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In the paper, we calculate the fragmentation functions for a quark to fragment into a spin-singlet
quarkonium, where the flavor of the initial quark is different from that of the constituent quark in the
quarkonium. The ultraviolet divergences in the phase space integral are removed through the operator
renormalization under the modified minimal subtraction scheme. The fragmentation functionDq→ηQðz; μFÞ
is expressed as a two-dimensional integral. Numerical results for the fragmentation functions of a light
quark or a bottom quark to fragment into the ηc are presented. As an application of those fragmentation
functions, we study the processes Z → ηc þ qq̄gðq ¼ u; d; sÞ and Z → ηc þ bb̄g under the fragmentation
and the direct nonrelativistic QCD approaches.
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I. INTRODUCTION

According to QCD factorization theorem, the cross
section for the inclusive production of a hadron H with
high transverse momentum (pT) in a high-energy collision
is dominated by the single parton fragmentation [1], i.e.,

dσAþB→HþXðpTÞ ¼
X
i

dσ̂AþB→iþXðpT=z; μFÞ

⊗ Di→Hðz; μFÞ þOðm2
H=p

2
TÞ; ð1Þ

where ⊗ denotes a convolution in the momentum fraction
z, the sum extends over all species of partons. dσ̂AþB→iþX
indicates the partonic cross section that can be calculated in
perturbation theory, while Di→H indicates the fragmenta-
tion function for the parton i into a hadron H. μF denotes
the factorization scale which is introduced to separate the
energy scales of the two parts.
The factorization formula (1) was first derived by Collins

and Soper for light hadron production [2]. This factoriza-
tion formula can be equally applied to the heavy quarko-
nium production. The proof of the factorization formula (1)
for the quarkonium production was presented by Nayak,
Qiu, and Sterman [3]. The factorization formula (1) is
called leading power (LP) factorization because it gives the

LP contribution in the expansion in powers of mH=pT . The
factorization formula for the next-to-leading power (NLP)
correction was derived in Refs. [4–7], and the NLP
contribution comes from the double-parton fragmentation.
Fragmentation functions play an important role in the

calculation of the cross sections under the LP factorization.
Unlike the fragmentation functions for the production of
the light hadrons which are nonperturbative in nature, the
fragmentation functions for the heavy quarkonium produc-
tion can be calculated through the nonrelativistic QCD
(NRQCD) factorization [8]. Under NRQCD factorization,
the fragmentation functions for a parton to fragment into a
quarkonium can be written as

Di→Hðz; μFÞ ¼
X
n

di→ðQQ̄Þ½n�ðz; μFÞhOHðnÞi; ð2Þ

where di→ðQQ̄Þ½n� are short-distance coefficients (SDCs)
which can be expanded as powers of αsðmQÞ, and
hOHðnÞi are long-distance matrix elements (LDMEs).
The fragmentation functions for quarkonia have been

studied extensively. Most of the fragmentation functions for
the S-wave and P-wave quarkonia are known up to α2s order
[9–29], and a few fragmentation functions for quarkonia
were calculated up to α3s order [30–37]. Among these
studies, the next-to-leading order (NLO) corrections to the

fragmentation functions for g → QQ̄½1S½1;8�0 � have been
calculated recently by three groups [30,32–34]. The

NLO fragmentation functions for g → QQ̄½1S½1;8�0 � are
important in prediction of the production of the ηc;b and
the hc;b at the LHC. However, the fragmentation functions
for a quark into the ηc;b are only available up to α2s order.
Those fragmentation functions are also important to the
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precision prediction of the ηc;b production at the LHC.
Moreover, for the production of the ηc;b in eþe− collisions,
the quark fragmentation contribution is more important than
the gluon fragmentation contribution due to the fact that the
cross section for a quark isα0s order but the cross section for a
gluon is αs order. In this paper, we will calculate the
fragmentation functions for a quark q into the ηQ, where
Q ¼ c, b but q ≠ Q.
In the early calculations of fragmentation functions for

doubly heavy mesons [9,15], the fragmentation functions
are determined through comparing the cross section calcu-
lated based on the NRQCD factorization with that calcu-
lated based on the factorization formula (1) for a process
containing the doubly heavy meson being produced. In
fact, the fragmentation functions can be defined through the
matrix elements of nonlocal gauge-invariant operators [2].
The operator definition for the fragmentation functions was
first applied to calculations of the fragmentation functions
for doubly heavy mesons by Ma [17]. The calculations
based on the operator definition are particularly convenient
to extend to higher orders. Therefore, we will calculate the
fragmentation functions based on the operator definition
suggested by Collins and Soper.

The paper is organized as follows. Following the
Introduction, in Sec. II, we present the definition and the
analytical calculation for the fragmentation functions. In
Sec. III, we present the numerical results for the fragmenta-
tion functions Dq→ηcðz; μFÞðq ¼ u; d; sÞ and Db→ηcðz; μFÞ,
and apply the fragmentation functions to processes Z →
ηc þ qq̄gðq ¼ u; d; sÞ and Z → ηc þ bb̄g. Section IV is
reserved for a summary.

II. THE ANALYTICAL CALCULATION FOR
THE FRAGMENTATION FUNCTIONS

A. The definition of fragmentation function

The fragmentation functions are usually defined in
the light-cone coordinate system. In this coordinate
system, a d-dimensional vector V is expressed as Vμ ¼
ðVþ; V−;V⊥Þ, with Vþ ¼ ðV0 þ Vd−1Þ= ffiffiffi

2
p

and V− ¼
ðV0 − Vd−1Þ= ffiffiffi

2
p

. Then the product of two vectors is
V ·W ¼ VþW− þ V−Wþ − V⊥ ·W⊥. The gauge-invariant
fragmentation function for a quark q to fragment into a
hadron H is defined as [2]

Dq→HðzÞ ¼
zd−3

2π

X
X

Z
dx−e−iP

þx−=z 1

Nc
Trcolor

1

4
TrDirac

�
γþh0jΨð0ÞP̄ exp

�
igs

Z
∞

0

dy−Aþ
a ð0þ; y−;0⊥ÞtTa

�
jHðPþ;0⊥Þ þXi

×hHðPþ;0⊥Þ þXjP exp

�
−igs

Z
∞

x−
dy−Aþ

a ð0þ; y−;0⊥ÞtTa
�
Ψ̄ðxÞj0i

�
; ð3Þ

where Ψ is the field of initial quark, Aμ
a is the gluon field,

and taða ¼ 1…8Þ are SUð3Þ-color matrices. The longi-
tudinal momentum fraction is defined as z≡ Pþ=Kþ,
where K is the momentum of the initial quark. The
fragmentation function is defined in a reference frame in
which the transverse momentum of the hadron H vanishes.
It is convenient to introduce a lightlike momentum whose
expression is nμ ¼ ð0; 1; 0⊥Þ in the reference frame where
the definition of the fragmentation function carried out.
Then z can be expressed as a Lorentz invariant, i.e.,
z ¼ P · n=K · n. The Feynman rules can be derived from
the definition (3) directly, and we have presented the
Feynman rules in a previous paper [36].

B. The calculation of fragmentation function

The definition (3) is gauge invariant. However, for the
practical calculation, the gauge should be specified. We
adopt the usual Feynman gauge throughout the paper.
There are ultraviolet (UV) divergences in the calculation.
To deal with the UV divergences, we adopt dimensional
regularization with d ¼ 4 − 2ϵ, then the UV divergences
appear as the pole terms in ϵ.

In the calculation, we first calculate the fragmenta-
tion function for an on-shell QQ̄ pair in 1S½1�0 state.
Then the fragmentation function Dq→ηQ can be
obtained from D

q→ðQQ̄Þ½1S½1�
0
� through replacing the LDME

hOðQQ̄Þ½1S½1�
0
�ð1S½1�0 Þi by hOηQð1S½1�0 Þi.

There are 16 cut diagrams for qðKÞ → ðQQ̄Þ½1S½1�0 �ðp1Þ þ
gðp2Þ þ qðp3Þ under the Feynman gauge, which can be
collectively represented by four diagrams in Fig. 1. The
squared amplitudes, corresponding to four diagrams in
Fig. 1, can be written as

A1 ¼ tr

�
=n

−i
=p1þ =p2þ =p3 −mq − iϵ

ðigsγνtbÞðp3 þmqÞ

× ð−igsγμtaÞ
i

=p1þ =p2þ =p3 −mq þ iϵ

�
Xμν
ab; ð4Þ

A2 ¼ tr

�
=n

−i
=p1þ =p2þ =p3 −mq − iϵ

ðigsγνtbÞðp3 þmqÞ

×
i

ðp1 þ p2Þ · nþ iϵ
ðigsnμtaÞ

�
Xμν
ab; ð5Þ
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A3 ¼ tr

�
=nð−igsnνtbÞ

−i
ðp1 þ p2Þ · n − iϵ

ðp3 þmqÞ

ð−igsγμtaÞ
i

=p1þ =p2þ =p3 −mq þ iϵ

�
Xμν
ab; ð6Þ

A4 ¼ tr

�
=nð−igsnνtbÞ

−i
ðp1 þ p2Þ · n − iϵ

ðp3 þmqÞ

i
ðp1 þ p2Þ · nþ iϵ

ðigsnμtaÞ
�
Xμν
ab; ð7Þ

where Π1 is the spin-singlet projector

Π1 ¼
1

ð2mQÞ3=2
ðp1=2 −mQÞγ5ðp1=2þmQÞ; ð8Þ

Λ1 is the color-singlet projector

Λ1 ¼
1ffiffiffi
3

p ; ð9Þ

where 1 is the unit matrix of the SUð3Þc group. There is a
common factor Xμν

ab which arises from the annihilation of a

virtual gluon into a ðQQ̄Þ½1S½1�0 � pair and a real gluon. The
factor Xμν

ab can be expressed as

Xμν
ab ¼ −gρσJ

μρ
acJνσ�bc ; ð10Þ

where

Jμρac ¼ tr

�
Π1Λ1

�
ð−igsγρtcÞ

i
p1=2þ p2 −mQ

ð−igsγμtaÞ

þð−igsγμtaÞ
i

−p1=2 − p2 −mQ
ð−igsγρtcÞ

��

·
−i

ðp1 þ p2Þ2 þ iϵ
: ð11Þ

We employ the package FeynCalc [38,39] to carry out the
Dirac and color traces, and then the total squared amplitude
(Að1−4Þ ≡P

4
i¼1 Ai) can be written as

Að1−4Þ ¼
c1ðs1; y; zÞðp3 · p̃Þ2

s21ðs −m2
qÞ2

þ c2ðs1; y; zÞp1 · p3

s1ðs −m2
qÞ2

þ c3ðs1; y; zÞp2 · p3

s1ðs −m2
qÞ2

þ c4ðs1; y; zÞ
ðs −m2

qÞ2
; ð12Þ

where

s1 ¼ ðp1 þ p2Þ2; s ¼ ðp1 þ p2 þ p3Þ2;

y ¼ ðp1 þ p2Þ · n
K · n

; p̃ ¼ p1 −
zp2

ðy − zÞ : ð13Þ

The coefficients ciðs1; y; zÞ can be easily extracted, and we
do not list their expressions here.
The differential phase space for the fragmentation

function D
q→ðQQ̄Þ½1S½1�

0
� is

1

dϕ3ðp1; p2; p3Þ ¼ 2πδ

�
Kþ −

X3
i¼1

pþ
i

�
μ2ð4−dÞ

×
Y
i¼2;3

θðpþ
i Þdpþ

i

4πpþ
i

dd−2pi⊥
ð2πÞd−2 : ð14Þ

The contributions from the cut diagrams shown in Fig. 1
can be calculated through

Dð1−4Þ
q→ðQQ̄Þ½1S½1�

0
�ðzÞ ¼ NCS

Z
dϕ3ðp1; p2; p3ÞAð1−4Þ; ð15Þ

whereNCS ≡ zd−3=ð8πNcÞ is a factor from the definition of
the fragmentation function. The integral on the right-hand
side of Eq. (15) is UV divergent with d ¼ 4. This UV
divergence is regularized by dimensional regularization
with d ¼ 4 − 2ϵ, and the integral generates 1=ϵ terms. To
perform the integration in Eq. (15), it is important to choose
proper parametrization for the phase space. We present a
parametrization for the phase space in the Appendix A.

FIG. 1. The cut diagrams for the fragmentation function
D

q→ðQQ̄Þ½1S½1�
0
�, where q ≠ Q.

1Here, we associate the scale factor μ4−d with each dimen-
sionally regulated integration in d space-time dimensions. In our
previous papers [35,36], this scale factor was put in the squared
amplitudes.
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The differential phase space given in Eq. (A8) can be
expressed as follows:

NCSdϕ3ðp1; p2; p3Þ
¼ Ngðp1; p2Þdϕ2ðp1; p2Þdϕð3Þðp1; p2; p3Þ; ð16Þ

where Ngðp1; p2Þ is defined as

Ngðp1; p2Þ ¼
ðz=yÞ1−2ϵ

ðN2
c − 1Þð2 − 2ϵÞð2πyK · nÞ ; ð17Þ

and dϕ2ðp1; p2Þ is defined as

dϕ2ðp1; p2Þ ¼
z−1þϵðy − zÞ−ϵμ2ϵ

2ð4πÞ1−ϵΓð1 − ϵÞK · n

×

�
s1 −

y
z
4m2

Q

�
−ϵ
ds1; ð18Þ

where the range of s1 is from ð4m2
Qy=zÞ to ∞. dϕ2ðp1; p2Þ

stands for the differential phase space for a gluon
with longitudinal momentum yK · n to fragment into a

ðQQ̄Þ½1S½1�0 �-pair with longitudinal momentum zK · n at LO.
According to Eqs. (16), (17), (18), and (A8), the expression
of dϕð3Þðp1; p2; p3Þ can be derived:

dϕð3Þðp1; p2; p3Þ

¼ ðN2
c − 1Þð2 − 2ϵÞμ2ϵK · n

16Ncð2πÞ3−2ϵ
y1−ϵð1 − yÞ−ϵ

× ½s − s1=y −m2
q=ð1 − yÞ�−ϵdsdydΩ3⊥: ð19Þ

The range of y is from z to 1, and the range of s is from
½s1=yþm2

q=ð1 − yÞ� to ∞.
The integrations over Ω3⊥ and s of Að1−4Þ can be

performed using the method introduced in Ref. [36].
Then we obtain

Dð1−4Þ
q→ðQQ̄Þ½1S½1�

0
�ðzÞ ¼

ð4πμ2ÞϵΓðϵÞ
ð4πÞ2

Z
1

z
dy

×
Z

Ngdϕ2ðp1; p2Þfðs1; y; zÞ; ð20Þ

where Ngdϕ2ðp1; p2Þ≡ Ngðp1; p2Þdϕ2ðp1; p2Þ. The
expression of fðs1; y; zÞ is given in Appendix B.

The contribution Dð1−4Þ
q→ðQQ̄Þ½1S½1�

0
�ðzÞ contains a UV pole; it

should be removed through the operator renormalization
[40]. We carry out the renormalization using the MS
procedure. Then the fragmentation function under the
MS scheme can be obtained through

D
q→ðQQ̄Þ½1S½1�

0
�ðz; μFÞ

¼ Dð1−4Þ
q→ðQQ̄Þ½1S½1�

0
�ðzÞ −

αs
2π

�
1

ϵUV
− γE þ lnð4πÞ þ ln

μ2

μ2F

�

×
Z

1

z

dy
y
PgqðyÞDLO

g→ðQQ̄Þ½1S½1�
0
�ðz=yÞ; ð21Þ

where μF is the factorization scale, the expression of the
splitting function PgqðyÞ is

PgqðyÞ ¼ CF
1þ ð1 − yÞ2

y
; ð22Þ

and DLO
g→ðQQ̄Þ½1S½1�

0
� is the LO fragmentation function in

d-dimensional space-time. In the calculation, it is conven-
ient to use the unintegrated form of DLO

g→ðQQ̄Þ½1S½1�
0
�, i.e.,

DLO
g→ðQQ̄Þ½1S½1�

0
�ðz=yÞ ¼

Z
Ngdϕ2ðp1; p2ÞAg→ðQQ̄Þ½1S½1�

0
�; ð23Þ

where the expression of A
g→ðQQ̄Þ½1S½1�

0
� is

A
g→ðQQ̄Þ½1S½1�

0
�

¼ 16g4s
3

ð1 − 2ϵÞðyK · nÞ2
�ð1 − z=yÞ

m3
Qs1

−
ð1 − z=yÞ

m3
Qðs1 − 4m2

QÞ

þ 2ð1 − ϵÞ
mQs21

þ 4ð1 − z=yÞ2
mQðs1 − 4m2

QÞ2
�
: ð24Þ

The integral over s1 in Eq. (23) can be carried out easily,
and we have checked that our result for DLO

g→ðQQ̄Þ½1S½1�
0
� is

consistent with that obtained in Refs. [12,30,33,34].
Applying Eqs. (20) and (23) to Eq. (21), we can obtain

the fragmentation function under the MS scheme. It is

found that the UV pole of Dð1−4Þ
q→ðQQ̄Þ½1S½1�

0
�ðzÞ is exactly

canceled by the UV pole of the counter term from the
operator renormalization. The remaining integrals no
longer generate divergence; we can set ϵ ¼ 0 before
carrying out the integrations. Multiplying the fragmentation

function D
q→ðQQ̄Þ½1S½1�

0
�ðz; μFÞ for the ðQQ̄Þ½1S½1�0 � pair by a

factor hOηQð1S½1�0 Þi=hOðQQ̄Þ½1S½1�
0
�ð1S½1�0 Þi ≈ jRðQQ̄Þ

S ð0Þj2=ð4πÞ,
we obtain the fragmentation function Dq→ηQðz; μFÞ, i.e.,

Dq→ηQðz; μFÞ

¼
Z

1

z
dy

Z
∞

4m2
Qy=z

ds1gðs1; μF; y; zÞ; ð25Þ

where
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gðs1; μF; y; zÞ ¼
α3s jRðQQ̄Þ

S ð0Þj2
9π2y4mQs21ðs1 − 4m2

QÞ2½ð1 − yÞs1 þ y2m2
q�
�
ðy − 1Þ½s31ðy4 − 2y3ðzþ 1Þ þ 2y2ðz2 þ 6zþ 1Þ

− 12yzðzþ 1Þ þ 12z2Þ þ s21ð2y4m2
q − 4y3ð2m2

Qðzþ 4Þ þ zm2
qÞ þ 4y2ð4m2

Qð3zþ 2Þ þ z2m2
qÞ

− 48yzm2
QÞ þ 16s1y2m2

Qðy2m2
Q − yð2m2

Q þ zm2
qÞ þ 2m2

QÞ þ 32y4m4
Qm

2
q� − ½ð1 − yÞs1 þ y2m2

q�

× ½z2ðs1 − 4m2
Qy=zÞ2 þ ðy − zÞ2s21�

�
ðð1 − yÞ2 þ 1Þ ln

�ð1 − yÞs1 þ y2m2
q

μ2F

�
þ y2

��
: ð26Þ

Here, RðQQ̄Þ
S ð0Þ is the radial wave function at the origin for the ðQQ̄Þ bound state.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we will present the numerical results for
the fragmentation functions and apply the fragmentation
functions to the decay widths for the ηc production through
Z boson decays.
The input parameters for the numerical calculation are

taken as follows:

mc¼1.5GeV; mb¼ 4.9GeV; mZ ¼ 91.1876GeV;

α¼1=128; sin2θW ¼ 0.231; jRcc̄
S ð0Þj2¼ 0.810GeV3:

ð27Þ

The value of jRcc̄
S ð0Þj2 is taken from the potential model

calculation [41]. For the strong coupling constant, we adopt
two-loop formula as used in our previous paper [35],
where αsð2mcÞ ¼ 0.259.

A. The fragmentation functions

The fragmentation function for a light quark into ηc,
where μF ¼ 2mc, 4mc, and 6mc, is shown in Fig. 2. In the
numerical calculation, the mass of the light quark is
neglected, and the strong coupling is taken as αsð2mcÞ.

From Fig. 2, we can see that the fragmentation function
is sensitive to the factorization scale. When μF ¼ 2mc,
the fragmentation function increases first (z < 0.96) and
then decreases (z > 0.96) with the increase of z, and the
fragmentation function is less than 0 in the most z region;
When μF ¼ 4mc, the fragmentation function also increases
first (z < 0.12) and then decreases (z > 0.12) with the
increase of z, but the fragmentation function is greater than
0 in the most z region; when μF ¼ 6mc, the fragmentation
function decreases monotonically with the increase of z,
and the fragmentation function is greater than 0 for
z ∈ ð0; 1Þ. The fragmentation function has a singularity
at z ¼ 0.
In order to understand the dependence of the fragmen-

tation function on the factorization scale, we have calcu-
lated the coefficient of lnðμ2F=m2

cÞ in the fragmentation
function Dq→ηcðz; μFÞ. The coefficient is shown as a
function of z in Fig. 3 with a linear scale (upper one)
and with a logarithmic scale (lower one). We can see that
the coefficient decreases monotonically with the increase of
z and is positive for z ∈ ð0; 1Þ. Like the fragmentation
function, the coefficient of lnðμ2F=m2

cÞ also has a singularity
at z ¼ 0. When μF is very large, the fragmentation function
is dominated by the lnðμ2F=m2

cÞ term. Therefore, the
behavior of the fragmentation function is similar to that
of the coefficient of lnðμ2F=m2

cÞ when μF is large enough.
In Fig. 4, the fragmentation function Db→ηcðz; μFÞ for

μF ¼ mb, mb þ 2mc and mb þ 4mc is presented. We can
see that the fragmentation function Db→ηcðz; μFÞ is also
sensitive to the factorization scale. Actually, from Eqs. (25)
and (26), we can see that the coefficient of lnðμ2F=m2

QÞ in
Db→ηcðz; μFÞ is the same as that in Dq→ηcðz; μFÞ.

B. Application to the decay widths

In this subsection, we will apply the obtained fragmen-
tation functions to the decay widths for the processes
Z → ηc þ qq̄g and Z → ηc þ bb̄g.
Here, we only present the calculation formulas for

Z → ηc þ qq̄g, the formulas for Z → ηc þ bb̄g are similar.
Under the fragmentation approach, the differential decay
width dΓ=dz for Z → ηc þ qq̄g at leading order (LO) can
be written as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 10-4

FIG. 2. The fragmentation function Dq→ηcðz; μFÞ as a function
of z for μF ¼ 2mc, 4mc, and 6mc, where q denotes a light quark.
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dΓFrag;LO
Z→ηcþqq̄g

dz
¼ 2ΓZ→qþq̄Dq→ηcðz; μFÞ

þ
Z

1

z

dy
y

dΓ̂Z→gþqq̄ðy; μFÞ
dy

·Dg→ηcðz=yÞ; ð28Þ

where the energy fraction is defined as z≡ Eηc=E
max
ηc , and

Eηc and Emax
ηc are the energy and the maximum energy

of the ηc in the rest frame of the Z boson. ΓZ→qþq̄ denotes
the LO decay width for the process Z → qþ q̄, and
the factor of 2 is due to the fact that the contributions
from the q fragmentation and q̄ fragmentation are the
same. In Eq. (28), we have used the fact dΓ̂Z→qþq̄=dy ¼
ΓZ→qþq̄δð1 − yÞ at LO. dΓ̂Z→gþqq̄=dy is the differential
decay width for the inclusive production of a gluon
associated with a light-quark pair. Neglecting the light
quark mass, we obtain the differential decay width under
the MS factorization scheme:

dΓ̂Z→gþqq̄ðy;μFÞ
dy

¼ΓZ→qþq̄
αs
π
PgqðyÞ

�
ln
m2

z

μ2F
þ2 lnyþ lnð1−yÞ

�
: ð29Þ

Dg→ηcðzÞ and Dq→ηcðz; μFÞ are the LO fragmentation
functions. The expression of Dg→ηcðzÞ can be found in
Ref. [12], and the expression of Dq→ηcðz; μFÞ has been
given in Eq. (25). It is easy to check that the logarithm
terms of μ2F in Eq. (28) are canceled by each other which
results in that dΓFrag;LO

Z→ηcþqq̄g=dz is independent of μF.
The physical picture of Eq. (28) is as follows: The first

term gives the contribution from that the Z boson decays
into a light quark and a light antiquark with energies mZ=2
on a distance scale of order 1=mZ, and one of the light
quark and the light antiquark decays into an ηc on a distance
scale of order 1=mc. The second term gives the contribution
from that the Z boson decays into a light quark-antiquark
pair and a gluon on a distance scale of order 1=mZ, and the
gluon decays into an ηc on a distance scale of order 1=mc.
The two terms of Eq. (28) share the same Feynman
diagrams which are shown in Fig. 5, but they come from
different regions of the phase space. When the invariant
mass of the virtual light quark (antiquark) is very small
compared to μF, the contribution is given by the first term
of Eq. (28). When the invariant mass of the virtual light
quark (antiquark) is very large compared to μF, the
contribution is given by the second term of Eq. (28).
There are logarithms of mZ=mc in the decay widths of

Z → ηc þ qq̄g, which may spoil the convergence of the
perturbative expansion. These large logarithms can be
resummed through the evolution of the fragmentation
functions under the fragmentation approach. The decay
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FIG. 4. The fragmentation function Db→ηcðz; μFÞ as a function
of z for μF ¼ mb, mb þ 2mc, and mb þ 4mc.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-9

10-8

10-7

10-6

10-5

10-4

10-3

FIG. 3. The coefficient of lnðμ2F=m2
cÞ in the fragmentation

function Dq→ηcðz; μFÞ, i.e., FðzÞ ¼ αs
2π

R
1
z
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The same curve is shown as a function of z with a linear scale
(upper one) and with a logarithmic scale (lower one).
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width after the resummation of the leading logarithms
(LLs) can be written as

dΓFrag;LOþLL
Z→ηcþqq̄g

dz
¼ 2ΓZ→qþq̄DLOþLL

q→ηc ðz; μFÞ

þ
Z

1

z

dy
y

dΓ̂Z→gþqq̄ðy; μFÞ
dy

·DLOþLL
g→ηc ðz=y; μFÞ; ð30Þ

where the factorization scale is set as μF ¼ mZ, and the
renormalization scale in the partonic decay widths is also
set as μR ¼ mZ, so as to avoid large logarithms appearing
in the partonic decay widths. The fragmentation
functions DLOþLL

q→ηc ðz; μF ¼ mZÞ and DLOþLL
g→ηc ðz; μF ¼ mZÞ

are obtained through solving the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equations [42–44] with
LO splitting functions, where the initial fragmentation
functions Dq→ηcðz; μF0Þ and Dg→ηcðz; μF0Þ at μF0 ¼ 2mc

2

are used as the boundary condition. We solve the DGLAP
equations by using the program FFEVOL [45].
In addition to the fragmentation approach, we can also

calculate the decay width directly based on the NRQCD
factorization, i.e.,

dΓDirect;LO
Z→ηcþqq̄g ¼ dΓ̃

Z→ðcc̄Þ½1S½1�
0
�þqq̄g

hOηcð1S½1�0 Þi; ð31Þ

where we use “Direct” to denote the results from the direct
calculation based on the NRQCD factorization. The dom-
inant contributions to the decay widths for Z → ηc þ qq̄g
and Z → ηc þ bb̄g come from four fragmentation diagrams
shown in Fig. 5. The contributions from the nonfragmen-
tation diagrams are suppressed by powers of mc=mZ

compared to the fragmentation contributions. For simplic-
ity, under the direct NRQCD calculation, we only consider
the contributions from the four fragmentation diagrams
shown in Fig. 5.
The differential decay widths for Z → ηc þ qq̄g and

Z → ηc þ bb̄g under the fragmentation and the direct
NRQCD approaches are presented in Figs. 6 and 7.
In order to see the difference between the “Frag,LO”
results and the “Direct,LO” results more clearly, the ratios
ðdΓFrag;LO=dzÞ=ðdΓDirect;LO=dzÞ are given in Fig. 8. For the
“Frag,LO” and the “Direct,LO” calculations, the renorm-
alization scale is fixed as μR ¼ 2mc for simplicity. For the
“Frag;LOþ LL” calculation, the choice of the renormal-
ization scale and the factorization scale has been described
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FIG. 6. The differential decay width dΓ=dz as a function of z
for the process Z → ηc þ qq̄g under the fragmentation and the
direct NRQCD calculations. The contributions for q ¼ u, d, s are
summed.
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FIG. 7. The differential decay width dΓ=dz as a function of z
for Z → ηc þ bb̄g under the fragmentation and the direct
NRQCD calculations.

FIG. 5. The Feynman diagrams for Z → ηc þ qq̄g which are
responsible for the fragmentation mechanism.

2For Z → ηc þ bb̄g case, the initial factorization scale is taken
as μF0 ¼ mb þ 2mc.
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below Eq. (30). From the figures, we can see that the
differential decay widths from the “Frag,LO” calculation
are very close to those from the “Direct,LO” calculation,
especially for 0.2 ≤ z ≤ 0.8.
The total decay widths can be obtained through integrat-

ing the differential decay widths dΓ=dz over z. The total
decay widths under the fragmentation approach and the
direct NRQCD approach are given in Table I. We can see
that the total decay widths obtained from the “Frag,LO”
calculation and the “Direct,LO” calculation are also very
close. Therefore, the fixed-order fragmentation approach
(i.e., the “Frag,LO” approach) provides a good approxi-
mation to the direct NRQCD calculation.
The differential and total decay widths after the resum-

mation of the large logarithms under the fragmentation
approach are also shown in Figs. 6 and 7 and Table I. We
can see that, after the resummation, the differential decay
widths are enhanced at smaller z values but are reduced at
larger z values, and the total decay widths are reduced after
the resummation. In fact, the fixed-order results have a big
uncertainty caused by the choice of the renormalization scale.
If we set the renormalization scale as μR ¼ mZ, the fixed-
order results become ½αsðmZÞ=αsð2mcÞ�3 ¼ 0.0958 of those
with μR ¼ 2mc. On the contrary, the results after the
resummation have a smaller uncertainty caused by the choice
of the renormalization scale. Because the renormalization

scale of the initial fragmentation functions should beOðmcÞ,
and the renormalization scale of the coefficient functions
should be OðmZÞ. Moreover, the resummed results include
the leading logarithms up to all orders from the collinear
radiation. Therefore, the results after the resummation are
more precise than the fixed-order results.

IV. SUMMARY

In the present paper, we have calculated the fragmenta-
tion functions for a (heavy or light) quark into a spin-singlet
quarkonium, where the flavor of the initial quark is
different from that of the constituent quark in the quarko-
nium. There are UV divergences in the phase-space
integral, which are removed through the operator renorm-
alization of the fragmentation function. We have carried out
the renormalization under the MS scheme. The fragmenta-
tion function Dq→ηQðz; μFÞ is given as a two-dimensional
integral, and this two-dimensional integral can be calcu-
lated easily through numerical integration. Numerical
results for a light quark or a bottom quark into the ηc
with several factorization scales are analyzed. The results
show that these fragmentation functions are sensitive to
the factorization scale. Especially, when μF is small, the
fragmentation functions are negative at small z values.
There is a singularity at z ¼ 0 for these fragmentation
functions.
We have applied the obtained fragmentation functions to

the decay widths for the processes Z → ηc þ qq̄gðq ¼
u; d; sÞ and Z → ηc þ bb̄g. The differential decay widths
and total decay widths are calculated under the fragmenta-
tion and the direct NRQCD approaches. It is found that the
results under the fixed-order fragmentation and the direct
NRQCD approaches are close to each other. Therefore,
the fixed-order fragmentation approach provides a good
approximation to the direct NRQCD calculation. The more
precise results containing the resummation of the large
logarithms under the fragmentation approach are also
presented. Moreover, the fragmentation functions obtained
in this paper can be used in the studies on the production of
ηc and ηb at high-energy colliders.
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APPENDIX A: THE PARAMETRIZATION
FOR THE PHASE SPACE

In order to extract the UV poles in the calculation
analytically, the phase space for the fragmentation function
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FIG. 8. The ratios ðdΓFrag;LO=dzÞ=ðdΓDirect;LO=dzÞ as functions
of z for the processes Z → ηc þ qq̄g and Z → ηc þ bb̄g.

TABLE I. The decay widths of Z → ηc þ qq̄g and Z → ηc þ
bb̄g under the fragmentation and the direct NRQCD approaches.
For the Z → ηc þ qq̄g case, the contributions for q ¼ u, d, s are
summed.

ΓZ→ηcþqq̄g (keV) ΓZ→ηcþbb̄g (keV)

Direct 63.0 19.3
Frag,LO 65.6 20.3
Frag;LOþ LL 40.3 15.3
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should be parametrized properly. In this Appendix, we
will present a parametrization for the phase space. The
differential phase space for the fragmentation function
D

q→ðQQ̄Þ½1S½1�
0
� is

dϕ3ðp1; p2; p3Þ ¼ 2πδ

�
Kþ −

X3
i¼1

pþ
i

�
μ2ð4−dÞ

×
Y
i¼2;3

θðpþ
i Þdpþ

i

4πpþ
i

dd−2pi⊥
ð2πÞd−2 : ðA1Þ

According to Ref. [36], the differential phase space for a
single parton with momentum pi and mass mi can be
expressed as

dd−1pi

ð2πÞd−12p0
i
¼ ðλipi · n −m2

i Þ−ϵ
4ð2πÞ3−2ϵ dλidðpi · nÞdΩi⊥; ðA2Þ

where

λi ¼ 2ki · pi=ki · n; ðA3Þ

and ki is an arbitrary lightlike momentum which is not
parallel to n. dΩi⊥ stands for the differential transverse
solid angle, and the total transverse solid angle Ωi⊥ ¼
2π1−ϵ=Γð1 − ϵÞ.
Applying the parametrization (A2) to the differential

phase spaces for p2 and p3, we obtain

dϕ3ðp1; p2; p3Þ ¼
2−2ϵðK · nÞ1−2ϵμ4ϵ
ð4πÞ4−3ϵΓð1 − ϵÞ ½ð1 − yÞðy − zÞ�−ϵ

×

�
1 −

m2
q

λ3ð1 − yÞK · n

�−ϵ
λ−ϵ2 λ−ϵ3

× dydλ2dλ3dΩ3⊥; ðA4Þ

where the integrations over p2 · n and Ω2⊥ have been
performed.
To obtain the phase-space parametrization used to extract

the UV poles, we choose the lightlike momenta k2 and k3 as
follows:

kμ2 ¼ pμ
1 −

2m2
Q

p1 · n
nμ;

kμ3 ¼ ðp1 þ p2Þμ −
s1

2ðp1 þ p2Þ · n
nμ; ðA5Þ

then we obtain

λ2 ¼
1

zK · n

�
s1 −

y
z
4m2

Q

�
; ðA6Þ

and

λ3 ¼
1

yK · n

�
s −

s1
y
−m2

q

�
; ðA7Þ

Changing variables in Eq. (A4) from λ2 and λ3 to s1 and s,
we obtain

dϕ3ðp1;p2;p3Þ¼
2−2ϵðzyÞ−1þϵμ4ϵ

ð4πÞ4−3ϵΓð1− ϵÞK ·n
ð1−yÞ−ϵ

× ðy− zÞ−ϵ½s− s1=y−m2
q=ð1−yÞ�−ϵ

× ðs1−4m2
Qy=zÞ−ϵdydsds1dΩ3⊥: ðA8Þ

APPENDIX B: THE EXPRESSION OF f ðs1;y;zÞ
The expression of fðs1; y; zÞ which appeared in Eq. (20)

can be written in following form:

fðs1; y; zÞ ¼
28g6s ½ð1 − yÞs1 þ y2m2

q�−ϵðK · nÞ2
9mQs21ðs1 − 4m2

QÞ2
ðf0 þ ϵf1Þ;

ðB1Þ

where

f0 ¼ ½ð1 − yÞ2 þ 1�½s21ðy2 − 2yzþ 2z2Þ
− 8m2

Qs1yzþ 16y2m4
Q�; ðB2Þ

and

f1 ¼
1

½ð1 − yÞs1 þ y2m2
q�
fs21½s1ðy − 1Þð5y4 − 8y3ðzþ 1Þ þ 4y2ðzþ 2Þð2zþ 1Þ − 20yzðzþ 1Þ þ 20z2Þ

− 2y2m2
qðy2 − 2yþ 2Þð2y2 − 3yzþ 3z2Þ� − 8ym2

Qs1½s1ðy − 1Þðy3 þ 2y2ð2zþ 1Þ − 2yð5zþ 1Þ þ 10zÞ
− y2m2

qðy2 − 2yþ 2Þðyþ 3zÞ� þ 16m4
Qy

2½s1ð5y3 − 13y2 þ 16y − 8Þ − 4m2
qy2ðy2 − 2yþ 2Þ�g: ðB3Þ
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