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Correlation functions can be described by the corresponding equations, viz., the gap equation for the
quark propagator and the inhomogeneous Bethe-Salpeter equation for the vector dressed-fermion-Abelian-
gauge-boson vertex in which specific truncations have to be implemented. The general vector and axial-
vector Ward-Green-Takahashi identities require these correlation functions to be interconnected; in
consequence of this, truncations made must be controlled consistently. It turns out that, if the rainbow
approximation is assumed in the gap equation, the scattering kernel in the Bethe-Salpeter equation can
adopt the ladder approximation, which is one of the most basic attempts to truncate the scattering kernel.
Additionally, a modified-ladder approximation is also found to be a possible symmetry-preserving
truncation scheme. As an illustration of this approximation for application, a treatment of the pion is
included. The pion mass and decay constant are found to be degenerate in ladder and modified-ladder
approximations, even though the Bethe-Salpeter amplitudes are with apparent distinction. The justification
for the modified-ladder approximation is examined with the help of the Gell-Mann-Oakes-Renner relation.
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I. INTRODUCTION

The hadron is a composite particle consist of quarks and
gluons that are strongly interacting, so it cannot be
described by perturbation theory. Rather, the constituent
quark model and parton model have been historically
linked to the instructive description of the hadron, so much
so that it seems their developments are progressively
paving our way to gain greater insight directly from
quantum chromodynamics (QCD) [1–4]. Yet, how QCD
gives rise to the physics of the hadron is a question that has
not been mathematically answered. This intractable aspect
of the theory is investigated by lattice QCD, which has
already successfully agreed with many experiments on
nonperturbative phenomena [5]. Meanwhile, a continuum
field approach can serve as a complement, such as Dyson-
Schwinger equations (DSEs) [6–8] and the functional
renormalization group [9,10]. More precisely, the DSE,
for instance, is a nonperturbative approach that can mani-
fest main properties of QCD: dynamical chiral symmetry
breaking (DCSB) and color confinement. It is yielding

progress on hadron phenomena, in particular, that of the
lightest meson—the pion. Despite being a bound state, the
pion is the pseudo Nambu-Goldstone mode generated by
DCSB, and this dichotomous character entails that it takes a
special position among theoretical interests on the hadron
[11,12]. The point to maintain this dichotomous character
of the pion is obeying the fundamental symmetry in QCD.
That in DSE is to follow some basic rules when truncating
the infinite coupled equations for correlation functions
[13,14]. Herein, the starting points are the quark gap
equation and the Bethe-Salpeter equations (BSEs).
The rainbow approximation for the quark gap equation

and the ladder approximation for BSE have been developed
for decades [15,16] and applied to a wide range of hadronic
systems, including meson, baryon, and exotic states, etc.
[6–8]. The underlying law governing their application in a
simple and elegant way is the preserving of vector and
axial-vector Ward-Green-Takahashi identities driven by
gauge symmetry. They lead to peculiar relationships
between truncations made for the quark gluon vertex in
the gap equation and the scattering kernel in the Bethe-
Salpeter equation. Two nonlinear equations, which connect
the quark gluon vertex with the scattering kernel, can be
acquired to exhibit the symmetry-driven correspondence.
Starting from these two equations, one notices that if the
quark gluon vertex is assumed to be a bare vertex, i.e., the
rainbow approximation as it is usually called, then a
straightforward expression for the scattering kernel is
immediately realized to be valid, which is interpreted as
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the ladder approximation. Given the existence of this
nontrivial solution, i.e., rainbow ladder approximation,
for two nonlinear equations, one would be inclined to
expect that other solutions may also exist.
Attempts can bemade in two directions searching for other

solutions. One of the directions is to go beyond both rainbow
and ladder approximations, consistently truncating the quark
gluonvertex inDSEand the scatteringkernel inBSE [17–24].
It turns out that this direction is indeed workable in practice.
Additionally, it has been proved that if the quark gluon vertex
is added with corrections to the bare vertex, viz., beyond
rainbow approximation, the Nambu-Goldstone theorem is
manifest only if the scattering kernel is constructed consis-
tently [25]. With the extension of the rainbow ladder
approximation in this direction, one may acquire a good
description of the spin-orbit splitting in the light meson
[26,27], the level ordering of pseudoscalar and vector meson
radial excitations [28], and the heavy-light meson mass
spectrum [29]. One may acquire further potential access
characterizing meson internal structures, such as distribution
amplitude [30] and resonance width [31,32].
An alternative direction is to keep the rainbow approxi-

mation and instead modify the ladder approximation
[33,34]. We seek for this possibility in this work, assuming
the ladder approximation can include a multiplicative
factor, which can be recognized as our ansatz for the
scattering kernel. This introduced factor will be determined
by the two nonlinear equations constrained from the
preserving of vector and axial-vector Ward-Green-
Takahashi identities. In this case, through imposing this
nontrivial multiplicative factor, we find two other possible
solutions for the two nonlinear equations. They are rainbow
modified-ladder approximations. This procedure of
expressing the scattering kernel in terms of ladder approxi-
mation with a multiplicative factor and deriving its well-
constrained form is purely mathematical, independent of
the system under consideration. To explore whether the
rainbow modified-ladder approximations are useful in a
practical system, we include their applications on the pion,
examining whether the Nambu-Goldstone theorem is
manifest with modified-ladder approximations, as well as
studying their impacts on the internal structure of the pion.
Properties such as pion mass, Bethe-Salpeter amplitude,
and decay constant are considered in comparison with
those in the rainbow ladder approximation. Additionally,
the reasonability for modified-ladder approximation is
provided by the verification of the Gell-Mann-Oakes-
Renner (GMOR) relation.
The remainder of this paper is organized as follows.

In Sec. II, we reiterate the vector and axial-vector Ward-
Green-Takahashi identities, highlighting two correspond-
ing nonlinear equations for the quark gluon vertex and the
scattering kernel. Section III introduces the rainbow ladder
approximation together with the rainbow modified-ladder
approximation. Section IV deals with the application of

rainbow modified-ladder approximation on the pion.
Section V contains our results of the pion mass, Bethe-
Salpeter amplitude, and decay constant, as well as the
discussion on the GMOR relation. Finally, we summarize
in Sec. VI.

II. VECTOR AND AXIAL-VECTOR
WARD-GREEN-TAKAHASHI IDENTITIES

Quantum chromodynamics provides underlying laws
governing the properties of particles, both elementary
and hadronic. It requires the correlation functions to be
interconnected by the Slavnov-Taylor identity, which
corresponds to the Ward-Green-Takahashi identity in an
Abelian gauge. We consider herein the connections
between the three-point vertex of a dressed fermion to
an Abelian gauge boson and the two-point function, i.e.,
quark propagator. These connections are expressed by the
vector and axial-vector Ward-Green-Takahashi identities.

A. Vector Ward-Green-Takahashi identity

The Ward identity [35], and its generalization by Green
[36] and Takahashi [37], is

iPμΓμðk;PÞ ¼ S−1ðkþÞ − S−1ðk−Þ; ð1Þ

which relates the three-point function, the vector dressed-
fermion-Abelian-gauge-boson vertex Γμðk;PÞ with the
two-point function, the quark propagator SðkÞ. The original
Ward identity, derived earlier by Ward from a study of
perturbation theory, can be obtained from letting kþ
approach k−, with k� ¼ k� P=2, and k and P are,
respectively, the relative and total momentum of the dressed
quark and dressed antiquark.
The quark propagator in Eq. (1) satisfies the gap

equation1

S−1ðkÞ ¼ Z2ðiγ · kþ ZmmζÞ

þ Z2
2

Z
dq
g2Dμνðk − qÞ λ

a

2
γμSðqÞ

λa

2
Γνðk; qÞ;

ð2Þ

where mζ is the current quark mass and ζ is the renorm-
alization scale; Z2;m are, respectively, quark wave function
and mass renormalization constants (the term Z2

2 in
quark self-energy may be understood from the constraint
of multiplicative renormalizability of the quark propa-
gator as explored in Ref. [38]); Dμνðk − qÞ is the gluon

1We use a Euclidean metric: fγμ; γνg ¼ 2δμν; γ†μ ¼ γμ;
γ5 ¼ γ4γ1γ2γ3, tr½γ4γμγνγργσ � ¼ −4ϵμνρσ ; σμν ¼ ði=2Þ½γμ; γν�;
a · b ¼ P

4
i¼1 aibi; and Pμ timelike⇒ P2 < 0. More information

is available in Sec. 2.3 in Ref. [6].
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propagator; Γνðk; qÞ is the quark gluon vertex; and λa are
the Hermitian Gell-Mann matrices.
As outlined in the preceding introduction, we seek for a

possible modified-ladder approximation at the same time
keeping rainbow approximation. In the following discus-
sion, we will implement the rainbow approximation in the
gap equation, and, in this case, the quark gluon vertex in
Eq. (2) is the bare vertex as

Γνðk; qÞ ¼ γν: ð3Þ

The three-point function with a specified JP quantum
number satisfies the general inhomogeneous Bethe-
Salpeter equation

½ΓJPðk;PÞ�αβ ¼ ZJP ½γJP �αβ þ Z2
2

Z
dq
½Kðk; q; PÞ�αα0;β0β

× ½SðqþÞΓJPðq; PÞSðq−Þ�α0β0 ; ð4Þ

with Kðk; q; PÞ the quark-antiquark scattering kernel.
γJP ¼ 1; γ5; γμ; γ5γμ, etc., is the inhomogeneous driving
term corresponding to the JP quantum number, and ZJP

is the related renormalization constant. The vertex that
appeared in Eq. (1) is the vector dressed-fermion-Abelian-
gauge-boson vertex with γJP ¼ γμ, and ZJP ¼ Z2. With the
specification of quark propagator SðkÞ and vector vertex
Γμðk;PÞ in Eq. (1), as well as the application of the rainbow
approximation, the only quantity that is unknown,
Kðk; q; PÞ, can be well settled.
Inserting the quark propagator in Eq. (2) and the vector

vertex in Eq. (4) into the vector Ward-Green-Takahashi
identity expressing their connection in Eq. (1), one will
have

Z
dq
Kðk; q; PÞαα0;β0β½SðqþÞ − Sðq−Þ�α0β0

¼ −
Z
dq
g2Dμνðk − qÞ λ

a

2
γμ½SðqþÞ − Sðq−Þ�

λa

2
γν: ð5Þ

This is a relation that scattering kernel Kðk; q; PÞ must
preserve in the rainbow approximation.

B. Axial-vector Ward-Green-Takahashi identity

The other generalized Ward identity is

PμΓ5μðk;PÞ ¼ S−1ðkþÞiγ5 þ iγ5S−1ðk−Þ − 2imζΓ5ðk;PÞ;
ð6Þ

where Γ5μðk;PÞ is the axial-vector vertex, and it satisfies
the inhomogeneous axial-vector Bethe-Salpeter equation in
Eq. (4) with γJP ¼ γ5γμ and ZJP ¼ Z2; Γ5ðk;PÞ is the
pseudoscalar vertex, and it satisfies the inhomogeneous

pseudoscalar Bethe-Salpeter equation in Eq. (4) with
γJP ¼ γ5 and ZJP ¼ Z4.
Inserting the quark propagator in Eq. (2) and the axial-

vector and pseudoscalar vertices in Eq. (4) into the axial-
vector Ward-Green-Takahashi identity in Eq. (6), one will
have

Z
dq
Kðk; q; PÞαα0;β0β½SðqþÞγ5 þ γ5Sðq−Þ�α0β0

¼ −
Z
dq
g2Dμνðk − qÞ λ

a

2
γμ½SðqþÞγ5 þ γ5Sðq−Þ�

λa

2
γν:

ð7Þ

This is a second relation that scattering kernel Kðk; q; PÞ
must preserve in the rainbow approximation.
In this way, we see that the use of vector and axial-

vector Ward-Green-Takahashi identities in the construc-
tion of two general relations—Eqs. (5) and (7)—for the
scattering kernel in the rainbow approximation has been
motivated by the requirement of gauge symmetry and
chiral symmetry. These two constructed relations in the
case of rainbow approximation are consistent with those
equations derived in a more general case [22,23,28].
Notably, the procedure of constructing the scattering
kernel is purely mathematical, independent of the system
under consideration.

III. QUARK-ANTIQUARK SCATTERING KERNEL

With the recognition that mathematical formulation
associated with gauge and chiral symmetries in Eqs. (5)
and (7) must be preserved for the scattering kernel, we shall
begin to solve these two equations, and the resulting
scattering kernel will automatically keep corresponding
symmetries.

A. Ladder approximation

There is one apparent practical solution, which is

½Kðk;q;PÞ�RLαα0;β0β ¼ −g2Dμνðk− qÞ
�
λa

2
γμ

�
αα0

⊗
�
λa

2
γν

�
β0β
:

ð8Þ

It is known as the rainbow ladder (RL) approximation. The
ladder approximation has been one of the most successful
attempts to truncate Dyson-Schwinger equations, which is
still meaningful in plenty of recent studies [39–47]. From
the mathematical viewpoint, it is recognized as the leading-
order truncation scheme, and any correction to it can
provide us further assistance in our better understanding
of the truncations.
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B. Modified-ladder approximation

If one solution of a nonlinear system of equations exists,
it is often possible to find several solutions, and we realize
this is the case herein. We now assume that the scattering
kernel in Eq. (8) has an extension as

½Kðk; q; PÞ�RML
αα0;β0β ¼ −g2Dμνðk − qÞ

�
λa

2
γμΛβ

�
αα0

⊗
�
Λβ

λa

2
γν

�
β0β
; ð9Þ

where Λβ is a Dirac structure function. A graphic repre-
sentation of Eq. (9) is given in Fig. 1. Thus, the scattering
kernel is considered to be the ladder approximation with a
multiplicative factor. We have to admit that this is an
ansatz, and whether it is reliable remains to be justified by
whether we can find a nontrivial expression for Λβ.
One apparent expression for Λβ is the identity matrix 1,
and the associated scattering kernel is the ladder approxi-
mation. We then go further to look for other possibilities.
The resulting Λβ must be distinguished from 1 so that
modified-ladder approximation is distinguished from lad-
der approximation.
The procedure finding nontrivial Λβ is mathematical.

In general, Λβ can be of all Dirac matrices fγ5; 12 γβ; iγ52 γβ;
i

2
ffiffi
3

p σβα;
iγ5
2
ffiffi
3

p σβαg [48]; however, practical calculation yields

only the two possible following forms:

Λþ
β ¼

iffiffiffi
3

p γ5σβαðiqαþσvðq2þÞ−iqα−σvðq2−ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þσ2vðq2þÞþq2−σ2vðq2−Þ−2qþ ·q−σvðq2þÞσvðq2−Þ

p ;

Λ−¼1

2

γ5σβαðiqαþqβ−−iqα−q
β
þÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqþ ·q−Þ2−q2þq2−
p ; ð10Þ

where σμν ¼ i
2
ðγμγν − γνγμÞ and q� ¼ q� P=2; σvðq2Þ

is the vector part of quark propagator SðqÞ ¼
−iγ · qσvðq2Þ þ σsðq2Þ.

The expressions in Eq. (10) show very clearly the
difference between ladder approximation and modified-
ladder approximation. In the case of ladder approximation,
there is no momentum dependence in scattering kernel
Kðk; q; PÞ expect for the one that appears in the gluon
propagator. However, there is momentum dependence in
modified-ladder approximation, described by quark
momentum q� and/or the vector part of quark propagator
σvðq2Þ. In consequence of this, the modification on the
scattering kernel to some extent can be considered as the
rearrangement of the quark momentum within the hadron.
Additionally, given the importance of the examination of

whether the Nambu-Goldstone theorem is manifest in
modified-ladder approximation, we specify the formulation
of the expression Λþ

β in Eq. (10) in the chiral limit. If a

massless pion exists, then P ¼ 0 and Λþ
β ¼ iγ5ffiffi

3
p σβαnα, with

n ¼ ð0; 0; 0; iÞ the unit vector in the direction of P.

IV. APPLICATION: PION

In the preceding section, we have found two mathemati-
cal expressions for rainbow modified-ladder (RML)
approximation, and, in order to justify their rationality,
we shall now consider their application on the lightest
hadron system, the pion. The study on the pion is an
apparent direction, since it is possible to consider whether
the Nambu-Goldstone theorem is manifest with RML
approximations, which is the basic criteria that one must
meet when developing new scattering kernels [25]. The
analysis on the pion mass, decay constant, and Bethe-
Salpeter amplitude should be quite interesting affairs. It is
known that the pion can be described by the homogeneous
Bethe-Salpeter equation

λðP2ÞS−1ðkþÞ½χðk;PÞ�αβS−1ðk−Þ

¼ Z2
2

Z
dq
½Kðk; q; PÞ�αα0;β0β½χðq; PÞ�α0β0 ; ð11Þ

with λðP2Þ the eigenvalue of the kernel, which is equal to
one when the pion is on shell: λðP2 ¼ −M2

πiÞ ¼ 1. The
corresponding eigenvector of Eq. (11) is pion Bethe-
Salpeter wave function χðk; PÞ. When solving this equa-
tion, we take the pion Bethe-Salpeter wave function as

χðk;PÞ ¼
X4
i¼1

τiðk;PÞfiðk;PÞ; ð12Þ

where fiðk; PÞ is the scalar function characterizing pion
internal wave function dependence on the relative and total
momentum of the dressed quark and dressed antiquark. τi is
the complete set of the Dirac bases for the pseudoscalar
meson Bethe-Salpeter wave function [11]:

FIG. 1. Left: scattering kernel with ladder approximation in
Eq. (8). Right: scattering kernel with modified-ladder approxi-
mation in Eq. (9). The internal solid lines represent dressed gluon
propagators. The cross indicates to multiply a Λβ where it is
marked.

LEI CHANG and MINGHUI DING PHYS. REV. D 103, 074001 (2021)

074001-4



τ1 ¼ iγ5; τ2 ¼ γ5γ · P;

τ3 ¼ γ5P · kγ · k; τ4 ¼ γ5σμνkμPν: ð13Þ

By adapting this set of Dirac bases, we find special
properties for the pion Bethe-Salpeter equation with RML
approximations. For instance, if multiplying the Lorentz
structure of the right-hand side of Eq. (11) in the case of Λþ

β

by τi, which is the common procedure when solving
Eq. (11), one may immediately notice

tr½τiΛþ
β τjΛ

þ
β � ¼ tr½τiτj�; ji ¼ 1;

tr½τiΛþ
β τjΛ

þ
β � ≠ tr½τiτj�; ji ¼ 2; 3; 4 ð14Þ

with j being an integer and j ∈ ½1; 4�. This indicates that
equations for f1ðk;PÞ with RML in the case of Λþ

β are
equivalent to those with RL, whereas equations for
f2;3;4ðk;PÞ are different from RL ones. Furthermore, if
multiplying the Lorentz structure of the right-hand side of
Eq. (11) in the case of Λ− by τi, one can get

tr½τiΛ−τjΛ−� ¼ tr½τiτj�; ji ¼ 1;

Λ−τiΛ− ¼ τi; ji ¼ 2; 3; 4 ð15Þ

for any j. Thus, all equations in the case of Λ− resemble
those with RL. Therefore, we can even imagine before
calculation that wewill obtain eigenvalues and eigenvectors
of the Bethe-Salpeter kernel in the case of Λ− the same as
their corresponding RL ones. This property makes us
conclude that RML in the case of Λ− for the pion is
equivalent to RL. For this reason, the focus of this work is
on RML in the case of Λþ

β .
The procedure solving Eq. (11) is the common process

finding eigenvalues and eigenvectors of the Bethe-Salpeter
kernel [49]. After locating the pion mass, we simultane-
ously obtain the pion on-shell Bethe-Salpeter wave func-
tion, and it is the eigenvector associated with eigenvalue
λðP2 ¼ −M2

πiÞ ¼ 1. The Bethe-Salpeter wave function can
be normalized by the condition

�∂ lnðλÞ
∂P2

�
−1

¼ tr
Z
dq
Γ̄ðq;−PÞχðq;PÞ; ð16Þ

with λ the eigenvalue; Γ̄ðq;PÞ ¼ ĈΓtð−q;PÞĈ−1 is the
charge conjugation of Bethe-Salpeter amplitude Γðq;PÞ ¼
S−1ðqþÞχðq;PÞS−1ðq−Þ [50,51].
The normalized Bethe-Salpeter wave function can be

used to define the pion decay constant, which is given by

fπiPμ ¼ Z2

Z
dq
tr½iγ5γμSðqþÞΛβΓðq;PÞΛβSðq−Þ�; ð17Þ

and the original pion decay constant definition with RL
approximation can be obtained by letting Λβ approach 1.

A graphic representation of Eq. (17) is given in Fig. 2. It is
pointed out as well in Ref. [52] that if loop momentum
cutoff or nonlocal interactions are included, the pion decay
constant must be modified accordingly, which is analogous
with our case herein. Practically, if considering RML in the
case of Λþ

β , owing to the existing of relations in Eq. (14),
the Lorentz structure of the pion decay constant on the
right-hand side of Eq. (17) is distinct from the one with RL
approximation. Additionally, the solution of the scalar
function in the Bethe-Salpeter wave function that contrib-
utes the most to the decay constant, fiðk;PÞji ¼ 2, 3, with
Λþ
β is, in general, distinct from that with RL as well. Thus,

combining these two effects, one cannot know in advance
whether the pion decay constant with RML in the case of
Λþ
β remains the same as the one with RL, and it requires

further consideration from numerical computation.
Given the normalized Bethe-Salpeter wave function, one

can additionally consider the quantity associated with the
quark condensate with RML approximation, which is of
the form

ρπi ¼ −Z4

Z
dq
tr½iγ5SðqþÞΛβΓðq;PÞΛβSðq−Þ�: ð18Þ

If considering RML in the case of Λþ
β , it is noticed that,

owing to the existing of relations in Eq. (14), the Lorentz
structure of ρπi on the right-hand side of Eq. (18) is
equivalent to the one with RL approximation, so that
one can expect before any numerical computation that
ρπi with RML in the case ofΛþ

β remains the same as the one
with RL.
In particular, the preservation of the axial-vector

Ward-Green-Takahashi identity in Eq. (6) yields the mass
relation [11]

fπiM
2
πi ¼ 2mζρπiðζÞ; ð19Þ

which is known as the Gell-Mann-Oakes-Renner relation
for the ground state pion [53]. Additionally, this mass
relation entails that leptonic decay constants of pion radial

FIG. 2. Pion decay constant with modified-ladder approximation
in Eq. (17). The filled circle represents the pion Bethe-Salpeter
amplitude, and hollow circles are dressed quark propagators. The
cross indicates to multiply a Λβ where it is marked.
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excitations vanish in the chiral limit, and this is the
consequence of chiral symmetry and its dynamical break-
ing in QCD [54]. It is necessary for any development on the
scattering kernel to preserve this relation, and any breaking
of this relation might indicate the breaking of the under-
lying symmetry. We may hope our RML in the case of Λþ

β

would preserve this relation, and the justification will be
discussed in the following section.

V. NUMERICAL RESULTS

Our work so far has consisted of setting up a general
quark-antiquark scattering kernel in the Bethe-Salpeter
equation, the modified-ladder approximation, especially
in the case of Λþ

β , derived directly from the vector and
axial-vector Ward-Green-Takahashi identities. One of the
dominant applications of the modified-ladder approxima-
tion is the pion, and we have specified the procedure
calculating the pion mass, Bethe-Salpeter wave function,
and their associated observables, i.e., decay constant, as
well as the quantity associated with the quark condensate.
In other words, we have designated the scattering kernel,
which is one of the preknowledge inputs required in
constructing the Bethe-Salpeter equation. The remaining
unknown input is the gluon propagator. Once the scattering
kernel and gluon propagator are both designated, the Bethe-
Salpeter equation is well determined. Thus, in order to
calculate pion properties, it now becomes necessary for us
to implement the model of the gluon propagator. According
to fruitful studies on this issue, we can apply the one
introduced in Ref. [55], DμνðsÞ ¼ PμνGðsÞ:

GðsÞ ¼ 8π2

ω4
De−s=ω

2 þ 8π2γmF ðsÞ
ln½τ þ ð1þ s=Λ2

QCDÞ2�
; ð20Þ

where Pμν ¼ δμν −
pμpν

p2 ; γm ¼ 12=ð33 − 2NfÞ, Nf ¼ 4,

ΛNf¼4

QCD ¼ 0.234 GeV; τ¼e2−1; and F ðsÞ ¼ ½1 − expð−s=
½4m2

t �Þ�=s, mt ¼ 0.5 GeV. The interaction in Eq. (20)
involves a massive gluon scale on the domain at s ¼ 0,
which is consistent with that determined in studies of
QCD’s gauge sector [56–58]. Parameters of interaction in
Eq. (20) are taken asDω¼ð0.82GeVÞ3 and ω ¼ 0.5 GeV,
which is the typical choice in a bulk of extant studies, and
one can expect computed observables to be practically
insensitive to the choice of D or ω on a reasonable domain
if Dω is kept stable [59].
Additionally, practical calculation must take a renorm-

alization scale, at which physical quantities that we are
interested are being considered. Of course, physical observ-
ables such as the pion mass and decay constant are
independent of the chosen renormalization scale. We
take the renormalization scale as ζ ¼ 0.3 GeV herein,
which is inspired by recent progress on the pion parton
distribution function [43,44], and the scale is originally

from process-independent running coupling [60–63].
RL requires the renormalization-group-invariant light cur-
rent-quark mass m̂ ¼ 6.7 MeV, which corresponds to
mζ ¼ 12.7 MeV. We take parameters with RML the same
as those with RL, and, in this way, all the distinctions of
pion properties caused by RML in the case of Λþ

β compared
to RL can be considered as induced by the variation of the
scattering kernel.

A. Masses of ground state π0 and first radial
excited state π1

After setting up computing inputs, let us consider our
numerical results on the eigenvalue of the Bethe-Salpeter
kernel, which corresponds to one at the physical point when
the pion is on shell. The Nambu-Goldstone theorem
predicts that the pion is massless in the chiral limit. To
verify whether our modified kernel is well constructed, the
first basic criteria we must consider is whether the Nambu-
Goldstone theorem is manifest with RML in the case ofΛþ

β .
We have numerically verified that Λþ

β leads to a massless
pion in the chiral limit; the RML in the case of Λþ

β thus
meets the first criterion, which is necessary to be manifest
when developing a new scattering kernel.
Furthermore, let us consider the pion mass beyond the

chiral limit. As we have seen in the previous section,
eigenvalues of the Bethe-Salpeter kernel in homogeneous
equations depend on the meson mass, and physical states
are those corresponding to λ ¼ 1. The eigenvalue depend-
ences on the meson mass of ground state π0 and first radial
excited state π1 with RL and RML are illustrated in Fig. 3.
We see that the eigenvalue dependence pattern on meson

0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIG. 3. Eigenvalue dependences on the meson mass of ground-
state pion π0 and first radial excited state π1 with RL and RML
(Λþ

β ;Λ−) approximations. Curves: solid, RL; dashed, RML in the
case of Λþ

β ; dotted, RML in the case of Λ−. The vertical lines
indicate the location where the curves cross λ ¼ 1, corresponding
to the physical masses of these two states.
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mass is nearly identical among kernels. RML in the case of
Λ− gives exactly equivalent eigenvalue dependence with
RL, whereas Λþ

β shows slightly distinction with them. This
resembling pattern on eigenvalues of Λ− can be easily
understood, as we have pointed out earlier that all equations
in this case are equivalent to those with RL; therefore,
eigenvalues of the kernel will be the same as well.
However, the nearly resembling pattern on eigenvalues
with Λþ

β is out of our expectation, since equations for
f2;3;4ðk;PÞ are completely different between Λþ

β and RL.
Nevertheless, the eigenvalue behavior suggests that, despite
scattering kernels in various approximations affecting the
forms of the Bethe-Salpeter equation, physical masses of
the ground state π0 and first radial excited state π1 are stable
and nearly degenerate among different approximations

Mπ0 ¼ 0.133 GeV; Mπ1 ¼ 1.08� 0.03 GeV: ð21Þ

We include the variation for first radial excited state π1
mass among kernels. Notably, the mass of π1 herein is
consistent with Ref. [54].
It is rather surprising to see nearly degenerate behavior in

both π0 and π1 masses among various approximations in
view of the fact that their Bethe-Salpeter equations with
RML in the case of Λþ

β and RL are, in general, not
equivalent, there being apparent extra Dirac structures as
a result of the inclusion of a multiplicative factor in the
scattering kernel. The degenerate feature may be consid-
ered as the suggestion for a stable pion mass so long as the
scattering kernel is constructed consistently. The qualifi-
cation that has to be added here is the requirement that the
kernel must be the solution of the symmetry-preserving
vector and axial-vector Ward-Green-Takahashi identities.

B. Bethe-Salpeter amplitude of ground state π0

Up to this point, we have seen results for eigenvalues of
the Bethe-Salpeter kernel, which are associated with pion
masses at a physical point; we now continue to consider
eigenvectors, i.e., detailed structure of the Bethe-Salpeter
amplitude. As an immediate example, we look attentively
at the ground state π0. Pion nonperturbative properties
are all carried by its Bethe-Salpeter amplitude, so that
the amplitude is fundamental itself for those attempting
to describe the pion internal structure [64,65]. If we
write the pion Bethe-Salpeter amplitude as Γðk;PÞ ¼P

4
i¼1 τiðk;PÞFiðk;PÞ, with τiðk;PÞ given in Eq. (13), then

Fiðk; PÞ is the scalar function characterizing pion ampli-
tude dependence on the relative and total momentum of
dressed quark and dressed antiquark. Numerical results for
the lowest-order Chebyshev projection of Fiðk; PÞ

Fiðk2Þ ≔
2

π

Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
U0ðxÞFiðk2; x;P2Þ; ð22Þ

for ground state π0 with both RL and RML (Λþ
β , Λ−) are

shown in Fig. 4, where k · P ¼ x
ffiffiffiffiffiffiffiffiffiffi
k2P2

p
and U0ðxÞ is the

lowest-order Chebyshev polynomial of the second kind.
One apparent feature in all panels in Fig. 4 is the

resembling pattern among all the lowest-order Chebyshev
projection of Bethe-Salpeter amplitudes F1−4ðk2Þwith RML
in the case ofΛ− (dotted curve) and those associated with the
conventional RL (solid curve) approximation. According to
the proof described above, all the Bethe-Salpeter equations
are equivalent in these two cases; for this reason, we should
obtain equivalent eigenvectors of the Bethe-Salpeter kernel.
Numerical results herein have verified this statement.
Therefore, we will focus on reviewing the difference on
numerical results of Bethe-Salpeter amplitude between RML
in the case of Λþ

β and RL.
Unlike the nearly degenerate feature on pion masses as

we described above, the lowest-order Chebyshev projection
of the Bethe-Salpeter amplitude of π0 expresses distinct
behavior with RML in the case of Λþ

β (dashed curve) and
RL (solid curve). In detail, F1 turns out to be equivalent in
both cases, whereas F2;3;4 behave differently with their
dependence on relative momentum of the dressed quark
and dressed antiquark in the infrared region. If we consider
RML in the case of Λþ

β , the general decreasing behavior of
F2 remains, whereas F2ðk2 ¼ 0Þ is relatively smaller in
comparison to that with RL. F3 keeps the deceasing
behavior as well, and F3ð0Þ is relatively larger. F4 turns
out to be negative.
One might find explanations for these features from

equations we have mentioned above. Equations for F1 with
RML in the case of Λþ

β are equivalent to those with RL,
whereas equations for F2;3;4 with Λþ

β differ from the ones
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FIG. 4. Lowest-order Chebyshev projection of Bethe-Salpeter
amplitudes F1−4ðk2Þ for ground-state pion π0. In all panels, solid,
RL; dashed, RML in the case of Λþ

β ; dotted, RML in the case of
Λ−. Row 1, left, F1; row 1, right, F2; row 2, left, F3; and row 2,
right, F4.
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with RL [see Eq. (14)]. Consequently, it may be possible
that these two approximations yield the same F1 yet
different F2;3;4. The appearance of different F2;3;4 can be
employed to analyze the content of the Bethe-Salpeter
wave function with a specific orbital angular momentum
[66]. These features in the Bethe-Salpeter amplitude
indicate that in these two approximations it is possible
to have various s- and p-wave contributions; meson
structure functions will thus have more diverse properties
rather than the unique behavior.

C. Decay constant of ground state π0
and the GMOR relation

The distinction in ground state π0 Bethe-Salpeter ampli-
tude with RML in the case of Λþ

β and RL may lead to a
distinct decay constant as defined in Eq. (17). However, in
practice, we find

fRLπ0 ¼ 92.3 MeV; f
Λþ
β

π0 ¼ 93.5 MeV; ð23Þ

in comparison to that in experiment fexpπ0 ¼ 91.9�
3.54 MeV [67]. Therefore, one may notice that both fRLπ0

and f
Λþ
β

π0 are compatible with the experimental value by
relative errors within 2%. Again, it is rather surprising to
see a nearly degenerate pion decay constant among various
approximations in view of the fact that their Bethe-Salpeter
amplitudes are, in general, not equivalent (see Fig. 4). The
degenerate feature may also be considered as the sugges-
tion for a stable pion decay constant so long as the
scattering kernel is constructed from Ward identities.
The pion decay constant together with pion mass is a
physical observable, which should be, in principle, invari-
ant among models, and our practical calculation shows this
is the case herein. Other physical observables, such as the
pion parton distribution function, we can expect will also be
invariant with any symmetry-preserving modification of the
Bethe-Salpeter scattering kernel, and this remains to be
justified by future studies.
In order to examine whether the preservation of the

GMOR relation still holds with RML in the case of Λþ
β and

RL approximations, we include the calculation the quantity
associated with the quark condensate defined in Eq. (18)
and obtain

ρRLπ0 ðζÞ ¼ ð0.252 GeVÞ2; ρ
Λþ
β

π0 ðζÞ ¼ ð0.250 GeVÞ2:
ð24Þ

We have seen in the preceding section that ρπ0 with Λþ
β is

equivalent to that with RL based on analytical analysis, and
practical numerical results turn out to be consistent with
this statement. Now we can consider the maintenance of the

GMOR relation in Eq. (19). If it is maintained, then the
ratio of decay constant fπ0 and ρπ0 is

fπ0=ρπ0ðζÞ ¼ 2mζ=M2
π0 : ð25Þ

In practice, we use the same light current quark mass
mζ ¼ 12.7 MeV with RML in the case of Λþ

β and with RL,
and we additionally notice that ground state π0 mass
degenerate Mπ0 ¼ 0.133 GeV in these two approxima-
tions; therefore, the ratio on the right-hand side of
Eq. (25) with Λþ

β is exactly equivalent to that with RL,
viz., 2mζ=M2

π0 ¼ 1.436 GeV−1. When considering the left-
hand side of Eq. (25) with these two approximations,

we find fRLπ0 =ρ
RL
π0 ðζÞ ¼ 1.451 GeV−1 and f

Λþ
β

π0 =ρ
Λþ
β

π0 ðζÞ ¼
1.496 GeV−1; hence, the GMOR relation is preserved with
RL and RML by a relative error within 5%.
Notably, considering RML in the case of Λþ

β , the GMOR
relation is preserved only if we follow the definition of pion
decay constant in Eq. (17) with a graphic representation
given in Fig. 2 and the definition of ρπ0 in Eq. (18), in which
the multiplicative factor is included. This might suggest
that, when considering physical observables making use of
the Bethe-Salpeter amplitude with the modified-ladder
approximation, one must take into account the possible
modification on the expression associated with physical
observables of interest.
Additionally, given that the GMOR relation connects

the current quark mass, pion mass, decay constant, and the
quantity associated with the quark condensate, one can start
from it and obtain the above quantities from one to another.
However, if a theory can give these quantities simulta-
neously, it would be not easy for them to satisfy the GMOR
relation with a high accuracy. Therefore, besides the
Nambu-Goldstone theorem, the GMOR relation can serve
as a second criterion, which is necessary to manifest for the
pion when developing a new scattering kernel.

VI. CONCLUSION

In this work, we explored the possible rainbow modified-
ladder approximation, derived directly from the vector and
axial-vector Ward-Green-Takahashi identities. Starting
from Ward identities in rainbow approximation, we obtain
two equations for the quark-antiquark scattering kernel in
the Bethe-Salpeter equation, Eqs. (5) and (7). Then the
quark-antiquark scattering kernel is assumed to include a
multiplicative factor in comparison to that with the conven-
tional rainbow ladder approximation. Apart from 1, two
nontrivial solutions for the multiplicative factor are found,
as outlined in Eq. (10), corresponding to the rainbow
modified-ladder approximation. There is a distinction with
the modified-ladder approximation scattering kernel in
comparison to that in the ladder approximation, which is
that it owns momentum dependence described by the quark
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momentum and/or the vector part of the quark propagator.
In consequence of this, it may lead to some impacts on
properties of the system that one is interested in.
As an application of this rainbow modified-ladder

approximation, we study the pion. We have first numeri-
cally verified that the Nambu-Goldstone theorem is mani-
fest with the modified-ladder approximation. Then the most
remarkable result is that the pion masses of both ground
state π0 and first radial excited state π1 are degenerate with
rainbow ladder and rainbow modified-ladder approxima-
tions, as illustrated in Fig. 3. The degenerate feature may
suggest a stable pion mass so long as the scattering kernel is
constructed from the symmetry-preserving Ward identities.
The Bethe-Salpeter amplitude of the ground state π0 is then
considered. Unlike the degenerate feature in pion masses,
the Bethe-Salpeter amplitude of π0 expresses distinct
behavior with RML in the case of Λþ

β and RL, as given

in Fig. 4. It is then noticed that the distinction on π0 Bethe-
Salpeter amplitude does not affect the pion decay constant,
in the case RML, and it is generally equivalent to the one
with RL. Consequently, the GMOR relation is also numeri-
cally verified to be preserved with the modified-ladder
approximation.
The complexity of numerical computation with rainbow

modified-ladder approximation does not increase dramati-
cally compared to rainbow ladder approximation, so that
the study herein can be easily extended to further inves-
tigation on other mesons such as heavy quarkonium and
mesons with nonzero spin.
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