 1. With this procedure, one obtains
consistent results for GE0ð0Þ which must reproduce the Ω−

electric charge [IS → 1, GE0ð0Þ → ẽΩ → −1].
In the present work, we simplify the previous procedure,

assuming that the best estimate is the average between
N2 ¼ 1 and N2 ¼ 1=ð1þ a2 þ b2Þ. Our central value is
then determined by

N2 ¼ 1þ a2
2
þ b2

2

1þ a2 þ b2
: ð4:20Þ

To take into account the theoretical uncertainty, we use
N2 ¼ 1 to the upper limit, as before, and N2 ¼ 1=ð1þ
a2 þ b2Þ for the lower limit. The new procedure favors the
fit to the data, since the fit to the GE0 lattice data at low Q2

is improved when N2 is closer to 1.

D. Large Q2 behavior

One can now look for the asymptotic form of the Ω−

electromagnetic form factors. The analysis of the overlap
integrals IS, ID3, and ID1 shows that

IS; ID3; ID1 ∝
1

Q4
; ð4:21Þ

apart logarithmic corrections. These asymptotic falloffs are
valid for the parametrizations (4.2)–(4.4) and (4.6)–(4.8).
Taking the previous results into account, one can con-

clude from Eqs. (4.12)–(4.15) that the form factors are
ruled by Eqs. (2.6) and (2.7) for large Q2: GE0; GM1 ∝
1=Q4 and GE2; GM3 ∝ 1=Q6, apart logarithmic corrections.
The results (4.21) are the consequence of the combina-

tion of the form of the radial wave functions in the overlap
integrals and the fact that in the first order in the coefficients
a and b all overlap integrals have at least a contribution of
the S-state radial wave function. Since the overlap integrals
are invariant, the integrals can be performed in any frame.
The calculations are simplified when we choose the frame
where the S state is at rest. In these conditions, one can
prove that if we use an S-state radial wave functions with
the form ψS ∝ 1=ðαþ χÞ3 one obtain for the overlap
integrals, falloffs with 1=Q6, without logarithmic correc-
tions. This result is derived in Appendix G from Ref. [83].
If we consider instead ψS ∝ 1=ðαþ χÞ2, one concludes that
the overlap integrals are dominated by terms on 1

Q4 ðlog Q2

M2
B
Þ,
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where MB is the mass of the baryon at rest (also demon-
strated in Appendix G from Ref. [83]). In a present case,
where the S-state radial wave function has a term
ψS ∝ 1=ððα1 þ χÞðα2 þ χÞÞ, we can conclude that the
overlap integrals are also dominated at large Q2 with terms
of the order 1=Q4 with logarithmic corrections [118].
The possibility of verification of the condition (2.8) is

discussed in Sec. V C. In that section, we analyze also the
results obtained when we use the radial wave functions
(4.6)–(4.8) and discuss the motivation to those expressions.

V. ELECTROMAGNETIC FORM FACTORS IN
THE TIMELIKE AND SPACELIKE REGIONS

In the present section, we tested if the parametrizations
discussed in the previous section are suitable to describe the
available Ω− electromagnetic form factor data.
We divide the study in three steps:
(i) First, we tested if the simplest parametrizations,

based on radial wave functions (4.2)–(4.4), defined
by the asymptotic formsGE0,GM1 ∝ 1=Q4 andGE2,
GM3 ∝ 1=Q6, are compatible with the lattice QCD
data [spacelike (SL) region].

(ii) In a second step, we tested if the same kind of
parametrization can also describe the timelike data,
more specifically the data associated with the
effective form factor jGðq2Þj from CLEO [timelike
(TL) region].

(iii) At the end, we tested if a modified model based on
the radial wave functions (4.6)–(4.8) is consistent
with the large-Q2 condition (2.8) and debate the
range of Q2 where the relation can be fulfilled. [In
the following, we use LQ2 to label the large-Q2

condition (2.8)].
In a previous study [5], we considered only the lattice

data in the region Q2 ≤ 1 GeV2 for GE0 and GM1, from
Ref. [7], because we were more focused in the low-Q2

behavior of the form factors, including the results for

GE2ð0Þ and GM3ð0Þ. In the present work, we extend the
range to Q2 ≤ 2 GeV2, in order to take into account large-
Q2 effects on the form factors, which are pertinent to the
timelike region. We discard the lattice QCD data for Q2 >
2 GeV2 because those simulations are affected by very
large error bars and cannot be used to discriminate between
different parametrizations.
Since Ref. [7] presents no data for GM3, we include in

our database the GM3 data point from Boinepalli et al. [13]
for Q2 ¼ 0.23 GeV2, even though the result is not very
accurate.

A. Adjust parameters to the spacelike data

We adjust the free parameters of the model, the admix-
ture coefficients a, b and the parameters of the radial wave
functions (4.2)–(4.4), αi (i ¼ 1;…; 4), to the spacelike data
from our database. The value associated with the magnetic
moment (2.1) is not included in the present fit because it
was already used in the calibration of the strange quark
current (fixes κs) [4]. The parameters of the best fit are
presented in the first row of Table I (fit SL data).
The quality of the fit, estimated by the chi square per

data point for the different subsets of data (GE0, GM1, GE2,
and GM3), is presented in the first row of Table II. In
the column “Total,” we present the total chi square per
data point.
Compared with our previous study of the Ω− form

factors from Ref. [5], we obtain a better description of the
GE0, GM1 form factors and improve the overall description
of the data (smaller total chi square per data point). There
are three main reasons for this improvement: because we
increase the range of the Q2 lattice data and the chi square
associated to the large Q2 is smaller, because we consider a
radial wave function for ψS (4.2) with a falloff which better
describe the data, and also because ψS include two
momentum range scales (an extra parameter). The most
relevant factor to this improvement is the form of radial

TABLE I. Adjustable parameters of the fits of the spacelike (SL) and timelike (TL) data. Included are the
admixture coefficients a and b of theD3 andD1 states, and the parameters associated with the S- (α1, α2),D3- (α3),
and D1-state (α4) radial wave functions, defined by Eqs. (4.2)–(4.4).

a b α1 α2 α3 α4

Fit SL data 0.0322 0.2776 0.05927 0.1075 0.4437 0.5375
Fit SL/TL data 0.0304 0.2307 0.04250 0.1482 0.3340 0.2485

TABLE II. The quality of the fit measured by the chi square per data point and percentages of D1 and D3 states.
jGj represents the timelike data. LQ2 labels the large-Q2 condition (2.8).

GE0 GM1 GE2 GM3 jGj Total %D1 %D3

Fit SL data 2.64 1.24 0.25 2.37 1.54 0.096 7.15
Fit SL/TL data 2.53 1.66 0.37 3.40 2.79 1.74 0.088 5.05
Fit SL=TLþ LQ2 2.54 1.92 0.48 5.33 3.33 1.91 0.092 7.55
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wave function, since we replaced a tripole form 1=ðαi þ χÞ3
in Ref. [5] by a product of two monopoles 1=ðαi þ χÞ. This
conclusion was confirmed by numerical calculations.
The improvement in the description of the data with the

new parametrization for ψS is pertinent because it shows
that a radial wave function compatible with the large-Q2

pQCD behavior, Eqs. (2.6) and (2.7), can improve also the
description of the low-Q2 region. We emphasize that the
use of two scales, α1, α2 in the radial wave function, instead
of one global scale, α1, as in Ref. [5], also contributes to the
improvement.
In Table II, we include also the relative contributions

from the D1 and D3 states. We notice that the values of a
and b are very close to the values of the previous work:
a ¼ 0.0341 and b ¼ 0.2666 [5] (see Table I). It is then
worth mentioning that, although based on different S-state
radial wave functions, the mixtures of theD1 andD3 states,
the fit from Ref. [5], and the new fit are very similar, with
about 0.1% and 7% for the D3 and D1 states, respectively.

The conclusion that theD1 state has a larger contribution is
preserved. Notice, however, that the 0.1% of the stateD3 is
essential to describe the electric quadrupole form factor
data, according to Eq. (4.14).
We look now for the numerical results for the form

factors for GE0, GM1, GE2, and GM3, represented in Figs. 1
and 2 by the dashed lines. We do not include the theoretical
uncertainty band for clarity. As anticipated from the results
for the chi squares, we obtain a good description of theGM1

and GE2 data. The GE0 lattice data are more difficult to
describe, due to the behavior of the different datasets and
the small error bars.
The comparison with the GE2 and GM3 lattice QCD

data are presented in Fig. 2. The fit (dashed line) describes
well the lattice QCD data for GE2 within the accuracy
of the data points. The small value obtained for the GE2
partial chi square (0.25) is the consequence of the
large error bars on the data. As for GM3, the estimate
can be compared only with the single data point
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FIG. 1. Form factors GE0 and GM1. Fits to the data: SL (dashed line), SL/TL (solid line), and SL=TLþ LQ2 (orange band). Lattice
QCD data from Alexandrou et al. [7]. For GM1 we include also the experimental result GM1ð0Þ ¼ −3.60� 0.09 [10] (�). The open
circles represent the result for Q2 ¼ 0.23 GeV2 from Boinepalli et al. [13].
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GM3ð0.23 GeV2Þ ¼ 1.25� 7.50 [13]. The present result
overestimates the data, but only by 1.1 standard deviations.
When compared with the estimate from Ref. [5], one has

an increment of 13% for GE2ð0Þ and a reduction of 6% on
GM3ð0Þ. The falloffs of GE0 andGM3 withQ2 are similar to
the ones from Ref. [5].

B. Adjust parameters to the spacelike and timelike data

In the previous section, we demonstrated that the
covariant spectator quark model is successful in the
description of the Ω− spacelike data.
One can notice, however, that the test of the model is

restricted to the range 0 ≤ Q2 ≤ 2 GeV2. The model was
not tested in the large-Q2 region because the lattice QCD
simulations are limited in the range of Q2, and it was also
not tested in the timelike region.
The next step is to test if the derived parametrization is

consistent with theΩ− timelike data obtained from eþe− →
Ω−Ω̄þ cross section data in CLOE [61], expressed in terms
of the effective form factor jGðq2Þj. This test was per-
formed with the model parametrization from Ref. [5] in
Ref. [6]. The conclusion was that either the value ofGM3ð0Þ
is overestimated or the form factors drop off much faster
that in the original parametrization.
The new timelike data provide then a unique opportunity

to study the magnitude of GM3ð0Þ and the falloff of the Ω−

form factors, which cannot be tested by the available lattice
QCD (limited in the range of Q2).
To extend the calculations of the covariant spectator

quark model to the timelike region (q2 ¼ −Q2 > 0), we use
the asymptotic relations proposed in Ref. [6] for the electric
(l ¼ 0, 2) and magnetic (l ¼ 1, 3) form factors

GTL
Elðq2Þ ¼ GElðQ2 þ 2M2

ΩÞ; ð5:1Þ

GTL
Mlðq2Þ ¼ GMlðQ2 þ 2M2

ΩÞ; ð5:2Þ

where the index TL indicates the timelike form factors. On
the rhs, GEl and GMl represent the spacelike form factors.
To calculate the effective form factors jGðq2Þj of 3

2
þ

baryons, we use the replacements (2.4) and (2.5) and the
GEl and GMl spacelike form factors [69]. The relations
(2.4) and (2.5) are derived from general physics and
mathematical principles, including unitarity and the
Phragmén-Lindelöf theorem, valid for analytic function
of q2 for very large jq2j [90,92]. A consequence of the
approximation is that the form factors are also real
functions in the timelike region for large q2. The shifts
of 2M2

Ω on the rhs of Eqs. (2.4) and (2.5) are motivated by
the difference between the spacelike (Q2 ¼ 0) and timelike
thresholds (q2 ¼ 4M2

Ω). The relations used here include
then finite q2 corrections to the asymptotic limit [6].
The parameters associated with the global fit are pre-

sented in the last row of Table I. The corresponding chi

square per data point for each form factor, is included in the
second row of Table II (fit SL/TL data). The column jGj
indicates the chi square associated with the timelike data.
An interesting result from Table II is that the consid-

eration of the timelike data leads to the improvement of the
description of the GE0 data, meaning that the falloff of GE0
is relevant for the description of the timelike data. The
differences between the two parametrizations (SL or SL/
TL) are related to the variation in about 30% on α1, as one
can see in Table I. Recall that GE0 depend exclusively on
the S state. These differences, however, are not perceived
on the graph for GE0 below Q2 ¼ 2 GeV2.
The comparison of the global fit (SL/TL) with the

spacelike data is presented in Figs. 1 and 2. In Fig. 1, we
include only the blue solid line for clarity. The theoretical
uncertainty associated with the blue line has a magnitude
similar to the orange band, discussed in the next subsection.
In Fig. 2, we present the result of the fit by the blue band in
order to include the theoretical error associated with the
normalization factor N2, as discussed in Sec. IV C.
The results of the fit to the SL and TL data for GE0 and

GM1 (solid line) are very similar to the results of the fit to
the SL data (dashed line). We conclude then that the main
differences between the two fits (SL and SL/TL) appear
only for values of Q2, larger than 2 GeV2.
The results for GE2 andGM3 displayed in Fig. 2 are more

relevant. One can notice the increasing of GE2 and GM3

near Q2 ¼ 0 and a stronger falloff with Q2 in comparison
with the fit which ignore the timelike data. The quality
of the description of the GE2 data are not substantially
modified (large error bars, partial chi square per data point
of 0.2–0.4). As for GM3, the impact of the timelike data is
more significant. Notice that the quality of the description
of the GM3 data point is reduced in comparison with the
previous fit (dashed line). The estimate differs from the data
by 1.8 standard deviations. When we take into account the
timelike data, we deteriorate the description of the GM3

data, represented by the point with Q2 ¼ 0.23 GeV2.
The main difference in the new solution to GM3 is in the

faster falloff with Q2, indicating that the magnitude of the
function is significantly reduced for large Q2, contributing
to a significant suppression of the term jGMj2 in jGðq2Þj
[see Eq. (2.5)].
The results for the effective form factor jGðq2Þj for the

Ω− are presented in Fig. 3 and compared with the more
recent data from CLOE for q2 ¼ 14.2 and 17.4 GeV2 [61].
We omitted the first measurement at q2 ¼ 14.2 GeV2 from
CLOE [12], since it is superseded by a more recent analysis
[61]. The dashed line corresponds to our best estimate
based on Eqs. (5.1) and (5.2) and the spacelike and timelike
data. The thin dashed lines indicate the theoretical error
based on finite correction on q2 for the asymptotic relations
between spacelike and timelike regimes, which are valid
strictly when q2 → �∞. We estimate these errors using the
replacements on Eqs. (5.1) and (5.2): Q2 þ 2M2

Ω → Q2 for
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the upper limit and Q2 þ 2M2
Ω → Q2 þ 4M2

Ω for the lower
limit [6]. At very large Q2, the width of the variation
become negligible and the leading-order falloff of G, 1=q4,
emerges [6].
We return to this discussion after taking into account the

impact of the large-Q2 relation (2.8) on the structure of the
form factors.

C. Model compatible with the
asymptotic conditions

In Sec. IV D, we conclude that the leading-order
dependence of the electromagnetic form factors at large
Q2: GE0, GM1 ∝ 1=Q4 and GE2, GM3 ∝ 1=Q6, is naturally
reproduced with the radial wave functions (4.2)–(4.4). One
can then ask if the large-Q2 constraint (2.8) can also be
accomplished with the same model for the radial wave
functions. The answer is no, as demonstrated below.
For the following discussion, it is necessary to know that

f̃Ω is a negative function of Q2 (see Appendix B) and the
signs of the overlap integrals IS and ID1 defined by (4.16)
and (4.18). Based on the parametrizations discussed in the
previous subsections, we assume also that the mixture
coefficients a and b are positive, as suggested by the
previous analysis (SL and ST/TL fits).
The integral IS is positive by construction (positive

integrate functions), and consequently, it does not change
the sign. The integrals ID3 and ID1 include the angular
function Y20ðzÞ ∝ ð3z2 − 1Þ, when we consider the final-
state rest frame. In the limit Q2 ¼ 0, the integrals ID3 and
ID1 vanish due to the factor Y20ðzÞ. For finite Q2, the D-
state integrals can be positive or negative depending on Q2

and on the square momentum parameters of the radial wave
functions (αi, i ¼ 1;…; 4). For the typical values of the

parameters (determined from the fits to the 0 ≤ Q2 ≤
2 GeV2 region), one concludes that the functions ID1,
as ID3, do not change sign in wide a range of Q2.
Numerical calculations suggest that the possible zeros
for ID3 and ID1 appear only for Q2 > 106 GeV2, well
above the present-day range of experiments. Thus, for the
purpose of the applications of the parametrizations (4.2)–
(4.4), we can assume that ID3 and ID1 are functions with a
defined sign (do not change sign).
We can now explain why the parametrizations (4.2)–

(4.4) are incompatible with the relation (2.8). When we
combine Eqs. (4.13) and (4.15) with the condition (2.8), we
conclude that the last condition is valid if IS ¼ 2bID1 (see
Appendix B). A consequence of the previous relation is
that the contribution from the D3 state is not relevant
for Eq. (2.8).
The verification of Eq. (2.8) implies that GM1 and GM3

must have the same sign for large Q2. The S-state gives the
dominant positive contribution to GM1 < 0, while the state
D1 gives a large contribution to GM3 > 0, near Q2 ¼ 0,
implying that bID1 < 0, since f̃Ω < 0. The conclusion is
then that IS > 0 and bID1 < 0 at low Q2. Since, as
mentioned, the large-Q2 relation is equivalent to IS ¼
2bID1, and IS > 0 does not change sign, the inference is
that bID1 should change sign at large Q2 in order to satisfy
(2.8). We recall, however, as discussed, that bID1 does not
change sign in the present range of study.
The corollary of the previous discussion is that the para-

metrizations (4.2)–(4.4) are incompatible with (2.8), when
the parameters of the radial wave functions are determined by
available lattice QCDdata.We can enforce the verification of
the condition (2.8), but then we fail to obtain an accurate
description of the spacelike form factor data.
To ensure the validity of Eq. (2.8), we consider then the

parametrizations (4.6)–(4.8). The new expression for ψS is
compatible with a change of sign on the overlap integral IS.
We modify also the expressions for ψD3 and ψD1 including
a factor common to ψS. The expression for ψD1 is
motivated by the relation between the overlap integrals
IS and ID1. As for ψD3, we use a dependence analog to
ψD1 for consistency with the D-state structure. The para-
metrizations (4.6)–(4.8) are also compatible with the
relations (4.21) [119]. The new form for ψS can be used
to induce a change of sign in the function GM1 and to
ensure that GM1 and GM3 have the same sign at large Q2,
according to IS ¼ 2bID1. The condition IS ¼ 2bID1 may
be difficult to impose analytically but can be approximated
numerically within a certain accuracy for a given region of
Q2, centered on a given large scale Q̄2, with a particular
choice of parameters.
To the best of our knowledge, this is the first time that the

relation (2.8) is considered in the context of the 3
2
þ baryon

form factors, in general, and theΩ− form factors in particular.
We tested tentatively if there was a scale Q̄2 where the

large Q2 condition (2.8) could be satisfied in the interval
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FIG. 3. Results for the Ω− effective form factor jGðq2Þj in the
timelike region (q2 > 0). The thick dashed line indicates the
result of the fit SL/TL which ignore the large-Q2 constraints, and
the thin dashed lines represent the upper and lower limits
(theoretical error). The solid line is the best estimate (fit
SL=TLþ LQ2) based on asymptotic relations, including the
theoretical error (orange band). The data are from CLEO [61].
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½Q̄2 − ΔQ2; Q̄2 þ 2ΔQ2�, for a given ΔQ2, with an accu-
racy better than ϵ. We consider the upper limit Q2

p ¼
Q̄2 þ 2ΔQ2, with a difference 2ΔQ2 for Q̄2 to ensure a
smoother convergence in the range between Q2

m ¼ Q̄2 −
ΔQ2 and Q̄2 þ ΔQ2.
To include the condition (2.8) in our fit, we use the

function

RðQ2Þ ¼ GM1ðQ2Þ − 4
5
τGM3ðQ2Þ

GM1ðQ2Þ : ð5:3Þ

If the condition (2.8) is valid, we should have RðQ2Þ ≃ 0

for values of Q2 near a large scale Q̄2.
We need then to test numerically if jRðQ2Þj is smaller

than a given value in an interval ½Q2
m;Q2

p�. Recall, however,
that one expects also that RðQ2Þ ∝ 1=Q2, for large Q2,
since ðGM1 − 4

5
τGM3Þ ∝ 1=Q6 and GM1 ∝ 1=Q4, apart

logarithmic corrections. To take into account the falloff
RðQ2Þ ∝ 1=Q2, we consider the condition

jRðQ2Þj < Q2

Q2
p
ϵ: ð5:4Þ

for Q2
m < Q2 < Q2

p. Thus, in the upper limit, one requires
that jRðQ2

pÞj < ϵ. For Q2 < Q2
p, however, one demands a

softer condition in order to obtain a smooth convergence of
GM1 to 4

5
τGM3 in the point Q2 ¼ Q2

p, with the required
precision.
When we implement the constraints described above, the

solutions (fits) compatible with the relation (2.8) are
characterized by the values of Q̄2, ΔQ2, and ϵ. To obtain
a significant range of convergence, we choose ΔQ2 ¼
100 GeV2. Once Q̄2 and ΔQ2 are defined, the value of Q2

p

corresponds to the upper limit of the parametrization.
We vary then the value of Q̄2 looking for solutions

with an accuracy better than ϵ. The numeric calculations
indicate that a fair description of the data (χ2 ≤ 2) with a
1% accuracy (ϵ ¼ 0.01) is obtained for Q̄2 ¼ 900 and
1000 GeV2. Solutions with ϵ ¼ 0.02 (2% accuracy) can be
obtained in a wider region of Q̄2, but the convergence
between the two functions is not so smooth. We consider
then the solutions with ϵ ¼ 0.01.
We choose the solution with Q̄2 ¼ 900 GeV2, since it

provides the lowest value for chi square (best description of
the overall data). Solutions with large Q̄2 tend to provide a

better description of the jGðq2Þj data and to increase the
values of GM3 at low Q2 (a less accurate description of the
GM3 data). As one of the motivations of the present work is
to investigate if there are solutions based on the our
formalism compatible with the present Ω− electromagnetic
form factor data and with the condition (2.8), we do not try
to fine tune the value of Q̄2. In principle, better solutions
(lower chi-square values) can be obtained varying Q̄2 near
900 GeV2. Those solutions are, however, very similar to
the selected one, and qualitatively equivalent to the case
Q̄2 ¼ 900 GeV2. Future experiments can provide further
constraints on the parametrizations of the Ω− form factors
and help to decide the appropriated scale for Q̄2.
In the context of our formalism, the parametrizations

(4.6)–(4.8) are interpreted as effective corrections to the
radial wave functions of the Ω− baryon, which resemble
some properties of pQCD in a simplified form.
The parameters associated with the global fit of the

spacelike and timelike data, constrained by the relation
(2.8), are presented in Table III. The values of chi square
per data point are presented in the last row of Table II
(fit SL=TLþ LQ2).
The best fit to the data, including the band of variation

estimated from the values of N2, is represented in Figs. 1
and 2 by the orange band. The more significant differences
to the previous fits can be observed in Fig. 2 for GE2 and
GM3. We recall that, based on the previous discussion, the
upper limit of the present estimates is Q2

p ¼ 1100 GeV2.
The function GE2 (orange band) is enhanced at low Q2

compared to the previous fits. At Q2 ¼ 0, we obtain
GE2ð0Þ ¼ 1.12� 0.04, a larger value than the estimate
obtained by the SL/TL fit, GE2ð0Þ ¼ 0.91� 0.02, and
almost twice the estimate from Ref. [5]. We recall that
different extrapolations to Q2 ¼ 0 from the GE2 data, are
expected due to the large uncertainty of the data. We avoid
a detailed comparison of the results for GE2 with the
literature, since our results are determined by the global fit
to the lattice QCD data, presented in the left panel
of Fig. 2.
As for the function GM3, we obtain a larger estimate for

GM3ð0Þ with GM3ð0Þ ¼ 27.6� 1.1 (orange band). The
solution for GM3 is also characterized by a strong falloff
with Q2, which contributes to a reduction of the magnetic
contribution to the effective form factor jGðq2Þj at large q2.
The result for the effective form factor jGðq2Þj is

represented in Fig. 3 by the solid line within the range

TABLE III. Adjustable parameters of the fits to the spacelike and timelike (SL/TL) data with the large-Q2 (LQ2) constraint (2.8),
based on the parametrization of the radial wave functions (4.2)–(4.4). S state (rS, α01, α

0
2, α1, α2), D3 state (α1, α2, α3), and D3

state (α1, α2, α4).

a b α01 α02 rS α1 α2 α3 α4

Fit SL=TLþ LQ2 0.0316 0.2859 11.141 0.0818 1.845 × 10−3 0.2018 0.1494 0.0789 1.811
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represented by the orange band. This estimate is very close
to the parametrization which does not take into account the
large-Q2 constraint (represented by the dash lines). Overall,
one can say that the estimates based on the covariant
spectator quark model are in good agreement with the
large-q2 data from CLOE within the theoretical errors of
the asymptotic estimate.
Since the results of the last fit (SL=TLþ LQ2) depend on

the accuracy of the relation (2.8), we tested the convergence
in the selected region (800–1000 GeV2). In Fig. 4,
we present the comparison of GM1 and 4

5
τGM3 multiplied

by Q4. The factor Q4 is included in order to remove the
effects of the leading-order dependence of the form factors,
dominated by terms of the order 1=Q4. The results confirm
that the relations are valid in good approximation (smooth
convergence) in the range 700–1000 GeV2.
The deviation from a horizontal line indicates that, even

in the range Q2 ¼ 700–1000 GeV2, logarithmic correc-
tions or terms of the order 1=Q6 are still meaningful. We
checked numerically that the form of the present para-
metrizations for the radial wave functions is consistent with
a very slow falloff of the correction to the leading order

1=Q4. We do not attempt to check the exact scaling at very
large Q2 because the scale Q2 ¼ 1100 GeV2 is interpreted
as the upper limit of our calculations and also because we
are well above the range of the present day experiments,
from which our model parametrizations are calibrated.
To have an idea about the general behavior of the form

factors above the region displayed on Figs. 1 and 2, we
represent in Fig. 5 the four form factors for Q2 ≥ 2 GeV2.
We multiply the functions by ðQ2

Λ2Þ2 with Λ2 ¼ 2 GeV2 in
order to suppress (part of) the falloff of the form factors
for large Q2. With this representation, we complement the

results from Figs. 1 and 2, since ðQ2

Λ2Þ2 ¼ 1, at the threshold
of the representation. The inflection points near the thresh-
old in the graph forGE0 andGM1 are the consequence of the
factor Q4 and are not relevant for the present discussion.
The zero for the functions GE0 and GE2 for Q2 ¼ 28 GeV2

is a consequence of the of the zero of the function g̃Ω
defined by Eq. (4.10) and the particular parametrization of
the strange quark form factors fi0, from Eqs. (3.5) and
(3.6), determined in Ref. [4] by the study of the decuplet
baryon form factors. This result is independent of the
overlap integrals IS and ID3. Above Q2 ¼ 28 GeV2, GE2
became negative but almost negligible. The change of signs
onGE0 forQ2 ≃ 153 GeV2 and ofGM1 forQ2 ≃ 193 GeV2

is the consequence of the parametrizations (4.6)–(4.8),
more specifically of the decomposition of ψS into two
terms. The changes of sign on GM1 are necessary for the
validity of the relation (2.8), as discussed already.
In the case the zero on functions GE0 and GE2 is

confirmed by future experiments, the zero is justified by
a mechanism similar to the one associated with the zero of

the proton electric form factor GEp ¼ F1p − Q2

4M2
N
F2p

[81,120,121], where there is a competition between the
two terms (Dirac F1p and Pauli F2p form factors).
Only new data (empirical or lattice) can confirm if our

parametrization of the strange quark form factors, calibrated
at low Q2 [4], can be extended very large values of Q2.
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D. Discussion of the results

From the results for the parametrizations which describe
the SL/TL data and the parametrizations which verify also
the LQ2 condition, one can conclude that it is possible to
derive parametrizations which take into account the present
knowledge of the Ω− form factors in the spacelike region
(mainly lattice QCD data for GE0, GM1, and GE2) as well as
the timelike data (effective form factor data).
We notice, however, that the description of the function

GM3 is not as accurate as the others (GE0, GM1, and GE2)
and that the description of the effective form factor jGðq2Þj
is also not as perfect as the first three multipole form
factors.
The limitations in the description of the functions GM3

and jGðq2Þj are, however, also related to the limited weight
of those functions in the fit. Notice that one has 100
spacelike data points for GE0 GM1, and GE2; only one point
for GM3; and two points for jGðq2Þj. The fit is then
dominated by the 100 points of the first three form factors
(GE0 GM1 and GE2). In principle, we could enhance the
impact of the points GM3 and jGðq2Þj including an extra
weight in the fit (equivalent to a reduction on the error
bars), but the procedure goes against the principle of giving
the same treatment to the spacelike and the timelike regions
(equal weight to spacelike and timelike points).
From the comparison between the two global fits (with

and without LQ2), one can conclude that the consideration
of the large-Q2 relation (2.8) decreases the accuracy of the
final fit, at the expenses of a less accurate description of
GM3, as can be observed in Table II (compare values of the
columnGM3). Our estimate ofGM3 deviates from the lattice
data by 2.3 standard deviations (see Fig. 2).
One can notice, however, that the estimate of GM3

depends exclusively on a unique point estimated in
2009, affected with a large uncertainty. The lattice QCD
techniques used in the past can be used today to estimate
GM3 for a larger set of Q2 points with a better accuracy.
New lattice QCD simulations of GM3 for values of Q2

closer to Q2 ¼ 0 can then be used to test our estimate for
GM3ð0Þ and the shape of GM3 at low Q2.
Our best parametrization (SL=TLþ LQ2) suggests then

that our estimate for GM3ð0Þ is most likely incompatible
with the available lattice result for GM3ð0.23 GeV2Þ.
The large values of the function GM3 are a consequence
of the consideration of the timelike data and the large-Q2

condition (2.8). It is interesting to notice, however, that
our large estimate for GM3ð0Þ is comparable with other
theoretical estimates presented in the literature as dis-
cussed next.
In the literature, there are only a few estimates of the

function GM3. In chiral perturbation theory, the magnetic
octupole momentum vanishes at the next-to-leading order
of the chiral expansion [50]. Also, the chiral solition model
approaches give null results for the function GM3 [55].

Calculations based on the Dyson-Schwinger equations
formalism [57,58] suggest that the magnitude of GM3

may be small but the sign is uncertain. Reference [57]
estimates that GM3ð0Þ ≃þ0.5, while the calculations from
Ref. [58] point to GM3ð0Þ ≃ −0.3 or GM3ð0Þ ≃ −0.5. The
Dyson-Schwinger results of the function GM3 are sensitive
to the truncation used in the interaction kernels [58].
In Table IV, we compare our estimates with calculations

based on QCD sum rules [52] and with the SUð3Þ non-
covariant quark model [56]. The first estimate from
Ref. [56] is based on an exact SUð3Þ model (symmetric
wave function); the second estimate considers the breaking
of SUð3Þ. From the observation of the table, we can
conclude that our estimate is comparable in magnitude
with the estimates based on QCD sum rules and the
symmetrical noncovariant quark model. Table IV includes
also the results for the octupole magnetic moment for an
easy comparison with other works.
The previous analysis shows that the estimate of the

octupole magnetic moment is an open problem, and more
theoretical and experimental efforts are necessary to clarify
the situation. Also for that reason, lattice QCD simulations
for GM3 at the physical mass of the Ω− are mandatory.
Accurate results for GM3 can be used to extrapolate
GM3ð0Þ, following the lines of previous estimates of
GE2ð0Þ based on lattice QCD data [5,7].
One can also discuss the shape of Ω− based on the

electric quadrupole [∝ GE2ð0Þ] and magnetic octupole
[∝ GM3ð0Þ] moments, which measure deviations from
the electric charge and magnetic dipole distributions from
a spherical form. For negative charge baryons, positive
moments indicate a compression along the polar axis
(oblate shape), and negative moments indicate an elonga-
tion in the polar axis (prolate shape), since the charge
density depends on the baryon charge [19,22,85]. We
conclude, then, that the Ω− presents a distribution of
electric charge and magnetic dipole compressed along
the spin axis, corresponding to an oblate shape. The shape
of the Ω− resembles then the shape of the Δþ [positive
charge, GE2ð0Þ < 0 and GM3ð0Þ < 0], according to the

TABLE IV. Results for GM3ð0Þ and magnetic octupole in units
10−3 fm3. An alternative representation of the magnetic octupole
uses units e fm3, where is the elementary electric charge
(e ¼ ffiffiffiffiffiffiffiffi

4πα
p

≃ 0.303). Noncovariant QM (sym) indicates a
SUð3Þ symmetrical model.

GM3ð0Þ OΩ (10−3 fm3)

QCD sum rules [52] 64.3� 16.1 16.0� 4.0
Non covariant QM (sym) [56] 48.2 12.0
Noncovariant QM [56] 12.2 3.04
Spectator [5] 15.5 3.85
Spectator SL 14.4� 0.5 3.61� 0.14
Spectator SL/TL 21.0� 0.6 5.22� 0.14
Spectator SL=TLþ LQ2 27.6� 1.1 6.88� 0.27
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covariant spectator quark model estimates [21], ignoring
the scale of the deformation.
Based on our results for GE0, we estimate the size

of the Ω− given by the electric charge square radius
as r2E0 ≃ 0.24 fm2. This result corresponds to about
one-third of the value measured for the proton
(r2Ep ¼ 0.707 fm2) [10], suggesting that Ω− is much more
compact than the proton.
Concerning the results for the function jGðq2Þj, in the

timelike region, we conclude that the estimates which
exclude and include the condition (2.8) are very similar
(see Fig. 3). The main differences between the two para-
metrizations appear for the function GM3, providing an
additional motivation for performing lattice QCD simula-
tions for this form factor.
Two final remarks about about our calculations in the

timelike region and the range of validity of the model
calculations are in order.
The jGðq2Þj data from CLEO used in our calibrations

correspond to the values of q2 ¼ 14.2 and 17.4 GeV2.
These values for q2 are still very close to the threshold of
the eþe− → Ω−Ω̄þ reaction (q2 ¼ 4M2

Ω ≃ 11.2 GeV2).
Therefore, the use of an expression valid for very large
jQ2j may not be fully justified. Since theses are the only
available data for q2 > 0, we used the data anyway.
The second remark is that, for simplicity, we did not take

into account the uncertainty associated with our estimate of
jGðq2Þj, in the calibration of the model in the calculation of
the chi square. If we take into account those uncertainties
(integrating out on a normal distribution centered on
the model result for jGðq2Þj), we improve the quality of
the description of this function, since the data are inside the
one-standard-deviation region. In that case, we would
obtain a smaller value for the jGj chi square, and con-
sequently a smaller global chi square per data point. We
avoid this procedure because, as mentioned above, the
theoretical estimates are still far way from the large-jQ2j
region, where the estimate and the estimate of error are
valid, and also because we do not want to reduce at this
stage the impact of the timelike data in the calibration of
the model.
Future measurements for larger q2 values, farther away

from the threshold 4M2
Ω, are of capital importance to check

if the present falloffs associated to jGðq2Þj and GM3 are
correct or if the present shape of the function GM3 has to be
corrected.

E. Predictions of jGj for large q2

Our final parametrization, which takes into account the
timelike region and the large-Q2 relation (2.8), can now be
used to make predictions for effective form factor jGðq2Þj,
for larger values of q2. Recall that the function jGðq2Þj is
extracted from eþe− collision experiments cross sections,

which can be measured presently in several laboratories, for
several hyperons, including the Ω− [6,12,59–62].
Our estimates are presented in Table V. These predictions

can be compared with future measurements of the effective
form factor jGðq2Þj of the Ω− baryon.

VI. CONCLUSIONS

In the last few years, there have been important develop-
ments in the experimental study of the electromagnetic
structure of baryons in the timelike region, based on
eþe− → BB̄ reactions, for several baryon (B) states.
Among other observables, one has access to the effective
electromagnetic form factor jGðq2Þj of theΩ− baryon in the
region (q2 ≥ 4M2

Ω).
The recent measurements of the Ω− timelike effective

form factor are very pertinent because there is no exper-
imental information about the Ω− electromagnetic struc-
ture, apart from the charge and the magnetic moment. There
are, however, lattice QCD simulations, at the strange
quark physical mass, which can be interpreted as a reliable
representation of the physical Ω− (reduced light quark
effects). Those lattice QCD simulations are performed in
the spacelike region (Q2 ¼ −q2 ≥ 0) for the electric charge
(GE0), magnetic dipole (GM1), and electric quadrupole
(GE2) form factors. For the magnetic octupole (GM3) form
factor, there are only simulations with large errors.
In the present work, we propose using the available

information about the Ω− to obtain a complete picture
of the electromagnetic structure of the Ω−, in the space-
like region (q2 ≤ 0), as well as in the timelike region
(q2 ≥ 4M2

Ω). We combine the experimental information
(magnetic moment, q2 ¼ 0), with the lattice QCD data in

TABLE V. Estimates of jGðq2Þj for large q2, compatible with
condition (2.8). The values between comas represent the average
of the upper and lower limits. Those estimates are justified
above q2 ¼ 40 GeV2 (symmetric deviations). Below 40 GeV2,
the upper limit dominates over the lower limit (unsymmetrical
error bars).

q2 jGðq2Þj (10−3)
20 4.02 (3.51)
25 2.75 (1.91)
30 1.97 (1.14)
35 1.47 (0.73)
40 1.14 (0.50)
45 0.900 (0.350)
50 0.728 (0.255)
55 0.600 (0.191)
60 0.502 (0.147)
65 0.426 (0.115)
70 0.365 (0.091)
75 0.316 (0.074)
80 0.276 (0.060)
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the spacelike region, and the effective form factor jGðq2Þj
in the timelike region.
We also take into account constraints from pQCD,

requiring that GE0, GM1 ∝ 1=Q4 and GE2, GM3 ∝ 1=Q6

for very large Q2 (apart logarithmic corrections). In
addition, we consider also a condition which relates the
GM1 and GM3 form factors in the asymptotic region. The
relation GM1 ¼ 4

5
τGM3 has a strong impact on the depend-

ence of the form factors on Q2 for very large Q2. The
discussion of the relevance of the correlation between the
from factors GM1 and GM3 is an important contribution of
the present work. As far was we know, this relation has not
been discussed in the literature. In the present work, the
correlation between the magnetic form factors is manifest
for a scale of Q2 around 900 GeV2.
Our analysis is based on the covariant spectator

quark model formalism, where the Ω− is a combination
of an S state and twoD states. The D states are responsible
by the deformation of the Ω− system (nonzero results
for GE2 and GM3). Part of the model (strange quark
form factors) was calibrated by previous studies of the
decuplet baryon. The parameters related to the S- and
D-state radial wave functions and the admixture parameters
are calibrated by the available physical and latticeQCDdata
for the Ω−. For the calculations in the timelike region, we
use asymptotic relations valid for very large jQ2j. The
existing data are described by a small (0.1%) D-state
contribution associated with total quark spin 3/2, and a
more significant (7.6%) D-state contribution associated
with total quark spin 1/2. The first contribution dominates
GE2, the second contribution dominates GM3. Our results
suggest a distribution of charge andmagnetism compressed
along the spin axis, corresponding to an oblate shape of the
Ω− baryon.
We conclude that the available information on the Ω−

baryon, including the lattice QCD data in the spacelike
region and the jGðq2Þj physical data in the timelike region,
is compatible with a large value for GM3 near Q2 ¼ 0

[GM3ð0Þ ≃ 28] and a fast falloff of GM3 for large jQ2j. It is
worth noticing, however, that the present estimations are
based on lattice QCD simulations, limited in the range of
Q2 and precision in the spacelike region, on two timelike
data points, and a single lattice calculation of GM3 with a
large uncertainty. More timelike data at larger q2 are
necessary to better constrain the shape of the form factors
at large jQ2j and to increase the impact of the timelike data
in the model calibrations.
The value of GM3ð0Þ is, presently, an open question. The

available lattice QCD data are compatible with positive
and negative values. Our estimate suggests that GM3ð0Þ is
large and positive, consistent with estimates based on
SUð3Þ quark models and QCD sum rules. Some frame-
works, however, point to a small GM3. Accurate simula-
tions possible with the present state-of-the-art lattice QCD
techniques are necessary to better infer the magnitude of

GM3ð0Þ and the shape of the function GM3 at low and
intermediate Q2.
Future accurate lattice QCD simulations of the four Ω−

form factors at low and intermediate Q2 and eþe− →
Ω−Ω̄þ collision experiments for large values of q2 (say
q2 > 30 GeV2) are very important to determine the shape
of the Ω− form factors and test the present predictions.
Those results can also confirm if the model calibrations
derived from low-Q2 lattice QCD data are also valid in the
large-Q2 region.
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APPENDIX A: PERTURBATIVE QCD
ESTIMATES FOR THE Ω− FORM FACTORS

We discuss here the asymptotic expressions associated
with the form factors GE0, GM1, GE2, and GM3. The
derivation of those expressions follows the analysis of
C. Carlson et al. [94] of the helicity transition amplitudes
for very large Q2, extended here to 3

2
þ baryons.

1. Electromagnetic current and form factors

The current Jμ associated with the γ�Ω−Ω̄þ vertex can be
written in the Lorentz-covariant and gauge-invariance form
[17,19,21]

Jμ ¼ −
�
F�
1ðQ2Þgαβ þ F�

3ðQ2Þ q
αqβ

4M2

�
γμ

−
�
F�
2ðQ2Þgαβ þ F�

4ðQ2Þ q
αqβ

4M2

�
iσμν

2M
; ðA1Þ

in elementary charge units (e). The value of the
charge (eΩ ¼ −1) is included on the function
F�
1 [F�

1ð0Þ ¼ GE0ð0Þ ¼ −1].
In the previous expressions, q is the photon momentum,

M is the baryon mass, and F�
i (i ¼ 1;…; 4) are structure

form factors. In the following, we use elementary form
factors to identify F�

i . In Eq. (A1), the free indices (α, β) are
contracted with Rarita-Schwinger spinors ūαðPþ; S0zÞ and
uβðP−; SzÞ associated with the final and initial states (spin
projections S0z and Sz), respectively.
The multipole form factors,GE0,GM1,GE2, andGM3 can

be expressed as linear combinations of the elementary
form factors. For the following discussion, however, it is
more convenient to define the auxiliary form factors Gi
(i ¼ 1;…; 4),

G1 ¼ F�
1 − τF�

2; ðA2Þ
G2 ¼ F�

1 þ F�
2; ðA3Þ
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G3 ¼ F�
3 − τF�

4; ðA4Þ

G4 ¼ F�
3 þ F�

4: ðA5Þ

Using the new notation, we can write [19]

GE0 ¼
�
1þ 2

3
τ

�
G1 −

1

3
τð1þ τÞG3; ðA6Þ

GM1 ¼
�
1þ 4

5
τ

�
G2 −

2

5
τð1þ τÞG4; ðA7Þ

GE2 ¼ G1 −
1

2
ð1þ τÞG3; ðA8Þ

GM3 ¼ G2 −
1

2
ð1þ τÞG4: ðA9Þ

The inverse relations are

F�
1 ¼

1

1þ τ
ðG1 þ τG2Þ; ðA10Þ

F�
2 ¼ −

1

1þ τ
ðG1 − G2Þ; ðA11Þ

F�
3 ¼

2

1þ τ
ðG3 þ τG4Þ; ðA12Þ

F�
4 ¼ −

2

1þ τ
ðG3 − G4Þ; ðA13Þ

and

G1 ¼ GE0 −
2

3
τGE2; ðA14Þ

G2 ¼ GM1 −
4

5
τGM3; ðA15Þ

G3 ¼
2

1þ τ
GE0 −

2

1þ τ

�
1þ 2

3
τ

�
GE2; ðA16Þ

G4 ¼
2

1þ τ
GM1 −

2

1þ τ

�
1þ 4

5
τ

�
GM3: ðA17Þ

2. Breit frame transition amplitudes

The study of the asymptotic behavior of the electromag-
netic form factors is simplified when we calculate the
transition amplitudes between the possible spin projections
in a given frame. Following C. Carlson, we consider the
amplitudes in the Breit frame [94]

Gþ ¼ hJþiþ1
2
;−1

2
; ðA18Þ

G01 ¼ hJ0iþ1
2
;þ1

2
; ðA19Þ

G03 ¼ hJ0iþ3
2
;þ3

2
; ðA20Þ

G− ¼ hJþiþ3
2
;þ1

2
; ðA21Þ

where

hJ0iS0z;Sz ¼
	
þ 1

2
q; S0zjJ0j −

1

2
q; Sz



; ðA22Þ

hJþiS0z;Sz ¼
	
þ 1

2
q; S0zjJþj −

1

2
q; Sz



; ðA23Þ

and Jþ ¼ − 1ffiffi
2

p ðJ1 þ iJ2Þ. Note that in the Breit frame the

initial state has helicity−2Sz and the final-state helicity 2S0z.
The notation Gl (l ¼ þ; 01; 03;−) is inspired on the

notation from Refs. [94] for the transitions between spin-
1=2 states to spin-1=2 or spin-3=2 states (like the γ�N → Δ
transition), where l ¼ �; 0 are related to the photon
polarization vectors. In the present case, however, it is
necessary to distinguish between two scalar transitions:
Sz ¼ þ 1

2
→ S0z ¼ þ 1

2
, labeled as G01, and Sz ¼ þ 3

2
→

S0z ¼ þ 3
2
, labeled as G03. The amplitude G03 is exclusive

of the spin-3=2 elastic transitions.
The Eqs. (A18)–(A21) represent the four independent,

nonzero amplitudes. The omitted cases can be related to
these four cases.
The explicit calculation of the amplitudes (A18)–(A21)

gives [19]

Gþ ¼ −
2

ffiffiffi
2

p

3

ffiffiffi
τ

p �
GM1 þ

6

5
τGM3

�
; ðA24Þ

G01 ¼ G1 þ
4

3
τGE2 ¼ GE0 þ

2

3
τGE2; ðA25Þ

G03 ¼ G1 ¼ GE0 −
2

3
τGE2; ðA26Þ

G− ¼ −
ffiffiffi
2

3

r ffiffiffi
τ

p
G2: ðA27Þ

In the calculations, we use the normalization
ūαðP; S0zÞuαðP; SzÞ ¼ −δS0zSz in the limit P ¼ ðM; 0Þ.

3. Large-Q2 behavior

One can now use the pQCD analysis from C. Carlson
et al. [94,95]. In the leading-order amplitude (Gþ), the
electromagnetic interaction preserves the helicity of the
initial state (helicity conservation), meaning that there is no
spin flip of any quark. In the remaining amplitudes, the
helicity is modified by the spin flip of one or more quarks.
Each spin flip transition is suppressed by a factor mq=Q,
where mq is the current quark mass [94]. The consequence
of this suppression is that Gþ has the slowest falloff with
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Q2 for large Q2, and the remaining amplitudes are further
suppressed by multiple factors mq=Q.
The asymptotic behavior of Gl can be ordered as

Gþ ∝
1

Q3
; ðA28Þ

G01 ∝
1

Q4
; ðA29Þ

G03 ∝
1

Q4
; ðA30Þ

G− ∝
1

Q5
: ðA31Þ

The amplitudes G01 and G03 have the same behavior
because they are associated with the same helicity variation
between the initial and the final state.
The pQCD constraints on the transition form factors can

now be derived based on the comparison of the general
relations (A24)–(A27) and the asymptotic expressions
(A28)–(A31). We start our analysis with the relation for
G−. From the comparison between (A27) with the asymp-
totic result (A31), we conclude that

G2 ¼ GM1 −
4

5
τGM3 ¼ O

�
1

Q6

�
: ðA32Þ

From the relations for G01 and G03, one can conclude
from the comparison of the Eqs. (A25) and (A26) with the
relations (A29) and (A30), respectively, that

GE0 �
2

3
τGE2 ¼ O

�
1

Q4

�
; ðA33Þ

meaning that

GE0; τGE2 ∝
1

Q4
: ðA34Þ

To finish the analysis, we look for the amplitude Gþ.
Using Eqs. (A24), (A28), and (A32), one obtains

Gþ ¼ −
5

ffiffiffi
2

p

3

ffiffiffi
τ

p �
GM1 þO

�
1

Q6

��
∝

1

Q3
; ðA35Þ

from which we conclude that

GM1 ∝
1

Q4
: ðA36Þ

Combining this result with (A32), we conclude also that

τGM3 ∝
1

Q4
: ðA37Þ

A corollary of the relations (A34), (A36), and (A37) is
that GE0 ∝ τGE2 ∝ 1=Q4 and GM1 ∝ τGM3 ∝ 1=Q4.

4. Summary of the pQCD limit

We can now summarize the expected results for the
falloff of the multipole form factors at very large Q2.
For very large Q2 (pQCD regime), the transition ampli-

tudes Gl follow the power law falloffs from (A28)–(A31).
The first consequence of the general analysis is that

GE0; GM1 ∝
1

Q4
; ðA38Þ

GE2; GM3 ∝
1

Q6
: ðA39Þ

The analysis of the amplitude G−, determined by G2,
demonstrates that, in addition to (A38) and (A39), for
τ ≫ 1, one has also

GM1 ≃
4

5
τGM3: ðA40Þ

The implication of the previous relation is that the two
magnetic form factors are correlated for very large Q2.
The relations GM1 ∝ 1=Q4, GM3 ∝ 1=Q6 and (A40)

imply that the leading-order the terms in GM1 and τGM3

are given by terms of order 1=Q4, which cancel exactly in
GM1 − 4

5
τGM3, and only the terms of higher order 1=Q6

survive.
To the best of our knowledge, the relation (A40), valid

for very large Q2, has not been discussed in the literature.
We emphasize, however, that the relations (A38), (A39),
and (A40) are the consequence of the natural order of the
amplitudes (A18)–(A21).
The leading-order falloff of the form factors F�

i and Gi
(i ¼ 1;…; 4) can also be estimated, based on the relations
between representations (A2)–(A5), (A6)–(A9), (A10)–
(A13), and (A14)–(A17). Those results are presented in
the first row (case 1) of Table VI.

5. Alternative forms for the form factors falloffs

The results (A38), (A39), and (A40) are then a conse-
quence of the pQCD regime. One can, nevertheless, look
for weaker constraints at large Q2.
If we remove the condition (A40) but keep the conditions

(A38) and (A39), we obtain different falloffs for the form
factors F�

i and Gi (i ¼ 1;…; 4). The corresponding forms
are presented in the second row (case 2) of Table VI.

TABLE VI. Expected falloffs according with different large-Q2

conditions. Case 1: consequence of the conditions (A38), (A39),
and (A40). Case 2: ignore the condition (A40).

G1 G2 G3 G4 F�
1 F�

2 F�
3 F�

4

Case 1 1
Q4

1
Q6

1
Q6

1
Q8

1
Q6

1
Q6

1
Q8

1
Q8

Case 2 1
Q4

1
Q4

1
Q6

1
Q6

1
Q4

1
Q6

1
Q6

1
Q8
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The main consequence in the model which ignores the
condition (A40) appears in the amplitude G−. As before,
we obtainGþ ∝ 1=Q3,G01, andG03 ∝ 1=Q4. In the case of
G−, sinceG− ∝QG2 andG2 ∝ 1=Q4 (instead ofG2∝1=Q6),
one obtains

G− ∝
1

Q3
; ðA41Þ

in contradiction with the asymptotic relation (A31) expected
from pQCD.
In summary, if we ignore the relation (A32), we fail to

reproduce the natural order of the amplitudes: Gþ ∝ 1=Q3,
G01, G03 ∝ 1=Q4, and G− ∝ 1=Q5.

APPENDIX B: ASYMPTOTIC RELATIONS
FOR THE COVARIANT SPECTATOR

QUARK MODEL

We discuss in this Appendix the asymptotic relations
associated with the electromagnetic form factors of the Ω−

from Eqs. (4.12)–(4.15), derived from the covariant spec-
tator quark model framework.

1. Uncorrelated form factors

In a first step, we ignore the constraint (2.8). From the
discussion from Sec. IV D, we know already that

IS ∝
1

Q4
; ID3 ∝

1

Q4
; ID1 ∝

1

Q4
; ðB1Þ

apart logarithmic corrections.
For the discussion of the large-Q2 region, it is important

to notice that the functions g̃Ω and f̃Ω, related with the
strange quark form factors f10ðQ2Þ and f20ðQ2Þ, behave as
constants for very large Q2,

g̃Ω → κ0q − λq; ðB2Þ
f̃Ω → −λq; ðB3Þ

where κ0q ¼ κs½d0 m2
ϕ

4MNMΩ
þ ð1 − d0Þ M2

h
4MNMΩ

�. All parameters
are defined in the strange quark form factors. From our
calibration to the strange quark current [4], one has λq ¼
1.21 and κ0q ¼ 1.84.

From Eqs. (B2) and (B3), one can conclude that for large
Q2, f̃Ω is negative, and g̃Ω is positive. At low Q2, these
functions are both negative.
The combination of the results (B1) with Eqs. (4.12)–

(4.15) leads to theGE0,GM1 ∝ 1=Q4 andGE2,GM3 ∝ 1=Q6.
We now look for the result for GM1 − 4

5
τGM3. From

Eqs. (4.13) and (4.15), one obtains

GM1 −
4

5
τGM3 ¼ N2f̃Ω½IS − 2bID1�: ðB4Þ

From this result, we conclude that the relation between the
two magnetic form factors is independent from the D3
component.
If the functions IS and bID1 are uncorrelated, we can

conclude that GM1 − 4
5
τGM3 ∝ 1=Q4. Working backward,

we can derive the corresponding falloff for the form factors
Gi and F�

i (i ¼ 1, 2, 3, 4) and obtain the relations associated
with the case 2 from Table VI, discussed in Appendix A.

2. Asymptotic relations consistent with pQCD

We consider now the possibility of imposing that the
results of the covariant spectator quark model are consistent
with the relation (2.8) for very large Q2. From (B4), we
conclude that the condition (2.8) is valid if

IS ¼ 2bID1; ðB5Þ
apart terms of the order of 1=Q6, since it was established
already that the overlap integrals are of the order of 1=Q4.
The compatibility of the covariant spectator quark model

with pQCD requires then that IS ¼ bID1. The connection
with between bID1 and IS can be imposed numerically.
Combining the original expressions (4.12)–(4.15) for

the form factors with the condition (B5), we can write for
large Q2

GE0 ¼ N2g̃ΩIS; ðB6Þ

τGE2 ¼ N2g̃ΩaID3; ðB7Þ

GM1 ¼
4

5
N2f̃Ω½IS þ aID3�; ðB8Þ

τGM3 ¼ N2f̃Ω½IS þ aID3�: ðB9Þ
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