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We apply recent developments in large momentum effective theory (LaMET) to formulate a
nonperturbative calculation of the single transverse-spin asymmetry from the so-called Sivers mechanism
in terms of quasi-transverse-momentum-dependent quark distribution functions. When the spin asymmetry
is defined as the ratio of the quark Sivers function over the spin-averaged distribution, it can be directly
calculated in terms of the relevant quasidistributions with the soft functions and perturbative matching
kernels canceling out. Apart from the general formula presented, we have verified the result in the small
transverse distance limit at one-loop order, which reduces to a collinear expansion at the twist-three level.
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I. INTRODUCTION

Transverse-momentum-dependent (TMD) parton distri-
bution functions (PDFs, TMDPDFs) are one of the impor-
tant ingredients in nucleon tomography and a central focus
of hadron physics research in recent years and especially at
the future Electron-Ion Collider [1,2]. TMDPDFs can be
experimentally extracted from hard processes in deep
inelastic scattering (DIS) and lepton pair production in
hadronic collisions [3–6]. The available experimental data
and global analysis have generated strong interest in the
hadron physics community; see, e.g., recent efforts in
Refs. [7,8].
The first attempt to compute the moments of TMDPDFs

from lattice QCD was made in Refs. [9–11]. Meanwhile,
great progress has been made to compute x-dependent
parton distributions on the lattice using large momentum
effective theory (LaMET) [12,13]. For some recent reviews
on this topic see Refs. [14,15]. LaMET is based on the
observation that parton physics defined in terms of light-
cone correlations can be obtained from time-independent
Euclidean correlations (called quasidistributions) through a
well-defined effective field theory (EFT) expansion as well
as matching and running. LaMET has been applied to

compute various collinear PDFs and distribution ampli-
tudes [14,15]. In the last few years, an important new
development has been to apply LaMET to describe
TMDPDFs and associated soft functions [16–27]. In this
paper, we study single transverse-spin asymmetries in the
region where the transverse momentum is on the order of
ΛQCD, focusing on the nonperturbative calculation of the
relevant TMDPDF—the quark Sivers function [28]—in
terms of a Euclidean-space quasidistribution.
The spin-dependent, k⊥-even TMDPDFs have been

studied in Ref. [23], where similar factorization and
matching were found as for the unpolarized case.
Because the quark Sivers function is a k⊥-odd distribution,
it has special features different from those of the k⊥-even
ones. In particular, in the large-k⊥ or small transverse
distance limit, the quark Sivers function can be expressed in
terms of the collinear twist-three quark-gluon-quark corre-
lation functions in the nucleon, whereas the k⊥-even
TMDPDFs depend on the leading twist collinear quark
distribution functions. Therefore, the EFT matching cal-
culation in the present case is more involved compared with
that in Ref. [23].
In this paper, we will focus on computing the quark

Sivers function in the leading-order expansion from large-
momentum effective theory. An extension to the gluon-
Sivers function should be possible. The quark Sivers
function describes a nontrivial correlation between the
quark’s transverse momentum and the nucleon’s transverse
polarization vector. Therefore, it represents a spin asym-
metry in the TMDPDF. The quark Sivers function is
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nonzero because the gauge link associated with the quark
distribution contributes the phase needed to obtain a single-
spin asymmetry [29–32].
The paper is organized as follows. In Sec. II, we present

the evolution equation of the quasi-Sivers function and its
matching to the physical Sivers function. Resummation
formulas for the quasi-Sivers function and the matching
kernel are also given. A generic argument to demonstrate
the matching between the quasi-Sivers function and the
light-cone Sivers function will be presented based on the
factorization of the hard, collinear and soft gluon radiation
contributions for the TMDPDFs. Because the matching
coefficient only concerns hard gluon radiation, it does not
depend on the spin structure of the nucleon. This is
consistent with the observation in Ref. [23]. In Sec. III,
we provide detailed derivations of the quasi-Sivers function
in LaMET up to one-loop order at large transverse
momentum. Our calculations are based on collinear
twist-three quark-gluon-quark correlation functions, and
we compute the quasi-Sivers function in terms of the Qiu-
Sterman matrix element [33–37] (defined below). This can
be compared to the light-cone quark Sivers function
calculated in the same framework [38–44] and the asso-
ciated matching coefficient can be obtained. In Sec. IV, we
show the application of the formalism to experimental and
theoretical single-spin asymmetries. Finally, we summarize
our paper in Sec. V.

II. LaMET EXPANSION OF SIVERS FUNCTION
INTO EUCLIDEAN QUASI TMDPDFs

Let us start with the transverse-spin-dependent quasi-
TMDPDF for quarks in a proton moving along the þẑ
direction [17,25]

q̃ðx;k⊥;S⊥;μ;ζzÞ

¼
Z

d2b⊥
Z

dλ
2ð2πÞ3 e

iλxþik⃗⊥·b⃗⊥

× lim
L→∞

hPSjψ̄ðλnz
2
þ b⃗⊥ÞΓWzðλnz2 þ b⃗⊥;−LÞψð− λnz

2
ÞjPSiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZEð2L;b⊥;μÞ
p ;

ð1Þ

where MS renormalization is implied, b⊥ ¼ jb⃗⊥j, and the
staple-shaped gauge-link Wz is

Wzðξ;−LÞ ¼ W†
zðξ;−LÞW⊥Wzð−ξznz;−LÞ; ð2Þ

Wzðξ;−LÞ ¼ P exp

�
−ig

Z
−L

ξz
dsnz · Aðξ⃗⊥ þ nzsÞ

�
: ð3Þ

The spin dependence is introduced by the hadron state
jPSi. x and k⊥ are the longitudinal momentum fraction
and the transverse momentum carried by the quark, and
ζz ¼ 4x2P2

z is the rapidity or Collins-Soper scale. The

direction vector of the gauge-link nz is defined as
nz ¼ ð0; 0; 0; 1Þ and all coordinates are 4-vectors, e.g.,
b⃗⊥ ¼ ð0; b1; b2; 0Þ. In contrast, L is just a number. μ is the
ultraviolet (UV) renormalization scale. A transverse gauge
link was included to make the gauge links connected.
The spin-1=2 proton has momentum Pz and is polarized
transversely, with the polarization vector S⃗⊥ being
perpendicular to its momentum direction. The Dirac matrix
Γ can be chosen as Γ ¼ γt or Γ ¼ γz. As we will show, to
leading order in 1=Pz the two choices are equivalent. The
subtraction factor ZEð2L; b⊥; μÞ is the vacuum expectation
value of a rectangular Wilson-loop that removes the pinch-
pole singularity at large L [17,25]

ZEð2L; b⊥; μÞ ¼
1

Nc
Trh0jW⊥Wzðb⃗⊥; 2LÞj0i: ð4Þ

As emphasized in Refs. [17,25], The self-interactions of
gauge links are subtracted using

ffiffiffiffiffiffi
ZE

p
in order to remove

the pinch-pole singularities [24] and to guarantee the
existence of the large-L limit.
With the above definition, we can express the transverse-

spin-dependent quasi-TMDPDF in terms of appropriate
Lorentz structures,

q̃ðx; k⊥; S⊥; μ; ζzÞ

¼ q̃ðx; k⊥; μ; ζzÞ þ
f̃⊥1Tðx; k⊥; μ; ζzÞϵβαS⊥βk⊥α

MP
; ð5Þ

where MP is the proton mass and ϵ12 ¼ 1 in our con-
vention. In the above equation, the first term represents the
spin-averaged, unpolarized quark distribution and the
second term is the quark Sivers function in LaMET. It is
also convenient to Fourier transform the k⊥ distribution to
get the b⊥-space expression,

q̃ðx;b⊥;S⊥;μ;ζzÞ¼
Z

d2k⊥e−ik⃗⊥·b⃗⊥ q̃ðx;k⊥;S⊥;μ;ζzÞ; ð6Þ

which is convenient for factorization calculations. We can
similarly express the quasi-TMDPDF in b⊥ space as,

q̃ðx; b⊥; S⊥; μ; ζzÞ
¼ q̃ðx; b⊥; μ; ζzÞ þ ϵαβSβ⊥f̃⊥α

1T ðx; b⊥; μ; ζzÞ: ð7Þ

Wewould like to point out that q̃ is the Fourier transform of
the spin-averaged quark TMDPDF in momentum space,
but f̃α1Tðx; b⊥; μ; ζzÞ is not a direct Fourier transform of
f̃⊥1Tðx; k⊥; μ; ζzÞ due to the presence of k⊥α in Eq. (5). Our
focus in this paper is the large-momentum factorization
of f̃⊥α

1T ðx; b⊥; μ; ζzÞ.
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A. Evolution equation

We start with the renormalization property of
quasi-TMDPDFs. Similar as for the unpolarized quasi-
TMDPDFs, in the numerator of Eq. (1), there are linear
divergences associated to the self-energy of the staple-
shaped gauge-link Wz and logarithmic divergences
associated to the quark-link vertices. In addition, there
are cusp-UV divergences associated to the junctions
between longitudinal and transverse gauge links at
z ¼ −L. After subtraction using

ffiffiffiffiffiffi
ZE

p
in the denominator,

the linear divergences and the cusp-UV divergences all
cancel, and one is left with only the logarithmic divergen-
ces for quark-link vertices. The associated anomalous
dimensions are all equal and are known to be equivalent
to the anomalous dimension γF for the heavy-light quark
current [45,46]. It can also be derived as the anomalous
dimension of the quark field in Az ¼ 0 gauge. Thus, the
spin-dependent quasi-TMDPDF, in particular the quasi-
Sivers function satisfies the following renormalization
group equation:

μ2
d
dμ2

ln f̃⊥α
1T ðx; b⊥; μ; ζzÞ ¼ γF: ð8Þ

At one-loop level one has γF ¼ 3αsCF
4π and high-order results

can be found in Refs. [45,46].
We then come to the evolution equation of quasi-

TMDPDFs with respect to ζz, i.e., the momentum evolution
equation [15]. Similar to the case of quasi-PDFs or
unpolarized quasi-TMDPDFs, at large Pz there are large
logarithms of Pz that can be resummed by the correspond-
ing momentum evolution equation. Using diagrammatic
methods developed in Refs. [3,4], it can be shown [4,16]
that f̃⊥α

1T satisfies the evolution equation

2ζz
d
dζz

ln f̃⊥α
1T ðx; b⊥; μ; ζzÞ ¼ Kðb⊥; μÞ þGðζz; μÞ; ð9Þ

where K is the nonperturbative Collins-Soper kernel [4]
and the G is a perturbative part of the evolution kernel. At
one-loop level, one has [4,16],

Kð1Þðb⊥; μÞ ¼ −
αsCF

π
Lb; ð10Þ

Gð1Þðζz; μÞ ¼
αsCF

π
ð1 − LzÞ: ð11Þ

Here Lb ¼ ln μ2b2⊥
c2
0

with c0 ¼ 2e−γE and Lz ¼ ln ζz
μ2
. These

equations allow the quasi-Sivers function to be resummed
in the form in which μb ¼ c0

b⊥

f̃⊥α
1T ðx;b⊥;μ;ζzÞ¼ f̃⊥α

1T ðx;b⊥;μ¼
ffiffiffiffi
ζz

p ¼ μbÞ

×exp

�
1

2
ln
ζz
μ2b

Kðb⊥;μÞþ
Z

ζz

μ2b

dζ0

2ζ0
Gðζ0;μÞ

þ
Z

μ

μb

dμ02

μ02
γFðαsðμ0ÞÞ

�
ð12Þ

with μb ¼ c0
b⊥. Using the renormalization group equation

[4,25] for G and K, d lnGd ln μ ¼ − d lnK
d ln μ ¼ 2Γcusp where Γcusp is

the light-like cusp-anomalous dimension, allows a more
refined treatment of resummation for K and G.

B. LaMET expansion for Sivers function

Similar to the unpolarized case [25], the quasi-TMDPDFs
can be used to calculate the physical TMDPDFs appearing
in the factorizations of experimental cross sections. The
LaMET expansion formula requires the off-light-cone
reduced soft function Srðb⊥; μÞ, the definition and more
properties of which can be found in Refs. [15,24,25]. In
terms of the nonperturbative reduced soft function, the EFT
expansion formula for the spin-dependent quasi-TMDPDF
reads

f⊥α
1T ðx;b⊥;μ;ζÞ

¼ e−Kðb⊥;μÞ lnð
ζz
ζ Þ

Hðζz
μ2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Srðb⊥;μÞ

p
f̃⊥α
1T ðx;b⊥;μ;ζzÞþ � � � ð13Þ

where H is the perturbative kernel and the higher-order
terms in the 1=Pz expansion have been omitted.
Similar to the unpolarized case [25], here we provide the

sketch of a proof for the matching formula (13). We also
argue that H is independent of the spin structure, as was
recently argued in Ref. [23].
First of all, one can perform a standard leading region

analysis [3] for all spin structures with minor modifications
to include the staple-shaped gauge links of the quasi-
TMDPDF as in Ref. [25]. The leading region or reduced
diagram for quasi-TMDPDFs is shown in Fig. 1. There are
collinear and soft subdiagrams responsible for collinear and
soft contributions. The collinear contributions are exactly
the same as those for the light-cone TMDPDF defined with
light-like gauge links. The soft radiations between the fast-
moving color charges and the staple shaped gauge links can
be factorized by the off-light-cone soft function.
In addition to the collinear and soft subdiagrams, there

are two hard subdiagrams around the vertices at 0 and b⃗⊥.
The natural hard scale ζz for a hard diagram is formed by a
Lorentz-invariant combination of the parton momenta
entering the hard subdiagram and the direction vector nz
for the staple-shaped gauge links. At large Pz, small k⊥ or
large b⊥, the hard contributions are confined within the
vicinities of the quark-link vertices around 0 and b⊥, since
any hard momenta flowing between 0 and b⊥ will cause
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additional power suppression in 1
Pz. In other words, there are

two disconnected hard subdiagrams, one containing 0 and
another one containing b⃗⊥. Therefore, the momentum
fractions carried by the quasi-TMDPDF and the physical
TMDPDF are the same and the matching formula contains
no convolution.
Given the leading region of the quasi-TMDPDF, one can

apply the standard Ward-identity argument of Ref. [3] to
factorize the quasi-TMDPDF and obtain Eq. (13). The
reduced soft function, which is actually the inverse of
the rapidity-independent part of the off-light-cone soft
function [24,25], appears to compensate the differences
of soft contributions for quasi-TMDPDFs and physical
TMDPDFs. The exponential of the Collins-Soper kernel
can be explained by the emergence of large logarithms for
quasi-TMDPDFs in the form Kðb⊥; μÞ ln ζz

μ2
generated by

momentum evolution. Tomatch to the physical TMDPDF at

rapidity scale ζ, a factor e−Kðb⊥;μÞ lnð
ζz
ζ Þ is therefore needed.

Finally, the mismatch between f̃ and f due to the hard
contributions is captured by the hard kernel H that depends
on the hard scale ζz and the renormalization scale μ. The
above arguments are similar for the unpolarized case [25].
Here we argue that the hard kernel H is independent of

the spin structure. As we already emphasized, the hard
cores around 0 and b⃗⊥ are disconnected. Any momentum
that is allowed to flow between the vertices and sees the
transverse separation is either soft or collinear. The hard
momenta have essentially no effects on the other vertex.
Therefore, in order to obtain the matching kernel, it is
sufficient to consider only “half” of the quark quasi-
TMDPDF, which one might want to call an “amputated”
form factor containing only an incoming light-quark with
momentum p ¼ xP and an ‘‘out going” gauge link along
the nz direction. This form factor is shown in Fig. 2. For this
form factor, the generic Lorentz structure can always be
written as

ΓðAþ Bγ · nzγ · pþ Cγ · pγ · nzÞuðp; SÞ; ð14Þ

where Γ is a generic Dirac matrix at the quark-link vertex,
unrelated to that in Eq. (1), uðp; SÞ is the Dirac spinor for
the incoming quark and A,B,C are scalar functions of p2, n2z
and nz · p. Using the anticommutation relation of Dirac
matrices and the equation of motion γ · puðp; SÞ ¼ 0, the
above equation can be rewritten as

ΓðAþ 2Cnz · pÞuðp; SÞ; ð15Þ
which depends only on a universal scalar function
Aþ 2Cnz · p, independent of the spin S and the Diracmatrix
Γ. As a result, the matching kernel only depends on these
scalar functions but not the spin S and the Dirac matrix Γ.
The above general results can be verified at one-loop

order when b⊥ is small and a perturbative QCD calculation
is valid. The one-loop calculation is more complicated
compared with that in Ref. [23], because it involves twist-
three collinear factorization.
First of all, let us recall that the standard TMDPDF

factorization at small b⊥ follows the procedure in
Refs. [3,47–49]. For the quark Sivers function, we
have [43,44],

f⊥α
1T ðx;b⊥;μ;ζÞ

¼ ibα⊥
2

TFðx;xÞþ
ibα⊥
2

αs
2π

��
−
1

ϵ
−Lb

�
PT

qg=qg ⊗ TFðx;xÞ

þ
Z

dxq
xq

TFðxq;xqÞ
�
−

1

2Nc
ð1− ξxÞþ δð1− ξxÞCFsð1Þ

��
;

ð16Þ
where ξx ¼ x

xq
,TFðx; xÞ is the twist-three quark-gluon-quark

correlation function (the Qiu-Sterman matrix element)
defined below and PT

qg=qg is the associated splitting kernel.
For the part involved in the calculations of Sec. III, we have
[43,44,50–52],1

FIG. 2. The form factor shown here is sufficient for calculating
the matching kernel, which contains an incoming quark with
momentum p ¼ xP, spin S and an outgoing gauge link in the nz
direction.

FIG. 1. The leading regions of the quasi-TMDPDF where C is
the collinear subdiagram, S is the soft subdiagram and H’s are
hard subdiagrams. The two hard cores are not connected with
each other (but their open Dirac indices are contracted), and as a
result, the momentum fraction of the quasi-TMDPDF receives
only contributions from collinear modes and there is no con-
volution in the matching formula.

1Here and in the following calculations, we only keep the so-
called soft gluon pole and hard gluon pole contributions in the
twist-three formalism [38–40]. A complete kernel including soft-
fermion pole contributions and other twist-three matrix elements
can be found in Refs. [44,50].
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PT
qg=qg ⊗TFðx;xÞ

¼
Z

dxq
xq

�
TFðxq;xqÞ

�
CF

�
1þξ2x
1−ξx

�
þ
−CAδð1−ξxÞ

�

þCA

2

�
TFðxq;xÞ

1þξx
1−ξx

−TFðxq;xqÞ
1þξ2x
1−ξx

��
: ð17Þ

The contribution sð1Þ reads

sð1Þ ¼ −
π2

12
þ 3

2
Lb −

1

2
L2
b − LζLb; ð18Þ

where Lζ ¼ ln ζ
μ2
. Our definition of the physical TMDPDF

follows the standard one in Refs. [53,54], although the
numerical factor π

2

12
depends on the renormalization schemes

due to the presence of double 1
ϵ2

poles; see Sec. VI of
Ref. [54] for a discussion. Our results are in the standardMS
scheme.
In the next section, we show that the quasi-Sivers

function has a similar factorization at small b⊥,

f̃⊥α
1T ðx;b⊥;μ;ζzÞ

¼ ibα⊥
2

TFðx;xÞþ
ibα⊥
2

αs
2π

��
−
1

ϵ
−Lb

�
PT

qg=qg ⊗ TFðx;xÞ

þ
Z

dxq
xq

TFðxq;xqÞ
�
−

1

2Nc
ð1− ξxÞþ δð1− ξxÞCFs̃ð1Þ

��
:

ð19Þ

where s̃ð1Þ reads

s̃ð1Þ ¼ −2þ 5

2
Lb −

1

2
L2
b − LzLb −

1

2
L2
z þ Lz: ð20Þ

Furthermore, the one-loop reduced soft function reads [15]

Srðb⊥; μÞ ¼ 1 −
αsCF

π
Lb: ð21Þ

Combining all of the above and comparing it to the LaMET
expansion in Eq. (13), one obtains the one-loop matching
kernel

H

�
ζz
μ2

�
¼ 1þ αsCF

2π

�
−2þ π2

12
−
1

2
L2
z þ Lz

�
; ð22Þ

which is exactly the answer we expected: the matching
kernel is independent of spin structure and is equal to that
of the unpolarized case for Γ ¼ γz and Γ ¼ γt.
It can be shown [25] that the matching kernel satisfies the

renormalization group equation

μ
d
dμ

lnH

�
ζz
μ2

�
¼ Γcusp ln

ζz
μ2

þ γC ð23Þ

where γC can be found in Ref. [25]. The general solution to
the above equation reads

H

�
αsðμÞ;

ζz
μ2

�

¼ Hðαsð
ffiffiffiffi
ζz

p Þ;1Þ

× exp

�Z
μffiffiffi
ζz

p
dμ0

μ0

�
Γcuspðαsðμ0ÞÞ ln

ζz
μ02

þ γCðαsðμ0ÞÞ
��

:

ð24Þ

This equation allows the determination of the large loga-
rithms for H to all orders in perturbation theory, up to
unknown constants related to the initial condition Hðαs; 1Þ.

III. ONE-LOOP CALCULATION FOR
SPIN-DEPENDENT QUASI-TMDPDFs

In this section we calculate the quasi-Sivers function at
one-loop level. The idea and procedure is the same as for
previous examples in the LaMET formalism [16–20,
23–26]. An important difference is that we will not be
able to formulate the procedure in terms of a single quark
target. Instead, we need to use the collinear twist-three
quark-gluon-quark correlation description and compute the
quark quasi-TMDPDF and Sivers asymmetry in these
collinear quark distributions at small b⊥ ≪ 1=ΛQCD.
For the quasi-TMDPDFs, we follow the definition of

Eq. (1) [25], where a rectangular Wilson loop was adopted
to remove the pinch-pole singularities. To match to the
physical TMDPDFs at leading order in 1=Pz, one needs the
reduced soft function at small b⊥, which can also be
extracted from lattice simulations at any b⊥ [27].
The perturbative quasi-TMDPDFs at small b⊥≪1=ΛQCD

can be expressed in terms of the collinear parton distribu-
tion and/or the twist-three quark-gluon-quark correlation
functions. For the unpolarized quark distribution, the
previous results of Ref. [17] can be expressed as,

q̃ðx;b⊥;μ;ζzÞ

¼ fqðx;μÞþ
αs
2π

��
−
1

ϵ
−Lb

�
Pq=q ⊗ fqðxÞ

þCF

Z
dxq
xq

fqðxqÞ½ð1−ξxÞþδð1−ξxÞs̃ð1Þ�
�
; ð25Þ

for the leading-order plus next-to-leading-order result in b⃗⊥
space, where ξx ¼ x=xq, μ is the renormalization scale in

the MS scheme,Pq=qðξxÞ ¼ CFð1þξ2x
1−ξx

Þþ is the usual splitting

kernel for the quark, and fqðxÞ represents the light-cone
integrated quark distribution function. The one-loop coef-
ficient in the subtraction scheme of Ref. [17] reads
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s̃ð1Þ ¼ 3

2
ln
b2⊥μ2
c20

þ ln
ζzL2

4c20
−
1

2

�
ln
ζzb2⊥
c20

�
2

þ 2KðξbÞ −Kð2ξbÞ; ð26Þ

where the Collins-Soper scale ζz ¼ 4x2qP2
z and the function

K will be defined later on. At large L, all the L depend-
encies cancel and we have

s̃ð1Þ ¼ −2þ 5

2
Lb −

1

2
L2
b − LzLb −

1

2
L2
z þ Lz; ð27Þ

where Lb and Lz are defined after Eq. (10).
After the renormalization of the integrated quark dis-

tribution fqðxÞ at μ ¼ μb, we can write the quasi-TMD
unpolarized quark distribution as

q̃ðx; b⊥; μb; ζzÞ

¼
Z

dxq
xq

fqðxq; μbÞ
�
δð1 − ξxÞ

þ αsCF

2π
½ð1 − ξxÞ þ δð1 − ξxÞs̃ð1Þ�

�
: ð28Þ

The goal of the following derivations in this section is to
apply the collinear twist-three formalism and calculate
the quasi-Sivers function in LaMET at leading order and
next-to-leading order.

A. Phase contribution from the gauge link

In Eq. (1), the quasi-TMDPDF contains a gauge link
with a finite length, implying that the eikonal gauge link
propagators will be modified. From previous works
[29–32], we know that the gauge link propagators con-
tribute to the crucial phase which is necessary to generate a
nonzero Sivers function. Therefore, we need to check
whether the finite length gauge link can still do so.
Because of the finite length of the gauge links, the

eikonal propagator in these diagrams will be modified
according to

ð−igÞ inμ

n · k� iϵ
⇒ ð−igÞ inμ

n · k
ð1 − e�in·kLÞ; ð29Þ

where nμ represents the gauge link direction. In the current
case nμ ¼ nμz . In perturbative calculations, we will make
use of the large-length limit jLPzj ≫ 1. By doing so, many
previous results can be applied to our calculations. For
example, in the large-L limit, we have the following
identity:

lim
L→∞

1

n · k
e�iLn·k ¼ �iπδðn · kÞ; ð30Þ

which will contribute to the phases needed for a nonzero
quark Sivers function.

In the following calculations, we will take two limits
whenever this is possible: the large-L limit and the large-Pz
limit. In certain diagrams, we have to use finite L and Pz to
regulate, for example, the pinch-pole singularity and/or the
end-point singularity [17]. We will emphasize these impor-
tant points when we carry out the detailed calculations.

B. Leading order

We carry out the derivations in the twist-three collinear
framework, where the quark Sivers function depends on the
so-called twist-three quark-gluon-quark correlation func-
tion, a.k.a., the Qiu-Sterman matrix elements [33–37]. It is
defined as follows:

TFðx2; x02Þ≡
Z

dζ−dη−

4π
eiðx2Pþη−þðx0

2
−x2ÞPþ

B ζ
−Þϵβα⊥ S⊥β

× hPSjψ̄ð0ÞLð0; ζ−ÞγþgFα
þðζ−Þ

× Lðζ−; η−Þψðη−ÞjPSi; ð31Þ

where Fμν represents the gluon field-strength tensor. From
the leading-order derivation [55], we have,

1

MP

Z
d2k⊥k2⊥f

⊥ðSIDISÞ
1T ðx; k⊥Þ ¼ −TFðx; xÞ; ð32Þ

where f⊥ðSIDISÞ
1T represents the quark Sivers function for a

semi-inclusive DIS (SIDIS) process with gauge link going
to þ∞, corresponding to our choice of −L in Eq. (1).
The method for calculating the single transverse-

spin asymmetry in the twist-three formalism has been
well developed [35–44,50,51,56–63]. There are different
approaches to derive the final result; in the following, we
follow the collinear kg⊥-expansion method [35–40,56]. In
this approach, the additional gluon from the polarized
hadron is associated with a gauge potential Aþ, assuming
that the polarized nucleon is moving along the þẑ direc-
tion. Thus, the gluon will carry longitudinal polarization
and its momentum is parametrized as xgPþ kg⊥, where xg
is the momentum fraction with respect to the polarized
proton and kg⊥ is the transverse momentum. The contri-
bution to the single transverse-spin asymmetry arises from
terms linear in kg⊥ in the expansion of the partonic
amplitudes. When combined with Aþ, these linear terms
yield ∂⊥Aþ, a part of the gauge field-strength tensor F⊥þ in
Eq. (31). As shown in Fig. 3, we have k⃗g⊥ ¼ k⃗q2⊥ − k⃗q1⊥.

FIG. 3. Leading-order diagrams for quasi-Sivers function.
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Therefore, the kg⊥ expansion of the scattering amplitudes
can be expressed in terms of the transverse momenta
kq1⊥ and kq2⊥. The associated quark momenta are para-
metrized as,

kq1 ¼ xq1Pþ kq1⊥; kq2 ¼ xq2Pþ kq2⊥: ð33Þ

We compute the quasi-Sivers function defined in Eq. (1)
with the gamma matrix Γ ¼ γt or γz. The results are the
same in the leading power of 1=Pz. The leading-order
diagrams of Fig. 3 can be calculated following the above
general procedure. The method is similar to that for the
standard quark Sivers function calculation in Refs. [42,43].
In particular, the phase comes from the gauge link
propagator,

lim
L→∞

1

nz · kg
e�iLnz·kg ¼ �iπ

1

nz · P
δðxgÞ; ð34Þ

which determines the kinematics for the twist-three Qiu-
Sterman matrix element at TFðx; xÞ. The plus/minus signs
correspond to the left and right diagrams where the gluon
attaches to the left and right sides of the cut line,
respectively. To calculate the Sivers function in b⊥ space,
we need to perform a Fourier transformation with respect to
the probing quark transverse momentum k⊥ in Fig. 3.
Because of momentum conservation, at leading order,
k⊥ ¼ kq2⊥ for the left diagram and k⊥ ¼ kq1⊥ for the right
diagram. As shown above, these two diagrams contribute
with opposite sign to the Sivers function. Therefore, the
total contribution is proportional to

ðeik⃗q2⊥·b⃗⊥ −eik⃗q1⊥·b⃗⊥Þ→ ibα⊥ðkαq2⊥−kαq1⊥Þ¼ ibα⊥kαg⊥; ð35Þ

in the collinear expansion. As a result, the leading-order
result for the quark Sivers function in LaMET reads

f̃⊥αð0Þ
1T ðx; b⊥; μ; ζzÞ ¼

ibα⊥
2

TFðx; xÞ: ð36Þ

Here, the normalization is consistent with Eq. (32).

C. One-loop order from cut diagrams

It has been shown that the quark TMDPDFs in LaMET
can be evaluated by the cut diagram approximation [16,17].
In particular, if we focus on the kinematic region
0 < x < 1, the cut diagram approximation leads to the
same results as the complete calculation. In the following,
we will apply this approximation to simplify the derivation
of the quark Sivers function in LaMET.
In Fig. 4, we show the generic diagrams to calculate the

quark Sivers function in LaMET. The lower part represents
the quark-gluon-quark correlation from the polarized
nucleon. We follow the strategy of Ref. [39] to evaluate

these diagrams. The radiated gluon carries transverse
momentum k1⊥ equal in size but opposite to k⊥. Similar
as for the leading diagrams, we need to generate a phase
from the gauge link propagators in these diagrams. This
corresponds to the pole contributions to the single-spin
asymmetries in the twist-three formalism [38–40]. In the
following calculations, we focus on the so-called soft-gluon
pole and hard-gluon pole contributions. They are charac-
terized by the longitudinal momentum fraction carried by
the gluon attached to the hard partonic part from the
polarized nucleon: xg ¼ 0 corresponds to the soft-gluon-
pole contribution, while xg ≠ 0 corresponds to the hard-
gluon-pole contribution. It is straightforward to extend this
treatment to other contributions such as the soft-fermion
pole contribution, and those associated with the twist-three
function G̃F [41].
We emphasize again that the quasi-Sivers function

defined in Eq. (1) can be computed with Γ ¼ γt or γz and
the results are the same in the TMD limit. The soft gluon
pole diagrams are shown in Fig. 5. The pole contribution is
the same as that for the leading-order diagrams, i.e.,
δðnz · kgÞ ¼ 1

nz·P
δðxgÞ. An important step to obtain the final

FIG. 4. Cut diagram approximation to calculate the Sivers
function in LaMET. A mirror diagram similar to that in Fig. 3
should be included as well. The longitudinal gluon from the
polarized nucleon can attach to any line associated with the blob.

(a) (b)

(c) (d)

FIG. 5. Soft-gluonic pole contribution at one-loop order for the
real gluon radiation.
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result is to perform the collinear expansion for the incoming
parton momenta. Therefore, we will keep the transverse
momenta for kq1, kq2, and kg. Because of momentum
conservation, we have kg⊥ ¼ kq2⊥ − kq1⊥. Therefore, there
will be two independent transverse momenta in the expan-
sion. One of the collinear expansion contributions comes
from the on-shell condition of the radiated gluon in the cut-
diagram approximation. This leads to the so-called deriva-
tive terms, which can be easily evaluated [39]. The final
result can be written as

f̃⊥1Tðx;k⊥;μ;ζzÞj∂
¼−

Mp

ðk2⊥Þ2
αs
2π2

1

2Nc

×
Z

dxq
xq

�
xq

∂
∂xqTFðxq;xqÞ

��
1þξ2xþð1−ξxÞ2

D−2

2

�
;

ð37Þ
where ξx ¼ x=xq and D represents the dimension for the
transverse plane. In the following we will also use
ϵ ¼ ð2 −DÞ=2. We have also applied the following relation
between the momentum fractions along the ẑ direction and
those along the light-cone plus direction,

ð1 − ξÞ ¼ ð1 − ξxÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p
2

; ð38Þ

where r⊥ ¼ jk⊥j=ðxqð1 − ξxÞPzÞ. In the TMD limit
away from the end point of ξx ¼ 1, we will have
ð1 − ξÞ → ð1 − ξxÞ. At the end point, we will have to keep
the full expression in order to derive the complete result.
However, for the above derivative terms, we can simply
substitute ð1 − ξÞ → ð1 − ξxÞ. We further notice that the
derivative terms can be transformed into nonderivative terms
by performing integration by parts,

f̃⊥1Tðx; k⊥; μ; ζzÞj∂ ¼ −
Mp

ðk2⊥Þ2
αs
2π2

1

2Nc

Z
dxq
xq

TFðxq; xqÞ

× ½2ξ2x þ 2ϵξxð1 − ξxÞ þ 2δð1 − ξxÞ�:
ð39Þ

The last term in the square brackets comes from the
boundary.
Now, we turn to the nonderivative terms. Figure 5(a) is

easy to derive because it does not have an end-point
singularity, and we find that

f̃⊥1Tðx; k⊥; μ; ζzÞjNDfig:5ðaÞ
¼ Mp

ðk2⊥Þ2
αs
2π2

1

2Nc

Z
dxq
xq

TFðxq; xqÞ

×
ð1 − ξÞð1 − ϵÞ

ð1 − ξxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p
�
ð1 − 2ξÞð1 − ξÞ þ k2⊥

P2
z

�
: ð40Þ

Taking the TMD limit, and adding the corresponding term
from the nonderivative contribution, we obtain the final
result for Fig. 5(a)

f̃⊥1Tðx;k⊥;μ;ζzÞjfig:5ðaÞ
¼ Mp

ðk2⊥Þ2
αs
2π2

1

2Nc

Z
dxq
xq

TFðxq;xqÞð1−ξxÞð1−ϵÞ: ð41Þ

On the other hand, the diagrams in Figs. 5(b) and 5(c)
contribute to the end-point singularities. The result can be
written as

f̃⊥1Tðx; k⊥; μ; ζzÞjNDfig:5ðb;cÞ
¼ Mp

ðk2⊥Þ2
αs
2π2

1

2Nc

Z
dxq
xq

TFðxq; xqÞ

×
2ξð1 − ξÞ2

ð1 − ξxÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p ½2 − ξþ ð1 − ξÞr2⊥�: ð42Þ

Clearly, the last term in the brackets is power suppressed in
the TMD limit. Furthermore, we can rewrite ½2 − ξ� as two
terms, namely as 1þ ð1 − ξÞ. The first term will have an
end-point singularity, whereas the second term is regular. It
is interesting to find that this regular term cancels the
corresponding term from the derivative contribution
derived above. Therefore, there are only end-point con-
tributions from Figs. 5(b) and 5(c),

f̃⊥1Tðx; k⊥; μ; ζzÞjfig:5ðb;cÞ
¼ Mp

ðk2⊥Þ2
αs
2π2

1

2Nc

Z
dxq
xq

TFðxq; xqÞ
2ξð1 − ξÞ2

ð1 − ξxÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p :

ð43Þ

We further notice that ð1−ξÞ2 can be simplified as ð1 − ξÞ2 ¼
ð1 − ξxÞ2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p
Þ2=4 ≈ ð1 − ξxÞ2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p
Þ=2

in the TMD limit. With that, we obtain

f̃⊥1Tðx; k⊥; μ; ζzÞjfig:5ðb;cÞ

¼ Mp

ðk2⊥Þ2
αs
2π2

1

2Nc

Z
dxq
xq

TFðxq; xqÞ
2ξx

1 − ξx

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p

¼ Mp

ðk2⊥Þ2
αs
2π2

1

2Nc

Z
dxq
xq

TFðxq; xqÞ

×

�
2ξx

ð1 − ξxÞþ
þ δð1 − ξxÞ ln

ζz
k2⊥

�
; ð44Þ

where ζz ¼ 4x2P2
z . The last equation follows from a similar

derivation for the unpolarized TMD quark calculation in
Ref. [17] in the TMD limit.
Figure 5(d) is a little more involved, because it has the

so-called pinch-pole singularity if we take the limit L → ∞
first,
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f̃⊥1Tðx; k⊥; μ; ζzÞjL→∞
fig:5ðdÞ

¼ Mp

k2⊥
αs
2π2

1

2Nc

Z
dxq
xq

TFðxq; xqÞ

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2⊥
p 1

k1z þ iϵ
1

k1z − iϵ
; ð45Þ

where k1z ¼ xqð1 − ξxÞPz represents the longitudinal
momentum carried by the radiated gluon crossing the
cut line. Because of the pinch-pole singularity, the above
contribution is not well defined around x ¼ xq (ξx ¼ 1).
A finite length of the gauge link will help to regulate the
pinch pole singularity as shown for the unpolarized case.
In addition, similar to the unpolarized case, the contribution
is power suppressed when x ≠ xq. Therefore, it will only
contribute to a delta function at ξx ¼ 1. Following the
same strategy as in Ref. [17], we perform the Fourier
transformation with respect to k⊥ and carry out the k1z
integral to derive the b⊥-space expression. Schematically,
the quark Sivers function in b⊥ space can be derived as
follows:

f̃⊥1Tðx; b⊥; μ; ζzÞjfig:5ðdÞ

¼
Z

d2k⊥
ð2πÞ2 e

ik⃗⊥·b⃗⊥ ½Mfig:5ðdÞ −Mmirror
fig:5ðdÞ�: ð46Þ

Here, the mirror diagram represents the amplitude with
gluon attachment to the right side of the cut line in
Fig. 5(d). We can further apply k⃗⊥ ¼ k⃗q2⊥ − k⃗L1⊥ for

Fig. 5(d) and k⃗⊥ ¼ k⃗q1⊥ − k⃗R1⊥ for its mirror graph. Note
that kL1 and k

R
1 are different because they have different kq1⊥

and kq2⊥ dependence. We find that the Sivers function in
b⊥ space is proportional to

f̃⊥1Tðx;b⊥;μ;ζzÞjfig:5ðdÞ
∝ eik⃗q2⊥·b⃗⊥

Z
d4kL1
ð2πÞ2 e

ik⃗L1⊥·b⃗⊥ 1

ðkLz Þ2
RðkL1zÞδððkL1 Þ2Þ

−eik⃗q1⊥·b⃗⊥
Z

d4kR1
ð2πÞ2 e

ik⃗R1⊥·b⃗⊥ 1

ðkRz Þ2
RðkR1zÞδððkR1 Þ2Þ; ð47Þ

where RðkzÞ¼ð1−eikzLÞð1−e−ikzLÞ. Notice that although
kL1 and kR1 are not identical, their contributions to the above
equation are the same. So, we can combine the above two
terms and obtain,

f̃⊥1Tðx; b⊥; μ; ζzÞjfig:5ðdÞ
∝ ½eik⃗q2⊥·b⃗⊥ − eik⃗q1⊥·b⃗⊥ �

×
Z

dk1z
k21z

d2k1⊥
ð2πÞ2 e

ik⃗1⊥·b⃗⊥ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21z þ k21⊥

q Rðk1zÞ: ð48Þ

It is interesting to observe that the first factor is just the
leading-order expression and the second factor represents
the amplitude without gluon attachments and is represented
by a diagram similar to that for the unpolarized quark
distribution at one-loop order. Applying the result from
Ref. [17], we have

f̃⊥1Tðx; b⊥; μ; ζzÞjfig:5ðdÞ
¼ −

ibα⊥
2

αs
2π

1

2Nc
TFðx; xÞ

Z
dkz
k2z

d2k⊥
ð2πÞ2 e

ik⃗⊥·b⃗⊥ RðkzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p
¼ −

ibα⊥
2

αs
2π

1

2Nc
TFðx; xÞ2KðξbÞ; ð49Þ

where ξb ¼ L=jb⃗⊥j and the function K is defined as [17],

KðξbÞ ¼ 2ξbtan−1ξb − lnð1þ ξ2bÞ: ð50Þ

At large ξb the aboveKðξbÞ becomes πξb − 2 ln ξb, while at
small ξb it behaves as ξ2b.
Now, let us move to hard-gluon-pole contributions, for

which the diagrams are shown in Fig. 6. First, we notice
that the phase contribution comes from the gauge link
propagator,

1

nz · ðkq1 − kÞ ¼
1

nz · P
1

xq1 − x
: ð51Þ

The pole contribution leads to δðxq1 − xÞ which means that
xg ¼ ð1 − ξxÞxq. Because the pole is situated at xg ≠ 0 this
is a hard-gluon pole contribution. Similar as for the
standard Sivers function, these diagrams do not produce
derivative terms. Again, we apply the collinear expansion
of the incoming parton transverse momenta and for
convenience we have chosen the physical polarization
for the radiated gluon in these diagrams. The total con-
tribution from Fig. 6 can be separated into two terms: one
contains the pinch-pole singularity and the other does not.

(a) (b) (c)

(d) (e) (f)

FIG. 6. Hard pole contributions at one-loop order for quasi-
Sivers function.
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We can derive the pinch-pole term following the above
procedure, giving the contribution from the soft gluon pole
diagrams. Again, we have to use a finite length to regulate
the divergence and the result in b⊥ space is the same as
above but with a different color factor,

f̃⊥1Tðx; b⊥; μ; ζzÞjpinch p:fig:6

¼ ibα⊥
2

αs
2π

CA

2
TFðx; xÞ

Z
dkz
k2z

d2k⊥
ð2πÞ2 e

ik⃗⊥·b⃗⊥ RðkzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p
¼ ibα⊥

2

αs
2π

CA

2
TFðx; xÞ2KðξbÞ: ð52Þ

After subtracting the pinch-pole contribution, we derive
the rest of the hard gluon pole contribution from Fig. 6,

f̃⊥1Tðx; k⊥; μ; ζzÞjno−pinch p:fig:6

¼ −
Mp

ðk2⊥Þ2
αs
2π2

CA

2

Z
dxq
xq

TFðx; xqÞ
ð1 − ξÞ2ð1þ ξxÞ
ð1 − ξxÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2⊥

p ;

ð53Þ

where we have neglected power corrections in the TMD
limit, and we have applied the symmetry property of the
Qiu-Sterman matrix element TFðx; xqÞ ¼ TFðxq; xÞ to
simplify the final result. In the TMD limit, the expression
above can be further simplified to

f̃⊥1Tðx; k⊥; μ; ζzÞjno−pinch p:fig:6

¼ −
Mp

ðk2⊥Þ2
αs
2π2

CA

2

Z
dxq
xq

TFðx; xqÞ

×

�
1þ ξx

ð1 − ξxÞþ
þ δð1 − ξxÞ ln

ζz
k2⊥

�
: ð54Þ

Similar to the case for the standard quark Sivers function
calculated in Ref. [39], we observe the following: there are
cancellations between the hard gluon pole contributions
and the soft gluon pole contributions. In particular, the
hard-gluon pole is proportional to the color factor CA=2
while the soft-gluon pole is proportional to 1=ð2NcÞ. Their
cancellation leads to the final result proportional to CF for
the end-point contribution and the pinch-pole contribu-
tions. This is consistent with the soft gluon radiation
contribution and the soft factor subtraction.
Since the soft factor and the subtraction is spin inde-

pendent, their contributions will be the same as those
calculated in Ref. [17]. Combining all terms, we obtain the
final result for the quark Sivers function at one-loop order
in LaMET,

f̃⊥αð1Þ
1T ðx; b⃗⊥;μ;ζzÞ

¼ ibα⊥
2

αs
2π

��
−
1

ϵ
−Lb

�
PT

qg=qg ⊗TFðx;xÞ

þ
Z

dxq
xq

TFðxq;xqÞ
�
−

1

2Nc
ð1−ξxÞþδð1−ξxÞCFs̃ð1Þ

��
;

ð55Þ

where PT
qg=qg ⊗ TFðx; xÞ has been defined in Eq. (17) and

s̃ð1Þ is the same as for the unpolarized case of Eq. (27).
Similar to the unpolarized case, after renormalization, we
can write the quasi-Sivers function in terms of the collinear
twist-three Qiu-Sterman matrix element,

f̃⊥α
1T ðx; b⃗⊥; μb; ζzÞ

¼ ibα⊥
2

Z
dxq
xq

TFðxq; xq; μbÞ
�
δð1 − ξxÞ

þ αs
2π

�
−

1

2Nc
ð1 − ξxÞ þ δð1 − ξxÞCFs̃ð1Þ

��
; ð56Þ

at one-loop order.
A couple of comments are in order before we close this

section. First, the above result is obtained in the scheme of
Ref. [25] in which

ffiffiffiffiffiffi
ZE

p
was adopted to subtract out the

pinch-pole singularity. The same strategy has already been
adopted in Ref. [17] in which it was regarded as a soft
factor subtraction.
Second, for the Sivers contribution, we focused our

calculations for the soft-gluon and hard-gluon pole con-
tributions from the Qiu-Sterman matrix element TFðx1; x2Þ.
Other contributions from the soft-fermion pole and those
from G̃Fðx1; x2Þ can be included as well. They contribute to
both the evolution kernel PT

qg=qg and the finite term of
Eq. (56); see, for example, the recent study for the light-
cone Sivers function in Ref. [44].

IV. SINGLE TRANSVERSE-SPIN ASYMMETRY

In this section, we discuss applications of the results
obtained in previous sections. In particular, we consider the
single-spin asymmetry at large and small b⊥. We also
comment on previous lattice calculations for moments of
the relevant TMDPDFs.

A. Single-spin asymmetry

One of the most important physical applications of spin-
dependent TMDPDFs are single-spin asymmetries defined
by the ratio of physical cross sections. For example, in
Drell-Yan lepton pair production, we define,

ADY ¼
d4σþS⊥

d2Q⊥dxAdxB
− d4σ−S⊥

d2Q⊥dxAdxB
d4σþS⊥

d2Q⊥dxAdxB
þ d4σ−S⊥

d2Q⊥dxAdxB

; ð57Þ
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where
d4σ�S⊥

d2Q⊥dxAdxB
are the differential cross sections with the

transverse spin for the polarized target being �S⊥, xA;B
denote the momentum fractions of the incoming hadrons
carried by the quark and antiquark, and Q2 and Q⊥ are the
invariant mass and transverse momentum for the lepton
pair. The factorization formula [3] for the Drell-Yan or
SIDIS process in terms of the physical TMDPDFs reads

d4σ
dQ2⊥dxAdxB

¼ σ̂

�
Q2

μ2

�Z
d2b⊥eib⃗⊥·Q⃗⊥qðxA;b⊥;S⊥;μ;ζAÞqðxB;b⊥;μ;ζBÞ

ð58Þ
where xA is the momentum fraction for the quark parton
coming from the polarized target and xB is the same for the

unpolarized one. σ̂ðQ2

μ2
Þ is the hard cross section with Q2 ¼

2xAxBPþP− where P� are the largest light-front compo-
nents of the hadron momenta. Given the factorization
formula and utilizing a decomposition for the TMDPDF
similar to Eq. (7), one finds that the single-spin asymmetry
for the Drell-Yan process can be written in terms of an
unpolarized TMDPDF and Sivers function:

ADY¼
R
d2b⊥eiQ⃗⊥·b⃗⊥ϵβαSβ⊥f⊥α

1T ðxA;b⊥;μ;ζAÞqðxB;b⊥;μ;ζBÞR
d2b⊥eiQ⃗⊥·b⃗⊥qðxA;b⊥;μ;ζAÞqðxB;b⊥;μ;ζBÞ

ð59Þ
where the hard cross section induced by unpolarized quarks
cancels between numerator and denominator. By using the
matching relation (13) and choosing ζzA¼ζA¼2x2AðPþÞ2,
ζzB ¼ ζB ¼ 4x2BðP−Þ2, one has

ADY ¼ D
S
; ð60Þ

D ¼
Z

d2b⊥eiQ⃗⊥·b⃗⊥ϵβαSβ⊥f̃⊥α
1T ðxA; b⊥; μ; ζzAÞ

× q̃ðxB; b⊥; μ; ζzBÞSrðb⊥; μÞ; ð61Þ

S ¼
Z

d2b⊥eiQ⃗⊥·b⃗⊥ q̃ðxA; b⊥; μ; ζzAÞq̃ðxB; b⊥; μ; ζzBÞ

× Srðb⊥; μÞ: ð62Þ
Notice that the matching kernels all cancel, but the reduced
soft function Sr does not cancel between D and S. Since q̃,
f̃⊥α
1T and Sr can all be extracted from lattice calculations,

Eq. (60) allows to predict the physical observable single-
spin asymmetry from lattice data.
Because ADY is complicated due to the fact that the soft

contribution fails to cancel, it is attractive to mimic ADY by
using the following simplified version for the single-spin
asymmetry ratio in Fourier transform b⊥ space:

RS⊥ðx; b⊥Þ ¼
qðx; b⊥; S⊥; μ; ζÞ − qðx; b⊥;−S⊥; μ; ζÞ
qðx; b⊥; S⊥; μ; ζÞ þ qðx; b⊥;−S⊥; μ; ζÞ

¼ ϵβαSβ⊥
f⊥α
1T ðx; b⊥; μ; ζÞ
qðx; b⊥; μ; ζÞ

: ð63Þ

Instead of transforming to momentum space, in RS⊥ we
directly compare the asymmetry point by point in b⊥ space.
We emphasize that this asymmetry is not a physical
observable, but a ratio between the quark Sivers function
and the unpolarized quark distribution. An important
feature is that the μ, ζ dependencies cancel between
numerator and denominator, and thus RS⊥ is independent
of the renormalization scale μ and the rapidity scale ζ. This
contribution is proportional to S⃗⊥ × b⃗⊥ and the coefficient
defines the size of the single-spin asymmetry in the quark
distribution. The individual TMDPDFs will depend on the
rapidity renormalization scheme. However, the ratio
between the quark Sivers function and the unpolarized
quark distribution does not depend on the scheme. In
particular, the scheme-dependent soft functions cancel in
the ratio of Eq. (63).
With the relation between the quasi-TMDPDF and

physical TMDPDF in Eq. (13), we will be able to study
the single-spin asymmetry in the quark distribution. Using
the fact that the matching kernel H is independent of the
spin structure and is the same for both the Sivers function
and the unpolarized quark TMDPDF, we found that by
taking the ratio, the soft factor and matching kernel
dependencies cancel:

R̃S⊥ ¼ ϵβαSβ⊥
f̃⊥α
1T ðx; b⊥; μ; ζzÞ
q̃ðx; b⊥; μ; ζzÞ

¼ ϵβαSβ⊥
f⊥α
1T ðx; b⊥; μ; ζÞ
qðx; b⊥; μ; ζÞ

≡RS⊥ðx; b⊥Þ: ð64Þ

Therefore, the single-spin asymmetry ratios extracted from
the quasi-Sivers function and the Sivers function are the
same. This is one of the major results of this paper.
At small b⊥, the single-spin asymmetry ratio in the quark

distribution at one-loop order can be extracted from the
perturbative results for the Sivers function provided in the
previous sections

RS⊥ðx;b⊥Þjb⊥≪ 1
ΛQCD

¼ ijb⊥jsinðϕbÞ
2

×
TFðx;x;μbÞ− αs

4πNc
ð1−x=xqÞ⊗TFðxq;xq;μbÞ

fqðx;μbÞþ αsCF
2π ð1−x=xqÞ⊗ fqðxq;μbÞ

; ð65Þ

where ϕb is the azimuthal angle between b⃗⊥ and S⃗⊥ and we
have performed the renormalization of the quark distribu-
tion at μ ¼ μb. As one can see, the soft contribution in
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sð1Þ cancels. The explicit derivations in the previous sections
have confirmed that the single-spin asymmetry extracted
from the quasi-Sivers function is the same for small b⊥.
For the quark Sivers asymmetry, the αs correction is very

small. For example, numerically, the αs corrections for the
numerator and denominator are less than 1% in most of the
kinematic range for valence quark distributions at x ∼ 0.2.
Therefore, we can safely neglect these corrections and
interpret the asymmetry as the ratio between the Qiu-
Sterman matrix element and the unpolarized quark distri-
bution at the scale μb.

B. Asymmetry at large b⊥
On the other hand, the spin asymmetry ratio at large b⊥ is

determined by nonperturbative TMDPDFs, for which
lattice calculations in terms of the formalism presented
in Sec. II will be very important.
In previous phenomenology studies, a Gaussian distri-

bution in the transverse momentum space has been
assumed for both the unpolarized and Sivers quark dis-
tributions, e.g.,

qðx; k⊥; μ ¼ ζ ¼ μ0Þ ∝ e
−
k2⊥
Q2
0 ; ð66Þ

f⊥1Tðx; k⊥; μ ¼ ζ ¼ μ0Þ ∝ e
−
k2⊥
Q2
s ; ð67Þ

where Q0 and Qs are parameters for the Gaussian distri-
butions. Because the asymmetry ratio has to decrease at
large transverse momentum, the Gaussian width for the
quark Sivers function is smaller than that for the unpolar-
ized quark distribution, i.e., Qs < Q0. If we translate this
into b⊥ space, it will generate a significantly increasing
function for RS⊥ðx; b⊥Þ at large b⊥,

RS⊥ðb⊥Þjmodel ∝ b⊥e
ðQ2

0
−Q2

s Þb2⊥
4 : ð68Þ

For example, the parametrization in Ref. [43] predicts a
factor of 25 increase from b⊥ ¼ 0.2 fm to b⊥ ¼ 1 fm.
Similar predictions exist for other parametrizations; see,
some recent global analyses [7,8]. It will be crucially
important to check this in lattice simulations.

C. Relation to previous lattice simulations

In Refs. [9–11], lattice computations for certain matrix
elements in a hadron state have been carried out. These
matrix elements are defined through TMDPDF-like bilocal
operators, which are separated by transverse distance b⊥
perpendicular to the hadron’s momentum direction. It is
easy to see that the matrix elements calculated there do not
correspond exactly to the moments of the quasi-TMDPDFs.
Therefore, it is hard to interpret them although interesting
results were obtained.

Our results, obtained by using LaMET can help to
improve these earlier results. For example, we can add
the explicit x dependence to the matrix elements calculated
in Refs. [9–11]. This can help to resolve, e.g., the difference

R
dxxnf̃⊥α

1T ðx; b⊥; μ; ζz ¼ 4x2ðPzÞ2ÞR
dxxnq̃ðx; b⊥; μ; ζz ¼ 4x2ðPzÞ2Þ

≠
R
dxxnf⊥α

1T ðx; b⊥; μ; ζÞR
dxxnqðx; b⊥; μ; ζÞ

: ð69Þ

The above point has also been observed in Ref. [23]. It will
be useful to have lattice simulations in the LaMET
framework to constrain the quark Sivers functions and
compare to phenomenological studies [7,8,43].

D. Phenomenological implications

As mentioned in the Introduction, there has been great
progress to compute TMDs from the lattice in the LaMET
formalism in the last few years [16–27]. For example, the
spin-independent soft factor has recently been computed on
the lattice [27]. This soft factor can also be applied in the
quark Sivers function in our formalism. To compute the
quark Sivers function, one needs to simulate the transverse-
spin-dependent matrix elements of Eq. (1), which has not
yet been done. Pioneering work on this has been carried out
in Refs. [9–11]; see, the discussions in the previous
subsection. Following these developments, we believe in
the near future we will have numeric results of the quark
Sivers function from lattice QCD.2

With future simulation of the transverse-spin-dependent
TMD matrix elements in Eqs. (1), (5), and (7), we can
compare the lattice results to the phenomenological
analyses in the literature [7,8]. In particular the lattice results
on the large-b⊥ behaviors of the quark Sivers function and
unpolarized quark TMDs will provide important guidance to
parametrize the nonperturbative form factors in the global
analysis; see, e.g., the discussions in Sec. IVB. We hope
these computations will become available soon.

V. CONCLUSION

In summary, we have investigated the quark Sivers
function in LaMET. A number of important features have
been found for these distribution functions. In our deriva-
tion, we adopted the definition of quasi-TMDPDFs from
Refs. [17,25]. We have shown that the quasi-Sivers
function can be matched to the physical Sivers function
using Eq. (13). The matching kernel and the reduced soft
function are the same as that of the unpolarized case. As a
result, in the single-spin asymmetry, the soft function and

2The LPC Collaboration is currently undertaking this project.
When the results are ready, we will publish the lattice calculations
in a separate publication.
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hard kernels cancel between the quark Sivers function and
the unpolarized quark distribution and we can extract the
physical single-spin asymmetry knowing the lattice-calcu-
lable quasi-TMDPDFs.
As a byproduct, Eq. (65) provides another useful method

to compute the twist-three quark-gluon-quark correlation
function, in particular, for those directly connected to the
leading-order TMDPDFs. We notice a recent study of the
twist-three parton distribution gTðxÞ in the LaMET frame-
work [64]. These studies demonstrate the power of the
LaMET formalism and we hope that more studies of this
type will become available in the future.
The methods discussed in this paper can be extended in

various directions. An immediate extension is the analysis
of all other k⊥-odd quark TMDPDFs. The large transverse
momentum dependence for these distributions has been
derived in Ref. [65]. In order to study them in LaMET,
we need to translate these results into the LaMET formal-
ism following the procedure of the current paper for the
quark Sivers function. We plan to study this in a future
publication. Together with a recent paper on k⊥-even
spin-dependent quark TMDPDFs [23], this will complete
the analysis of all leading quark TMDPDFs in LaMET.

In addition, the method developed in this paper should be
applied to other related parton distribution functions,
especially to those relevant for quantum phase space
Wigner distributions. These distribution functions contain
in principle the complete information needed for nucleon
tomography and allow to unveil the origin of the parton
orbital angular momentum in nucleons. We expect more
developments on this subject soon.
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