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Thermal extension of the screened massive expansion in the Landau gauge
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The massive screened expansion for pure SU(3) Yang-Mills theory is extended to finite temperature in
the Landau gauge. All thermal integrals are evaluated analytically up to an external one-dimensional
integration, yielding explicit integral representations of analytic functions that can be continued to the
whole complex plane. The gluon propagator is first explored in the Euclidean space by making use of
parameters obtained from first principles, which were already found to accurately reproduce the lattice data
at zero temperature. Within such a scheme, the agreement with the lattice at T # O turns out to be only
qualitative. The description improves provided that the parameters are tuned in a temperature-dependent
way by a fit to the data, carried out separately for each component of the propagator; in particular, the
transverse component closely follows the lattice data, while the agreement of the longitudinal component
with the data is poor at small momenta and moderately high temperatures. The dispersion relations of the
quasi-gluon are then extracted from the pole trajectory in the complex plane using the fitted parameters.
A crossover is found for the mass, suppressed by temperature like an order parameter in the confined phase,

while increasing like an ordinary thermal mass in the deconfined phase.
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I. INTRODUCTION

In the last decades, considerable efforts have been
devoted to the study of the complex behavior of quarks
and gluons under the extreme conditions which are reached
in heavy-ion collisions. In principle, the dynamical and
thermal properties of a quark-gluon plasma should descend
from the relatively simple Lagrangian of the SU(3) gauge
theory which describes QCD. However, things are not so
easy because the standard perturbative approach breaks
down in the strong-coupling IR limit and is also plagued by
further resummation problems at any finite temperature. As
a matter of fact, we still miss a full theoretical treatment of
the problem.

Even the pure gauge theory, without quarks, is not fully
understood, despite its relevance for describing the quark-
gluon plasma. Many important advances have been made by
the numerical simulation of the pure Yang-Mills (YM)
Lagrangian on a lattice, providing insights into the gluon
dynamics and the phase diagram. Among them, the con-
firmation of a dynamically generated gluon mass [1-8], as
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predicted by Cornwall in 1982 [9], and the occurrence of a
phase transition, with the gluons that become confining
below a critical temperature [10—12].

It would be a desirable progress if the dynamical and
transport parameters, like masses, widths, dispersion rela-
tions, transport coefficients, etc., which are currently
regarded as phenomenological parameters [13—16], could
be directly evaluated from first principles. That program
might be accomplished in part if the elementary correlators
and their analytic properties were known in the Minkowski
space. Unfortunately, all lattice calculations and most
numerical works provide information in the Euclidean
space and the analytic continuation is a difficult ill-defined
problem for the numerical data [17].

In the last years, a very predictive analytical method has
been developed [18-21] by a mere change of the expansion
point of ordinary perturbation theory (PT) for the exact
gauge-fixed Becchi-Rouet-Stora-Tyutin (BRST) invariant
YM Lagrangian, yielding a screened massive expansion
which is safe in the IR while recovering the correct results
of ordinary PT in the UV. At one-loop and zero temper-
ature, the screened expansion provides analytical results
which are in excellent agreement with the lattice and can be
easily continued to Minkowski space [21-25]. Thus the
method provides a way to extract dynamical details like
masses and damping rates from first principles.

In this paper, the formalism is extended to a finite
temperature 7 # 0, with the aim to provide a complemen-
tary tool for the study of the gluon plasma from first
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principles. As briefly discussed in Refs. [26,27], the
screened expansion can be extended to finite temperature,
providing a quasiparticle picture for the gluon which is
damped, with a very short finite lifetime, and canceled from
the asymptotic states. Here, we give a full account of the
details of the calculation and report a comprehensive
set of results for the gluon sector, including propagators,
analytic properties, poles, masses, widths and dispersion
relations. We discuss different optimization strategies and,
by a comparison with the available lattice data, we explore
how robust the screened expansion is when it is extended to
finite temperature.

While the existence of a screening mass mitigates the
effects of the hard thermal loops, several problems arise at a
finite temperature, ranging from the temperature depend-
ence of the optimal mass scale, to the analytic continuation
of the numerical integrals. Actually, even if a formal
extension to finite temperature is straightforward and based
on standard thermal Feynman graphs, the ambition to
extract analytical results requires a quite tedious and
lengthy analytical calculation of the integrals and, even
s0, a final one-dimensional numerical integration cannot be
avoided. Nonetheless, the resulting numerical integrals are
shown to define analytic functions which can be evaluated
in the complex plane. Then, the poles of the gluon
propagator and the resulting dispersion relations can be
easily extracted numerically.

Overall, despite the expected difficulties, the one-loop
screened expansion seems to be reliable at low temperature,
with correct predictions which become less quantitative at
high temperature, especially for the longitudinal sector,
when compared with the lattice data.

At T = 0, the one-loop approximation is quite sensitive
to the renormalization scheme and to the subtraction point,
but it can be shown to be basically rangent to the exact
result, which is approached for a special choice of the ratio
between the gluon mass parameter m and the renormaliza-
tion scale u. Here, m is just a mass parameter which defines
the shift of the expansion point [18,19,24,25], not to be
confused with the physical mass of the gluon. It seems that,
for that special ratio u/m, the higher order terms become
negligible, yielding very accurate analytical expressions for
the propagators. While that special ratio is scheme depen-
dent, it can be determined from first principles by mon-
itoring some identities which must be fulfilled by the exact
propagators, like the Nielsen identities, which express the
gauge invariance of the poles [21]. We must mention that,
once the ratio is optimized in the complex Minkowski
space, where the poles are defined, the propagators are
found in excellent agreement with the lattice data in the
Euclidean space. Thus, the optimized analytical expression
is not just a good interpolation formula, but a very good
approximation for the whole analytic function which is
defined in the complex plane. Moreover, at the optimal
ratio p/m there is only one energy scale left in the

calculation, say the mass parameter m, so that its actual
value becomes irrelevant, since it can be used as energy
units and is eventually determined by a comparison with
the phenomenology. For instance, sharing the same units of
the lattice data, a value m = 0.656 GeV was established in
previous works [21,24].

At a finite temperature 7 # 0, there is a third energy
scale and the optimal parameters m, g become two
independent functions of temperature, m(T), u(T), since
their optimal ratio is expected to depend on 7. In principle,
one could proceed as for T = 0 and fix the optimal ratio by
monitoring the gauge-invariance of the poles. However,
that would at least require a knowledge of the thermal
propagators in a generic covariant gauge, while the present
formalism has been developed only in the Landau gauge.
Moreover, no lattice data are available for a comparison in a
generic gauge and finite 7. This is not a theoretical
limitation by itself, but leads to a weakening of the control
of the accuracy.

That of the gauge invariance of the poles actually is an
additional problem one encounters when extending the
theory to finite 7 [28-31]. Even though the poles of the
propagator are constrained to be nonperturbatively gauge-
independent by, e.g., the Nielsen identities [32], in the
thermal formalism different powers of the coupling con-
stant coexist at the same loop order when hard-thermal-
loop effects are taken into account, so that consistent
resummation schemes are needed in order to obtain truly
gauge-invariant results for the poles’ position. To first order
in the coupling, this can be shown to only affect the
imaginary part of the dispersion relations, i.e., the gluon’s
damping rate. In this work no attempt has been made to
implement such resummation schemes or to keep under
control the accuracy of the approximation with respect to
the issue of gauge invariance. Whereas at low, nonzero
temperatures the screening provided by the gluon’s mass
may somewhat suppress the effects of the required
resummed terms, at higher temperatures the latter are
expected to become non-negligible, causing our predictions
for the gluon damping rate to become less and less reliable
as the temperature is increased.

In the Landau gauge, we explored two complementary
strategies and checked that the qualitative description
which emerges is robust enough and does not depend on
the optimization choice. The first, simpler, strategy consists
in using the same m and y parameters that work at 7 = 0.
That choice was already made in Ref. [26] (albeit with
different values for the parameters) and makes sense at low
temperature where we expect that m(T)~m(0) and
u(T) ~ u(0). With this choice, we find the correct quali-
tative behavior without any adjustment of parameters. In
particular, the longitudinal propagator shows a non-
monotonic behavior with a crossover at 7/m(0) ~0.15.
However, the agreement with the lattice data is not
quantitative, and the predicted transition temperature is
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too small (7~ 100 MeV), thus indicating that we
are already outside the safe low-temperature range.
Nonetheless, the disagreement can be absorbed in part
by a temperature-dependent optimization of the expansion.

Thus, as a second strategy, we relax the constraints of m
and u being equal to their 7 = 0 values and regard m(7T)
and u(T) as independent unknown functions. Reversing the
argument that led to their optimization at 7 = 0, we tune
the unknown functions in the Euclidean space by looking
for the best agreement with the lattice data. Then, assuming
that the higher-order terms are smaller when the agreement
is better, the optimized propagators are continued to
Minkowski space where the pole location gives information
on the dispersion relations of the quasi-gluons at finite
temperature. We anticipate that, from a strictly quantitative
point of view, the agreement with the lattice is not
comparable with the excellent result which was reached
at T = 0. Moreover, while the transverse propagator is
generally well described, the longitudinal projection
becomes very poor deep in the IR for moderately high
temperatures. Since most of the deviation occurs below
500-700 MeV, we expect that the predictions for the pole
position at high momenta might not be affected too much.
We stress that there are no data available in the Minkowski
space for a comparison, thus evidencing the power of the
method for exploring the analytic properties of the
propagators.

Irrespective of the optimization criterion, we confirm the
finding of Ref. [26] and the quasi-gluon scenario which was
described by Stingl [33], with a gluon which has a very
short finite lifetime and can only exist as a short-lived
intermediate state at the origin of a gluon-jet event.

This paper is organized as follows. In Sec. II we review
the setup and main features of the screened massive
expansion and its extension to finite temperatures. In
Sec. III we present our results for the Landau gauge gluon
propagator at 7' # 0 and vanishing Matsubara frequency,
@ = 0. In Sec. IV we derive the dispersion relations for the
quasi-gluons at finite temperatures. In Sec. V we discuss
our results and present our conclusions. In the Appendix we
explicitly compute the gluon polarization and ghost self-
energy at finite temperatures using the screened massive
expansion.

II. THE SCREENED EXPANSION AND ITS
EXTENSION TO FINITE TEMPERATURE

In a linear covariant £-gauge, the gauge-fixed BRST
invariant Lagrangian of pure Yang-Mills SU(N) theory is

L = Lym + Lex + Lyp, (1)

where

1 P
EYM = —ETV(FMDF'MD)v

Lo = —éw[(aﬂﬁx")(aﬂ)}, 2)

and Lgp is the ghost term arising from the Faddeev-Popov
(FP) determinant. The tensor operator is defined as

ﬁ = 8 Ap - ayAﬂ - ig[Aﬂ’Al/]’ (3)

27 H

where the gauge field operators satisfy the SU(N) algebra

A= "X, AL
a
[j\(m j\(b] = ifabcj\(w fabcfdbc = N(sad' (4)

In the standard PT formalism, the total action is split as
St = So + S;, where the quadratic part can be written as

1

So = 5/Aaﬂ(x)(sabAElW(x,)’>Aby()’)d4Xd4y

T / 4 ()5wG5 (. y)es()dxdty, (5

while the interaction contains three vertices
5, = / XLy + L5 + La], (6)

L3y = =0f abe (0,Aa ) ABAL,
1

‘649 == ZngabcfadeAbﬂAcyAZAZ,

,Cccg = _gfabc(ayCZ)CbAl:-. (7)

In Eq. (5), the standard free-particle propagators for gluons
and ghosts, A, and G, respectively, are defined by their
Fourier transforms

A (p) = Do(p)[t* (p) + & (p)],
Bolp) :_ipz, Go(p) =§, (8)

where the transverse and longitudinal projectors are used

_ PuPy _ Puly

t p2 ’ fﬂb(p)* p2 (9)

/w(p) = gﬂl/

Later, we will take the limit £ — 0 and use the Landau
gauge which is a renormalization group (RG) fixed point
and is the most studied gauge on the lattice. In the above
equations, the fields and the coupling must be regarded as
renormalized objects and the inclusion of the usual set of
counterterms is understood in the total Lagrangian.
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The massive screened version of PT was developed
in Refs. [18-20]. At T =0 and in a generic covariant
gauge, the method is very accurate and predictive if
the expansion is optimized by the constraints of BRST
symmetry [21,24,25]. The expansion arises by a mere
change of the expansion point of ordinary PT. Following
Refs. [19,21], the new massive expansion is recovered by
just adding a transverse mass term to the quadratic part of
the action and subtracting it again from the interaction,
leaving the total action unchanged. In more detail, we add
and subtract the action term

1

35 =5 [ Au3)3000 (1) (3)xy. - (10)

where the vertex function 6I' is a shift of the inverse
propagator,
ol (x,y) =

[AG (x.y) = Ag " (xy)l. (11)

and A, * is a new massive free-particle propagator,
m

2

AL (p) = (=p? + m?)1(p) + %ﬂw(p). (12)

Adding that term is equivalent to substituting the new
massive propagator A, * for the old massless one A" in
the quadratic part. Thus, the new expansion point is a
massive free-particle propagator for the gluon, which is
much closer to the exact propagator in the IR. The mass-
shift parameter m is irrelevant in the UV, but acts as a
natural cutoff which screens the theory in the IR.

Of course, in order to leave the total action unaffected by
the change, the same term is subtracted from the inter-
action, providing a new interaction vertex —ol, a two-point
vertex which can be regarded as a new counterterm.
Dropping all color indices in the diagonal matrices and
inserting Eqs. (8) and (12) in Eq. (11), the vertex is just the
transverse mass shift of the quadratic part,

=8I (p) = —m*#"(p), (13)
and must be added to the standard set of vertices arising
from Eq. (7). The new vertex is now part of the interaction,
even if it does not depend on the coupling. Thus, the
expansion has the nature of a d-expansion, since different
powers of the coupling coexist at each order in powers of
the total interaction.

The proper gluon polarization and ghost self energy
can be evaluated, order by order, by the modified PT. In all
Feynman graphs, any internal gluon line is a massive
free-particle propagator A,** and the new insertions of
the (transverse) two-point vertex SI** are denoted by a
cross, as shown in Fig. 1. For further details we refer to
Refs. [18,19,21].

Yy -
T - fmsXm\ + %\ %\
(1b) (1c)
+ ”CID" )@D + ZE%@
(2a (2b) (2c)
FIG. 1. Two-point graphs with no more than three vertices and

no more than one loop. The cross is the transverse mass
counterterm of Eq. (13) and is regarded as a two-point vertex.
In the Appendix, a detailed description of the calculation at finite
T is given for all the polarization graphs in the figure.

Since the total gauge-fixed FP Lagrangian is not modi-
fied and because of BRST invariance, the longitudinal
polarization is known exactly and is zero. At T = 0, the
exact polarization and the dressed gluon propagator are
defined by a single function,

I (p) = I(p)t(p). (14)

so that, in the Landau gauge, the exact gluon propagator is
transverse,

A (p) = A(p)tuw(p), (15)

and defined by the scalar function A(p). This feature is lost
at any finite temperature 7 > 0, since Lorentz invariance is
broken, and two scalar functions are required instead. In
that perspective, it is convenient to maintain the Lorentz
structure explicit and to switch to the Euclidean formalism.
Then, denoting with p? the Euclidean squared momentum,
the exact (dressed) gluon and ghost propagators can be
written as

2
A, (p) = (P2 + m2)1,(p) + ”?m(p) ~11,,(p),

G ' (p)=-p* - 2(p). (16)

where t,, and £, are the Euclidean projectors of Eq. (AS5).
The proper gluon polarization IL,, and the ghost self-
energy X are the sum of all one-particle-irreducible (1PI)
graphs in the screened expansion, including all counter-
terms. In Fig. 1, the two-point 1PI graphs are shown up to
one-loop and third order in the delta expansion. In the exact
self-energies, we can single out the tree-level terms and
write
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M, (p) = m*t,,(p) — P*1,,(P)6Zs + TP (p),
X(p) = p*6Z. + TP (p), (17)

where the first term m?1,,(p) is the tree graph (1a) in Fig. 1
and arises from the insertion of the new two-point vertex
—ol',, of Eq. (13). We observe that this first tree term
cancels the mass shift of the gluon propagator in Eq. (16).
Indeed, the physical mass of the gluon arises from the loops
and is not merely given by the mass-shift parameter m?.
The other tree-level terms, —p®t,,6Z,, p*6Z., are not
shown in Fig. 1 and are the usual field-strength renorm-
alization counterterms. Their UV diverging parts are not
affected by the mass parameter and are the same of standard
PT [18,19]. The proper functions, HL(LOP, 21o°P are given by
the sum of all 1PI graphs containing loops. The finite parts
of 6Z,, 6Z,. are arbitrary and depend on the scheme and on
the renormalization scale u [24,25]. The diverging parts of
0Z,, 6Z. cancel the UV divergences of the functions
0" / p* and Zy00p/ P Which become finite dimensionless
functions of the variable p,/m. They are defined up to a
constant which depends on the dimensionless renormali-
zation scale parameter t = y?/m?>. Thus, at T = 0, there are
two energy scales in the calculation, m and u. For instance,
in a momentum subtraction scheme (MOM) and in the
Landau gauge, the one-loop dressed propagators can be
written as

A(p)~' = p? = NPT (p) =11 ()],
G(p)' =-p? = NFEW(p) =D (u)].  (18)

having made explicit the dependence on N and ¢> as
factors in the one-loop functions i,z according to the
notation of Appendix A, where all details of the calculation
are reported. In Eq. (18), an explicit choice has been made
for the finite parts of the renormalization constants 6Z,,
0Z.. Of course, that choice depends on the scheme and on
the renormalization scale y. A more general way to get
rid of all the scheme-dependent parameters, including
the renormalized coupling g, was discussed in previous
papers on the screened expansion [18,19,21,24], where
two dimensionless one-loop functions were defined (see
Appendix B.1 for their explicit expressions),

2 ’

) = - (1) L2

3 p
BN
i) = (1) 1 (19

so that the one-loop propagators in Eq. (18) can be recast as
functions of the dimensionless variable s = p?/m?,

— Z”
PAP) =
o) == S (20)

where z, and z, are irrelevant normalization constants
while all the scheme-dependent parameters are embedded
in the two constants 7, and o,. With some abuse of
language, we will refer to them as renormalization con-
stants. Equation (20) is quite general since it does not
require any specific renormalization scheme to be defined.
Of course, our ignorance about those constants reflects a
well-known weakness of the one-loop approximation
which depends on the details of the renormalization scheme
and on the actual value of the renormalization scale y. In
this sense, we still have two scales, m and p, and the
arbitrary choice of their ratio t = y*/m? somehow deter-
mines the actual value of the renormalization constants 7
and oy.

A nice feature of the one-loop result is its apparent
tangency to the exact result which is approached for special
values of the renormalization constants. Those values are
equivalent to a choice of the best renormalization scale y,
where the approximation is more effective. It is just an
example of the optimized perturbation theory by variation of
the renormalization scheme [34,35]. There might be a
special scale y where the expansion converges more quickly
and the higher order terms are minimal. Thus, from first
principles, we could determine the optimal constants by
monitoring some identities which must be satisfied by the
exact propagators. For instance, in Ref. [21], the Nielsen
identities [36,37] were used, which are a direct consequence
of BRST symmetry. From the identities, one can prove the
gauge-parameter-independence of the poles and residues of
the exact gluon propagator [21]. Then, we might expect that
the renormalization constants are optimal when the poles
have a minimal sensitivity to the gauge parameter. It is
remarkable that the optimized one-loop propagators turn out
to be in excellent agreement with the lattice data in the IR.
Notably, while the comparison with the data requires an
analytic continuation to the Euclidean space, the poles are
found in the complex plane. Thus, the one-loop propagators
in Eq. (20) are not just one of the many interpolation
formulas for the data, but they provide a very accurate
analytic function in the whole complex plane. The existence
of complex poles is one of the most important predictions of
the screened expansion. While a thermal mass and a finite
damping rate are expected by PT at high temperature, the
existence of finite intrinsic values at 7 = 0 can be regarded
as a proof of confinement as first discussed by Stingl [33].
The quasi-gluon has a finite lifetime and can only exist as a
short-lived intermediate state. However, at finite temper-
ature, the quasi-gluons play an important role for determin-
ing the thermal properties of the hot plasma. Thus, a finite
temperature extension of the screened expansion is required
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for a full study of the dispersion relations which emerge from
the pole location.

At a finite temperature 7 > 0, Egs. (16) and (17) are still
valid, but the one-loop graphs in Fig. 1 acquire a finite
thermal part which must be added to the vacuum (diverg-
ing) contribution at 7 = 0. The thermal parts are finite and
no further renormalization is required. We only have to add
the thermal parts to the self-energies in Eq. (17).

We write the Euclidean four-vector as p* = (p, @) where
® = py = —ipy, while the Lorentz four-vector was (pg, p).
In the finite-temperature formalism, @ = w,, = 2znT and
the Euclidean integral is replaced by a sum over n and by a
three-dimensional integration,

d*p d*p
/ oy Tzn: / ek (21)
Since Lorentz invariance is obviously broken, we
introduce a transverse projector P;U, orthogonal to the
fourth Euclidean direction, and its longitudinal comple-
ment Pﬁ,,, as defined in Eq. (A4), so that the gluon
polarization and propagator in Egs. (16) and (17) can be
written in the Landau gauge, £ = 0, as

where the projected one-loop dressed functions are

Ar(p.T)™' = p? + p*6Z, - NP1 (p, T),
AL(p. T)™' = p? + p26Z, — NPT (p. T). (23)

and H(L]>T are the one-loop projected polarizations, evalu-

ated by projection of the one-loop graphs in Fig 1, omitting

the tree graphs. As discussed in Appendix B, each graph

contributing to H<LI)T can be split as

1 1 1
' (p.T) = [MY5],, + 5], (24)

where the vacuum part [H(Ll,)r]v = H(Ll.)T( p,0) is the same
graph evaluated at 7 = 0 and does not depend on 7', while
the thermal part, [H(L{)T]Th, vanishes at 7 = 0. Thus, we can

generalize Egs. (19) and (20) and define dimensionless
functions

2 (1)
[ﬂL’T(p, T)]V _ _<16377,' ) [HL,T;I;’ T)]V _ 71'1(5),
2 (1)
(P 1)y = _<163ﬂ ) {HL’T(;?’ Dl , (25)

so that the projections of the one-loop propagator can be
recast as

ix
my(s) + 7o + (7 r(p. )]y

PZAL,T(P, T)= (26)

In this form Eq. (26) is quite general since it does not
require any specific renormalization scheme to be defined.
All the scheme-dependent parameters are embedded in the
renormalization constant .

It is not obvious that the same scale x4 and constant 7,
which were optimal at 7 = 0 are still optimal at finite 7.
Indeed, they might depend on 7 and even take a different
value for the different projections. Moreover, the mass
parameter m, which was the only energy scale left after
optimization at 7 = 0, might take a value m(7T) which
depends on 7. Thus we have three energy scales: the
optimal p(T), the mass parameter m(7) and T itself. In
other words, according to Eq. (26), at any T and in units of
m(0) we have two free parameters, the ratio m(7T)/m(0)
and the optimal renormalization constant 7y (7). Having the
role of variational parameters, to be optimized, their best
values might be different for the two projections.

While at T = 0 the optimal constant 7, was determined
from first principles [21], by requiring a minimal sensitivity
of the poles to any change of the gauge parameter, here we
have the less ambitious aim of exploring if a set of optimal
parameters does exist such that the screened expansion is
able to describe the lattice data with reasonable accuracy.
Thus, we work in the Landau gauge and, for each value of
T > 0, we fix the parameters by a fit of the available lattice
data in the Euclidean space.

At low temperature, as we said, we also explored the
alternative of maintaining the parameters fixed at their
optimal value for 7 = 0, in order to give a general descrip-
tion at finite 7 from first principles, without any input
from the lattice and from the known phenomenology. Of
course, this approach can only be reliable if 7"is very low and
the thermal effects are small. However, even extrapolating at
higher temperatures, the qualitative predictions turn out to
be in agreement with the data. Thus, the screened expansion
is able to capture the main features of gluon thermodynamics
at finite temperature. This is a very important aspect, since
our final aim will be to extract some dynamical properties of
the quasi-gluons, like the dispersion relations, which cannot
be measured on the lattice. Moreover, even qualitative
properties, like the existence of complex poles, are of central
interest for understanding the behavior of the gluon plasma
at high temperature and its phase transition.

In order to fulfill that program, once optimized by one
of the two alternatives discussed above, the gluon propa-
gator must be continued to the complex plane. This is a
straightforward step if the one-loop graphs are expressed as
analytic functions of the Euclidean momentum. A very
detailed but tedious analytical evaluation of the integrals is
reported in the Appendix. Most of the integrals were
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encountered in a study of the Curci-Ferrari model [38].
We basically use the same method for decomposing the
integrals. However, in the screened expansion there are also
some different graphs, namely the crossed graphs in Fig. 1,
with one insertion of the mass counterterm. Their explicit
expressions are obtained by a derivative in the Appendix.
Unfortunately, at finite 7, not all the multidimensional
integrals can be evaluated analytically and an external one-
dimensional numerical integration cannot be avoided for
almost all the one-loop graphs. Thus, as shown in the
Appendix, all the graphs can be written as analytic
functions which are defined by integral representations.
The remaining integration can be carried out numerically
for any complex value of the external momentum, provided
that no singularity is encountered along the integration
path. Actually, in general, the analytic continuation of
integral functions is not trivial. As discussed in Ref. [39],
we must check that the external integration on the real axis
does not cross any singular point of the logarithmic
functions. Otherwise, a modified path must be chosen
before the analytic continuation can be undertaken. As
shown in Ref. [26], by inspection of the explicit expres-
sions, the existence of singular points on the integration
path can be ruled out in the present case. For instance,
denoting with Q = p, and p¥ = (Q,p) the external
momentum in Minkowski space, the analytic continuation
of the thermal integral [%(y, —iQ) is defined by the integral
representation of Eq. (B30), where y is the external three
vector modulus, y = [p|. We can continue the external
energy Q to the complex plane if there are no singular
points on the positive real axis of the integration variable.
However, some branch cuts might be present, originating at
the singular branch point of the logarithmic function in
Eq. (B29) which reads
2 4 2
L/J(Za; Y, Q) = log [Ti);rqﬁ} ’ (27)
Za T € gp

where the complex variable z, is defined as z, = iQ +

ivq* +a* and €, 5 = (v £ q)> + /*. Here a and f§ are
masses equal to 0 or m and ¢ is the integration variable.
Assuming the existence of a branch point at ¢ = g, on the
real axis, the latter must satisfy

20y = — P —y* + Q2 £2Q\ /g +a*,  (28)

where the =+ signs are independent of each other. Taking a
complex energy Q = ReQ +i/ImQ with ImQ > 0, the
imaginary part of Eq. (28) gives

ReQ = F/q2 + o2, (29)

and substituting back in the real part we obtain

€ 4g 5+ (IMQ)> =0, (30)

which is never satisfied unless ImQ = f = 0. Thus, if Q is
not real, the branch point g, cannot be real and the integral
over ¢, on the real axis, defines an analytic function of Q.
The same argument holds for the other thermal integrals in
Appendix B. Thus, we can safely continue the numerical
integrals from the Euclidean space (ReQ2 = 0, ImQ > 0) to
the whole upper half-plane. Moreover, in the large wave-
length limit y — 0, there are no branch points at all because
the logarithmic function can be written as Lj(z,:y.q) ®
log [1 + O(y)] and the argument of the log does not vanish
if y is small enough.

Having ruled out the existence of singularities along the
integration path, the poles of the gluon propagator and the
dispersion relations can be easily extracted numerically in
the complex plane by the integral representation of the
thermal integrals which are derived in Appendix B.

III. THE GLUON PROPAGATOR AT FINITE T

The longitudinal and transverse projections of the polari-
zation graphs entering in Eq. (26) are decomposed as the
sum of more basic Euclidean integrals in Appendix A, for all
the one-loop graphs of Fig. 1. The explicit thermal parts
of those integrals are presented in Appendix B by integral
representations. For any given value of the external

three-momentum y = /p> and Euclidean frequency

w = py = 2zanT, the one-dimensional integrals are evalu-
ated numerically by a simple integration on the real axis and
the result is inserted in Eq. (26). We will first explore the
projected propagators for 7z, and m fixed at their zero-
temperature values which were determined from first prin-
ciples in Ref. [21]. Then, we will show how their values can
be optimized by a comparison with the available lattice data.

A. Expansion optimized at 7=0

In the low-temperature limit, we assume that the optimal
renormalization constant zy(7) and mass parameter m(7T')
can be replaced by their zero-temperature values 7z, =
—0.876 and m(0) = my = 656 MeV, as determined in
Ref. [21] by requiring a minimal sensitivity of the pole
structure to the gauge parameter. Strictly speaking, in the
Landau gauge, that condition fixes 7z, while m, is the only
energy scale left and is fixed in order to match the energy
units of the lattice data.

Let us first explore the behavior of the gluon propagators
as a function of T in the limit @ — 0, where p* = p2,
which is the most studied case on the lattice [11,12]. The
longitudinal and transverse propagators are shown in units
of my in Figs. 2 and 3, respectively. The former were
multiplicatively renormalized by requiring that

|
I

(31)

AL,T(p’ T)|w=0.|p|=/40 -
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0 .
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5 .
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T/mg = 0.25
T/mg = 0.30
z 3 T/my=0.36 — |]
-
R T/mg =044 ——
£ 5|
1+
0 . . . . . .
0.5 1 1.5 2 2.5 3
p/mg

FIG. 2. Longitudinal propagator A; in units of m, = m(0) at
@ =0 for the low temperature range 7/m, < 0.15 (top) and
the high temperature range 7/mg > 0.15 (bottom). The renorm-
alization constant and the mass parameter are fixed at their
optimal T =0 values, 7y(T) = 7y(0) = —0.876 and m(T) =
my = 656 MeV. All the curves are multiplicatively renormalized
at puo/my = 6.098 (ug = 4 GeV in physical units).

with pg/my = 6.098 (corresponding to uy =4 GeV for
my = 656 MeV). We observe that, because of the chosen
optimization, in the limit 7 — O the longitudinal and
transverse propagators coincide and reproduce the lattice
data extremely well [18,19,21,22,24,25], so that the low-
temperature limit can be regarded as exact. For reference, in
Table I we report the physical equivalent of the adimen-
sional temperatures 7/m( used for the plots.

We observe a crossover, in Fig. 2, with the longitudinal
propagator which increases in the IR for increasing 7" below
T. =~ 0.15 - mg, but sharply decreases above T'.. This non-
monotonic behavior is a well-known feature which has
been reported by several lattice calculations [11,12]. The
transverse propagator in Fig. 3, on the other hand, has a
monotonic behavior, decreasing for increasing 7', again in
qualitative agreement with the known predictions of the
lattice. Actually, we cannot expect a quantitative agreement
at T =~ T, or larger values, because we are extrapolating the

5 T T T T T
T/my=0.05 ——
T/my=0.08 ——
4t T/mg=0.12 .
T/mg=0.15
3 3 1
<
<
NO
E 2 - -
1L ,
0 . . . . . :
0.5 1 1.5 2 25 3
p/mg
5 T T T T T
T/mg=0.15
T/mg=0.18 ——
4t T/mg = 0.21 .
T/mg=0.25
T/mg = 0.30
3 3 Timg=0.36 —— |
1 Timy =044 ——
o
E ol
1 L
0 . . . . . ;
0.5 1 15 2 25 3
p/mg
FIG. 3. Transverse propagator Ay, with the same notation and

parameters of Fig. 2.

optimization condition which was valid at 7 = 0. Thus, the
correct qualitative behavior of the propagators at high
temperature is an encouraging result. A crude estimate
of T, is found by using the zero-temperature value my =
656 MeV for restoring the energy units, yielding at the
crossover T, ~ 100 MeV. This value is quite smaller than
the known transition temperature 7. = 270 MeV which is
measured on the lattice [10—12]. The difference might well
be the consequence of a sub-optimal choice of the renorm-
alization constant, but it could also arise from a change of
the mass parameter with temperature or from the more
general failure of PT at high temperature. Thus, it becomes

TABLE 1. Dimensionful values of the adimensional temper-
atures 7/m plotted in Figs. 2 and 3, given mgy = 656 MeV.
T/my 0.05 0.08 0.12 0.15
T (MeV) 32.80 52.48 78.72 98.40
T/my 0.18 0.21 0.25 0.30 0.36 0.44
T MeV) 118.08 137.76 164.00 196.80 236.16 288.64
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relevant to explore whether a more quantitative agreement
might be obtained by a tuning of the free parameters.

B. Optimization by a fit of data at finite 7

As the temperature increases, our previous assumption,
m(T) = m(0), o(T) = m((0), becomes less valid. In what
follows, we turn to fixing the optimal value of the
parameters at 7 #0 by a fit of the lattice data of
Ref. [11]. Since at nonzero temperatures the projections
A;(p,T) and Az(p,T) have different behaviors with
respect to a change in 7, we may expect that the optimal
values of the parameters will differ depending on which of
the two components of the lattice propagator is used for the
fit. This is indeed what we found. Of course, since in the
subtracted Lagrangian of the present formalism the gluon
mass parameter m>(7) is multiplied by the full four-
dimensional transverse projector #,,(p), choosing different
mass parameters/scales for the two components of the
propagators is not allowed from first principles. This issue
will be addressed at the end of this section.

45 . :
; T =121 MeV
40 - T =194 MeV 1
a5l T =260 MeV —— ||
sof ! .
o
b (]
3 25 *° |
g E L}
@ 20 . .
-
<
15 .
10 .
5 4
O L L = T
0.5 1 15 2 2.5 3
p (GeV)
10 ;
T =290 MeV
. T = 366 MeV
8 L 4
I
[]
o L £ i
5 Ol -
g :
2 ¥
F 4F, 5, ‘1]( E
w, A
AN |
T Rt
0 ‘ ‘ ‘ e
0.5 1 15 5 3
p (GeV)

FIG. 4. Longitudinal propagator A; at @ = 0 below (top) and
above (bottom) the critical temperature 7. ~ 270 MeV. The
curves are obtained using the parameters given in Table I
The lattice data were taken from Ref. [11].

In Figs. 4 and 5 we show, respectively, the longitudinal
and transverse components of the gluon propagator at
o = 0 (multiplicatively renormalized at uy = 4 GeV), as

functions of the three-dimensional momentum |p| = /p>,
with m(T) and 7((T) as reported in Table II. Such values
where obtained by a separate fit of the two components to
the lattice data of Ref. [11]; the mass parameters should be
understood to have an uncertainty of about 50 MeV.

As we can see, once the parameters are tuned to fit the
data, the screened expansion is able to reproduce the lattice
propagators quite accurately down to momenta of approx-
imately 0.5 GeV. Moreover, the longitudinal propagator
still shows the characteristic non-monotonic behavior with
respect to a change in the temperature, increasing at fixed
momentum below 7 =T,.%270 MeV and decreasing
above T =T,.

Below |p| ~ 0.5 GeV, the transverse propagator is still in
good agreement with the data, while the longitudinal one
shows significant deviations, especially at high temper-
atures. In particular, from a qualitative standpoint, the

T=121 MeV
81, T =194 MeV ]
77'% T =260 MeV
L
o
> J
[0
e
@ 4
&
25 3
p (GeV)
5 T T
o T =290 MeV
E T = 366 MeV
4+ ! T = 458 MeV g
o
>
[0
e
)
&
O L L L L L )
0.5 1 1.5 2 25 3
p (GeV)
FIG. 5. Transverse propagator Ay at @ = 0 below (top) and

above (bottom) the critical temperature 7. ~ 270 MeV. The
curves are obtained using the parameters given in Table I
The lattice data were taken from Ref. [11].
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TABLE II

Parameters for the curves in Figs. 4 and 5, obtained

by a separate fit of the lattice data for the longitudinal and

transverse gluon propagator of Ref. [11].

T MeV) m(T) MeV) (long., trans.)  zy(T) (long., trans.)
121 550, 656 —-0.89, —0.84
194 425, 550 -1.10, —=0.70
260 425, 450 —1.42, -0.42
290 275, 450 —-0.97, —0.48
366 150, 450 -0.60, —0.20
458 /1, 450 /1, +0.21

longitudinal propagator shows an infrared turnover as a
function of momentum which has no counterpart in the
lattice data. From a numerical point of view, the difficulty
in obtaining a good match with the data is exemplified in
Fig. 6, where we display the longitudinal propagator for
T = 458 MeV and different values of the mass parameter.
When tuning the mass parameter m(7T'), there is a tension
between the low- and intermediate-momentum behavior of
the propagator: at lower values of m, the propagator is
enhanced (suppressed) below (above) |p| ~ 1 GeV, so that
achieving a good match at low momenta results in a loss of
accuracy at intermediate momenta. This behavior is
actually shared by both the components of the propagator
and at every T # 0, albeit being less significant for the
transverse component and at low temperatures. In particu-
lar, already at 7 =458 MeV the optimal longitudinal
values of the mass parameter and of the renormalization
constant strongly depend on the choice of a lower cutoff
momentum for the fit to the lattice data; for this reason, we
do not report them.

As anticipated earlier, the optimal mass parameters (and
renormalization constants) needed to reproduce the lattice
data differ for the two components of the propagator.
In Fig. 7 we plot the parameters of Table II as functions
of the temperature. With the exception of the point
T =260MeV, which is very close to the critical temper-
ature 7. = 270 MeV, the optimal mass parameter m(T) is
a nonincreasing function of the temperature for both
the projections. When fitted from the transverse propagator,
m(T) shows plateaux both at small and at large
temperatures, decreasing from m(7) = m(0) = 656 to
m(T) ~ 450 MeV. As for the longitudinal propagator,
except for 7 = 260 MeV, m(T) is approximately linear,
with a behavior which is well described by the equation

m(T) ~ 656 MeV — 1.307T (long). (32)

At T =260 MeV ~ T, the optimal value of m(T) is
nearly equal for both the projections, namely

"For each value of the mass parameter, the renormalization
constant o (7') was optimized so as to obtain the best fit with the
data at large momenta.

29 m-500MeV — |
Eh m =400 MeV
ot . m = 300 MeV
m =200 MeV
m =100 MeV ——
15¢p m = 050 MeV —— |1

A(p) (GeV'®)

0.5 1 15 2 2.5 3
p (GeV)

FIG. 6. Longitudinal propagator A; for w =0, T = 458 MeV
and different values of the gluon mass parameter. The lattice data
were taken from Ref. [11].

m(T)=425-450MeV. As for the renormalization constant,
except for the point at 7 =290 MeV = T, the optimal
7o(T) increases with the temperature when fitted from the
transverse propagator. When optimized by the longitudinal

700

" Longitudinal =
600 Transverse =

500

400

300

m(T) (MeV)

200

100

0 . . . .
0 100 200 300 400 500

T (MeV)

0.2 Longitudinal = .
Transverse =

-0.2 L]

-0.4 u

To
L ]

-0.8

-1.2

14t .

0 100 200 300 400 500
T (MeV)

FIG. 7. Mass parameters (top) and renormalization constants
(bottom) of Table II, as extracted from the lattice data of Ref. [11].
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propagator, on the other hand, it shows a nonmonotonic
behavior, decreasing below 7, and increasing again
above T..

The large differences in the optimal values of m(7T) and
7o(T) obtained for the two projections make it clear that, in
the present formalism, it is not possible to quantitatively
recover both the longitudinal and the transverse component
of the gluon propagator by a unique choice of parameters.
Thus at T #0 the screened expansion appears to be
suboptimal as a “variational” ansatz. At least in part, this
could be expected on the basis of what is known about the
high-temperature, low-momentum behavior of the Yang-
Mills propagators: at large temperatures and low momenta,
the gluons’ thermal mass is best described by a momentum-
and direction-dependent hard thermal loop (HTL) term in
the Lagrangian, given by [40]

i dQ §v§7

where m?(T) = ¢*NT?/3, § is a lightlike four-vector and
the integration is over the directions of . To first order
in the coupling, ALy generates two different thermal
masses for the three-dimensional projections A; (p, T') and
Ar(p,T) of the gluon propagator. By not taking into
account this difference, the screened expansion lends itself
to a breakdown at large temperatures, which can be
partially avoided if the mass parameter and renormalization
constant are tuned to separately fit the two projections.

The simplest way of solving this issue in the context of
the screened expansion, i.e., without resorting to a HTL
resummation, would be to change the expansion point of
perturbation theory in such a way that the two three-
dimensional projections of the zero-order gluon propaga-
tor, A7 and AL, have different masses ab initio. This can be
achieved by redefining the kernel 6T, (p;T)=m?(T)t,,(p)
of the shift of the action S as

0, (p:T) = my(T)PL(p) + mi(T)Py(p).  (34)

where my(T) and m; (T) are independent mass-parameter
functions for the two projections. With such a prescription,
in a general covariant gauge the zero-order Euclidean gluon
propagator A} (p; T) would read

Au(psT),, = AL(ps T)PL(p) + AL(ps T)PLy(p)+
<
+?f;w(p)’ (35)

where

Ayt (piT) = (36)

p*+m7  (T)

are the sought-after zero-order propagators. Setting-up the
perturbation theory with independent mass functions for
the two projections would give us the freedom to optimize
the former separately from first principles, according
to the behavior of the respective dressed propagators.
Implementing the shift in Eq. (35), however, is a nontrivial
task: having different longitudinal and transverse masses
running in the loops breaks the Lorentz invariance even of
the simplest vacuum integrals and, more generally, requires
a complete recalculation of the gluon polarization.

IV. DISPERSION RELATIONS AT FINITE T

Being in possession of analytical expressions (modulo a
one-dimensional integration at finite 7') for the Euclidean
gluon propagator allows us to analytically continue the latter
to the whole complex plane so as to study its singularities. As
is well known, the location of the poles of the propagator
gives us information on the dispersion relations of the
gluonic quasiparticles: the energy &7, (p, T) and damping
rate yr ; (p. T) of the quasiparticles, as functions of the three-
dimensional momentum p and of the temperature 7, are
obtained by solving the equation

A;,IL(_in,L (p’ T)’ P, T) = 07 (37)

where @ = ¢ — iy (modulo a factor of i) extends the real and
discrete Matsubara frequencies w, = 2znT to the complex
plane and the subscripts T, L refer to the components of the
propagator. At nonzero temperatures and momenta, the
poles of the two components are expected to be found at
different locations, yielding two separate branches of the
dispersion relations.

The limit 7 — 0 of the dispersion relations was already
studied in the framework of the screened massive expan-
sion in Refs. [20-22]. In [21] we found that the zero-
temperature gluon propagator (whose longitudinal and
transverse three-dimensional components are constrained
to be equal by Lorentz simmetry) has two complex-
conjugate poles at —p* = m? ., (m2 )", where, setting
my = 656 MeV by sharing the same units of the lattice,

m% = 0.197 GeV2, m? = 0.436 GeV?, (38)

!2)016 = 8vac(p> =
lirnT—>0 ET.L (p’ T) and yvac(p) = lirnT—>0 YT.L (p’ T)—and
singling out one of the poles—, this translates into the
dispersion relations

with  m m% + im?. In terms of

erlp) = [/ 0+ 3+ () +

5 5 1/2
: )]

N = N =

o) =[50 3 7 = 02+ )|

(39)
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Transverse dispersion relations for the gluon quasiparticles. The broken lines are the vacuum dispersion relations, common to

both projections and given by Eq. (39). The gluon mass parameters m(7) and renormalization constants z,(7) used for the plots are

reported in Table II
Clearly, m%{ = (geac - 7%ac)|p=0 and m% = 2€VaC7/V‘dC|p=O’
where

€yac(0) = 581 MeV, Yvac(0) = 375 MeV.  (40)
At the other end of the spectrum, as |p| — oo, the gluon’s
vacuum dispersion relations reduce to those of a massless
particle, &y,c(P) = [P, 7vac(P) = 0.

Under the assumption that the optimal masses m(T) and
renormalization constants z(7) reported in the previous
section only depend on the temperature, and not on the
Matsubara frequency w,,, the finite-7 dispersion relations of
the gluon quasiparticles can be easily extracted from the

screened expansion’s gluon propagator, making use of said
parameters (cf. Table II). We remark that, since at low
momenta the longitudinal projection was not found to be in
good agreement with the lattice data for any value of the
parameters, the longitudinal dispersion relations are
expected to be reliable only at sufficiently high momenta
(say above |p| = 0.5-0.7 GeV).

In Figs. 8 and 9 we plot the energy er,(p,7T) and
the damping rate y7;(p,7) of the transverse and longi-
tudinal gluons at fixed 7, as functions of the momentum
Ip|- As we can see, below the critical temperature 7. ~
270 MeV both the transverse energy and the transverse
damping rate (Fig. 8) are suppressed with respect to their
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FIG. 9. Longitudinal dispersion relations for the gluon quasiparticles. The broken lines are the vacuum dispersion relations, common to
both projections and given by Eq. (39). The gluon mass parameters 72(7') and renormalization constants 7y (7') used for the plots are reported
in Table II. Except for vanishingly small temperatures, these dispersion relations are not expected to be reliable below |p| &~ 500-700 MeV.

zero-temperature (vacuum) limit, with the effect being
more pronounced for e; than for y;. Above T this behavior
is reversed; the transverse energy starts to approach again
its vacuum limit, while the damping rate grows larger than
it. The longitudinal branch (Fig. 9) shows a more signifi-
cant suppression in both the energy and the damping rate
below T, with y; becoming quite small at high momenta
around the critical temperature. At higher temperatures
both ¢; and y; start to approach back their vacuum limit.”

*Here we are disregarding the low-momentum behavior of the
longitudinal dispersion relations due to their lack of reliability, as
previously discussed.

In the limit p— 0 and for any nonzero w, the
longitudinal and the transverse projection of the gluon
propagator are known to collapse to a single temperature-
dependent function; as a consequence, the corresponding
branches of the dispersion relations share the same zero-
momentum limit. The p = 0 poles of the gluon propagator
are located at —i(ey(T) — iyo(T)), where

ro(T) = if_%?’T,L(Pv T) (41)

e(T) = lljif_{l er(p.T), “1)‘

Ip[=0

are, respectively, the mass and the (zero-momentum)
damping rate of the gluon quasiparticles. With regards to
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such a constraint, the optimized framework of Sec. III B is
inconsistent: using different mass parameters for the
longitudinal and the transverse projections of the propa-
gator causes the two branches of the dispersion relations to
have unequal p — O limits. All the same, as previously
discussed, the low-momentum limit of the longitudinal
gluon propagator was found to be quantitatively unreliable
at temperatures which are not vanishingly small. It follows
that the p — 0 limit of the longitudinal dispersion relations
cannot be trusted regardless of the inconsistency. Since
only the screened expansion’s transverse propagator, with
the parameters in Table II, was found to reproduce the
lattice data at low momenta, in what follows we will make
use of the transverse dispersion relations to study the
behavior of &,(7) and (7). From first principles, it is
understood that a good description of the long-wavelength
longitudinal gluon excitations must yield the same results.

In Fig. 10 we display the mass and the zero-momentum
damping rate of the gluon quasiparticles as functions of the
temperature. Across the critical temperature, both of them
show a characteristic behavior, decreasing below 7. and
increasing again in a linear fashion above 7'.. The mass
decreases from £y(0) =¢,,.(0) =581 to & (T.)~450MeV,
whereas the zero-momentum damping rate slightly
decreases from y((0) = y,.(0) = 375 to about 350 MeV
around 7'... The increase in the damping rate actually seems
to start somewhat below the critical temperature (see the
data point T =260 MeV in Fig. 10); we could not
determine whether this is a physically meaningful behavior
or an artifact due to uncertainties in the parameters of
Table II.

The behavior of the gluon mass in Fig. 10 confirms the
picture of a confined gluon—whose mass is dynamically
generated through the strong interactions themselves like in
the 7 — O limit—which becomes deconfined above the
critical temperature 7.= 270 MeV. In the deconfined
phase, the mass of the gluon is thermal in nature and
increases linearly with the temperature. The same qualita-
tive behavior was observed in [26], where the gluon mass
and zero-momentum damping rate were studied in the
screened expansion at finite 7" using the same scheme of
Sec. IIT A, i.e., taking temperature-independent values for
both the gluon mass parameter m and the renormalization
constant 7.

V. DISCUSSION

The comparison with the available lattice data showed
that, overall, the screened expansion gives a correct
qualitative description of the gluon propagator at finite
T. The agreement improves if the renormalization constants
are tuned at each value of the temperature. At high
temperatures and deep in the IR, the failure to reproduce
the longitudinal projection might arise from the combined
effect of several issues like the need of some HTL
resummation, a poor optimization and the inadequacy of
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FIG. 10. Mass &y(T) and zero-momentum damping rate y(7)
of the gluon quasiparticles, as functions of the temperature. The
parameters used for the plot are reported in Table II under the
transverse denomination. See text for further details.

the single-mass splitting of the action at a finite temper-
ature. Indeed, the lattice data seem to suggest that a two-
mass scheme should be introduced from the beginning for
extending the screened expansion at a finite temperature.

With the exception of an infrared turnover in the
longitudinal propagator, which has no counterpart in the
lattice data, the qualitative behavior of the propagators
seems to be correct and quite robust, irrespective of the
optimization scheme. The pole trajectories can be deter-
mined in the complex plane, yielding valuable predictions
which cannot be extracted from the lattice data in the
Euclidean space. We have reported in some detail the
dispersion relations of the quasi-gluon for several temper-
atures across the deconfinement transition.

An important feature which emerges from our study is a
crossover at the deconfinement transition. The energy of
the quasi-particle is suppressed by temperature in the
confined phase. On the other hand, above the critical
temperature, the behavior is reversed and the energy
increases as a function of temperature. The same effect
can be observed for the physical mass, defined as the long-
wavelength limit &y(7T) of the pole’s real part, as shown in
Fig. 10. In the confined phase, the mass decreases like an
order parameter being suppressed by the temperature. This
behavior is consistent with that of a dynamical mass which
is related to a condensate, the latter being expected to
vanish at the transition temperature. However, at finite
temperature the quasi-gluon is also expected to acquire a
thermal mass which increases linearly, like any other
quasiparticle. The two effects might coexist across the
transition, yielding a crossover rather than a sharp tran-
sition. In the low-temperature limit the dynamical nature of
the mass dominates, while above the deconfinement
transition the mass becomes a pure thermal mass. Thus,
we argue that in the low-temperature phase the mass
suppression might be a signature of the dynamical nature
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of the gluon mass. On the other hand, as discussed in
Ref. [26], the existence of an intrinsic damping rate, which
saturates at a finite value at T = 0, is a confirmation of the
quasi-gluon scenario laid out by Stingl [33]. The massive
gluon also has a very short finite lifetime and is canceled
from the asymptotic states [26], suggesting that the gluon
quasiparticles of the interacting vacuum can only travel the
short distance of about a Fermi and can only exist as
intermediate states at the origin of a gluon-jet event.

The issue of the gauge invariance of the poles at 7 # 0
within the framework of the screened expansion remains, to
date, unexplored. One possible development of our study at
finite temperature would be to apply the guiding principles
and methods of Ref. [21] in order to monitor whether the
Nielsen identities can be satisfied in a general covariant
gauge, while fixing the values of the free parameters of the
formalism from first principles. A thorough analysis of the
matter would presumably require the explicit implementa-
tion of specific resummation schemes, as is already the case
within the framework of ordinary thermal perturbation
theory. Nonetheless, the success of the screened expansion
in reproducing the lattice data—albeit subject to a fit to the
data themselves and with the limitations discussed in the
previous sections—Ieads us to believe that a two-mass shift
of the expansion point of the thermal perturbative series
may prove to be a robust enough alternative scheme already
at one loop. Such a reformulation of the screened expansion
requires a full recalculation of both the thermal and vacuum
integrals involved in the definition of the propagators, and
will be left to future studies.
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APPENDIX A: ONE-LOOP GRAPHS

1. Notation

The Euclidean four-vector p* is defined as

p' = (p. o). (A1)
where w = py = —ip, and the Lorentz four-vector is

(PosP)-
In the finite temperature formalism, ®w = w, = 2anT

and the Euclidean integral is replaced by a sum over n and
by a three-dimensional integration

[~ [ =7 [

The generic (massive) propagator G,,(p) is

(A2)

1 1
Cpr4mE @R+ pi4m?

Gu(p) (A3)

At finite temperature, it is useful to introduce the
following orthogonal projectors

PL(p) = (1= 8,4)(1-6,.4) (@w _ Pufu)

p

P (p) = tu(p) = Piu(p). (A4)

beside the Lorentz projectors

tu(p) = 8 — %,

£ulp) = 245", (45)

p

The trace of the projectors is
P!, =2, PL =1 (A6)

The dressed Euclidean propagator of the gluon can be
written as A% (p) = 8,,A,,(p) where
»?

?fﬂv(p)

and the gluon polarization is 1% (p) = Ng*8,,11,,(p).
Since II,,(p) is transverse, i.e., p“Il,(p) =0, in the

Landau gauge (£ — 0) the dressed propagator is also
transverse. We introduce the projected polarizations

AL (P)=G(p) 1, (p) = Ng*TL, (p) + (A7)

M17(p) = 5 PL (P, ().

I1; (p) = Pﬁu(p)n;w(p)’ (AS)

so that the total polarization reads

I, (p) =, (p)PL(p) + Tz (p)Pl(p)  (A9)

and the dressed propagator can be written as

A, (p) = AX(p)PL(p) + AT (p)PL,(p)

¢

+_2?/ﬂ/,w<p)’ (AIO)
p

where the projected parts are

A7N(p) = G,(p)™' = Ng*TIz(p).

ALY (p) = Gu(p)™ = NgILL(p). (A11)
In the Landau gauge, £ — 0, the propagator is transverse
and its components are determined by the projected polar-
izations I1;(p) and IT; (p). The graphs are evaluated in the
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Landau gauge, using the (transverse) massive free propa-
gator [G,,(p)t,,(p)] in the internal gluon lines.

The dressed Euclidean propagator of the ghost can be
written as G,,(p) = 6,,G(p), where

G '(p) = -Gy (p) = Ng*Z(p) (A12)

and the ghost self energy is 2,,(p) = 6,Z(p). In the
graphs, the massless free propagator —G(p) is used in the
internal ghost lines.

All the uncrossed one-loop graphs can be decoupled by
the method of Ref. [38] and written in terms of the set of
integrals

Ja:AGaUC)’
1(p) = l Ga(K)Gy(p — )k k.

1(p) = [ Guk1Gy(p - b (A13)
together with their projections
Q, 1 Q
17 (p) = EPL(p)qu(p),
17(p) = PL(p)IL(p),
Q, 1 Q
ITfJ = EPL/(PH#E(O)’
aff a
17 = PL(p)I£(0). (Al4)

Explicit expressions are reported in Appendix B.
By exchanging k, and p, —k, in the integrals, it is
easy to show that I*(p) = I”*(p), while in general

1%(p) # I’2(p). However, since p*PLT (p) = 0,

(P = k)P’ (p)(p* — k) = KkPil (p)  (ALS)

and the projected integrals turn out to be symmetric,
Y ZT =1 Lo,lT‘
We note that I Z’; and [ % might depend on p because of

the explicit dependence in the projectors. For instance, let
us consider any constant integral

1, = A kyk,f(k) = 8,,1,,, (A16)

which does not depend on the external momentum p. Let us
denote by I, o, I, the nonzero components that can be
written, taking k, = (k,w,), as

Iyy=110= /kwﬁf(kvwn)v
1
Iii—IT,O—g/sz(k’wn)’ = 1,2,3. (A17)
k

In fact, the explicit projections I, ,, I, can be defined and
evaluated as in Eqgs. (A14):

1
IT,p = EPZD(p)Ipw = IT,Oa
2
I, =Pu(P)w = (ILo— ]T.O)m +1ro. (Al8)

While Iy, = Iy, and does not depend on p, the longi-
tudinal projection depends on p and has the different limits
(A19)

lim/; , =1, lim/;, , =1; .
o L.p T.0 Jmip L0

More generally, for the integral IZ,/,} (p), which has an
explicit dependence on p, the projections have the follow-
ing limits:

% — 1 [1’ b } 1% — 1 [1' i ]
L0 p{% wl_rf(l) T (p)], T.0 wl_rf(l) p{% T (p)|

0] ]

A2
p—0 |:w—>0 w—0Lp—0 ( 0)

they are related to the projections of the limit 1% (0), as
defined in Egs. (A14),

p _ jap
I%,p_l%ﬂ’
2

af  __ (yap af Y ap

Iy, =7 - IT,o)m+ 175 (A21)
where

I =190), 17, =170).  (A22)

The limits in Eq. (A20) agree with the physical requirement
that transverse and longitudinal projections must coincide
for any w in the limit p — 0, while they are different for any
finite p in the limit @ — 0.

Each crossed graph IT*, containing one insertion of the
mass counterterm, can be obtained by the corresponding
uncrossed graph IT by a simple derivative

Im* = —m? i1'[.

g (A23)

Their explicit calculation requires the definition of a new
set of integrals OI%, BIZ[fT, J,,, 0*J,,:
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0
o (p) = 71"/}@),
Q| a Q
aIL/,}T(P) = WIL[_}T P)7
0
o, = ij,
62
82]m — W.Im (A24)

We note that the second argument () is kept fixed in the
derivative, so that 0I% # OI’*. When a = f§ the derivative
must be taken twice, so that for instance

0 0 0
= ) £ =20I". (A25
om? [6 2 op? a=f=m ( )

Not all the integrals are independent. For instance, it can
be easily shown that

1(1/3(0) = ﬁz — az [Ja — ]ﬁ],
oJ,, = =1""(0),
1
oI (0) = o [17(0) — I%°(0)].  (A26)
It is useful to introduce the integrals J5 which follow by
setting f(k) = G,,(k) in Eq. (A17),
‘]fn = /szm(k’wn)’
k
1
= / K2G, (K. w,). (A27)
k

so that Egs. (A26) can be extended to the projected
integrals,

1 LT LT
Iy = mwa' —Jy L,
Oli" = =11,
Q) 1 Q)
or L/,}TO = B - [ L/,}TO =1 Z(,ITO]’ (A28)

and, by Eq. (A21), the projections I‘L T can be expressed in
terms of the constant integrals JET

2. Graph 1b—(tadpole)
Setting d = 4, Eq. (31) of Ref. [41] reads

b (K)]| G (k). (A29)

1b
H}w )(p) = _ﬂ [35;41/_

yielding

" = —[26,,J,, + [2°(0)],

(A30)
where the integrals J,,, I,‘ff (p) were defined in Eqgs. (A13)
and their explicit expressions are reported in Appendix B.
The projected polarization of graph (1b) is

1b m
11" (p) = —[2J,, + 139,
" (p) = —[27,, + 179]. (A31)

The vacuum contribution can be extracted by evaluating the
integrals in the limit 7 — 0 where I;2°(0) — §5,,J,, so that

9
(T =0)=-26,J,

10w (A32)

in agreement with the general result of Ref. [19] for d = 4.

3. Graph 2b—(gluon loop)

The general explicit expression for the graph (2b) has
been reported in Ref. [41], for a generic dimension d and a
generic free-particle propagator. In the Landau gauge, the
explicit expression for d =4 can be written as (see also
Ref. [38])

e (p) =Y T (p)

i=1

(A33)

where, denoting ¢ = p — k&,

I (p) =5 [ (0= K(a = K11 (@)u(01Gn (G (a)

5°(p) = K #(k)[(p + k)t (q)(p + k)]G (k)G ().

P (p) = - / #K) (p + )1 (@) (p + K),]

k
x G, (k)G (q),

I (p) = / (4= K[ (R)13y (g) (p + KY1G(K)Gn(q)

+p <. (A34)

All integrals can be evaluated by the method of Ref. [38]
and written in terms of the integrals in Eq. (A13).
In some detail,

I (p /(q k) (g — k) [2+<IZ Z)]Gm(k)Gm(q),

(A35)

and making use of the identities
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2k-q=(k+q)* = k> —q* = p* = G, (k)™ = Gs(q)™" + a*> + p*.

) _ G116y 1) = - Gold) - G ()],
(q - k)y<q k)u = Z(quqy + kﬂkv) —PuPy (A36)

we can write

= [P 207G, (K)G(a) + PGo(R)Gola) +
— (7 + P (Go(R)Gn(a) + GuK)Go(@))] + 5 (GulKIGo(K) + Gu(@)Gol@). (A3
[ @=000a=10, I Gu(k1Gna) = s (1 + 20 12 ()= py, 17 )+

+p (4123(17) = pup A% (p)) =2(p* +m* 2L (p) + 1 (p)] = pup ™ (p))]+

£20(0) 43 P, "(0), (A38)
l (6= K)u(d — K),Gon(K)Gon(q) = 4127 (p) = pup, ™ (p) (A39)

so that Eq. (A35) reads

p4

2 mZ 2
Mu(p) = g 18(0) + 44 el

(p* +2m?)? ]Imm
4
2m

e m(p) — (I0(p) + I (p)) + 1(0)+

4 m 2 m 2
- [ (p) + (14 L2 o) - LY o) — )]

The second polarization term in Eq. (A34) reads

(7)< [ [0 = %57 (= 25 ) Gu(t1Gu(0)

= 4/( [6uyp2 - pzkukuGO(k) - éﬂu(p : q)zGO(Q) + (p : Q)zkykaO(k)GO(Q)}Gm(k)Gm(Q)

2
L (132 (p) = 12(P))| + Thagua(p) + T (), (A41)

= 4[gup2rm(p) -2
where
M (p) = =40, | Ga(@)Gn(IGo (P17 = =8 [ Gula)(Golk) = G0+ "
M (p) =4 [ Gu(K1G(@)Go(BIGo ()P - 0)hsk. (A42)

Using the identities

2(p-k)
2(p-k)Gy(q)G(k)
4(p-k)*Gy(q)Galk)

pPHP - +G (k) -Gyl (q),
(P + B2 —a*)Gy(q)Gu(k) + Gy(q) — Gy(k).
(P*+ P2 =a*)*Gy(q)Gu (k) + (P> + 52— ) (Gy(q) = Ga(k)) +2(p-k)(Gp(q) — G, (k). (A43)

which hold for any pair k, ¢ satisfying k + ¢ = p, we obtain for (a, ) = (0, m) and for (a, f) = (m, m), respectively,
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4(p - k)*G,(q)Go(k) = (p* + m*)*G,,(q)Go(k) + (p* + m*)(G,.(q) — Go(k)) 4 2(p - k)(G,(q) — Go(k)).
4(p - k)*Gu(q)G (k) = p*G(q)G (k) + p*(Gpu(q) = Gu(k)) +2(p - k)(Gu(q) — Gu(k)),

so that the term II,, can be written as
Mo = = 22 (92 4 w21 () = p1 () = m(p2 + m2)197(0)].
Using the second of Egs. (A36), the term II,, can be written as
T, (P) = %l(p - q)*k,k,(Go(K)Go(q) — Go(k)Gn(q) = G,u(k)Go(q) + G, (k)G,(q)).

while reversing k and ¢ in Eq. (A43) we obtain, for a and S that take the values 0 and m,

P*Go(k)Go(q) + 3p*(Go(k) = Go(q)) = 2p - k(G (k) = Gy(q)),
(p* = m*)*Go(k)G,(q) + (3p* = m*)(Go(k) = G(q)) = 2p - k(Go(k) = Gu(q)),
(p +m?)’G,,(k)Go(q) + (3p* + m*) (G (k) = Go(q)) = 2p - k(G (k) = Go(q)),
G (k)G(q) +3p*(Gu(k) = Gu(q)) = 2p - k(G (k) = G,u(q)),

4(p - q)*Go(k)Golq) =
4(p-q)*Go(k)Gn(q) =
4(p-q)’Gu(k)Go(q) =
4(p-q)’Gu(k)Gu(q) =

—_— — — ~—

yielding for Iy,
1

o, (p) = — [P I0(p) + 1" (p)) — (p* — m?)2 10 (p) — (p* + m*)2 130 (p)] + 2157(0) + p,p,I°"(0).

mt
Adding Eqgs. (A45) and (A48) in Eq. (A41), the second polarization term in Eq. (A34) is
mm p + m m m m
1) = 8 [ 5 (2 +-4m2)75) = L ) 12 4 197(0)] 4 1% 01+
p 00 p 2 2\ ymm (p2 + m2)2 m0 Om Om
+?I;w(p) +ﬁ<p +4m )Ipw (P) _T(Iuv (P) +I/w (P)) + 21/41/ (O>
The third polarization term in Eq. (A34) can be decomposed by observing that
A p- k vp v ) v
[ (k)(p+q),] =2 Pr=ma k) [#7(q)(p +k),) =2\ p" ——5"¢" |,
so that, changing the integration variable from k to g in the g, p, term, I3 reads
p-k (p-K)(p-q)
H3;w(p) = _4/k <pupu - F(kupv + kvpu) + kg—qzkuqy Gm(k)Gm(Q)

- _4p”py1mm(p) + H3a;u/(p) + H3h;w(p)7

where
i (p) =4 [ (p+K)(hups + K2) GolBIG (G0
H3b/w(p) = _4/c(p : k) (p ' q)kMQDGO(k)GO(q)Gm(k)Gm(q>

The first integral can be decomposed by using the identity

(K'p* + k'p!) = p'p* + K'K* - g'q"
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and observing that, by the second of Eqs. (A36) and the second of Egs. (A43),

40 DG BG NG () = L2 (616 (4) - Gu(HGa)
= 2 (7 + m)Go(K)G(4) = PGu(K)G(a) = P Go(IGu (K] (ASH)
yielding
M, (p) = %p,,py[(p2 +m?)I(p) = pI"™(p)] + % (p? +m?) (I (p) = 1 (p)). (AS55)

In the second integral I, we can use the identity

1 1
kuqy = |:§p;¢pv - kﬂkl/:| + i(kﬂ - qﬂ)pl/’ (A56)

where the last term can be dropped because it is antisymmetric in the exchange of k and ¢ and its contribution to the integral
is zero. Taking the second of Eqs. (A43) with @ = § = m and the same equation with = # = 0 and k,q interchanged, their
product can be written as

| =
o~

4(p-k)(p-4)Gu(k)G(q)Go(k)Golq) = [Go(k)Go(Q) +Gu(k)Gu(9)]+
+ (1 =) Go01G(a) + G (K1Go(a)] - Gole) i) ~GulKIG (6. (45T)

where the second of Eqgs. (A36) has been used for decomposing the products of more than two G functions. Then, the
integral can be written

4
M () = 250000 + 157) + (1= 25 ) o)+ 5000+

Pt 4
= | (1) + 1) = (L= 1) 00(p) | - 213200) (A38)

Adding Egs. (A 3) and (A58) in Eq. (A51), the third polarization term in Eq. (A34) is

4 4 2.2 4 2 2\2
p - 3m* +2mp” - p* (p°+m°)” ”
I, (p) = %(129(19) + 1" (p)) + - 17 (p) e 1;2(p) — 2157 (0)+
4 4 2.2 4 2 2\2
p p* +4m=p°+8m* p-+m "
A Y B () — ) jo )| (A59)
2m 2m m

The last polarization term in Eq. (A34) can be decomposed by observing that

@ (@) -+ i) =2 E 0 N E P e ] (A60)
Then, recalling that g, = p, — k,, the integral reads
M (p) =2 [ |2 ks = 2680+ @, = 2, | (6 QGG W)Gi) + 1 > v. (61)
Using the identity
puky + puky = pupy + Kk — 4,9, (A62)
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the two pieces can be added together yielding

My, (p) =2 /k {(kk.zp) (Pupy = 3k,ky — q,q,) + 2(k,k, — q,q,) | (k- q)Go(q)G (k)G (q).

(A63)

The product of three G functions can be decomposed by the second of Egs. (A36) and the two arising terms can be written

by the first of Egs. (A36), with (a,f) = (m,0) and (a, f) = (m, m), respectively,

20k 9)Gola) @) = P G 106 () - T2 G, (016, 4) — 5 (Gola) = Gula))

The integral then reads

pP+m’ 0 0
H4/4u(p) =2 m2 (I/rﬁ/ (p) - Iﬂzr/n(p)) - zpﬂpl/l m(O) + H4a;w(p)’

where

1
H4a;w(p) = 5/; 2(k : p)GO(k) (pﬂpl/ - 3k/4ku - qﬂQD)

2 mZ 2 m2
[T G (0Gu(a) =) G ()G (a) = 1 (Gole) = Gua) .

Using the first of Eqgs. (A43) with « =0 and = m,0,
2(k - p)Go(k) = (p* +m*)Go(k) + 1 = G (9)Go(k) = p*Go(k) + 1 = G5 (9)Go (k).
and decoupling the product G,,(k)Gy(k) by the second of Eqs. (A36), the term Il,, can be written as

4 2(442 m2
M) = 55 [ (= 3k, = 4,) | 25 GulGo(a) + 22 6, 090G o)+
2 4 m2)2 4 _ ot
AP GoW)Ginla) ~ G (K)Gola) + m(Go(KIG () — Gol)Gnl)]

so that the integral reads

4 2( 12 2
P p’(p*> +2m?)
H4a;w(p) = pﬂpl/ |:2m4 IOO(p> +

4 p(p* +2m?)

20,2 2
mm _P <p +m) 'm0 Om
A () = EEE T o) + 107(0) | +

2p* 4+ 3m?p? + m* 4

2p* +m?p? —m

p
_2?128(17)_2741;”171(17>+ 4 I/%n(p)"i_ 4 ILnUO(p)_

m m m

Inserting the result in Eq. (A65) the fourth polarization term in Eq. (A34) is

4 2( 12 2 2 2 2
p p-(p°+2m po(p~+m
M (p) = Py g () + T2 o)~ L) o) — oo 4
4 2 2 2 4 2.2 4 4 2.2 4
p p*(p* +2m*) 2p* +3mp°+m 2p° +meps—m
- 2%@%(1’) -2 m4 I;ytnvm(p) + m4 I/Tt?(l’) + m4 122"(1’)-
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Finally, adding up the four polarization terms in Eqs. (A40), (A49), (A59), (A70), the total graph (2b) reads

4 2 2\2 2 2\2
2b p (p + 2m ) mm (p + m ) m! m m
2 () = s+ [+ P2 o) - P ) + ) + 1000
2 2 2 2 2\2

p + m m m! p mm p + m m m

O (o) — 1300)) + 8, | 2 (2 a2y (p) — P pom ) 4 (42 40|+
m m m
4 4 2,2 4 2 2 2 2

- — 1 I - 1 -1 . AT1

b [ 0) + d (») pia (p) =3 1"(O)]. (A7)

The transverse projections of the graph follow by the
projected integrals in Egs. (Al4). We observed that by
Eq. (A15) the projected integrals turn out to be symmetric,
Izﬁ = I’Z‘.’T. Thus, the projection of the graph follows by
drt)pping the longitudinal and the antisymmetric terms, and

by replacing the integrals by the projected ones according to

PPy = 0,
(I3 (p) = I (p)) = 0,
O — 1

L2 (p) = 1% (p) = 1% (p),

1(0) = If'y, = I, (A72)

4. Graph 2a—(ghost loop)

In the Landau gauge, setting d =4 and using a free-
particle propagator, the general expression of the ghost loop
(see e.g., Ref. [41]) reads

m2(p) = /k (P — k )k Go(K)Go(p — k). (AT3)

4

-1 p
() = |2 1|1 o) + 4+

2( 2 2
+4m
L i )

Il?’l”‘l
. (p)

(P2 + 2m2)?
2m*

B (p2 + m2)2
m2

By exchanging k* and p* — k* the integral shows the
symmetry I, =11, so that, using Eq. (A53), we can
replace

1
pyky_)_(pﬂky+kypy): (A74)

1
2 E(kuku_QﬂCIv+pypu)'

The first two terms on the right-hand side cancel in the
integration yielding

2a 1
e (p) = 5 Pup I (P) = Tw(p).  (AT5)
The projected ghost loop is just
2a
177 (p) = =1%%(p)- (A76)

5. Total (uncrossed) one-loop polarization

Adding up the uncrossed one-loop graphs (15), (2b) and
(2a), the standard (uncrossed) projected one-loop polari-
zation of Ref. [38] is recovered by the sum of Egs. (A30),
(A71) and (A75):

(pZ + m2)2

i) - )

1"(p) + (p* + m*)1°"(0) — 2J,,. (A77)

6. Ghost self-energy

In this work, the total one-loop ghost self energy is the sum of the standard one-loop graph and the crossed one, which

contains the insertion of a mass counterterm,

=) = (1

s 2(0)

(A78)

where X(p) is the standard one loop integral [19,41] in the Landau gauge,
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k*p? — (k- p)?

2p) = = | s = = | 1PGa(Gala) = (k- PG (k)G ()Gola)]

(A79)

Using the last of Eqs. (A43) with a = m and = 0, and decoupling the product G,, (k)G (k) by the second of Egs. (A36),

we can write

(k- p)Gol) G0 Golk) = L=

[Go(k)Go(q) — G, (k)Go(q)]
+ (p* = m*)[Go(k)Go(q) = G, (k)G (k)] + 2(p - k)[Go(q)Go (k) = G, (k)Go ()]

(A80)

Then using the second of Eqs. (A43) with @« = f# = 0 and dropping the vanishing integrals

/ (Golq) - Go(k)] = 0. / (P~ )G (K)Golk) = 0.
k k

the second term of Eq. (A79) reads

[k pr6ut1GumGa) = -5

and the (uncrossed) one-loop self energy can be written as

(p? +m2)?
4m?

X(p) = -

as derived in Ref. [38] by the same method.

7. Crossed graphs and total polarization

The crossed graphs (1¢), (2¢), (1d) and the crossed one-
loop ghost self energy can be obtained by simple deriv-
atives. The sum of all graphs gives a total one-loop
polarization that can be written as

d

0 a—c 1
e, (p) = L5 (p) + TP (p),  (A84)

where Hé‘f;c> (p) is the sum of graphs (2a), (1b), (2b),
(Ic¢), (2¢) and can be evaluated as

0

5 () = (1= 50 JUER(0). (289

a—c 1-loo;
5 () = E57(0) + (-0 s

p4
I"(p) +?IOO(P) +

(A81)

4

[ GutwGota) + 2 [ GutiGota) - L5 [ GG (as2)

4dm

(p* —m?)

i (S —J0), (A83)

|

Here I1;7(p) is the projected one-loop polarization of
Eq. (A77) and H(Ll_‘p is the doubly crossed tadpole, with two
counterterm insertions.

The derivative acts on the coefficients of the integrals
according to

0 1 2
(3 [ = (AS6)
The function H(L’f}c) then reads
1-loo 1-looj
M7 () =m0, (A87)
I

where the derivative of the coefficients is taken in the second term while the derivative of the integrals is considered in the

third term. Using Eqgs. (A86) and (A77),

4

0 oo p pt+2m?p?] 2pt +2m*p*]
(= TS0 ) = | ]+ [P 50 ) = P2 20 )

# (2] = [ ) - i),

m

- (A88)
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while replacing the integrals / by their derivatives 91, Eq. (A77) reads

(p* +2m?)?

2 2)\2
- +m
_m2 (Hi,l;"op(p))]_,[)l = |:8m2 + mz u

+ (p* + m?)?01™ (p) — m?(p? + m?)or"(0) + 2m*dJ,,. (A89)
Summing up the contributions of Eqs. (A77), (A88) and (A89) in Eq. (A87) and using Eq. (A26) we obtain
a—c 3pt 3p* + 8m?p? + 4m* o 3p* +4m?p? +m* -
M5 () = [37= 1 )+ 44 2B B gy - (PP )
222+22 222+2 22+32 22+2
TR (pm2 ) gy — 2P ) (pm2 ") on ) - {7” e }Jm + [7’) = ]Jo
2 212 2 212
p°-+2m i p-+m m i
+ - {8m2 + %} orm(p) + %QILPT(])) = 2p2(p* + 4m?)oI™™ (p)
+ (p* + m?)?0I"™ (p) + (p* +3m?)dJ ;. (A90)
|
Finally, the doubly crossed tadpole (1d) in Eq. (A84) can Jh, =JL.
be written as [19,41] p?
Jh, = (5L =T%) o1 o +JL. (A94)
4
1d m 0 1b
07 () = T o er () (a9)
8. Crossed graphs and total ghost self energy
. The total ghost self-energy X*'(p) can be derived by the
and using Eq. (A31) same method, as shown in Eq. (A78),
0
: 2(p) = 2(p) + (= 252(p) ) - nP(z(p)]
1d m m P P p DP)li-or
M7 (p) = —m*0, = -1, (A92) om*> " )

By Egs. (A28) the derivative 9°I7', can be expressed in

terms of the integrals JET and their derivatives 9J%T,
yielding

1
M5 (p) = =m*0%,, +— (T = T )+

o+ e (A93)
m,p D) m,ps

where

mh — pt 4
(= =) =m0 + 1) L0 ).

4m?

(A95)

where the derivative of the coefficients is taken in the
second term, while the derivative of the integrals is
considered in the third term.

Replacing the integrals 7 by their derivatives OI,
Eq. (A83) gives

(pZ + m2)2
4

(p* =m?)

or(p) = =—

_mz[Z(P)]HBI = 8Jm’

(A96)

while, using Eq. (A86), the derivative of the coefficients in
Eq. (A83) gives

2

= (A97)

The total ghost self energy then follows, adding up the contributions of Eqgs. (A83), (A97) and (A96) in Eq. (A95)

p4
1" (p) +=—1"(p) +
2m

pA(p*+m?)

ze(p) = -0

4m?

M(J —Jo) +

(p? +m?)? (p* —m?)

o (p) -

dJ,.  (A98)
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APPENDIX B: THERMAL INTEGRALS

By general arguments, the thermal integral I(T) of a
function f(k) = f(k, k) can be written as

3
n=[ro=-1% [ %f(k,am — Iy + Iny(T)
(B1)
where, setting ky = w,, = —ik,
d*k . d*k
5 [k [ s rkemita) = [ S
(B2)

is the Euclidean integral at T = 0, denoted vacuum part
Iy = 1(0), while the thermal part I7;,(T) is

2RF(K, ik)
ITh(T):‘/ 32[ ﬂko_lo
Resid.

where the sum is over the residues in the right complex
plane of ky and the symbol Rf is defined as

Do

f(K, iko) + /(K
2

, —ikg)

Rf(k, iky) = (B4)

We observe that if f(k) is a complex function, then R f (k)
is not the true real part Ref (k). The thermal part vanishes in
the limit 7 — 0.

Many of the thermal integrals were evaluated in great
detail in Ref. [38]. In the next sections we collect the same
results and, by the same method, we add the explicit

evaluation of all the remaining integrals that are required in
the present work.

1. Vacuum integrals

The vacuum parts of all the one-loop graphs were
evaluated in Ref. [19]. They can be made finite by wave
function renormalization. After subtraction, the sum of all
the gluon polarization graphs in Eq. (A84) and of all ghost
self-energy graphs in Eq. (A98) give the following vacuum
terms at 7 = 0:

3m?2s
y'(s) = _W[ﬂl(s) + 7).
3m?s
IP(s) = (4n)? [61(s) + 00], (B5)

where s = p*>/m?, the constants m,, o©, are arbitrary
renormalization constants, depending on the subtraction
point, and 7, (s), o,(s) are the explicit analytical functions

5 1
m(x) =gt =5 [La+ Ly + Lo+ Ry + Ry + R,
1
Gl(x) = E[Lg+Rg]7 (B6)

written in terms of the logarithmic functions L,

3x3 —34x2 —28x — 24

L,(x)=
) .
4—|—x1 <\/4+x—\/_>
VA + x4+ /x
2(1
Ly(x) = u (3x3 — 2022 + 11x — 2) log(1 + x),
L(x) = (2 - 3x?) log(x),
1 2(2x -1
Ly(x)= Lgx)log(l +x) —2xlog(x)  (B7)
X
and of the rational parts R,
4
R,(x) = =25 (2 Z20x + 12),
x
2(1 2
&m:i%ﬁ@hmmm,
x
2
X
1
R,(x) = ~ 2. (B8)

2. Thermal part of J,, and JET

The integral J,, is defined in Eq. (A13) and has the
general form of Eq. (B1) with

. ) 1
f(k.iko) = G, (k. iko) = 5—. (B9)
€ — Ko
having denoted by ey, the positive square root
€km =V k2 + mz. (BIO)

The thermal part, Eq. (B3), takes a contribution at the pole
ko = €x_n, yielding

U)o = ‘/ (;111;3 Kek,m_i ko> (ef""“]— 1>L

(B11)

and denoting by n(e) the Bose distribution,
n(e) = [efe —1]7! (B12)

we obtain
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d3k i’l(€k m) ooxzdxn(exm)

J = —— = —_—, B13
U= [ G il = [Pl (m1s)
with the obvious notation ¢, ,, = VXt + m?.

In the special case m = 0,
o xdx
ol = [ 3t (B14)

The thermal parts of the integrals J%, JI,, as defined in
Eq. (A27), follow immediately by replacing f(k) —
—k3f(k) and f(k) — 1Kk?f(k), respectively, in Eq. (B9).
Following the same steps as before, the thermal parts read

3. Thermal part of 1% (p)

The integral 1%(p) is also defined in Eq. (A13) and has
the general form of Eq. (B1) with

F(K) = Galk)Gy(p — B)
1
TR,k (B9

where €,k 3 = /(P — k)2 + % and —ipy = p4 is the
external frequency. The poles are at kj = dey, and
ko = po £ €p-k p- The residues are readily evaluated:

R = Gy(p—k,i ]
- x2dx a + 2€k,a ﬁ(p »1po F lek.a)?
(‘]ﬁ) = - S €x mn(exm)’
Th 2 2 , ,
0 <7 Ry = F5——Gu(K,ipo + iy y ), (B17)
o v4 2¢ —-k.f ’
JT _ ﬂn(ex,m) B15 p—K,
R (B15)
0 om and we can write
|
RE Ry
k, iky) = T+ =Ayk,p—K;ikg, ipy) +As(p — K, K;ipg —iky,ipy), (B18
f(k, iko) ;ko T eea | 2ko— 10 F oy 5K, p 0:1P0) + Apa(P po — iko.ipg),  (BI18)
where
1 Gﬁ(p_k’ip0+i€ka) Gﬁ(p_k7ip0_i€ka)
Ak, p —K;ikg,ipg) = — - — . B19
ap(K. P iko, ipo) 2ex [ ko + €x Ko — €n (B19)
It can be easily shown that for any external frequency @), = —ip, = 2z2Tn’ and momentum p, the integral over k and the
sum over w, = —iky = 2zTn have the property
d’k o d’k L
TZ/(ZTPA(I/J(KP —k;iko,ipo) = TZ/WA(I/}(P —k.K;ipy — ik, ipo), (B20)

which follows by replacing k — p — k and ky — py — k; in the integral and in the sum. Thus, we can replace in Eq. (B3)

mf(k’ lkO) = {m[Au/)’(k’ | L k’ ikO’ lpO)] +oa < ﬁ}

(B21)

Moreover, since G, (p.ipyg) = G,(p.—ip,), by inspection of Eq. (B19), we observe that A,s(k,p —k; —iky,ip) =

Ak, p —k;iky, —ipy), so that

o 1 o . .
R[Ags(k, p —K;iko, ipo)] = 5 [Ags(K, p — K;iko, ipg) + Agp(k, p — K; iko, —ipy)].

2

(B22)

Hereafter, the last equation is taken as the definition of the symbol R for any generic function of ip,.
In Eq. (B3), the poles at ky=e€g,, exs have the residues [—n(ex,)/exqoRGs(p -k, ipy—iex,) and
[—n(ex p)/ex p)RG,(p — K. ipy — i€ p), respectively, yielding in terms of the external frequency @ = p, = —ipy

1 (p, )]y = / é;l; {n(ek.a)

€k.a

RGy(p -k, 0 +ieg,) +a < ﬁ}.

(B23)

Finally, we observe that since G,,(p,ipg) = G,,(p,—ipy), then

: . 1 : :
RGy(p — K. ipy —iex,) = = [Gs(p — K, 0 + iex o) + Gp(p — K, 0 — i€y )]

2

(B24)
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The angular integral in Eq. (B23) can be evaluated exactly
by writing

1

Gl _k,Z - ’
‘ (p ) ga(z’ p2, kz) - 2p -k

(B25)

where, denoting x = Vk? and y = +/p2, the function
Ju(z;x%, ¥?) is given by

G723 =22+ + X2+ y? (B26)

9oz ) £ 2y =2+ €, (B27)
where
€yiva = \/ (y £ x)* + a2, (B28)

so that the integral over the angles can be written in terms of
the function

< +x,a
L,(z;v,x) =1lo Y B29
@rx)=log 5™ (B29)
and does not depend on the angles. Moreover, we observe
that and an elementary integration gives
|
B o xdx n(ex a) .
[I” (y’ w)]Th = Q. 2. : mL/}(Cl) + lex,a;yvx) +a< ﬂ . (B3O)
0o 87 y €xa
It might be useful to evaluate the leading behavior in the long wavelength limit p — 0 (i.e., y — 0):
2he, = (24, |1+ Y (B31)
yxp g ZHe, LHey,l
4xy 4xy? 16x%y?
Ly(z3y,x) = - +O(H"), B32
p(53.3) Frey (ZHey)? 32 +ey)’ 0) (B32)
o x2dx (n(ecq) 1
1% (y = 0,0)];, ~ / : L2 . B33
1Py = 0.0)lp~ |55 e Notie T, taop (B33)
Moreover, in the limit @ — 0, using Eq. (B13),
: : a o0 Xde n(ex,a) 1 (Ja)Th - <Jﬂ)Th
2)1_1}})&1_{% 1 (y, )]z, = /0 oy { en o +a< ﬂ} = e , (B34)
|
in agreement with the first of Eqs. (A26). The same limit is k,k, LT
obtained by setting @ = 0 from the beginning and explor- f(k) = f(k) crr P ()| (B306)

ing the leading behavior when y — 0.

4. Thermal part of I}, (p)

The projected integrals Iiﬁ r(p) were defined in
Eq. (A14) and have the general form of Eq. (B1) with

k,

F() = Gu(k)Gy(p — &) 5 pLT (),

" B35)
cLr (
where ¢; = 1 and ¢y = 2. The function f(k) is the same
found for the integral I%?(p) in Eq. (B16), multiplied by a
factor

The new factor has no poles in the complex k, plane and
does not depend on the masses a, . Thus, f(k) has the
same pole structure of Eq. (B18) with residues multiplied
by the same factor. Moreover, we observe that because of
Eq. (A15), we can still exchange k and p — k in the integral
without affecting the multiplied factor. Then, Eq. (B21) still
holds with the function A, just multiplied by the same
factor of Eq. (B36), which by an explicit calculation reads

[(k - p)o + ikop®]?

[kﬂkl/P[ll/(p)] - (pz + 602)p2

(B37)
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and

[k”zk” ,w(p)} :% [kz - (kl;zl) )2]’

to be evaluated at the poles ky = €y , and ko = €y g, yielding

17 (9, )],

= / (d3k {n(ek’“) R [((k Pt iek";pz)z Gy(p-k.o+ i€k,a)] +a< ﬂ},

22 | exa (p? + @*)p
1 [ &k (k- p)?] (n(exq)
aff _ 2 _ k.a _ .
U7 (p. o))y, = 2/ 2n)° {k D } { o RGy(p -k, 0 +ieg,) +a < ﬂ},

where the symbol R denotes an average over +w or, equivalently, an average over Liey ,.
The angular integrals can be evaluated exactly [38]. In the transverse projection, we can write

/d3k kz—(k‘ P’ P—K.2) = /°°x4dx/ dcos@ 1 — cos?0
(27)3 p> «(23 9%, x%) — 2xy cos O

_[” - {ga(z y? x2)_<[9a(29y2vx2)]2_4x2y2)La(z;y,X) -

8%y 4xy

Then, denoting by LT the transverse logarithmic function
Li(z:y.%) = (2 + €100 (& + €)_sa)Lal2: . X)

and using Eq. (B27), we can write

[I;ﬂ(y, )]y = — Amﬂ {”(em) [ERL;(Q) +i€a; v, x) —dxy(0® + Y + 2 — )]+ a < ﬂ}.

647%y3 | €14

In the longitudinal projection, the angular integration reads

/ ¢k {((k-p)w 5 —w)pz)z]Ga(p_k’Z)

/ooxzdx/ xa)cosﬁ+y(z— w)]?

g,, 7 y%, x?) — 2xy cos @

o - xdx Z 2 16x 3 —@
:/ —3Hga(z;y2,x2)+2y2<g—l>] La(z37.x) = dxygy(zs 7, ) = 1O 0)
0

3272y a)

Denoting by LL the longitudinal logarithmic function

2z 2
Li(zy.x) = [zz +el,+y? (E - 1)} L,(z;y,x),
using Eq. (B26) and observing that R(z — @) vanishes when evaluated at z = w + ie, ,, we can write

[0

2 Y
1 (3, )], — P {"(e“” (RLE(@ + i€y iy, x) — dxy(@? + 32 + f — )] +a < p L.
0

P +?) Jo 3277

€X,(X
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5. Thermal part of 8J,,, dJ5", 8], and d*J5"

The thermal parts of 8., and &J5" can be obtained by a
simple derivative of the thermal parts of J,, and Jﬁ, T,
respectively, according to the definition of the integrals in
Eq. (A24). For a function of ¢, ,

0 1 0 10
- -9 B4
om?>  2e,,,0¢., 2x0x’ (B46)

so that it might be useful to integrate by parts, using
Eq. (B13):

o xzdx n(€xm)
(a‘]m)Th om /

_/W&Q n(ex,m)
o 4nP0x | exm
o dx n(ey,,)
=- — . B47
A 47° € (B47)
A plain further derivative gives
o dx n(ey,,) 1 .
PI )y = | ——mml __ gimlee - (B48
e A= et (B43)
where
nn/ee o dx n(ex,m)n(_ex,m)
IJn'T = — | . B49
[ les (54
By the same method, using Eq. (B15),
o dx
(8‘151)”1 4—71_2 ex,mn(ex,m)’
©x’dxn(e,,) |
@) == [T = =S e (B30
and by a plain further derivative
2 7L 1 1 nn
(a Jm)Th = _i(a]m)Th + f‘lm ’
1
(aZJrTn)Th = _E(ajm)Th’ (B51)
where
d
JZ" = / 87 xg I’l(é‘x m) (_ex,m)' (BSZ)
0

6. Thermal part of 91/ (p)

The thermal part of 9I%”(p) can be obtained by a
derivative of the thermal part of /%?(p), using the explicit
expression of Eq. (B30)

o xdx [ O 0
[a[aﬁ(y’w”” _/O —{WA-FWB}, (B53)

8%y
where
A= M%Lﬁ(a} + i€y a3 s X),
n(e, )
B = (€xp) RL, (0 + i€, g3y, x). (B54)

€x,ﬂ

Using €, , as independent variable, with €, ,de, , = xdx,

2

we can write x = {/e2, —a® and eliminate the explicit

dependence on x in the function A. The total derivative of

A reads
dA 0A 0A dx
dex,a - <a€x,a)x - (a> €ra <d€x,a> , (BSS)

and observing that

OAY _,, (24
8€x.a x B ex’a 8a2 ’

it can be written as

dA = 2., <%) +

de, , oa?

(B56)

dx \ €4
de,,) x '

€rq [OA
. @L; (B57)

so that the first derivative in Eq. (B53) follows as

(B58)

- Ox

PA_ 1 aA 1 (oA
o 2e,.,de,, 2x

Moreover, observing that

(5, )
Ox e aey x aei_xﬁ

0A A
+ 2y< 2—) (B59)

8€y+x p 8€y—x,ﬁ

we find, explicitly,

0A ~n(ec,) 1 1
Ox R 2 2 2 2
X €ra [T T€icp ZaT €y

¥\ n(€xa) 1 1
+ ;) € : 2R{Zz_kgz +22+€2
X, a y+x.fp ‘a y—x.p

(B60)

074014-29



FABIO SIRINGO and GIORGIO COMITINI PHYS. REV. D 103, 074014 (2021)

where z, = @ + i€, ,. On the other hand, a simple derivative gives

(B61)

OB n(ecp) [ 1 1 }
Oa €xp z/z, + 65 xa z%, + € val

where z; = w + i€, 4. Finally, inserting Eq. (B58) in Eq. (B53) and changing the integration variable xdx = €, ,de, , in the
first term, the integral of the total derivative gives a vanishing contribution at x = oo and x = 0, since Ly — 0. Collecting
the other terms, we find

0 dX I’l(€ ) 1 !
b _ Ratdl X,
(017 (y, @)]7, / 872 ER|:(60+1-€)¢,(1 ' ]+

0 T~ €xqa )2 + €§+x./3 (w + iex.a)z + eg—x,/i
o xdx (n(e 1 1
+/ 2{(m%ﬁ L - }_meﬁﬁ, (B62)
o 8z°y €xp (w + lex.ﬂ) + €ytxa (w + lex,ﬂ) + €5 xa

where the second integral is zero if a = f.

7. Thermal part of 8I'ZﬂT(p)

The thermal part of the projected integrals 812{} +(p) can be obtained by a derivative of the thermal part of / Z’fT( p), using
the explicit expressions of Eqgs. (B45) and (B42):

2
ap __ o ° xdx [0 , 8
[aIL (yv w)}Th - (yz + wZ)A 3277.'2y3 {aaz AL + 8a2 BL )

a o xdx 0 0
017 (y. )], = _A m{ﬁftr+@37}, (B63)

where

Nn(€y o .
AL = (e—) [RL; (0 + ic 03y, x) — 4xy(0® + )2 + f2 — a?)],

x,a
n<€x,/i)
€x,ﬂ

B.r= RLET (0 + i€, 5y, X) — dxy(w* + y* + o — f?)]. (B64)

Because of the explicit dependence on a, Eq. (B58) is modified as

a-AL,T _ 4xyn(€x,(z) 4 1 d‘AL»T _ i <8AL’T) s (B65)

Oa? Exa 26,4 de,,  2x\ Ox

while Eq. (B61) becomes

oB;, n(e, 1 1 2z 2
— = ( ‘ﬁ){ﬂ{[(z ————> )(z/z,+e,%,a+y2(—ﬁ—l>) +
Oa ex.ﬂ Z/} + €y+x,a Zﬂ + ey—x,a o

2z
+2<Z§ +€)2c,u +y2 <?ﬁ_ 1>>L,,(Z/,’;y,X):| _4xy}v

OBy n(eyp)

— =
oo €xp

{m[(zz%} + eg—x,(l + €§+x,a)L(1(Z/}; Y, x)] - 8xy}? (B66)

where z5 = w + i€, 3. Moreover, an explicit calculation gives
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L), (s

2z 2 X+y xX—y
2 =% _1 — — 4v(w? 2 2 _ o)\
+ <Z(z+€xﬂ+y <a) )) <z§+e_€+x,ﬂ z§+g§_xﬁ y(w* +y* + 7 —a?)
L (0Ar n(€rq) X '
__<(9x)m:_ e RO ey + €y = 0Ly )] — 40y}, (B67)

where z, = 0 + i€, ,.

Inserting Eqgs. (B65) and (B66) in Eq. (B63) and dropping the integral of the total derivative which gives a vanishing

contribution, we find

1 (3.0} = dx n(

n w? o dx n(e, )[
y2(y2_|_w2) 0 167[2 €xa

»* o xdx n(eyp)
R
+y3(y2+602){[> 1677 €.y KZ’;H’”H(
(o

? o xdx n(e,p)
2R
y3(y2+w2>M 3207 ey [(Z”+€"“+

w2 /00 ex,a)m l
yZ(y2+a)2) 0 327T2 €xa Zg+€%+xﬂ

1 5, 5 (224 2
—-—1
+Z(21+€2_x/3) <Za—|—€xﬁ+y p +

1)) Lalagir)| ~ o)+
) Gragra)|-@on)

) szdx[( ) n(ex,ﬂ)]
R aHy 2(»? +w)A 877 | €rgq €xp -

P17 (v,0)] Z—l/)oo xdx n(ex’“)iRL/s(zwy x)+y Aooxzdx[ n(exp) n(ex“)}—k

y 167 €.,

n 1 /00 xdx n(e,q)
v Lo 327% €4

where, as before, z, = @ + i€, , and 753 = @ + ie, 5. We
observe that most of these integrals are antisymmetric in the
mass arguments @, f and their contribution is zero
ifa=p=m.

It is instructive to explore the leading behavior in the
limit p — 0. According to Eq. (A20), the longitudinal
projection 915’ tends to the value dIY, if w is set to zero
first and the limit y — O is studied afterwards. Setting

@ — 0 in Eq. (B68), the only terms of 812’1 that do not
vanish are those containing the factor (2z/w)?. Observing
that z2 — —€2,, and that, in the limit y — 0,
1 1 2
_) 9
Z(21 + €§+X,ﬁ Z(Zl + €§—X,ﬁ ﬁz - az
1 1 —4xy
- - ,  (B69)
Zt%t + €§+x,[i Zg + eg—x,ﬂ (ﬂz - a2)2
we obtain the leading behavior
o) - (OJE) 7, N &) = T5) (B70)
Lolrh = gy g2 B -a?)?

R([(z2+ 2+ 37+ ) Ls(z4:y. %) — (a eﬂ)},

€X a

(B68)

having made use of the explicit expressions of (JL);,,
(0J%) 7, as reported in Eqs. (B15) and (B50). The result is
in agreement with the general relat10ns of Eq. (A28).

The transverse projection, 8IT, tends to a different

value, 8IT_0, in the same limit. Using Eq. (B32),

16x3y3
3(2 + eﬁ.ﬂ)z

4xy
Ly(2g39.X) R —5—5—~
/3( ary ) (22 +€;2;,ﬁ)

(2 + €15+ 57 )Lp(za3y, x) = dxy + + 0K

+0>u?%), (B71)

and 1nsemng the expansions in 81 , in Eq. (B68), the
terms y~2 cancel exactly while the leadmg term is of order
~yY, so that we can safely take the limit y — 0. The leading
term reads

[alt;ﬂ(()?w)]Th
_ _/szdxn(ex.a)m 1
0

477"2 €xa (Zg + €§/})

o xtdx [(n(e, ) 1
+ X,a m _
A 67 { €xa (Zg +€,%,/j)2

@on}. B72)
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The expansion holds for any value of w, even w =0,
so that we can exchange the limits for the transverse
projection. Setting @ = 0 and z3 = —€?,, we can simply
write (25 +€75) = (f*—@®) and the leading term
reads

(0J1) 7, (D) — (J;)Th

apy
[aIT,O]Th - ﬁz _ az + (/}2 _ a2)2 ’

(B73)

1 2z 2
m 2 2 2 _a_l ~2 2 2 2 _ 2 8 2 29{ O 4;
KZZ§+€§ixﬁ> (Z“+€"’”+y (w )) } @y - a) By (Z§+€§,ﬁ)+ o)

+

then, using the expansion

having made use of the explicit expressions of (JZ,)z,
(0JL) 7, as reported in Egs. (B15) and (B50). Again,
the result is in agreement with the general relations of
Eq. (A28).

On the other hand, the limits cannot be interchanged for
the longitudinal projection Glzﬂ which tends to the same
limit of the transverse projection, O (}ﬁ o» 1f y is set to zero
first and the limit @ — 0 is taken afterwards. Taking w
finite, we can write in the limit y — 0

1 1 )
—_ ~N — +
(Z/23 + €§+x,(1 Z%} + ei—x,a (Z/Z} + e,%,a)z

we can write

2z 2 1 1
(3 ) Gria)
@ Z[} +€y+x,a Zﬂ +€y—x.a

and finally, using Eq. (B32),

! (B74)

v <Z;Ti§,a>z-<z§TZ§;ﬁ‘°@”’ o
ot an]. oo
o) o

2
R [2 (lef +e2,+y? (g - 1>>La(zﬂ;y,x)} ~R {8)@1 +

Inserting the expansions in Of erﬁ , in Eq. (B68), again the negative powers of y cancel exactly. We can safely set y = 0 and
the same identical expression of Eq. (B72) is recovered, yielding

[3I‘Zﬁ(0, o)]7), =

[017(0. )]z, (B78)

for any finite w, as expected in the long wavelength limit, where no special direction in space is defined, in agreement with

Eq. (A20).
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