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We estimate in medium properties of axion i.e., its mass and self-coupling within a three flavor Polyakov
loop extended Nambu–Jona-Lasinio (PNJL) model with Kobayashi-Maskawa-t’Hooft determinant
interaction. We also estimate the topological susceptibility of strong interaction within the same model.
It is observed that (statistical) confinement effects simulated by Polyakov loop potential play an important
role in the estimation of all these quantities, particularly, near the critical temperature. Both the mass and the
self-coupling of the axion get correlated with the chiral and deconfinement transition. The results for all
these quantities obtained within the PNJL model is compared with chiral perturbation theory, Nambu–
Jona-Lasinio (NJL) model and lattice QCD simulation results wherever available. The results for properties
of axions at finite baryon densities are also presented.
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I. INTRODUCTION

The axion was originally introduced to solve the strong
CP (charge conjugation and parity) problem in a dynamical
way [1–4]. Due to the non-Abelian nature of the gauge
fields, QCD allows the topologically nontrivial Chern-
Simons term, Lθ ∼ θ TrGμνG̃

μν. This Chern-Simons term,
which is allowed by the gauge symmetry, does not affect
the classical equation of motion. However, this term has
important quantum mechanical consequences [5]. For a
nonvanishing value of θ, CP symmetry is explicitly broken
in QCD. Stringent constraints on the CP-violating θ term
comes from the measurement of the electric dipole moment
(EDM) of the neutron, i.e., θ ≲ 10−11 [6,7]. The smallness
of θ implied by the EDM constraint is a fine-tuning
problem involving a precise cancellation between two
dimensionless terms generated by physics at different
scales corresponding to QCD and weak interaction scales.
Spontaneous breaking of the Peccei-Quinn (PQ) symmetry
is an elegant mechanism to solve the strong CP problem
in a dynamical manner which predicts the smallness of

the θ [1,2]. Spontaneous breaking of Peccei-Quinn (PQ)
symmetry also naturally predicts a pseudo-Goldstone
boson which is known as the axion [8,9]. In the original
axion model formulated by Peccei and Quinn [1,2],
Weinberg [3] and Wilczek [4], the spontaneous breaking
of the Uð1ÞPQ symmetry occurs simultaneously with the
electroweak symmetry breaking giving rise to observatio-
nal signals of axions which is in contradiction with the
observational evidence, e.g., K; J=ψ meson decay [10].
These constraints can be avoided in the invisible axion
models where the PQ symmetry breaking occurs at a higher
scale giving rise to a very light and weakly interacting
axion [11–14].
Axion mass and the coupling to the other particles are

inversely proportional to the PQ symmetry breaking scale.
Hence axions are very light as well as weakly interacting
particles and have been considered as a candidate for dark
matter [15–22]. The effect of the axion on the stellar
evolution has also been considered in the literature. Due to
the strangeness-changing nonleptonic weak interaction
during the conversion of a neutron star into a strange star,
axions could be copiously produced. Axions might also
drastically alter the energy budget of stars [23]. Axions can
be produced in hot and dense astrophysical plasma which
can transport energy out of stars. One can put a strong
constraint on the axion properties i.e., mass, coupling with
normal matter and radiation using the stellar-evolution
lifetimes or energy-loss rates observation [24–27]. For
stellar longevity, the rate at which a star can liberate its
nuclear-free energy is important. It is not only controlled by
the nuclear reaction rates but also depends on the rate at
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which nuclear energy can be transported through the star
and radiated into the vacuum. In the absence of weakly
interacting low mass (as compared to typical stellar temper-
ature) particles, the energy is dissipated away from stars by
photons. However, a weakly interacting low mass particle
has the potential to efficiently transport energy away
thereby shortening the lifetime of stars. Note that for
efficient transport of energy liberated in the nuclear
reactions in a star, the particle should be weakly interacting,
but the interaction with the nuclear matter should not be
very small so that the weakly interacting particles should be
produced in sufficient numbers to carry away the nuclear
energy efficiently. For stars hotter than about 108 Kelvin
neutrino cooling becomes comparable with the photon
cooling. Being a small mass particle and weakly interacting
in nature, axions, if produced in the hot and dense medium
inside the stars can also act as a coolant. In stars the axions
are produced by the Compton-like process ðγ þ e− →
aþ e−Þ, the Primakoff process ðγþZðe−Þ→aþZðe−ÞÞ
and axion bremsstrahlung ðe− þ Z → aþ e− þ ZÞ. The
axion emissivity due to these processes is proportional to
the axion mass (m2

a) [19]. Therefore estimation of axion
mass is of great importance to investigate the effects of the
axion on the stellar cooling. Further it has been suggested
that axions can form stars as well as a Bose-Einstein
condensate [28–40]. In the context of Bose-Einstein con-
densation of dark matter axions, to estimate the thermal-
ization of axion, its self-interaction plays an important role
in the calculation of the relaxation rate [41]. Furthermore,
ultralight axion self-interactions can play an important role
in the large scale structure of the Universe [42]. It is
therefore of paramount importance to know the character-
istics of axion properties, e.g., axion mass and the self-
coupling in a hot and dense medium.
It is important to note that there are various calculations

of finite temperature axion mass available in literature
using, for instance, dilute instanton gas, lattice QCD and
instanton liquid model and which may not agree with one
another [43–48]. The temperature dependence of axion
mass is important as it can affect significantly the axion
dark matter abundance. Estimation of the axion potential
closer to the QCD transition scale is also important and in
the absence of this knowledge, one parametrizes the axion
mass in a way that resembles the result from the dilute
instanton gas model [49,50]. It may also be noted that such
a parametrization of the axion mass with temperature can
have a discontinuity that does not encapsulate the variation
of axion mass across the QCD transition scale [51]. At
relatively high temperatures with respect to the quark
hadron transition scale, one can use perturbative techniques
to estimate axion properties, e.g., the dilute instanton gas
approximation, however around and below the QCD
transition scale, nonperturbative effects can have a signifi-
cant impact on the axion mass and coupling. To estimate
the response of the axion to a QCD thermal medium one

can use QCD inspired effective field theories and phenom-
enological models as, for instance, chiral perturbation
theory (χPT) [52–54] and the Nambu–Jona-Lasinio
(NJL) model [55,56]. χPT, which has been used to study
the θ vacuum of QCD and QCD axion physics, predicts a
value of topological susceptibility which agrees with the
lattice QCD results at zero temperature [57–63]. Further,
the computation of the axion potential can be extended to
finite temperature for chiral Lagrangian. In particular, at
temperatures below the QCD transition scale (∼170 MeV)
using chiral Lagrangian the temperature dependence of the
axion potential and its mass can be estimated. Although the
χPT can give a reliable prediction at low temperature, at
high temperature χPT results may not be reliable, because
in χPT there are no partonic degrees of freedom which
becomes important near and above the QCD transition
temperature. Perturbative expansion is also not under
control around the QCD transition scale and nonperturba-
tive methods are required to study the axion properties.
Because of the limitation of χPT and perturbative

techniques one can use QCD inspired chiral effective
models, e.g., the Nambu–Jona-Lasinio (NJL) model to
investigate the thermal properties of the axion. The NJL
model has been used earlier to study the CP-violating
effects and the effect of the theta vacuum on the QCD phase
diagram [64–69]. This approach has been considered in
Refs. [70,71] to study the axion mass and self-coupling
at finite temperature in the absence as well as in the
presence of a magnetic field. All these calculations show
that near the chiral transition temperature the axion mass
and self-coupling are significantly modified. The NJL
model which effectively explains one of the key features
of QCD, i.e., chiral symmetry breaking and its restoration,
does not address the effects of the gluon degrees of freedom
adequately. In the NJL model the gluonic degrees of
freedom are replaced by a local four-Fermi-type interaction
of quark color currents. Improvements upon the NJL
model, e.g., the Polyakov loop enhanced Nambu–Jona-
Lasinio (PNJL) model takes into account this missing
feature by including a temporal background gluon field
in a manner that the single quark states below the transition
temperature are statistically suppressed. As a result, both
chiral and deconfinement aspects of QCD are captured
within a single framework [72–79]. In the PNJL model, the
nonzero value of the Polyakov loop around the QCD
transition scale plays an important role, which may be
important to study the axion physics, particularly across the
QCD transition scale.
Therefore, in the present article, we study the axion mass

and self-coupling using the three flavor Polyakov loop
enhanced Nambu–Jona-Lasinio (PNJL) model. The two
most important properties of QCD are the chiral transition
and confinement-deconfinement transition. Hence for an
effective description of the QCD medium near the tran-
sition temperature, the effective model should also reflect
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these properties of QCD. The Nambu–Jona-Lasinio (NJL)
model which is a key ingredient of the PNJL model only
deals with the fermionic part without gauge fields. The NJL
model includes the global symmetries of QCD in the
fermionic sector such as chiral symmetry, baryon number,
electric charge and strange number symmetries. In the NJL
model, the dynamical generation of mass due to the
multiquark interactions leads to the spontaneous breaking
of chiral symmetry. In the NJL model, the local SUð3Þc
gauge symmetry of QCD is replaced by a global SUð3Þc
symmetry. So the NJL model lacks the confinement
property due to the absence of the QCD gauge fields.
Note that for Nc ¼ 2 confinement is less significant and the
thermodynamics can be described quite successfully using
the simplest NJL model [80]. On the other hand for Nc ¼ 3
confinement is significant. In the PNJL model both the
chiral condensate and the Polyakov loop are considered as
classical homogeneous fields which couple to the quarks
according to the symmetries and symmetry breaking
patterns of QCD, therefore describing various aspects of
confinement and chiral symmetry breaking in a unifying
framework. The confinement-deconfinement transition
which is characterized by the Polyakov loop order
parameter is well defined in the static quark limit. The
confinement-deconfinement transition is characterized by
the spontaneous breaking of the Zð3Þ center symmetry of
QCD [81–84]. However, in the presence of dynamical
quarks, the center symmetry is explicitly broken. Hence in
the presence of a dynamical quark the Polyakov loop
cannot be considered as an order parameter, but the
Polyakov loop still serves as an indicator of the confine-
ment-deconfinement transition [85–90]. It is important to
note that the PNJL model also has some limitations, e.g., in
the PNJL model the Polyakov loop is considered as a
simple static background field. Furthermore, transverse
gluons, which play an important role in the thermodynam-
ics of QCD matter at a very high temperature T ≳ 2.5Tc,
are not considered in the PNJL model. Therefore the PNJL
model is expected to describe QCD thermodynamics only
within a limited range of temperature [91]. The previous
studies of axion properties within the framework of the NJL
model indicate that QCD transition significantly modifies
axion mass and self-coupling [70,71]. Axion mass and
axion self-coupling decrease rapidly across the chiral
transition temperature and there is a correlation between
the quark-antiquark condensate and axion properties stud-
ied in this model. In the PNJL model at finite temperature
the presence of the nonvanishing value of the Polyakov
loop affects the quark-antiquark condensate, which even-
tually also affects the axion mass and its self-coupling at
finite temperature.
This paper is organized in the following manner. After

the introduction, in Sec. II we discuss the formalism to
study the axion properties, i.e., its mass and self-coupling in

the three flavor PNJL model. Using the formalism as given
in Sec. II we estimate the axion mass and self-coupling at
finite temperature and quark chemical potential. We show
the results and the discussions of these results in Sec. III.
Finally in Sec. IV we conclude our investigation with an
overview of it.

II. FORMALISM: AXION WITHIN
THE PNJL MODEL

QCD, in principle, can have a parity violating term, the
so-called θ term,

Lθ ¼
θg2s
64π2

Ga
μνG̃

μν
a ; ð1Þ

where Ga
μν is the gluon field strength and G̃

a
μν its dual. Such

term respects Lorentz invariance as well as gauge invari-
ance but violates parity unless θ ¼ 0 mod π. However, in
nature, QCD respects CP to a large extent in vacuum,
as is indicated by the fact that the magnitude of the
CP-violating term, θ, arising from the measurement of
the intrinsic electric dipole moment of neutrons, is small,
θ < 0.7 × 10−11.
A dynamical and elegant way to explain the smallness of

θ is to elevate θ to a field in such a way that it has a
vanishing vacuum expectation value. The normalized axion
field is denoted as aðxÞ ¼ θðxÞfa. Here fa is the axion
decay constant which also represents the PQ symmetry
breaking scale. The phenomenology of the axion is con-
trolled by the axion decay constant fa. Astrophysical
observations, e.g., cooling rate of the SN1987A supernova
and black hole superradiance put stringent bounds on
the PQ symmetry breaking scale, 108 ≲ fa ≲ 1017 GeV
[92–97]. Typically one could consider fa to be of the order
of the grand unified scale (GUT scale) ∼1016 GeV. Hence
the interaction between the axion field and the QCD gauge
field now can be expressed as Lθ ∝ ða=faÞGG̃. In vacuum
for θ ¼ 0, spontaneous parity violation does not exist as per
the Vafa-Witten theorem [98]. On the other hand, there
could be CP violation for θ ¼ π, by the Dashen phenom-
ena, with the appearance of two degenerate CP-violating
vacua separated by a potential barrier. Because of the
nonperturbative nature of this CP-violating term, this has
been studied in different low energy effective models. In the
present investigation, we shall confine our attention to the
PNJL model.
The PNJL model which is an extension of the NJL model

is defined by a Lagrangian which couples the quarks to a
temporal background gauge field representing Polyakov
loop dynamics. Explicitly, the Lagrangian density of the
three flavor PNJL model with the Kobayashi-Maskawa-
’t Hooft determinant interaction term incorporating the
interaction with the axion can be expressed as [67,99]
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L ¼ q̄ðiγμDμ − m̂Þqþ Gs

X8
A¼0

½ðq̄λAqÞ2 þ ðq̄iγ5λAqÞ2�

− K½eiθ detfq̄ð1þ γ5Þqg þ e−iθ detfq̄ð1 − γ5Þqg�
þ UðΦ; Φ̄; TÞ: ð2Þ

Here q ¼ ðqu; qd; qsÞT is the quark field, and m̂ represents
the current quark mass matrix diagðmu;md;msÞ. In the
present investigation we consider mu ¼ md ¼ m0.
λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

I3×3; here I3×3 is the 3 × 3 identity matrix in
flavor space, λA with A ¼ 1; 2;…; 8 are the Gell-Mann
matrices in flavor space. The covariant derivative Dν ¼
∂ν − iAν and Aν ¼ δν0A

0. The gauge coupling is absorbed in
the definition of Aμ ¼ gsAA

μ
λA

2
, where AA

μ is the SU(3)
gauge field and λA are the Gell-Mann matrices, gs is the
gauge coupling. In the NJL sector, Gs denotes the coupling
of the four-quark interaction which includes scalar and
pseudoscalar type interactions. This interaction term is
symmetric under SUð3ÞL × SUð3ÞR ×Uð1ÞV ×Uð1ÞA ×
SUð3ÞC symmetry. K is the coupling of the Kobayashi-
Maskawa-’t Hooft determinant interaction. This deter-
minant is taken in the flavor space. The determinant
interaction term explicitly breaks the Uð1ÞA symmetry of
the Lagrangian. The Polyakov loop potential UðΦ; Φ̄; TÞ is
the effective potential of the traced Polyakov loop and its
Hermitian conjugate,

Φ ¼ 1

Nc
TrL; Φ̄ ¼ 1

Nc
TrL†: ð3Þ

This trace is in the color space. The Polyakov loop operator
L is the Wilson loop in the temporal direction which can be
expressed as [100,101]

Lðx⃗Þ ¼ P exp

�
i
Z

β

0

dτA0ðx⃗; τÞ
�
; β ¼ 1=T; ð4Þ

where P is a path ordering operator in the imaginary time
τ ¼ it. In a gauge where A0 is time independent, one
can perform the integration trivially and we will have
L ¼ expðiβA0Þ. Further, one can rotate the gauge field in
the Cartan subalgebra Ac

0 ¼ A3
0λ

3 þ A8
0λ

8, so that L is
diagonal in the color space [102].
In the absence of quarks, the Polyakov loop can be

considered as an order parameter for the confinement-
deconfinement transition. The confinement-deconfinement
transition is characterized by the spontaneous breaking of
the Zð3Þ center symmetry of QCD. For vanishing chemical
potential Φ ¼ Φ̄, but at finite baryon chemical potential in
general Φ ≠ Φ̄. At low temperatures, the Polyakov loop
potential has a unique minimum at Φ ¼ 0 ¼ Φ̄. However,
at a higher temperature, above the transition temperature,
an absolute minimum of U occurs at a nonvanishing value
ofΦ and Φ̄. For vanishing baryon chemical potential, in the

high-temperature limit T → ∞, Φ → 1. The chosen effec-
tive potential U which is written in terms of Φ and Φ̄,
following the Zð3Þ symmetry is expressed as

UðΦ;Φ̄;TÞ¼
�
−
b2ðTÞ
2

Φ̄Φ−
b3
6
ðΦ3þΦ̄3Þþb4

4
ðΦΦ̄Þ2

�
T4;

ð5Þ

with

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð6Þ

The coefficients ai and bi and T0 can be fixed using the
pure-gauge lattice QCD data. The coefficients ai and bi
are given in Table I. The critical temperature T0 for
confinement-deconfinement phase transition is fixed to
be 270 MeV in the pure gauge sector [72–75]. However
in the presence of fermions the value for T0 changes as
discussed in Ref. [103]. Accordingly in the present case of
(2þ 1) flavors, we have taken T0 ¼ 187 MeV.
In the mean-field approximation the thermodynamic

potential (Ω) of the PNJL model at finite temperature
(T) and quark chemical potential (μ) can be expressed as
[65–67,99]

Ωðσi; ηi;Φ; Φ̄; θ; T; μÞ
¼ Ωq̄q þ

X
i

2Gsðσi2 þ ηi
2Þ þ 4Kðcos θσ2uσs þ sin θη2uηsÞ

− 4Kðcos θð2σuηuηs þ ηu
2σsÞ

þ sin θð2σuσsηu þ σuσuηsÞÞ þ UðΦ; Φ̄; TÞ: ð7Þ

Here σi ¼ −hq̄iqii is the scalar condensate for the flavor
iði ¼ u; d; sÞ and ηi ¼ −hq̄iiγ5qii is the pseudoscalar con-
densate for flavor iði ¼ u; d; sÞ. In the mean field approxi-
mation, the fields are replaced by their expectation (thermal
expectation) values. One may note here that we have
neglected the contribution of flavor off diagonal terms
arising from determinant interaction to the thermodynamic
potential, as such a contribution arising from the off
diagonal terms are 1=Nc suppressed compared to the
diagonal terms [65,66]. However off diagonal terms
become relevant in the presence of a finite isospin chemical
potential, as has been considered in Refs. [104,105]. In the
present investigation, we confine our attention to the case
of symmetric matter where all the quarks have the same
chemical potential. Throughout the manuscript, we have

TABLE I. Parameters for Polyakov loop potential.

a0 a1 a2 a3 b3 b4

6.75 −1.95 2.625 −7.44 0.75 7.5
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used the notation σ, η, Φ and Φ̄ to represent the fields as
well as their expectation values for simplicity and conven-
ience. As mentioned above at a low temperature where
Φ ¼ 0 and Φ̄ ¼ 0, the potential has only one minimum. For
temperatures higher than the transition temperature, the Φ
and Φ̄ develop a nonvanishing vacuum expectation value,
and the cubic term in the Polyakov loop potential leads to

Zð3Þ degenerate vacua. Generally for a ¼ 0 or θ ¼ 0 the
pseudoscalar condensate ηi vanishes. Therefore parity, as
well as CP, is not broken at θ ¼ 0. But any nonvanishing
value of η indicates the breaking of parity symmetry and
CP violation. In the PNJL model the fermionic contribution
to the thermodynamic potential in the grand canonical
ensemble is

Ωq̄q ¼ −2Nc

X
i

Z
dp

ð2πÞ3 E
i
p − 2T

X
i

Z
dp

ð2πÞ3 ðlog½1þ 3Φ exp½−βωi
−� þ 3Φ̄ exp½−2βωi

−� þ exp½−3βωi
−��

þ log½1þ 3Φ̄ exp½−βωiþ� þ 3Φ exp½−2βωiþ� þ exp½−3βωiþ��Þ: ð8Þ

In the above Nc ¼ 3 is the number of colors, i is the flavor
index, β ¼ 1=T is the inverse of temperature, ωi

� ¼ Ei
p � μ

is the excitation energy for antiquarks and quarks respec-
tively. Here Ei

p is the single-particle energy for flavor i
given as

Ei
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þMi2

q
; Mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi

s
2 þMi

ps
2

q
; ð9Þ

where Mi is the constituent quark mass arising from the
scalar and pseudoscalar condensates. Further, Mi

s and Mi
ps

can be expressed in terms of the scalar and pseudoscalar
condensates in the following manner:

Mu
s ¼ Md

s

¼ mu þ 4Gsσu þ 2Kðcos θðσuσs − ηuηsÞ
− sin θðσuηs þ ηuσsÞÞ; ð10Þ

Mu
ps ¼ Md

ps

¼ 4Gsηu − 2Kðcos θðσuηs þ ηuσsÞ
þ sin θðσuσs − ηuηsÞÞ; ð11Þ

and

Ms
s ¼ ms þ 4Gsσs þ 2Kðcos θðσ2u − η2uÞ − 2 sin θσuηuÞ;

ð12Þ

Ms
ps ¼ 4Gsηs − 2Kð2 cos θσuηu þ sin θðσ2u − η2uÞÞ: ð13Þ

The σi and ηi are scalar and pseudoscalar condensates
respectively for flavor i and are given as

σi ¼ −hq̄iqii ¼ 2Nc

Z
dp

ð2πÞ3
Mi

s

Mi ð1− fpðωi
−Þ− fapðωiþÞÞ;

ð14Þ

ηi ¼ −hq̄iiγ5qii

¼ 2Nc

Z
dp

ð2πÞ3
Mi

ps

Mi ð1 − fpðωi
−Þ − fapðωiþÞÞ: ð15Þ

Here fp and fap are the thermal distribution functions
for the quarks and the antiquarks respectively which get
modified by the Polyakov loop as

fpðωi
−Þ ¼

Φe−βω
i
− þ 2Φ̄e−2βω

i
− þ e−3βω

i
−

1þ 3ðΦþ Φ̄e−βω
i
−Þe−βωi

− þ e−3βω
i
−
; ð16Þ

fapðωiþÞ ¼
Φ̄e−βω

i
þ þ 2Φe−2βω

i
þ þ e−3βω

i
þ

1þ 3ðΦ̄þΦe−βω
i
þÞe−βωi

þ þ e−3βω
i
þ
: ð17Þ

Minimizing the thermodynamic potential with respect to
scalar (σi) and pseudoscalar (ηi) condensates as well as the
Polyakov loop variable (Φ) and its conjugate (Φ̄) results in
the following gap equations:

∂Ω
∂σi ¼ 0;

∂Ω
∂ηi ¼ 0;

∂Ω
∂Φ ¼ 0;

∂Ω
∂Φ̄ ¼ 0: ð18Þ

The first two gap equations lead to the self-consistent
equation forMi

s andMi
ps as in Eqs. (10)–(13). The last two

gap equations lead to the following two self-consistent
equations for the Polyakov loop variables as

IΦ þ T4

�
−
b2
2
Φ̄ −

b3
2
Φ2 þ b4

2
ΦΦ̄2

�
¼ 0; ð19Þ

IΦ̄ þ T4

�
−
b2
2
Φ −

b3
2
Φ̄2 þ b4

2
Φ̄Φ2

�
¼ 0: ð20Þ
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Here we have defined

IΦ ¼ ∂Ωq̄q

∂Φ
¼

X
i

− 6T
Z

dp
ð2πÞ3

�
e−βω

i
−

1þ 3Φe−βω
i
− þ 3Φ̄e−2βω

i
− þ e−3βω

i
−
þ e−2βω

i
þ

1þ 3Φ̄e−βω
i
þ þ 3Φe−2βω

i
þ þ e−3βω

i
þ

�

IΦ̄ ¼ ∂Ωq̄q

∂Φ̄
¼

X
i

− 6T
Z

dp
ð2πÞ3

�
e−2βω

i
−

1þ 3Φe−βω
i
− þ 3Φ̄e−2βω

i
− þ e−3βω

i
−
þ e−βω

i
þ

1þ 3Φ̄e−βω
i
þ þ 3Φe−2βω

i
þ þ e−3βω

i
þ

�
:

The fermionic contribution to the thermodynamic poten-
tial of the PNJL model as given in Eq. (8) involves a
vacuum contribution ðT ¼ 0; μ ¼ 0Þ and a medium con-
tribution ðT ≠ 0; μ ≠ 0Þ. The vacuum term is ultraviolet
(UV) divergent. Various regularization methods have been
used in the literature to regulate this vacuum term, for
instance, a sharp three momentum cutoff, and the proper
time regularization scheme. In this investigation we con-
sider a sharp three momentum cutoff (Λ) to regulate the
vacuum term. In the medium-term distribution function
takes care of the ultraviolet problem.
The parameters used in the NJL part are the same as in

Refs. [65,66]. The parameters are fixed by fitting the model
to zero temperature pion mass, pion decay constant and
masses of kaon and η0. Here the cutoff parameter is
Λ ¼ 602.3 MeV, the bare quark masses are taken as
mu ¼ md ¼ 5.5 MeV, ms ¼ 140.7 MeV while the cou-
plings are given as GsΛ2 ¼ 1.835 and the determinant
coupling KΛ5 ¼ 12.36. With this parametrization, one gets
a constituent quark mass for up and down quarks ofMu;d ¼
368 MeV and for strange quark of Ms ¼ 549 MeV at zero
temperature and vanishing chemical potential. With this set
of parameters, the mass of η is underestimated by 6 percent.
Let us note that after solving the gap equation for a given

T and μ with all the condensates determined, the thermo-
dynamic potential as given in Eq. (7) gives rise to the axion
effective potential Ω̃ðθ; T; μÞ as a function of θ≡ a=fa
within the PNJL model:

Ω̃ðθ; T; μÞ ¼ Ω½σiðθ; T; μÞ; ηiðθ; T; μÞ;Φðθ; T; μÞ;
Φ̄ðθ; T; μÞ; θ; T; μ�: ð21Þ

Using the axion potential one can obtain the axion mass
and the axion self-coupling can be obtained as [70]

m2
a ¼

d2Ω̃
da2

����
a¼0

¼ χ

f2a
; λa ¼

d4Ω̃
da4

����
a¼0

: ð22Þ

Here χ is the topological susceptibility given by the
second derivative of effective potential with respect to θ.

Note that all the physical condensates σi, ηi, Φ and Φ̄ have
implicit dependence on the axion field, so that

dΩ̃
da

¼ ∂Ω̃
∂a þ ∂Ω̃

∂σi
∂σi
∂a þ ∂Ω̃

∂ηi
∂ηi
∂a þ ∂Ω̃

∂Φ
∂Φ
∂a þ ∂Ω̃

∂Φ̄
∂Φ̄
∂a : ð23Þ

Therefore to evaluate axion mass and self-coupling as

given in Eq. (22) we have to evaluate ∂ðnÞσi
∂aðnÞ ,

∂ðnÞηi
∂aðnÞ ,

∂ðnÞΦ
∂aðnÞ and

∂ðnÞΦ̄
∂aðnÞ , where n ¼ 1, 2, 3, 4 represents the order of the

derivative. ∂ðnÞσi
∂aðnÞ ,

∂ðnÞηi
∂aðnÞ ,

∂ðnÞΦ
∂aðnÞ and ∂ðnÞΦ̄

∂aðnÞ can be evaluated by
taking the successive derivative of the gap equations as
given in Eq. (18), with respect to the axion field a.

III. RESULTS AND DISCUSSION

A. Vanishing quark chemical potential

In this subsection, we present the results for vanishing
quark chemical potential μ ¼ 0 for which the Polyakov
loop Φ and its conjugate Φ̄ are the same. In general, the
fields Φ and Φ̄ are different only at nonvanishing quark
chemical potential.
As may be noted from the thermodynamic potential of

the PNJL model, at temperatures below the critical temper-
ature, the Polyakov loop has a negligible value, and the
quark excitations are highly suppressed statistically. Only
for temperatures near Tc and above, the Polyakov loop
attains a significant value to affect the quark condensates.
In fact, due to the nonvanishing values of Φ the chiral
transition temperature in the PNJL model is higher with
respect to the same in the NJL model. In what follows,
we refer to NJL model results which are obtained by
replacingΦ ¼ Φ̄ ¼ 1 in Eq. (8) and taking UðΦ; Φ̄; TÞ ¼ 0
in Eq. (7). Thus, we are taking the same parameters in the
NJL and PNJL model in the quark sector for comparison.
For a given temperature T, and chemical potential μ and

a CP-violating parameter θ, we solve the coupled self-
consistent Eqs. (10)–(20). Since we have assumed isospin
symmetry for the light quarks (u and d quarks), we have six
coupled gap equations: two for scalar condensate related to
the masses Mu

s and Ms
s, two for pseudoscalar condensate
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related to Mu
ps and Ms

ps and two for Polyakov loop
variables Φ and Φ̄. The solutions to these equations are
then substituted in Eq. (7) and are then checked whether
they correspond to global minima of thermodynamic
potential or not. If there are multiple solutions of gap
equations, we choose the one for which the thermodynamic
potential is minimum.
In Fig. 1 we have shown the condensates for u and s

quarks and also the Polyakov loop variable as a function of
temperature for θ ¼ 0 in Fig. 1(a) and for θ ¼ 2π=3 in
Fig. 1(b). We have normalized the quark condensates with

respect to their values at zero temperature. We note that
while solving the gap equations (10)–(13) and (18)–(20),
we have used the cutoff Λ while considering the contri-
butions from the terms independent of the medium
while we have considered the cutoff to be infinity for
the medium dependent part. Further, the Polyakov loop
at a higher temperature beyond the critical temperature
slightly exceeds unity. Such an observation is also there in
Ref. [103]. This is a reflection of the parametrization of the
Polyakov loop potential. A different parametrization using
the logarithmic function of fields avoids Polyakov loop

(a) (b)

(c)

FIG. 1. (a) Variations of the normalized scalar condensates σu=σu0 , σ
s=σs0 and Φ with temperature for θ ¼ 0. (b) Variations of the

normalized scalar condensates σu=σu0 , σ
s=σs0 andΦ with temperature for θ ¼ 2π=3. Here σi0 denotes the scalar condensate in vacuum for

θ ¼ 0 for flavor i. (c) Plot of the normalized scalar condensate (σ̂u), pseudoscalar condensate (η̂u) and the normalized constituent mass
(M̂u) as a function of θ. Mu and σu are normalized to their values in vacuum (T ¼ 0) at θ ¼ 0 while ηu is normalized to its value in
vacuum (T ¼ 0) at θ ¼ π.
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value going beyond unity [106,107]. As may be noted in
Fig. 1(a), at low temperatures up to 100 MeV, the medium
effects are small and the light quark condensate ratio
remains close to its zero temperature value of unity.
Beyond 100 MeV, the Polyakov loop becomes nonvanish-
ing and suppresses statistically the medium contribution for
the PNJL model as compared to the NJL model resulting in
a higher critical temperature for chiral crossover transition.
Further, the strange quark condensate values remain sig-
nificant beyond the temperature when the chiral symmetry
for the light quarks is almost restored.
As may be observed in Fig. 1(b), the values of the

light quark scalar condensates for θ ¼ 2π=3 decrease
compared to their values for θ ¼ 0 by almost half. A
similar change is not observed for the strange condensate
whose value remains almost constant for θ ¼ 0 and
θ ¼ 2π=3. This is due to the fact that strange pseudoscalar
condensate (ηs) is very small in magnitude (to be discussed
later). However, for all the condensates, the temperature
dependence remains similar to the θ ¼ 0 case. This is
because the temperature dependence is decided by the
quark mass which depends on both the scalar and pseu-
doscalar condensates and remains almost constant with
respect to variation in θ as seen in Eq. (9). This is seen in
Fig. 1(c) where we have shown the variation of the
normalized scalar and pseudoscalar condensates as well
as the constituent quark mass at T ¼ 0 MeV as a function
of θ. The value of the constituent quark mass and the scalar
condensates are normalized to their corresponding values at
θ ¼ 0, while the pseudoscalar condensate is normalized to
its value at θ ¼ π. From Fig. 1(c) it may be noted that the

scalar and pseudoscalar condensates vary in a complemen-
tary manner such that constituent quark mass remains
almost constant. It may also be observed that from
Figs. 1(a) and 1(b) the Polyakov loop parameter remains
almost unchanged compared to its value at θ ¼ 0. The
reason is that the Polyakov loop does not couple directly
with θ, but gets affected indirectly by the condensates σ and
η which themselves depend upon the CP-violating param-
eter θ. The gap equation for the Polyakov loop variables, as
given in Eqs. (19) and (20), are obtained by differentiating
thermodynamic potential with respect to Polyakov loop
variables. In doing so, the contribution arises from Ωq̄q and
UðΦ; Φ̄Þ, both of which are almost independent of θ
variation. Ωq̄q depends on σ and η through the quark mass
M, which as we have seen is almost independent of θ.
Therefore the Polyakov loop parameter is almost indepen-
dent of θ. We, however, note that there is a weak
dependence of the Polyakov loop parameter on θ as we
shall discuss later.
Since the transition is a crossover here, we define the

transition temperature as the maximum in the derivative of
the order parameters. This is shown in Fig. 2. In Fig. 2(a),
we show the variation of the derivatives of the order
parameters, i.e., dσu=dT for the NJL and the PNJL model
and dΦ=dT for the PNJL model. We have multiplied the
quark condensate derivative by a factor of 10 so as to
compare them with the variation of dΦ=dT in the same
plot. Figure 2(a) is for θ ¼ 0 and Fig. 2(b) is for θ ¼ 2π=3.
From Fig. 2 we can see that the variation of dσu=dT and
dΦ=dT shows a nonmonotonic behavior with temperature
with a peak. The peak in the variation of dσu=dT and

(a) (b)

FIG. 2. Left plot: variation of dσu=dT and dΦ=dT with temperature in the PNJL and NJL model for θ ¼ 0. Peak structure in the
variation of dσu=dT indicates that the location of the pseudocritical temperature in the NJL model is Tcσ ¼ 173 MeV, while in the PNJL
model Tcσ ¼ 188 MeV. The peak in the variation of dΦ=dT for PNJL model is at TcΦ ¼ 166 MeV. Right plot: variation of dσu=dT and
dΦ=dT with temperature in the PNJL and NJL model for θ ¼ 2π=3.
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dΦ=dT indicates the chiral transition temperature (Tcσ)
and the confinement-deconfinement transition temperature
(TcΦ) respectively. The critical temperature for deconfine-
ment is TcΦ ¼ 166 MeV while Tcσ ¼ 188 MeV for the
PNJL model. It may also be noted that at the crossover
transition the Polyakov loop value is about 0.65 as
compared to its asymptotic value Φ ∼ 1. Similarly, the
scalar condensate value at the peak of the corresponding
susceptibility Tcσ is σðTcσÞ≡ 0.597 σ0. Nonvanishing
condensates near Tc indicate importance of nonperturbative
effects. It is clear from Fig. 2 that the chiral transition
temperature is higher in the PNJL model as compared to the

NJL model. The chiral and deconfinement transition
temperature are slightly different as may be noted from
the peak position and differ by about 20 MeV. As noted
earlier, this temperature behavior is the same for θ ¼ 2π=3
as shown in the right plot of Fig. 2 due to negligible change
in constituent mass with θ.
Next, we discuss in Fig. 3 the behavior of the magnitude

of pseudoscalar condensates ηi with temperature. Let us
note that jηij vanishes for θ ¼ 0 and is maximum for θ ¼ π
(below the CP restoration temperature). The behavior of
jηij for different temperatures is shown in Fig. 3(a). The
behavior is similar to the scalar condensate as a function of

(a) (b)

(c)

FIG. 3. (a) and (b) show variation of the magnitude of pseudoscalar condensate (jηuj) and its derivative (dηu=dT) respectively with
temperature for θ ¼ π=3; π=2; 2π=3; π in a three flavor PNJL model. Nonvanishing value of the pseudoscalar condensate indicates the
breaking of the parity symmetry (P) or equivalently the breaking of the CP (charge conjugation and parity) symmetry in QCD. At zero
temperature η has nonvanishing value for nonzero θ, but at a high enough temperature the η condensate vanishes. In (c) we compare the
magnitude of pseudoscalar condensates for u and s quarks.
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temperature as shown in Fig. 1(a). As may be observed, the
transition is a crossover for all values of θ except for θ ¼ π
where the pseudoscalar condensate vanishes at high tem-
perature leading to a second order transition [65,66].
Similar to the chiral transition and deconfinement transition
one can also define CP transition temperature from the
corresponding peak in dηu=dT which we have plotted in
Fig. 3(b). As θ increases the peak value of dηu=dT
increases. The critical temperature for CP transition is
∼188 MeV, the same as for the chiral transition temper-
ature. For θ ¼ π the pseudoscalar condensate vanishes
beyond Tc, however, the constituent quark mass still
remains above current quark mass due to the finite value
for the scalar condensates. Such high temperature restora-
tion of CP is expected as the instanton effects that are
responsible for CP violation become suppressed exponen-
tially [108]. However, it should be noted that nonequili-
brium processes such as heavy ion collision can have local
CP violation that can be induced by sphaleron processes
which are not suppressed at high T [109].
In Fig. 3(c) we plotted the magnitude of pseudoscalar

condensate jηj for up and strange quarks as a function of
temperature. It turns out that the parity violating pseudo-
scalar condensate due to the strange quarks is about an
order of magnitude less than light quark pseudoscalar
condensates. Such a flavor violation for the pseudoscalar
condensate could be related to the large mass of the strange
quarks compared to the light quarks. This is in contrast to
the scalar condensates which is discussed later.
In Fig. 4 we have shown the variation of σu with respect

to θ at three different temperatures. We have chosen
here the temperatures below and above Tc ∼ 188 MeV

including the zero temperature, i.e., T ¼ 0, 160 and
200 MeV. The periodic behavior of the condensate with
respect to θ is due to cos θ and sin θ dependent terms
present in the thermodynamic potential. This behavior of
the condensate with θ is similar to the results as obtained in
the NJL model in Refs. [65,66,70,71]. σu reaches its
maximum value for θ ¼ 2iπ, for i ¼ 0; 1; 2… etc. and
attains minimum for θ ¼ ð2iþ 1Þπ at all temperatures.
Figure 5 represents the variation of the pseudoscalar

condensate ηu with respect to θ for different values of
temperatures. Similar to Fig. 4 here also we consider values
of temperature below and above the transition temperature.
As may be observed the pseudoscalar condensate behaves
in a complementary manner to the scalar condensate as a
function of θ as mentioned earlier. At T ¼ 0, ηu is
discontinuous for θ ¼ ð2iþ 1Þπ, for i ¼ 0; 1; 2… etc.
and vanishes for θ ¼ 2iπ. At T ¼ 0, ηu starts with a
vanishing value and increases in magnitude monotonically
with an increase in θ up to θ ¼ π at which point it changes
discontinuously to a value equal in magnitude but opposite
in sign and then decreases monotonically in magnitude and
vanishes at θ ¼ 2π. At θ ¼ π there exist two degenerate
vacua which are in agreement with the Dashens phenomena
[110]. The two vacua which have opposite signs of the
condensate η differ by a CP transformation between them.
It may be noted that the effective potential as a function of θ
is maximum at θ ¼ π (as discussed later). This degeneracy
for ηu at θ ¼ π is lifted beyond Tc ¼ 188 MeV as seen in
Fig. 3. Hence Dashen’s phenomenon breaks down beyond

FIG. 4. Variation of scalar condensate σu with θ for three
different values of temperature in the PNJL model. The periodic
variation of σu with θ is due to the dependence of the
thermodynamic potential on the periodic functions sinðθÞ
and cosðθÞ.

FIG. 5. Variation of ηu with respect to θ for different values of T
in the PNJL model. At zero temperature η has discontinuity at
θ ¼ ð2iþ 1Þπ and η vanishes at θ ¼ 2iπ, for i ¼ 0; 1; 2…. The
presence of nonvanishing ηu indicates breaking of the CP
symmetry. The degenerate vacua present at θ ¼ ð2iþ 1Þπ are
CP conjugate. With increasing temperature this degenerate
vacuum structure goes away.
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Tc and ηu becomes a continuous function of θ. The
magnitude of ηu decreases monotonically with an increase
in temperature for all values of θ.
In Fig. 6(a) we have shown the variation of Polyakov

loopΦ with respect to θ at T ¼ 160 MeV. As noted earlier,
Φ becomes significant only near and beyond the critical
temperature. The Polyakov loop variable Φ also oscillates
with θ similar to scalar and pseudoscalar condensates.

However, the variation inΦwith θ is not significantly large.
As mentioned earlier this insensitivity with θ is associated
with the near constant value of the constituent quark masses
with respect to θ as shown in Fig. 1(c). We find that such
behavior of Polyakov loop variable Φ being almost
independent of θ persists at higher temperature as seen
in Fig. 6(b). Here the value of Φ is higher but the variation
with θ is still negligible.
Figure 7 shows the variation of the normalized thermo-

dynamic potential or the axion potential with respect to θ
for different temperatures. At each temperature, the value of
the thermodynamic potential at θ ¼ 0 has been subtracted.
This potential has degenerate vacua at θ ¼ 2iπ for i ¼
0; 1; 2… etc. It also has maxima at θ ¼ ð2iþ 1Þπ.
According to the Vafa-Witten theorem, the effective poten-
tial should have a minimum at θ ¼ 0, which is clear from
this figure. At finite temperature, the effective potential
becomes flatter. As the temperature is increased from 0 to
170 MeV, which is below the transition temperature, the
potential does not change much. This is because in this
temperature range the condensate values do not change
much in the PNJL model as shown in Figs. 1–3 respec-
tively. Further for a higher temperature range above
170 MeV the values of the different condensates, e.g.,
σ; η, and Φ change significantly in the PNJL model and so
does the effective potential. As the temperature is increased
further, the barrier height between degenerate vacua at
θ ¼ 2iπ decreases. The barrier becomes negligibly small
above Tc ∼ 188 MeV. One may also note that at
θ ¼ ð2iþ 1Þπ, even though the pseudoscalar condensate
vanishes above Tc, the thermodynamic potential is still
maximum at θ ¼ ð2iþ 1Þπ.

(a) (b)

FIG. 6. (a) Variation of Φ with θ for T ¼ 160 MeV. Variation of Φ with θ is similar to the variation of scalar condensate with θ. Note
that the Polyakov loop does not have direct coupling with the axion field. However due to gap equation Φ is connected with the other
condensates which depend on θ. Therefore Φ indirectly depends on θ. (b) Variation of Φ with θ for T ¼ 200 MeV.

FIG. 7. Variation of the normalized thermodynamic potential
for different values of the temperature in the PNJL model. The
thermodynamic potential is given with respect to the potential at
θ ¼ 0 at each temperature.
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Next we show the variation of the ratio of axion mass
[maðTÞ=maðT ¼ 0Þ] at finite temperature normalized to its
mass at zero temperature and the normalized topological
susceptibility [χðTÞ=χðT ¼ 0Þ] with temperature. In the
left plot of Fig. 8 we show the variation of the normalized
axion mass [maðTÞ=maðT ¼ 0Þ] for the PNJL model. For
comparison, we have given the normalized axion mass
which is found in the NJL model and chiral perturbation
theory [70,71].
It may be relevant here to discuss the expression of the

normalized topological susceptibility χðTÞ
χðT¼0Þ as may be

estimated from chiral perturbation theory (χPT) for three
flavors [112]. The topological susceptibility is related to the
quark condensate as [113]

χ ¼ −m̄2
X
i

hq̄iqii
mi

¼ m̄2

�
2
σu
mu

þ σs
ms

�
;

1

m̄
¼

X
i

1

mi
:

ð24Þ

We would like to comment here that, for the QCD
vacuum, the condensates for the light flavors (including
u, d, and s quarks) are almost the same i.e., hq̄uqui ≃
hq̄dqdi ≃ hq̄sqsi≡ σ as also observed in lattice simulations
[111]. In such a limit Eq. (24) reduces to the Leutwyler-
Smilga relation χ ¼ m̄σ at zero temperature [85]. However,
this situation gets complicated at higher temperatures, par-
ticularly near the chiral restoration as the light quark con-
densate drops much faster than the strange quark condensate.
Indeed, this is, in fact, seen in Fig. 9 where we have

plotted the ratio of σs=σu estimated within the present PNJL
model. Thus the estimation of temperature dependent
topological susceptibility in three flavor χPT reduces to

estimating the temperature dependent light ðu; dÞ and
strange quark antiquark condensates. The leading temper-
ature dependent contribution to the quark condensate is
given by [114]

σuðTÞ ¼ hq̄uqui0 þ
Σπ
u

mu
nπ þ

ΣK
u

mu
nK; ð25Þ

σsðTÞ ¼ hq̄sqsi0 þ
ΣK
s

ms
nK; ð26Þ

where the scalar densities nM (M ¼ π, K) of the Goldstone
bosons are given as

FIG. 8. Left plot: variation of the normalized axion mass maðTÞ=maðT ¼ 0Þ with temperature for the PNJL model. maðT ¼ 0Þ is the
axion mass in vacuum. For comparison we have also plotted the NJL model results and chiral perturbation theory results for the axion
mass. Right plot: variation of the topological susceptibility χðTÞ=χðT ¼ 0Þ with temperature. For comparison we have also provided the
results for the NJL model and 2 and 2þ 1 flavor lattice QCD results as given in Ref. [111].

FIG. 9. Ratio of strange condensate to up quark condensate.
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nM ¼ gM
ð2πÞ3

Z
dp

mM

EMðpÞ
1

expðβEMðpÞÞ − 1
ð27Þ

with EMðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

M

p
and gM is the corresponding

degeneracy. Further, in the above ΣM
i is the mesonic sigma

term that captures the response of the Goldstone boson
masses to the changes in the current quark mass of a flavor i
and is given by

ΣM
i ¼ mi

∂mM

∂mi
: ð28Þ

The sigma terms for the pseudo-Goldstone bosons can be
estimated by χPT using the Gell-Mann-Oakes-Renner
relation at zero temperature [115]:

f2πm2
π

�
1 − κ

m2
π

f2π

�
¼ ðmu þmdÞσu0 ð29Þ

and

f2Km
2
K

�
1 − κ

m2
K

f2π

�
¼ σu0 þ σs0

2
ðmu þmsÞ: ð30Þ

These include the next to leading order correction
incorporated through the parameter κ ¼ 0.021 [116].
Taking the derivatives with respect to current quark masses
leads to the sigma terms for pion and kaon as

Σπ
u

mu
¼ ∂mπ

∂mu
¼ σu0

f2πmπ

�
1þ 2κ

m2
π

f2π

�
≃
mπ

�
1þ κ m2

π

f2π

	

4mu
ð31Þ

and

ΣK
u

mu
¼ ΣK

s

ms
≃
mK

�
1þ κ

m2
K

f2π

	

2ðmu þmsÞ
: ð32Þ

We then have, using Eq. (24),

χðTÞ
χðT ¼ 0Þ ¼ 1 −

1

2f2πð1þ Cs
2

mu
ms
Þ

��
nπ
mπ

��
1þ 2κ

m2
π

f2π

�

þ
�
nK
mK

�
1

ðfK=fπÞ2
�
1þ 2κ

m2
K

f2π

��
1þ Cs

2

�

þ 1

2

�
mu

ms

��
nK
mK

�
1

ðfK=fπÞ2
�
1þ 2κ

m2
K

f2π

�

×

�
1þ Cs

2

��
: ð33Þ

In the above equation σsðT ¼ 0Þ ¼ Csσ
uðT ¼ 0Þ. We have

used here fK=fπ ¼ 1.22, Cs ¼ 0.8 which gives mu=ms ¼
0.041 [117].

Thus, the leading contribution arises from the first term
in the square bracket and is given by

χðTÞ
χðT ¼ 0Þ ¼ 1 −

3

4π2
T2

f2π

Z
∞

0

dq
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ m2
π

T2

q

×
1

exp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ m2
π

T2

q 	
− 1

≡ 1 −
3T2

f2π
J1ðm2

π=T2Þ; ð34Þ

which is exactly the two flavor result for the susceptibility
[8]. Here,

JnðζÞ ¼
1

ðn − 1Þ!
�
−

∂
∂ζ

�
n
J0ðζÞ;

J0ðζÞ ¼ −
1

π2

Z
∞

0

dq q2 log
�
1 − exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ζ

q 		
:

ð35Þ

Note that according to Eq. (22), χðTÞ=χðT ¼ 0Þ ¼ m2
aðTÞ=

m2
aðT ¼ 0Þ. Hence the topological susceptibility is just

another way to represent the axion mass. The ratio of axion
mass at finite temperature to axion mass at zero temperature
is plotted in the left panel of Fig. 8. For comparison, we
have plotted the same as obtained from the NJL model as
well as the χPT result of Eq. (33).

FIG. 10. Variation of the normalized axion self-coupling
λaðTÞ=λaðT¼0Þ with temperature for the PNJL model. λaðT¼0Þ
is the axion self-coupling in vacuum. For comparison we have
also plotted the NJL model results and the chiral perturbation
theory results for the axion self-coupling.
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It is important to note that the chiral perturbation theory
results for topological susceptibility and axion masses are
only applicable in the temperature range below the QCD
transition scale. In the low-temperature range (T ≲ 100)
MeV there is not much difference in the estimation of
the axion mass for the NJL model, the PNJL model, and
chiral perturbation theory. In fact, at zero temperature
the axion mass as obtained in the PNJL model is
mafa ¼ 6.07 × 10−3 GeV2, which is also the value of
the axion mass obtained in the NJL model which is
expected as Polyakov loop contribution is absent [71].
Note that the value of the axion mass at zero temperature
as found in the NJL and PNJL model is similar to the
other estimates of the axion mass, e.g., in lattice QCD
[8] the value mafa is 5.7 × 10−3 GeV2. Only in the

high-temperature range (T > 100 MeV), there is a signifi-
cant difference between the results of the NJL and the PNJL
model. This is because in the high-temperature range the
Polyakov loop plays an important role in the PNJL model,
where the scalar and the pseudoscalar condensate are
affected by the Polyakov loop parameter Φ. From this
figure (Fig. 8), it is clear that the axion mass is sensitive to
the chiral transition temperature. The increase in the chiral
transition temperature for the PNJL model as compared to
the NJL model is also manifested in the variation of the
axion mass with temperature.
In the right plot of Fig. 8 we present the variation of the

normalized topological susceptibility χðTÞ=χðT ¼ 0Þ with
T=Tc in the PNJL model. For comparison, we have also
given the results for the NJL model and three flavor lattice

(a) (b)

(c)

FIG. 11. (a) Variation of the normalized chiral condensate ðσ=σ0Þ with temperature for nonvanishing values of the quark chemical
potential. (b) Variation of the Polyakov loop Φ, and its conjugate Φ̄ with temperature for nonvanishing values of the quark chemical
potential. (c) Variation of normalized chiral condensate σs=σs0 with temperature for nonzero chemical potential.
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QCD results [111]. Near and below the transition temper-
ature PNJL model results for the normalized topological
susceptibility are consistent with the lattice QCD results,
however, one may note the NJL model results near the
transition temperature are not in such a good agreement as
in the PNJL model. Beyond Tc there is a rather large
discrepancy between the lattice and the PNJL model.
Variation of the normalized axion self-coupling

λaðTÞ=λaðT ¼ 0Þ with temperature is shown in Fig. 10.
For comparison, we have also given the results for
λaðTÞ=λaðT ¼ 0Þ estimated in the NJL model and in the
chiral perturbation theory [70,71]. In the low temperature
range as compared to the QCD transition scale the temper-
ature dependent axion self-coupling can be approximated
by the expression for two flavor given as [8]

λaðTÞ
λa

¼ 1 −
3

2

T2

f2π
J1

�
m2

π

T2

�

þ 9

2

m2
π

f2π

mumd

m2
u −mumd þm2

d

J2

�
m2

π

T2

�
: ð36Þ

J1ðm
2
π

T2Þ and J2ðm
2
π

T2Þ in Eq. (36) can be obtained using
Eq. (35).
At zero temperature the value of the axion self-coupling

as estimated in the PNJL model is λaf4a¼−ð53.71Þ4 MeV4

which may be compared with results extrapolated from the
lattice QCD estimation value of λaf4a ¼ −ð57.9Þ4 MeV4

[8]. It is clear from Fig. 10 that the results for the NJL
model, chiral perturbation theory, and the PNJL model are
in agreement in the low temperature range. But for the high-
temperature range, the PNJL model results are significantly
different from that of the NJL model results as well as χPT.

As mentioned earlier this is due to the fact that in the PNJL
model the Polyakov loop Φ only becomes effective in the
high-temperature range T > 100 MeV. The axion self-
coupling decreases with temperature and almost vanishes
above the chiral crossover transition. We however observe a
small peak near the transition temperature which we do not
expect for any physical reason and could be a limitation of
mean field approximation in evaluating the thermodynamic
potential.

B. Finite quark chemical potential

In this subsection, we discuss the results for nonvanish-
ing values of quark chemical potential (μ). In Fig. 11(a) we
have shown the variation of the normalized chiral con-
densate ðσu=σu0Þ for the light quarks. Figure 11(b) shows
the variation of the Polyakov loop Φ, and its conjugate Φ̄
with temperature for nonvanishing values of the quark
chemical potential for θ ¼ 0. Figure 11(a) indicates that
with an increase in the quark chemical potential the chiral
transition temperature decreases both in the NJL and the
PNJL model. Note that for the range of quark chemical
potential considered in these plots the chiral transition is
smooth. Only at higher quark chemical potential and low
temperature, one expects the chiral transition to be discon-
tinuous [55]. From Fig. 11(b) we see that variation of the Φ
and Φ̄ with the temperature at finite quark chemical
potential is similar to the variation of Φ and Φ̄ at vanishing
quark chemical potential. The only important difference
here is the fact that, at finite quark chemical potential, the
values of Polyakov loop Φ and its conjugate Φ̄ are not the
same. In Fig. 11(c) we have plotted the same variation of
chiral condensate for strange quark with the temperature at
the finite chemical potential. The strange quark behaves in

FIG. 12. Left plot: variation of the normalized axion mass at finite temperature and quark chemical potential with temperature for
different values of the quark chemical potential. At finite quark chemical potential due to the suppression of the instanton effects the
axion mass reduces with quark chemical potential. Right plot: variation of the normalized axion self-coupling at finite temperature and
quark chemical potential, with temperature for different values of the quark chemical potential. Similar to the axion mass, axion self-
coupling also reduces with quark chemical potential.
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a similar manner to light quarks, albeit its decrease with
temperature and/or quark chemical potential is much
slower compared to light quarks.
Next, we show the variation of the axion properties with

temperature for nonvanishing values of the quark chemical
potential. In the left plot of Fig. 12 we have shown the
variation of the normalized axion mass with temperature

and quark chemical potential. It is clear that there is a
correlation between the scalar condensate and the axion
properties, i.e., in the chirally restored or deconfined phase
the value of the scalar condensate, as well as the axion
mass, is small with respect to the same in the confined or
the chiral symmetry broken phase. With increasing quark
chemical potential chiral transition temperature decreases
which affects the axion mass. Hence with an increase in the
quark chemical potential axion mass starts to decrease at a
lower temperature both in the NJL and the PNJL model. In
the right plot, we show the variation of the normalized
axion self-coupling, i.e., λaðT; μÞ=λaðT ¼ 0; μ ¼ 0Þ with
temperature and quark chemical potential. With an increase
in the quark chemical potential, it is clear that
λaðT; μÞ=λaðT ¼ 0; μ ¼ 0Þ starts to decrease at a lower
temperature both in the NJL and the PNJL model. This
behavior of λaðT; μÞ=λaðT ¼ 0; μ ¼ 0Þ is consistent with
the fact that with an increase in the quark chemical potential
chiral transition temperature decreases. It may be noted that
similar to the case of vanishing chemical potential the
quartic coupling shows a peak at the transition temperature
which could be a limitation of the mean field potential.
It may be mentioned here that the effects of finite baryon

density have also been recently discussed in Ref. [118]. At
very high densities accessible inside the core of neutron stars
the Fermi momentum is not far from the scale of QCD
dynamics (ΛQCD). In particular, for the chemical potential
above the pion mass, finite density corrections can have an
important impact on the properties of the axion [118]. It has
been argued in Ref. [118] in the context of chiral Lagrangian
extrapolated at finite density, that due to the suppression of
the QCD-instantons the axion mass decreases in a dense
medium with respect to the vacuum (without medium). We
also get a suppression in the axion mass and coupling as
estimated at finite quark chemical potential.

FIG. 13. Variation of the thermodynamic potential Ω with
chiral condensate σ at T ¼ 0 for different values of the quark
chemical potential. Multiple vacuum structure of the thermody-
namic potential is clearly observed in this figure. For μ≲
0.357 GeV the vacuum at σu ∼ 0.0144 GeV3 is stable as com-
pared to the vacuum at σ ∼ 0.00244 GeV3. But for μ >
0.357 GeV the vacuum at σ ∼ 0.00244 GeV3 is stable. It is also
clear that across the critical chemical potential the chiral con-
densate changes discontinuously. At zero temperature the chiral
transition is first order in nature and the critical value of this
transition is μ ¼ 0.357 GeV for the parameters considered here.

FIG. 14. Left plot: variation of the normalized axion mass maðμÞ=maðμ ¼ 0Þ with quark chemical potential (μ) at zero temperature.
Right plot: variation of the normalized self-coupling of axion λaðμÞ=λaðμ ¼ 0Þ with quark chemical potential (μ) at zero temperature.
Discontinuous behavior in the axion properties has been indicated by the dotted line.
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Finally, we discuss the results for vanishing temperature
and finite quark chemical potential. In Fig. 13 we have
shown the variation of the thermodynamic potential with
the scalar condensate (σu) for different values of quark
chemical potential. For μ < 357 MeV the thermodynamic
potential shows a minimum at σu ¼ 0.0144 GeV3. For
μ ¼ 357 MeV the effective potential has degenerate min-
ima, one at σu ¼ 0.00244 GeV3 and σu ¼ 0.0144 GeV3

which defines the critical chemical potential μc. Beyond
μ ¼ 357 MeV the position of minima changes discontin-
uously to the lower value of σu.
The discontinuous change of the chiral condensate also

translates into the variation of the normalized mass of the
axion [maðμÞ=maðμ ¼ 0Þ] and the axion self-coupling
[λaðμÞ=λaðμ ¼ 0Þ]. In the left plot of Fig. 14 we have
shown that variation of the normalized mass of the axion
[maðμÞ=maðμ ¼ 0Þ] with the quark chemical potential at
zero temperature. On the other hand in the right plot of
Fig. 14 we have shown that variation of the normalized
axion self-coupling [λaðμÞ=λaðμ ¼ 0Þ] with the quark
chemical potential at zero temperature. Due to the corre-
lation between the chiral transition and the axion proper-
ties, we can see a discontinuous variation of the axion
properties across the critical value of the quark chemical
potential.

IV. CONCLUSION

In the present investigation, we have studied the effects
of hot and dense QCDmedium on the axion properties e.g.,
its mass and self-coupling. In this investigation QCD
medium at finite temperature and finite quark chemical
potential has been modeled by Polyakov loop enhanced
Nambu–Jona-Lasinio (PNJL) model for (2þ 1) quark
flavors. In Refs. [70,71] the temperature dependence of
axion mass and self-coupling have been investigated within
the framework of the Nambu–Jona-Lasinio model for two
flavors. It turns out that for the three flavor PNJL model, the
parity violating pseudoscalar condensate for strange quarks
is an order of magnitude smaller than the same for the
lighter u, d quarks. Nonetheless, the strange quark con-
densates in the scalar channel affect the light quark
condensates in the pseudoscalar channel significantly
through the flavor mixing interaction and affect the CP
properties of the medium. Various methods have been used
in literature to study the axion properties at finite temper-
ature. For low temperature range, chiral perturbation theory
(χPT) gives a reliable prediction of the axion mass and self-
coupling. On the other hand at high temperature as
compared to the QCD transition temperature perturbative
techniques can be used to estimate the finite temperature
effect on the axion mass and coupling. However, near the
QCD transition scale where nonperturbative techniques are
important one can use the QCD inspired effective models to
describe the hot and dense QCD medium. The NJL model
which is one of such QCD inspired models indicates that

across the QCD transition temperature the axion properties
can be significantly modified by the hot and dense medium.
However, it is important to note that although the chiral
transition or the phenomenological aspects of the chiral
symmetry of QCD are incorporated in the NJL model, due
to the lack of the QCD gauge fields, the confinement
property of QCD is not properly incorporated in the NJL
model. The Polyakov loop enhanced Nambu–Jona-Lasinio
model, on the other hand, takes into account the phenom-
enological aspects of the chiral symmetry of QCD along
with confinement in a unified framework. The Polyakov
loop which takes a nonvanishing value at finite temperature
and quark chemical potential plays an important role near
the critical temperature in the PNJL model. Therefore there
is a significant difference in axion properties calculated in
the NJL and PNJL model due to the nonzero value of the
Polyakov loop around the critical temperature. We find that
axion properties are correlated with the chiral transition
or confinement-deconfinement transition. The axion mass,
topological susceptibility, self-coupling, etc., are signifi-
cant up to the chiral transition temperature of T ∼ 188 MeV
in the PNJL model at vanishing quark chemical potential.
These properties show a weak temperature dependence
at low temperature as compared to the QCD transition
temperature and they change significantly across the QCD
transition scale. We have compared the normalized sus-
ceptibility (ratio of susceptibility at finite temperature to
the susceptibility at zero temperature) at vanishing quark
chemical potential with lattice QCD results. It matches
reasonably well with lattice QCD results up to Tc. We have
also calculated axion properties at a finite chemical
potential. The critical temperature for chiral symmetry
restoration decreases as chemical potential increases which
also translates into the axion properties, i.e., axion mass and
self-coupling decrease with chemical potential. At zero
temperature but for finite quark chemical potential, differ-
ent axion properties like mass and self-coupling are
constant up to the critical chemical potential and decrease
above the critical chemical potential. Axions are discussed
in the literature in various contexts, e.g., early universe,
dark matter, neutron stars, etc. It is important to note that in
the context of the early universe the quark chemical
potential or the baryon chemical potential is very small.
Therefore in this case the effect of hot QCD medium on the
axion properties can be an important input for the axion
physics. On the other hand inside compact objects like
neutron stars, the temperature is rather small but the baryon
number density can be large. In this scenario, the effect of
quark chemical potential on the axion properties can be
significant in the study of axion physics.
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