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The electric charge transport in a weakly magnetized hot QCD medium has been investigated in the
presence of an external inhomogeneous electric field. The current densities (electric and Hall) induced by
the inhomogeneous electric field have been estimated in the regime where space-time inhomogeneity of the
field is small so that the collisional effect in the medium cannot be neglected. The collisional aspect of the
medium has been captured by employing both a relaxation-time approximation and a Bhatnagar-Gross-
Krook collision kernel in the relativistic Boltzmann equation. The magnetic field, momentum anisotropy,
and quark chemical potential dependences of the electric current and Hall current densities have been
explored, and the impacts on the respective conductivities have been studied. The inhomogeneities of the
field are seen to have sizable effects on the electromagnetic responses of the collisional medium.
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I. INTRODUCTION

The recent Large Hadron Collider (LHC) and
Relativistic Heavy-Ion Collider (RHIC) observations on
the directed flow for charged hadrons and D=D̄0 mesons
provide insights into the existence of a strong electromag-
netic field in the early stages of heavy-ion collision [1,2].
The strength of the created magnetic field is estimated to be
the order of ð1 − 15Þm2

π in the initial stages of collision
[3–6]. The study of deconfined nuclear matter–quark gluon
plasma (QGP) in electromagnetic fields and the associated
phenomenological aspects has gained huge momentum
over the past decade [7–18]. However, a proper theory
or model describing the evolution of the electromagnetic
fields in the QGP is not yet formulated completely. Various
studies have revealed that the evolution of the fields may
depend on the hot QCD medium properties, whereas the
fields decay rapidly in the vacuum [19–21].
To describe the impact of the generated fields on the

system of quarks or antiquarks and gluons, electromagnetic
responses in the medium play quite an important role
[22–24]. The electrical conductivity quantifies the electric
current being induced in response to the fields and
also controls the late-time behavior of the fields in the

electromagnetically charged medium. There have been
various studies to understand the electrical conductivity
of the QCD medium from transport theory [25–29], lattice
QCD computations [30–32], Kubo formalism [33], and
holographic methods [34,35]. Furthermore, electrical con-
ductivity has been extracted from the soft photon spectrum
and charge-dependent flow coefficients from heavy-ion
collisions in Refs. [36,37]. In a weakly magnetized
medium, the temperature is the dominant energy scale of
the system in comparison to the strength of the magnetic
field. On the other hand, the system follows 1þ 1-dimen-
sional Landau-level kinematics in the presence of the
strong magnetic field. The longitudinal electrical conduc-
tivity in a strongly magnetized medium has been explored
recently [38–42]. In Refs. [43–50], the dominant compo-
nents of current density in various directions and the
associated transport coefficients, electrical and Hall con-
ductivities, have been studied in a weakly magnetized
medium. Those investigations assume the electrostatic
fields in the medium as constant. Several studies have
revealed the possibility of the generation of inhomogeneous
electromagnetic fields in heavy-ion collision experiments
[6,19,51]. Therefore, it is an interesting aspect to study the
responses of the QGP medium in the presence of inhomo-
geneous fields.
The collisional aspects are incorporated in the present

analysis by choosing the regime of focus where space-time
inhomogeneity of the fields is small so that the collision
effects could be significant. The collisional effects are
embedded in the estimation of electromagnetic responses
via relaxation-time approximation (RTA) [52] and a
Bhatnagar-Gross-Krook (BGK) collision kernel [53] while
solving the relativistic Boltzmann equation. The difference

*k_gowthama@iitgn.ac.in
†manu.kurian@iitgn.ac.in
‡vchandra@iitgn.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 074017 (2021)

2470-0010=2021=103(7)=074017(10) 074017-1 Published by the American Physical Society

https://orcid.org/0000-0001-5667-3333
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.074017&domain=pdf&date_stamp=2021-04-22
https://doi.org/10.1103/PhysRevD.103.074017
https://doi.org/10.1103/PhysRevD.103.074017
https://doi.org/10.1103/PhysRevD.103.074017
https://doi.org/10.1103/PhysRevD.103.074017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


between the conventional RTA and BGK collisional
kernel is that in the latter approach the particle number
is conserved instantaneously.
In the current study, we have estimated the electric and

Hall current in the presence of inhomogeneous fields. The
near-equilibrium distribution function due to the fields has
been obtained by solving the Boltzmann equation with
RTA and BGK collision kernels. The dependence of the
quark chemical potential and strength of the magnetic field
on the Hall current has also been explored in the analysis.
Besides, the medium is also analyzed in the presence of
weak anisotropy to get insights on the impact of the
anisotropy on the charge transport in the hot QCDmedium.
We have illustrated the effects of inhomogeneity of the
fields and momentum anisotropy of the medium through
the temperature behavior of current densities in a weakly
magnetized collisional medium.
The present manuscript is organized as follows. In

Sec. II, the formalism for electric charge transport in the
weakly magnetized medium is described within the RTA
and BGK collision kernels in the presence of an inhomo-
geneous electric field along with the analysis on weak
momentum anisotropy. Section III is devoted to discussions
on the effects of inhomogeneity of the electric field and the
collisional aspects of the medium to the electromagnetic
responses of a weakly magnetized QGP. Finally, we
conclude the analysis with an outlook in Sec. IV.
Notations and conventions.—The subscript k denotes

the particle species, k ¼ ðq; q̄Þ, where q and q̄ represent
quarks and antiquarks, respectively. The quantity qfk is the
charge of the particle of flavor f, Nf ¼ 3 is the number of
flavors, Nc is the number of colors, and gk ¼ 2Nc

P
f

implies the degeneracy factor of the kth species. The fluid
velocity uμ ¼ ð1; 0; 0; 0Þ is normalized to unity in the rest
frame (uμuν ¼ 1). The quantities B ¼ jBj and E ¼ jEj
represent the magnitude of magnetic and electric fields,
respectively.

II. FORMALISM: ELECTRIC AND HALL
CURRENT IN A WEAKLY MAGNETIZED

QCD MEDIUM

The magnetic field breaks the rotational symmetry and
induces anisotropy to the hot QCD medium, leading to
anisotropic transport processes in the medium. Studies have
shown that the momentum transport in the presence of a
weak magnetic field gives rise to five components of shear
tensor and two components of bulk viscous pressure in the
medium [54–58]. To quantify the effects of the magnetic
field in the electric charge transport, one needs to study the
current density in the magnetized medium. The first step
toward the estimation of current density is to obtain the
nonequilibrium part of the distribution function from
the relativistic Boltzmann equation. In the magnetized
medium, the Boltzmann equation can be defined as

pμ∂μfkðx; pÞ þ qfkF
μνpν∂ðpÞ

μ fk ¼ CðfkÞ; ð1Þ

where Fμν is the electromagnetic field strength tensor,
CðfkÞ is the collision kernel near equilibrium, and fk ¼
f0k þ δfk is the distribution function for quarks and
antiquarks at finite quark chemical potential μ with equi-
librium distribution as

f0k ¼
1

1þ exp ðβðϵ ∓ μÞÞ : ð2Þ

The nonequilibrium part of the distribution function can be
obtained by solving the Boltzmann equation by choosing
the ansatz as follows:

δfk ¼ ðp:ΞÞ ∂f
0
k

∂ϵ ; ð3Þ

where the vector Ξ is related to the electric and the magnetic
field in the medium. The present analysis incorporates the
effects of the space-time inhomogeneity of the fields in the
electromagnetic responses of the medium. These inhomo-
geneities generate additional components to the current
density and can be described in terms of space-time
derivatives of the fields. Hence, the vector Ξ takes the
following form considering the terms up to the first-order
derivative of the fields:

Ξ ¼ α1Eþ α2 _Eþ α3ðE ×BÞ þ α4ð _E ×BÞ þ α5ðE × _BÞ
þ α6ð∇ ×EÞ þ α7Bþ α8 _Bþ α9ð∇ ×BÞ; ð4Þ

where αi ½i ¼ ð1; 2;…; 9Þ� are the unknown functions that
need to be calculated from the microscopic description. It is
important to emphasize that the parity of the current
operator is different from that of B, _B, and ∇ ×E.
Hence, the components of the current density with these
vector quantities cannot exist, as they violate parity con-
siderations, i.e., αi ¼ 0 for i ¼ ð6; 7; 8Þ. However, these
components will have finite contributions to the current
density for a system with a nonzero chiral chemical
potential μ5. This is beyond the scope of the present
analysis. The vector current in the magnetized medium
takes the form

ji ¼ 2Nc

X
f

Z
d3p
ð2πÞ3 v

iðqqfq − qq̄fq̄Þ

¼ σeδ
ijEj þ σHϵ

ijEj; ð5Þ

where vi is the velocity component and σe and σH are the
electric and Hall conductivities, respectively, of the mag-
netized QGP. Here, δij and ϵij are the Kronecker delta
function and the antisymmetric 2 × 2 tensor, respectively.
The first term in Eq. (5), which is proportional to the
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electric field, corresponds to the Ohmic current, and the
second term denotes the Hall current in the medium. Note
that electric charge transport transverse to the magnetic
field vanishes in a strongly magnetized medium, i.e.,
σH ∼ 0, due to ð1þ 1ÞD Landau level dynamics of the
quarks and antiquarks [59]. Now, one needs to solve Eq. (1)
to obtain the nonequilibrium part of the distribution
function while choosing the proper collision kernel.

A. RTA collision kernel

1. Isotropic medium

The collisional aspects in the medium can be approxi-
mated using the RTA collision term in the Boltzmann
equation as

Ck ¼ −ðu:pÞ δfk
τR

;

τR ¼ 1

5.1Tα2s lnð 1αsÞð1þ 0.12ð2Nf þ 1ÞÞ ; ð6Þ

where τR is the thermal relaxation time of the binary
scattering processes in the medium [46,60] and αs is the
one-loop coupling constant in the presence of a magnetic
field [61,62]. Hence, the Boltzmann equation takes the
form as follows:

∂fk
∂t þv:

∂fk
∂x þqfk ½Eþv×B�:∂fk∂p ¼−

δfk
τR

: ð7Þ

It is important to note that 1 → 2 processes are kinemat-
ically possible and the magnetic field has a strong depend-
ence on the collision integral in the strong magnetic field
limit [40,63]. However, the present analysis assumes
temperature as the dominant energy source in comparison
with the strength of the magnetic field. This allows us to
neglect the impact of the magnetic field on the thermal
relaxation time of the binary processes in the medium.
Employing Eq. (3) in Eq. (7), we have

ϵv:½α1 _Eþ _α1Eþ α2Ëþ _α2 _Eþα3ð _E × BÞ þ α3ðE × _BÞ þ _α3ðE × BÞ þ α4ð _E × _BÞ þ α4ðË × BÞ þ _α4ð _E ×BÞ
þ α5ð _E × _BÞ þ α5ðE × B̈Þ þ _α5ðE × _BÞ þ α9ð∇ × _BÞ þ _α9ð∇ × BÞ� þ qfkv:E − α1qfkv:ðE ×BÞ − α2qfkv:ð _E ×BÞ
þ α3qfkðv:EÞðB2Þ − α3qfkðv:BÞðB:EÞ þ α4qfkðv: _EÞðB2Þ − α4qfkðv:BÞðB: _EÞ þ α5qfkðv:EÞð _B:BÞ − α5qfkð _B:vÞðE:BÞ
− α9qfkðB:vÞð∇:BÞ ¼ −

ϵ

τR
½α1v:Eþ α2v: _Eþ α3v:ðE ×BÞ þ α4v:ð _E ×BÞ þ α5v:ðE × _BÞ þ α9v:ð∇ ×BÞ�: ð8Þ

Because of the fact that the electromagnetic fields vary
slowly in time to incorporate the collisional effects, we
neglect the terms with second-order derivatives of the fields
while estimating the electromagnetic responses in the
medium. Hence, the terms with _α2, _α4, _α5, and _α9 are
negligible. By choosing the form of the magnetic field in
the medium, one can determine the associated coefficients
corresponding to the electric and Hall currents. Since the
space-time evolution of the magnetic field in the QGP
medium is not well understood, we focus the response in a
constant background B to the time-dependent external
electric field in the medium. Comparing the independent
terms with various tensor structures on both sides within
these approximations, we obtain coupled linear differential
equations for the functions αi, with i ¼ 1; 3, as follows:

_α1 ¼ −
�
α1
τR

þ qfkα3B
2

ϵ
þ qfk

ϵ

�
; ð9Þ

_α3 ¼
−α3
τR

þ α1qfk
ϵ

: ð10Þ

Furthermore, the αi, with i ¼ 2; 4, satisfy the following
coupled equations:

α2¼−τR
�
α1þ

qfkα4B
2

ϵ

�
; α4¼−τR

�
α3−

α2qfk
ϵ

�
: ð11Þ

Next, define the matrices

X¼
�
α1

α3

�
; A¼

 
− 1

τR
−qfkB

2

ϵ

qfk
ϵ − 1

τR
;

!
; G¼

�−qfk
ϵ

0

�
; ð12Þ

and the coupled differential equations can be represented as
the matrix equation as follows:

dX
dt

¼ AX þ G: ð13Þ

To solve Eq. (13), we start with the solution of the
homogeneous equation dX

dt ¼ AX using the eigenvalues
and eigenvectors of the matrix A. The general solution
of the homogeneous part takes the following form:

α1 ¼ k1iBe
ð−ð1=τRÞþðqfk iB=ϵÞÞt − k2iBe

−ðð1=τRÞþðqfk iB=ϵÞÞt;

ð14Þ
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α3 ¼ k1e
ð−ð1=τRÞþðqfk iB=ϵÞÞt þ k2e

−ðð1=τRÞþðqfk iB=ϵÞÞt; ð15Þ

where k1 and k2 are the unknown constants, − 1
τR
� iqfkB

ϵ are

the eigenvalues, and ðiB
1
Þ and ð−iB

1
Þ are the eigenvectors of

the matrix A. The general solution of the nonhomogeneous
equation is the sum of the solution associated homogeneous
equation and a particular solution of the nonhomogeneous
part, say,G, of Eq. (13). Employing the method of variation
of constants to solve the nonhomogeneous equation, the
constants k1 and k2 are replaced with unknown functions
k1ðtÞ and k2ðtÞ, respectively. Substituting this back to
Eq. (13), we obtain

_k1iBe
ð−ð1=τRÞþðqfk iB=ϵÞÞt − _k2iBe

−ðð1=τRÞþðqfk iB=ϵÞÞt ¼ −
qfk
ϵ

;

ð16Þ

_k1e
ð−ð1=τRÞþðqfk iB=ϵÞÞtþ _k2e

−ðð1=τRÞþðqfk iB=ϵÞÞt¼0: ð17Þ

Solving Eqs. (16) and (17), we have

_k1 ¼
iqfke

ðð1=τRÞ−ðqfk iB=ϵÞÞt

2Bϵ
;

_k2 ¼ −
iqfke

ðð1=τRÞþðqfk iB=ϵÞÞt

2Bϵ
: ð18Þ

The functions k1ðtÞ and k2ðtÞ obtained by integrating
Eq. (18) take the forms

k1 ¼
iqfke

ðð1=τRÞ−ðqfk iB=ϵÞÞt

2Bϵð 1τR −
qfk iB
ϵ Þ

;

k2 ¼ −
iqfke

ðð1=τRÞþðqfk iB=ϵÞÞt

2Bϵð 1τR þ
qfk iB
ϵ Þ

: ð19Þ

Substituting Eq. (19) in Eqs. (14) and (15)and employing
Eq. (11), the αi’s take the following form:

α1 ¼ −
ϵqfk

τR½ð ϵ
τR
Þ2 þ ðqfkBÞ2�

; ð20Þ

α2 ¼
qfkϵ½ð ϵ

τR
Þ2 − ðqfkBÞ2�

½ð ϵ
τR
Þ2 þ ðqfkBÞ2�2

; ð21Þ

α3 ¼ −
q2fk

½ð ϵ
τR
Þ2 þ ðqfkBÞ2�

; ð22Þ

α4 ¼
2q2fkϵ

2

τR½ð ϵ
τR
Þ2 þ ðqfkBÞ2�2

: ð23Þ

Note that the contribution from the term E × _B vanishes
due to the constant background magnetic field. Employing
Eqs. (20)–(23) and Eq. (3) in Eq. (5), the current density in
the weakly magnetized QGP medium can be defined as

j ¼ jeêþ jHðê × b̂Þ; ð24Þ

where ê and b̂ are, respectively, the directions of the electric
and magnetic field in the medium such that ê:b̂ ¼ 0. Here,
je and jH quantify the electric charge transport in the
direction of and perpendicular to the electric field, respec-
tively, in the magnetized medium. The electric current

density constitute the leading-order Ohmic current jð0Þe and
the additional components due to the inhomogeneity of the

external electric field jð1Þe as

je ¼ jð0Þe þ jð1Þe ; ð25Þ

and the components take the forms as follows:

jð0Þe ¼ EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3 p

2

�
−
∂f0k
∂ϵ
�

×
1

τR½ð ϵ
τR
Þ2 þ ðqfkBÞ2�

; ð26Þ

jð1Þe ¼
_EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3 p

2
∂f0k
∂ϵ

×
½ð ϵ
τR
Þ2 − ðqfkBÞ2�

½ð ϵ
τR
Þ2 þ ðqfkBÞ2�2

: ð27Þ

Similarly, the Hall current density can be described as

jH ¼ jð0ÞH þ jð1ÞH ; ð28Þ

with

jð0ÞH ¼ EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3

p2

ϵ

�
−
∂f0k
∂ϵ
�

×
qfkB

½ð ϵ
τR
Þ2 þ ðqfkBÞ2�

; ð29Þ

jð1ÞH ¼ 2 _EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3

p2

ϵ

∂f0k
∂ϵ

×
ϵ2qfkB

τR½ð ϵ
τR
Þ2 þ ðqfkBÞ2�2

: ð30Þ

Let us now proceed with the analysis of electric charge
transport in an anisotropic QGP medium.
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2. Anisotropic medium

The success of dissipative hydrodynamics makes it
reasonable to assume that the QGP created in a heavy-
ion collision is slightly away from the local thermal
equilibrium. In the early stages of heavy-ion collisions,
large anisotropies arise due to the rapid longitudinal
expansion of the created medium. The physics of momen-
tum anisotropy could be understood in terms of momentum
anisotropic particle distributions [64]. The anisotropic
distribution function can be described in terms of isotropic
distribution by rescaling one direction in momentum
space [65–67]:

fanisoðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
fisoð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp · nÞ2

q
Þ; ð31Þ

where fiso ¼ f0 is the isotropic distribution function and

ξ ¼ hp2
Ti

2hp2
Li
− 1 is the anisotropic parameter such that pT ¼

p − nðp · nÞ and pL ¼ p · n with n the direction of
anisotropy. The current focus is on a weakly anisotropic
medium with ξ ≪ 1, and we have [68]

fanisoðpÞ ¼ f0 −
ξ

2ϵT
ðp · nÞ2ðf0Þ2 exp

�
ϵ ∓ μ

T

�
; ð32Þ

where p ¼ ðp sin θ cosϕ; p sin θ sinϕ; p cos θÞ and
n ¼ ðcos α; 0; sin αÞ. Solving the Boltzmann equation in
the magnetized medium and following the same formalism
in Ref. [68], we obtain the electric current density in the
anisotropic medium as follows:

ðjeÞaniso ¼ jð0Þe þ δjð0Þe þ jð1Þe þ δjð1Þe ; ð33Þ

where the isotropic components jð0Þe and jð1Þe are defined in

Eqs. (26) and (27), respectively. The terms δjð0Þe and δjð1Þe

quantify the effect of anisotropy on the electric current
density in the medium and take the forms as follows:

δjð0Þe ¼ −ξ
EðtÞ
3

Nc

X
k

X
f

ðqfkÞ2
1

6π2T2

Z
dp

p6

ϵ
ðf0kÞ2

× exp

�
ϵ ∓ μ

T

�
1

τR½ð ϵ
τR
Þ2 þ ðqfkBÞ2�

; ð34Þ

δjð1Þe ¼ ξ
_EðtÞ
3

Nc

X
k

X
f

ðqfkÞ2
1

6π2T2

Z
dp

p6

ϵ
ðf0kÞ2

× exp

�
ϵ ∓ μ

T

� ½ð ϵ
τR
Þ2 − ðqfkBÞ2�

½ð ϵ
τR
Þ2 þ ðqfkBÞ2�2

: ð35Þ

Notably, Eq. (34) reduces back to the results of Ref. [68] in
the case of a vanishing magnetic field. Similarly, the Hall
current density in the anisotropic medium is defined as

ðjHÞaniso ¼ jð0ÞH þ δjð0ÞH þ jð1ÞH þ δjð1ÞH ; ð36Þ

with anisotropic contributions to the Hall current taking the
following forms:

δjð0ÞH ¼ −ξ
EðtÞ
3

Nc

X
k

X
f

ðqfkÞ2
1

6π2T2

Z
dp

p6

ϵ2
ðf0kÞ2

× exp

�
ϵ ∓ μ

T

�
qfkB

½ð ϵ
τR
Þ2 þ ðqfkBÞ2�

; ð37Þ

δjð1ÞH ¼ ξ
2 _EðtÞ
3

Nc

X
k

X
f

ðqfkÞ2
1

6π2T2

Z
dp

p6

ϵ2
ðf0kÞ2

× exp

�
ϵ ∓ μ

T

�
ϵ2qfkB

τR½ð ϵ
τR
Þ2 þ ðqfkBÞ2�2

: ð38Þ

The isotropic terms jð0ÞH and jð1ÞH are described in Eqs. (29)
and (30).

B. BGK collision kernel

The collisional aspects of hot QCD medium can be
described using the BGK collision term [65,69,70]. The
advantage of the BGK collision term over conventional
RTA kernel is that it naturally preserves number conserva-
tion, i.e.,

Z
d3p
ð2πÞ3 CðfkÞ ¼ 0: ð39Þ

We closely follow Refs. [71,72] to incorporate the BGK
collisional aspects in the estimation of current density in the
weakly magnetized medium. The BGK collision kernel can
be defined as

CðfkÞ ¼ −ν
�
fk −

N
N0

f0k

�

¼ −ν
�
δfk −

f0k
N0

Z
d3p
ð2πÞ3 δfk

�
; ð40Þ

where

N ¼
X
k

Z
d3p
ð2πÞ3 fkðpÞ;

N0 ¼
X
k

Z
d3p
ð2πÞ3 f

0
kðpÞ ð41Þ

are the particle number densities. Here, the ν denotes the
collisional frequency, which acts as the input parameter of
the transport process in the medium and is independent of
the particle momentum. In the present analysis, ν is fixed as
the thermal average of the inverse of thermal relaxation
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time for the binary collisions in the medium. Note that the
BGK kernel reduces back to RTA term in the limit N

N0 ¼ 1.
Solving the Boltzmann equation (7) within BGK kernel,

we obtain the δfk as

δfk ¼ δfð0Þk þ νD−1 f
0
k

N0
η

1

1 − λ
; ð42Þ

where the RTA equivalent nonequilibrium part of the

distribution function δfð0Þk can be defined as

δfð0Þk ¼ −qfkðEþ v ×BÞ: ∂f
0
k

∂p D−1; ð43Þ

with D ¼ ∂0 þ ν. The functions η and λ take the forms as
follows:

η ¼
Z

d3p0

ð2πÞ3 δf
ð0Þ
k ; λ ¼ iν

N0

Z
d3p00

ð2πÞ3 f
0
kD

−1: ð44Þ

Expanding D−1 and λ in leading order in the presence of
inhomogeneous fields, we obtain δfk as

δfk¼ðp:ΞÞ∂f
0
k

∂ϵ þνf0k
N0

Z
d3p
ð2πÞ3 ðp:ΘÞ∂f

0
k

∂ϵ ; ð45Þ

where

Θ ¼ 1

ν
½α1Eþ ðα2 − ν−1α1Þ _Eþ α3ðE×BÞ þ ðα4 − ν−1α3Þ

× ð _E×BÞ þ ðα5 − ν−1α3ÞðE× _BÞ− ν−1α4ðË×BÞ
− ν−1ðα4 þ α5Þð _E× _BÞ− ν−1α5ðE× B̈Þ�: ð46Þ

Employing Eq. (45) in Eq. (5), we obtain the leading-order
electrical and Hall current density, respectively, as

jð0Þe ¼ EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3 p

��
−
∂f0k
∂ϵ
��

ϵν

ðϵνÞ2 þ ðqfkBÞ2
�
þ f0k
N0ϵ

Z
d3p0

ð2πÞ3 p
0
�

ϵ0ν
ðϵ0νÞ2 þ ðqfkBÞ2

��
−
∂f0k
∂ϵ0
��

;

ð47Þ

jð1Þe ¼
_EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3p

�∂f0k
∂ϵ
�
ϵ½ðϵνÞ2−ðqfkBÞ2�
½ðϵνÞ2þðqfkBÞ2�2

�
þ f0k
N0ϵ

Z
d3p0

ð2πÞ3p
0
�

2ϵ03ν2

½ðϵ0νÞ2þðqfkBÞ2�2
�∂f0k
∂ϵ0
�
; ð48Þ

jð0ÞH ¼ EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3

p2

ϵ

��
−
∂f0k
∂ϵ
��

qfkB

ðϵνÞ2 þ ðqfkBÞ2
�
þ f0k
N0

Z
d3p0

ð2πÞ3 p
0
�

qfkB

ðϵ0νÞ2 þ ðqfkBÞ2
��

−
∂f0k
∂ϵ0
��

;

ð49Þ

jð1ÞH ¼
_EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3

p2

ϵ

�∂f0k
∂ϵ
�

2qfkBϵ
2ν

½ðϵνÞ2 þ ðqfkBÞ2�2
�
þ f0k
N0

Z
d3p0

ð2πÞ3 p
0 ϵ02ν½3þ ðqfkBν Þ2�
½ðϵ0νÞ2 þ ðqfkBÞ2�2

∂f0k
∂ϵ0
�
: ð50Þ

III. RESULTS AND DISCUSSIONS

We initiate the discussions with the temperature depend-
ence of the response of the magnetized QGP to the
inhomogeneous electric field. In the weakly magnetized
medium, the electrical and Hall conductivities quantify the
system response along the direction of the electric field
(Ohmic) and transverse to the direction of both electric and
magnetic fields (Hall), respectively. To study the temper-
ature dependence of the Ohmic and Hall conductivities
along with the additional components due to the inhomo-
geneity of the electric field in the weakly magnetized
medium, we define the ratios

Re=H ¼ Rð0Þ
e=H þ Rð1Þ

e=H; ð51Þ

with

Rð0Þ
e=H ¼ jð0Þe=H

ET
; Rð1Þ

e=H ¼ jð1Þe=H

ET
: ð52Þ

The ratio Rð0Þ
e=H denotes the conductivities in the limit

of constant electromagnetic fields, i.e., Rð0Þ
e ¼ σe and

Rð0Þ
H ¼ σH. The space-time profile of the electric field E

in the medium to quantify the effect of inhomogeneity in
the current densities has been chosen as [51,73]

eEy¼ ŷeE0

b
2R

exp

�
−

x2

2σ2x
−

y2

2σ2y
−

η2s
2σ2η

−
τ

τE

�
; ð53Þ
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where σx, σy, and ση determine the spatial width of the field.
Here, τE is the duration time (lifetime) of the electric field,
R ¼ 6.38 fm is the radius of the nucleus, and b is the
impact parameter. The strength of the inhomogeneity of
the electric field in time can be quantified in terms of

τE ( _EE ∝ − 1
τE
).

The temperature dependence of the ratios Rð0Þ
e and Re is

depicted in Fig. 1 (left panel) at jeBj ¼ 0.01 and
0.03 GeV2. We observed that the effect of inhomogeneity
of the field has a significant impact on the electromagnetic
response of the medium. The additional component of the

current density jð1Þe described in Eq. (27) is higher order in

τR in comparison to the leading-order current density jð0Þe .
This observation is in line with the results of Ref. [73]. The
present analysis is on the weakly magnetized QGP in which
the strength of the magnetic field is subdominant in
comparison to the temperature scale of the medium. The
magnetic field dependence on the current density is enter-
ing through the Lorentz force term in the relativistic
Boltzmann equation and is more prominent in the lower
temperature regimes near the transition temperature Tc.
The collisional aspects in the estimation of the electric

current density are incorporated through the RTA and BGK
collision kernels. The effect of the collisions in the temper-
ature dependence of electric charge transport is plotted in
Fig. 1 (right panel). The results of electric charge response
within the BGK collision term show qualitatively similar
behavior as the RTA results with a significant shift
throughout the temperature regime under consideration.
This observation is consistent with the temperature behav-
ior of longitudinal electrical conductivity in the presence of
a strong magnetic field within the BGK collision kernel, as
discussed in Ref. [70]. The first term in Eqs. (47)–(50)
describes the RTA results, and other terms give further
corrections to the current densities in the magnetized
medium. We observe that the collisional effects are

critically depending on the strength of the magnetic field
and temperature of the medium.
The Lorenz force results in the Hall current in the

direction transverse to the particle velocity and the mag-
netic field in the medium. From Eqs. (26) and (30), we can
understand that the Hall current is higher order in τR in
comparison to the Ohmic current in the medium. The
dependence of Hall current on the strength of the magnetic
field, inhomogeneity of the electric field, and quark
chemical potential are depicted in Fig. 2. We observe that
the Hall current is subdominant compared to Ohmic current
and vanishes at the limit μ ¼ 0. The Hall current varies with
the strength of the magnetic field, as it is proportional to the

factor
qfkB

ð ϵ
τR
Þ2þðqfkBÞ2

within RTA. However, in the strong

magnetic field limit, the Hall current vanishes due to the
dimensionally reduced motion of quarks and antiquarks in
the direction of the field. We also observed that the effect of

FIG. 2. Dependence of chemical potential and strength of the
magnetic field on the temperature behavior of Hall current and the
additional component of Hall current due to the inhomogeneity of
the external electric field.

FIG. 1. Temperature dependence of Rð0Þ
e and Re at jeBj ¼ 0.01 and 0.03 GeV2 with μ ¼ 100 MeV and τE ¼ 5 fm within RTA (left

panel) and BGK (right panel) collision kernels. The RTA results are compared with lattice data from Refs. [31,74].
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inhomogeneity of the electric field on the Hall current is
more pronounced in the lower-temperature regime and is
critically depending on the quark chemical potential. The
effect of collisions in the QGP medium on the Hall current
and the additional component of the Hall current due to the
inhomogeneity of the field are described in Eqs. (29), (30),
(49), and (50).
The effect of momentum anisotropy to the electric charge

transport can be described in terms of the ratios as

δRe=H ¼ δRð0Þ
e=H þ δRð1Þ

e=H; ð54Þ

where

δRð0Þ
e=H ¼ δjð0Þe=H

ET
; δRð1Þ

e=H ¼ δjð1Þe=H

ET
: ð55Þ

The anisotropic corrections to the electric and Hall current
densities are described in Eqs. (34)–(38). Equation (54)
gives correction to the electric and Hall conductivities as
described in Eq. (51) in the anisotropic medium. The effect
of anisotropy on the electric charge transport is depicted in

Fig. 3. We observe that the ratios R0
e and Re decrease with

the increase in the strength of anisotropy. This observation
is consistent with the results of Ref. [68] at B ¼ 0. The
same observation holds true for the Hall current density in
the presence of inhomogeneous fields.
The effect of inhomogeneity of the external electric field

to electric charge transport is quantified in the case of
boost-invariant one-dimensional expansion [75] of the
medium at B ¼ 0. The proper time behavior of current
is plotted in Fig. 4. The response of the medium to the
decaying electric field is more visible in the initial stages of
heavy-ion collision. It is also observed that the time
evolution of electric field that generates an additional

component of the current density jð1Þe has a significant
effect on the response of the system.

IV. CONCLUSION AND OUTLOOK

In this article, we have studied the electric charge
transport in the magnetized hot QCD and QGP medium
in the presence of an external inhomogeneous electric field
at finite quark chemical potential. The magnetic field is
assumed to be weak in comparison to the temperature
energy scale in the system. The magnetic field introduces
anisotropy in the charge transport in the medium. We have
investigated the effect of the inhomogeneity of the electric
field to the medium’s response in the direction of the
electric field and transverse to the direction of both the
electric and magnetic fields, respectively, for an isotropic
and anisotropic medium. We have considered the case
where the inhomogeneity of the field is small, in which
collisional aspects are significant in the transport process.
We have obtained the nonequilibrium correction to the
momentum distribution of quarks or antiquarks and gluons
by solving the Boltzmann equation in the presence of an
inhomogeneous electric field with a proper collision kernel.
The electromagnetic responses have been studied within

RTA and BGK collision kernels in the weakly magnetized
QGP medium. We found that the inhomogeneous effects to

FIG. 3. Effect of momentum anisotropy on the temperature dependence of electric charge transport (left panel) and Hall current (right
panel) within RTA at jeBj ¼ 0.01 GeV2 and μ ¼ 150 MeV.

FIG. 4. Proper time (τ) evolution of the electric charge transport
(Ohmic) in the QGP medium at B ¼ 0.
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the response of the medium depend on the strength of the
magnetic field and the collisional aspects of the QGP. We
have investigated the dependence of quark chemical
potential and strength of the magnetic field on the temper-
ature dependence of Hall conductivity and the additional
component due to the inhomogeneity of the external
electric field. We have also investigated the response of
the QGP to the inhomogeneous electric field in the case of
boost-invariant expansion of the medium in the absence
of a magnetic field. The results showed that the inhomo-
geneous effects of the electric field on the electric charge
transport in the weakly magnetized medium are non-
negligible both in the direction of the electric field and
in the direction perpendicular to the electric and magnetic
fields in the collisional medium. Furthermore, we have
studied the effect of momentum anisotropy on the medium
response within the RTA. It is observed that the momentum
anisotropy has a visible impact on both electric and Hall
current densities in the magnetized medium. These effects
may perhaps have a significant impact on the charge-
dependent directed flow of final particles in the heavy-ion
collision, as it is sensitive to the induced current in the
medium [37]. Furthermore, it is important to incorporate
the backreaction of the medium to electromagnetic fields

for the realistic magnetohydrodynamical formulation of the
created matter in the collision experiments. These aspects
will be taken in a follow-up work.
An immediate extension of the present analysis is to

investigate the interplay of effects of the hot QCD equation
of state and inhomogeneity of the fields in the electro-
magnetic responses by effectively modeling the weakly
magnetized medium. The present analysis of electric charge
transport in the magnetized medium is the first step in this
direction. We intend to investigate the electric charge
transport in the regime where the effects of inhomogeneity
of the field are large in comparison with the collisional
effects of the medium, in the near future. The magnetic field
will also introduce anisotropy in momentum and thermal
transport in the medium. The investigation of all compo-
nents of viscous coefficients and thermal conductivity in a
weakly magnetized medium within the effective kinetic
theory would be another interesting direction to work in the
near future.
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