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We investigate the transition form factors fþðq2Þ and f−ðq2Þ [or f0ðq2Þ] for the exclusive semileptonic
B → Dlνl (l ¼ e, μ, τ) decays in the standard light-front quark model based on the light-front
quantization. The common belief is that while fþðq2Þ can be obtained without involving any treacherous
contributions such as the zero mode and the instantaneous contribution, f−ðq2Þ receives those treacherous
contributions since it involves at least two components of the current, e.g., ðJþ; J−Þ or ðJþ; J⊥Þ. Contrary to
the common belief, we show in the Drell-Yan (qþ ¼ 0) frame that f−ðq2Þ obtained from ðJþ; J−Þ gives
identical result to f−ðq2Þ obtained from ðJþ; J⊥Þ without involving such treacherous contributions in the
standard light-front quark model. In our numerical calculations, we obtain the form factors and branching
ratios for B → Dlνl (l ¼ e, μ, τ) and compare with the experimental data as well as other theoretical
model predictions. Our results for BrðB → DlνlÞ show reasonable agreement with the experimental data

except for the semitauonic B0 → D−τντ decay. The ratioℛðDÞ ¼ BrðB→DτντÞ
BrðB→Dl0νl0 Þ (l

0 ¼ e, μ) is also estimated

and compared with the experimental data as well as other theoretical predictions.

DOI: 10.1103/PhysRevD.103.073004

I. INTRODUCTION

The semileptonic B → Dlνl (l ¼ e, μ, τ) decays have
attracted a lot of attention in extracting the exclusive
Cabibbo-Kobayashi-Maskawa (CKM) matrix element
jVcbj. Especially, the substantial difference for the ratio
ℛðDÞ ¼ BrðB → DτντÞ=BrðB → Dl0νl0 Þ (l0 ¼ e, μ)
between the experimental data and the standard model
(SM) predictions generated a great excitement in testing the
SM and searching for new physics beyond the SM. The
experimental data, RexpðDÞ ¼ 0.440ð58Þð42Þ measured
from BABAR [1,2] and RexpðDÞ ¼ 0.375ð64Þð26Þ from
Belle [3], have shown an excess over the SM prediction
RSMðDÞ ¼ 0.299ð3Þ [4]. Many theoretical efforts have
been made in resolving the issue of ℛðDÞ anomaly and
searching for new physics beyond the SM [5–9].
We note that the B → Dlνl decays involve two tran-

sition form factors (TFFs), i.e., the vector form factor
fþðq2Þ and the scalar form factor f0ðq2Þ. The analysis of
both TFFs fþ;0ðq2Þ for B → D transitions can be found in
various theoretical approaches such as the lattice QCD
[5,6], the light cone sum rule (LCSR) [9–12], and the light-
front quark model (LFQM) [13]. While BrðB → DlνlÞ

for the light lepton decay modes ðl ¼ e; μÞ needs only
fþðq2Þ, BrðB → DτντÞ for the heavy τ decay mode
receives contributions from both fþðq2Þ and f0ðq2Þ. The
ratio RðDÞ is in particular quite sensitive to the scalar
form factor. This leads us to speculate that the scalar
contribution is the main source of RðDÞ anomaly and thus
the new physics effect beyond the SM. However, since the
predictions of f0ðq2Þ as well as fþðq2Þ are quite different
for different theoretical approaches within the SM, it is very
important to obtain the reliable and self-consistent results
for the TFFs before drawing any sound conclusion from the
RðDÞ anomaly.
The purpose of this paper is to present the self-

consistent descriptions of the B → Dlνl TFFs in the
standard LFQM based on the LF quantization [14]. There
have been many previous LFQM analyses for the semi-
leptonic decays between two pseudoscalar mesons
[15–19]. In fact, there are two main kinds of LFQM,
i.e., the standard LFQM [15,16] and the covariant LFQM
[17–19]. In the standard LFQM, the constituent quark and
antiquark in a bound state are required to be on-mass
shells and the spin-orbit wave function is obtained by
the interaction-independent Melosh transformation [20]
from the ordinary equal-time static spin-orbit wave
function assigned by the quantum number JPC. The main
characteristic of the standard LFQM is to use the sum of
the LF energy of the constituent quark and antiquark for
the meson mass in the spin-orbit wave function and
any physical observable can be obtained directly in
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three-dimensional LF momentum space using the more
phenomenologically accessible LF wave function such as
Gaussian radial wave function ϕðx;k⊥Þ. However, as the
standard LFQM itself is not amenable to analyze
the zero-mode contribution, the covariant LFQM using
the manifestly covariant Bethe-Salpeter (BS) model with
the multipole type qq̄ vertex was introduced [17], in which
the constituents are off-mass shell. While the covariant
BS model used in [17–19] allows one to analyze all the
treacherous points such the zero modes and the off-mass
shell instantaneous contributions in a systematic way,
it is less realistic than the standard LFQM. Thus, in an
effort to apply such treacherous points found in the
covariant BS model to the standard LFQM, the effective
replacement [17–19] of the LF vertex function χðx;k⊥Þ
obtained in the BS model with the more realistic Gaussian
wave function ϕðx;k⊥Þ in the standard LFQM has
been made.
However, through the analysis of the vector meson decay

constant together with the twist-2 and twist-3 distribution
amplitudes (DAs) of the vector meson [21], we found the
correspondence relation between χ and ϕ proposed in
[17–19] encounters the self-consistency problem, e.g.,
the vector meson decay constants obtained in the standard
LFQM were found to differ for different sets of the LF
current components and polarization states of the vector
meson [21]. We also resolved this self-consistency problem
in the same work [21] by imposing the on-mass shell
condition of the constituent quark and antiquark, i.e.,
replacement of the physical meson mass M with the
invariant mass M0 in the integrand of formulas for
the physical quantities, in addition to the original corre-
spondence relation between χ and ϕ. The remarkable
finding from our new self-consistent correspondence
relations (i.e., χ → ϕ and M → M0) between the two
models [see, e.g., Eq. (49) in [21]] was that both zero
mode and instantaneous contributions appeared in the
covariant BS model became absent in the standard
LFQM with the LF on-mass shell constituent quark and
antiquark degrees of freedom. We then extended our self-
consistent correspondence relations to analyze the decay
amplitude related with twist-2 and twist-3 DAs of pseu-
doscalar mesons [22,23] and observed the same conclusion
drawn from [21].
In the previous analysis [17–19] of the semileptonic

decays between two pseudoscalar mesons using the
covariant BS model, the LF covariant calculations was
made in the Drell-Yan-West (qþ ¼ q0 þ q3 ¼ 0) frame
(i.e., q2 ¼ −q2⊥ < 0), which is advantageous in that only
the valence contributions are needed unless the zero-mode
contributions exist. The form factor fþðq2Þ was obtained
only from the plus component (Jþ) of the weak current Jμ

without encountering the zero-mode contribution. One
needs, however, two different components of the current
to obtain the form factor f0ðq2Þ [or f−ðq2Þ�, and Jþ and

J⊥ ¼ ðJx; JyÞ were used to obtain it in [17–19].1 However,
f−ðq2Þ obtained from (Jþ, J⊥) in the covariant BS model
receives not only the instantaneous contribution but also the
zero mode due to the J⊥ component. Employing
the effective method presented in [17–19] to express the
zero-mode contribution as a convolution of the zero-mode
operator with the initial and final state LF vertex functions,
the form factor f−ðq2Þ can also be expressed as the
convolution form between the initial- and final-states LF
vertex functions χðx;k⊥Þ in the valence sector. To obtain
fþðq2Þ and f−ðq2Þ in the more realistic standard LFQM,
the authors in [17–19] use the only correspondence relation
between χ and ϕ without imposing the on-mass shell
condition (i.e., M → M0).
In the recent work in [24], the authors investigated the

self-consistency of the form factor f−ðq2Þ obtained from
ðJþ; J⊥Þ by applying both the old correspondence ðχ → ϕÞ
and our new correspondence (χ → ϕ and M → M0)
between the BS model and the standard LFQM. From
their numerical calculations, the authors found from f−ðq2Þ
in the standard LFQM that the zero-mode contribution to
f−ðq2Þ is sizable for the case of using only (χ → ϕ) relation
but vanishes when using (χ → ϕ and M → M0) relations.
This result is very supportive to assert that our new
correspondence relations are universally applicable even
to the weak transition form factors for a self-consistent
description of the standard LFQM. In order to assert that
the form factor f−ðq2Þ is truly self-consistent, however, it is
essential to show that f−ðq2Þ obtained in the qþ ¼ 0 frame
is independent of the components of the current, i.e.,
f−ðq2Þ obtained from ðJþ; J−Þ is the same as the one
obtained from ðJþ; J⊥Þ.
In this work, we shall show that our new correspondence

relations (χ→ϕ andM → M0) guarantee the self-consistent
description for the weak decay constant of a pseudoscalar
meson and the semileptonic decays between two pseudo-
scalar mesons in the standard LFQM. To show this, we
shall prove that (1) the decay constant fP of a pseudoscalar
meson (P) is independent of the components of the current,
and (2) f−ðq2Þ obtained from ðJþ; J−Þ is exactly the same
as the one obtained from ðJþ; J⊥Þ in the qþ ¼ 0 frame.
Those findings again entail that the zero-mode contribution
as well as the instantaneous one appeared in the covariant
BS model became absent in the standard LFQM.
Although we do not consider in this analysis, the qþ ≠ 0

frame may be used to compute the timelike process such as
this semileptonic decay but then it is unavoidable to
encounter the particle-number-nonconserving Fock state
(or nonvalence) contribution [25]. The main source of
difficulty in the LFQM phenomenology is the lack of

1While the method of Jaus [17] and ours [19] in obtaining the
form factors are slightly different, the final results for f−ðq2Þ are
the same with each other, i.e., f−ðq2Þ [see Eq. (4.3) in [17] and
Eq. (42) in [19] ] was obtained from using both Jþ and J⊥.
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information on the non-wave-function vertex [26,27] in the
nonvalence diagram arising from the quark-antiquark pair
creation/annihilation. This should contrast with the usual LF
valence wave function. In principle, there is a systematic
program as was discussed in [28] to include the particle-
number-nonconserving amplitude to take into account the
nonvalence contributions. However, the program requires to
find all the higher Fock-state wave functions while there has
been relatively little progress in computing the basic wave
functions of hadrons from first principles. In the very recent
analysis [29] of the semileptonic Bc → ηcðJ=ψÞ decays in
the framework of basis LF quantization, the frame depend-
ence of the TFFs between qþ ¼ 0 and qþ ≠ 0 frames is
discussed. Themain reason for the frame dependence comes
from the ignorance of the nonvalence contribution in the
qþ ≠ 0 frame and it is not even possible to show that the
form factors are independent of the components of the
current in the qþ ≠ 0 frame unless the nonvalence contri-
bution is correctly taken into account. However, our main
findings in the qþ ¼ 0 frame may be incorporated in the
same qþ ¼ 0 frame calculations of Ref. [29].
The paper is organized as follows: in Sec. II, we briefly

review the decay constant fP of a pseudoscalar meson in an
exactly solvable model based on the covariant BS model of
(3þ 1)-dimensional fermion field theory. We then present
our LF calculation of fP in the BSmodel using both plus and
minus components of the current and discuss the treacherous
points such as the zero-mode contribution and the instanta-
neous one when the minus component of the current is used.
Linking the covariant BS model to the standard LFQMwith
our universal mapping between the two models [21–23], we
obtain fP from both plus and minus components of the
current in the standard LFQM.Ourmain finding is that while
fP obtained from the minus component of the current in the
covariant BS model receives both the zero mode and the
instantaneous contributions, fP obtained from the minus
component of the current in the standard LFQM is free from
such treacherous contributions and gives an identical result
with theone obtained from the plus component of the current.
In Sec. III, we obtain the transition form factors f�ðq2Þ in the
standard LFQM using the same procedure discussed in
Sec. II. Especially, we explicitly show that f−ðq2Þ obtained
from ðJþ; J−Þ is exactly the same as the one obtained from
ðJþ; J⊥Þ in theqþ ¼ 0 frame. This finding again supports the
universality of our correspondence relations between the
covariant BS model and the standard LFQM. In Sec. IV, we
show our numerical results for the semileptonic B → Dlνl
ðl ¼ e; μ; τÞ decays. In the Appendix, the explicit forms of
the standard LFQM results for f�ðq2Þ are presented.

II. DECAY CONSTANT

A. fP in the covariant BS model

In the solvable model, based on the covariant BS model
of (3þ 1)-dimensional fermion field theory, the decay

constant fP of a pseudoscalar meson (P) with the four-
momentum P and massM as a qq̄ bound state is defined by
the matrix element of the axial vector current

h0jq̄γμγ5qjPðPÞi ¼ ifPPμ: ð1Þ

The matrix element Aμ ≡ h0jq̄γμγ5qjPðPÞi is given in
the one-loop approximation as a momentum integral

Aμ ¼ Nc

Z
d4k
ð2πÞ4

HPSμ

ðp2 −m2
1 þ iεÞðk2 −m2

q þ iεÞ ; ð2Þ

where Nc is the number of colors and p ¼ P − k and k are
the internal momenta carried by the quark and antiquark
propagators of mass m1 and mq, respectively. The qq̄
bound-state vertex function HP of a pseudoscalar meson is
taken as multipole ansatz, i.e., HPðp2; k2Þ ¼ g=ðp2 −
Λ2 þ iϵÞ where g and Λ are constant parameters in this
manifestly covariant model. The trace term is given by

Sμ ¼ Tr½γμγ5ðpþm1Þγ5ð−=kþmqÞ�: ð3Þ

Performing the LF calculation, we take the reference frame
where P ¼ ðPþ; P−;P⊥Þ ¼ ðPþ;M2=Pþ; 0⊥Þ and use the
metric convention a · b ¼ 1

2
ðaþb− þ a−bþÞ − a⊥ · b⊥. We

then obtain the identity q ¼ qon þ 1
2
γþΔ−

q , where Δ−
q ¼

q− − q−on and the subscript (on) denotes the on-mass shell
quark momentum, i.e., p2

on ¼ m2
1 and k

2
on ¼ m2

q. Using this
identity, one can separate the trace term into the on shell
propagating part Sμon and the off-mass shell instantaneous
one Sμinst as S

μ ¼ Sμon þ Sμinst.
By the integration over k− in Eq. (2) and closing the

contour in the lower half of the complex k− plane, one picks
up the residue at k− ¼ k−on in the region of 0 < kþ < Pþ (or
0 < x < 1) where x ¼ pþ

Pþ and 1 − x ¼ kþ
Pþ are the LF

longitudinal momentum fractions of the quark and anti-
quark. We denote the valence contribution to Aμ that is
obtained by taking k− ¼ k−on in the region of 0 < x < 1

region as ½Aμ�LFval. Then the Cauchy integration formula for
the k− integration in the valence region of Eq. (2) yields

½Aμ�LFBSval ¼ iNc

16π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥χðx;k⊥ÞSμval; ð4Þ

where χðx;k⊥Þ ¼ g
x2ðM2−M2

0
ÞðM2−M2

ΛÞ
is the LF quark-meson

vertex function and M2
0ðΛÞ ¼

k2⊥þm2
1
ðΛ2Þ

x þ k2⊥þm2
q

1−x . The trace

term in the valence contribution is given by Sμval ¼
Sμon þ Sμinst, where Sμon ¼ 4ðm1k

μ
on þmqp

μ
onÞ and Sμinst ¼

2ðm1Δ−
k þmqΔ−

pÞgμþ. We note from Sμinst that the off shell
instantaneous contributions are nonzero for the minus
component of the current while they are absent for the
plus or perpendicular components of the current.
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In our previous work [21], we check the LF covariance
of fP obtained from Eq. (4) using two different compo-
nents (i.e., μ ¼ þ and −) of the current. We found that

while fðþÞ
P obtained from μ ¼ þ is free from the zero mode,

fð−ÞP obtained from μ ¼ − receives the zero mode. We also
identified the zero-mode operator corresponding to the

zero-mode contribution to fð−ÞP [see Eq. (B9) in [21] ].
Since the LF calculations of fP obtained from Eq. (4) were
explicitly shown in [21,22], we recapitulate the essential

features of obtaining the full LF result of fð−ÞP . Then, we
focus on the self-consistent standard LFQM analysis of fP
using our new correspondence relations (i.e., χ → ϕ
and M → M0).
For μ ¼ þ, the full result of fP can be obtained only

from the valence contribution with the on-mass shell quark
propagating part, i.e., Sþfull ¼ Sþval ¼ Sþon. The full solution
of the decay constant obtained from μ ¼ þ is given
by [21,22]

½fðþÞ
P �LFBSfull ¼ Nc

4π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥χðx;k⊥Þ

Sþon
4Pþ ; ð5Þ

where Sþfull ¼ Sþon ¼ 4PþA1 and A1 ¼ ð1 − xÞm1 þ xmq.
For μ ¼ −, the valence contribution to the trace term

comes not only from the on-shell propagating part but also
from the off-shell instantaneous one, i.e., S−val ¼ S−on þ S−inst.
However, the valence contribution itself is not equal to the

manifestly covariant result (or equivalently ½fðþÞ
P �LFBSfull )

since the minus component of the current receives the
zero-mode contribution as shown in [21]. In [21], we
also found the zero-mode operator S−Z:M: corresponding
to the zero-mode contribution at the trace level, i.e.,
S−Z:M: ¼ 4

Pþ ðmq −m1Þð−Z2Þ with Z2 ¼ xðM2 −M2
0Þ þ

m2
1 −m2

q þ ð1 − 2xÞM2. Adding S−Z:M: to S−val, we found
that S−full ¼ S−val þ S−Z:M: ¼ 4P−A1.
That is, in this manifestly covariant BS model, the full

solution ½fð−ÞP �LFBSfull obtained from μ ¼ − is completely

equal to ½fðþÞ
P �LFBSfull only if the zero-mode contribution is

included in addition to the valence contribution. We should

note that while ½fðþÞ
P �LFBSfull ¼ ½fðþÞ

P �LFBSon , ½fð−ÞP �LFBSfull ¼
½fð−ÞP �LFBSon þ ½fð−ÞP �LFBSinst þ ½fð−ÞP �LFBSZ:M: .
For the sake of comparison with ½fðþÞ

P �LFBSon and also for
later use in the standard LFQM analysis, we display the

result of ½fð−ÞP �LFBSon obtained from Eq. (4) with only the on-
mass propagating part, Sμval ¼ S−on, as follows

½fð−ÞP �LFBSon ¼ Nc

4π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥χðx;k⊥Þ

PþS−on
4M2

; ð6Þ

where S−on ¼ 4ðm1k−on þmqp−
onÞ with k−on ¼ k2⊥þm2

q

ð1−xÞPþ and

p−
on ¼ k2⊥þm2

1

xPþ .

B. fP in the standard LFQM

In the standard LFQM [15,16,30–36], the wave function
of a ground state pseudoscalar meson as a qq̄ bound state is
given by

Ψλλ̄ðx;k⊥Þ ¼ ϕðx;k⊥Þℛλλ̄ðx;k⊥Þ; ð7Þ

where ℛλλ̄ is the spin-orbit wave function that is obtained
by the interaction independent Melosh transformation
from the ordinary spin-orbit wave function assigned by
the quantum number JPC. The covariant form of ℛλλ̄ with
the definite spin ðS; SzÞ ¼ ð0; 0Þ constructed out of the LF
helicity λðλ̄Þ of a quark (antiquark) is given by

ℛλλ̄ ¼
ūλðpqÞγ5vλ̄ðpq̄Þffiffiffi

2
p ½M2

0 − ðm1 −mqÞ2�1=2
; ð8Þ

which satisfies the unitarity condition,
P

λλ̄ℛ
†
λλ̄
ℛλλ̄ ¼ 1.

Its explicit matrix form is given by

ℛλλ̄ ¼
1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þA2
1

p
�

−kL A1

−A1 −kR

�
; ð9Þ

where kR ¼ kx þ iky and kL ¼ kx − iky.
For the radial wave function ϕ in Eq. (7), we use the

Gaussian wave function

ϕðx;k⊥Þ ¼
4π3=4

β3=2

ffiffiffiffiffiffiffi∂kz
∂x

r
expð−k⃗2=2β2Þ; ð10Þ

where k⃗2 ¼ k2⊥ þ k2z and β is the variational parameter
fixed by the analysis of meson mass spectra [19,33–35].
The longitudinal component kz is defined by kz ¼
ðx − 1

2
ÞM0 þ ðm2

q−m2
1
Þ

2M0
, and the Jacobian of the variable

transformation fx;k⊥g → k⃗ ¼ ðk⊥; kzÞ is given by ∂kz∂x ¼
M0

4xð1−xÞ ½1 − ðm2
1
−m2

q

M2
0

Þ2�. The normalization of our Gaussian

radial wave function is then given by

Z
1

0

dx
Z

d2k⊥
16π3

jϕðx;k⊥Þj2 ¼ 1: ð11Þ

Using the plus component of the current, the standard
LFQM calculation of Eq. (1) is obtained by

½fðþÞ
P �SLFon ¼

ffiffiffiffiffiffiffiffi
2Nc

p
8π3

Z
1

0

dx
Z

d2k⊥
ϕðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA2

1

p Sþon
4Pþ : ð12Þ

We should note that the main differences between the
covariant BS model and the standard LFQM are attributed
to the different spin structures of the qq̄ system (i.e., off
shellness vs on shellness) and the different meson-quark
vertex functions (χ vs ϕ). In other words, while the results
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of the covariant BS model allow the nonzero binding
energy EB:E: ¼ M2 −M2

0, the SLF (referring to Standard
LFQM) result is obtained from the condition of on-mass
shell quark and antiquark (i.e., M → M0).
To find the exact correspondence between the covariant

BS model and the standard LFQM, we first compare the
physical quantities which are immune to the treacherous
points such as the zero modes or the instantaneous
contributions in the BS model. In the case of pseudoscalar
meson decay constant, since fðþÞ

P obtained from the plus
component of the current satisfies this prerequisite con-
dition, one can find the following correspondence rela-

tion,
ffiffiffiffiffiffiffiffi
2Nc

p χðx;k⊥Þ
1−x → ϕðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffi

A2
1
þk2⊥

p , by comparing ½fðþÞ
P �LFBSfull ¼

½fðþÞ
P �LFBSon in Eq. (5) and ½fðþÞ

P �SLFon in Eq. (12). In most
previous LFQM analyses, this correspondence (χ vs ϕ) has
also been used for the mapping of other physical observ-
ables contaminated by the treacherous points.
In our previous analysis [21–23], we found that the

correspondence relation including only LF vertex functions
brings about the self-consistency problem, i.e., the same
physical quantity obtained from different components of
the current and/or the polarization vectors yields different
results in the standard LFQM. Our new correspondence
relations between the two models to iron out the self-
consistency problem is given by [21–23]:

ffiffiffiffiffiffiffiffi
2Nc

p χðx;k⊥Þ
1 − x

→
ϕðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2⊥
p ; M → M0; ð13Þ

that is, the physical massM included in the integrand of the
BS amplitude should be replaced with the invariant mass
M0 since the results in the standard LFQM are obtained
from the requirement of all constituents being on their
respective mass shell. We should note that the correspon-
dence in Eq. (13) between the covariant model and the
LFQM has been verified through our previous analyses of
pseudoscalar [22] and pseudotensor [23] twist-3 DAs of a
pseudoscalar meson and the chirality-even twist-2 and
twist-3 DAs of a vector meson [21].
The virtue of Eq. (13) to restore the self-consistency of

the standard LFQM is that one can apply Eq. (13) only to
the on-mass shell contribution in the BS model to get the
full result in the standard LFQM. In other words, the
treacherous points (i.e., zero mode and the instantaneous
contribution) appeared in the covariant BS model are
absorbed into the LF on-mass shell constituent quark
and antiquark contributions and the full result in the
standard LFQM is obtained only from the on-shell con-
tribution regardless of the components of the currents being
used. This remarkable feature also can be seen in this
analysis of decay constant of pseudoscalar meson obtained
from the “−” component of the currents. That is, applying

Eq. (13) to ½fð−ÞP �LFBSon given by Eq. (6), we obtain the SLF
result for the minus component of the current as follows

½fð−ÞP �SLFon ¼
ffiffiffiffiffiffiffiffi
2Nc

p
8π3

Z
1

0

dx
Z

d2k⊥
ϕðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥þA2

1

p PþS−on
4M2

0

: ð14Þ

We confirm numerically that ½fð−ÞP �SLFon ¼ ½fðþÞ
P �SLFon ,

which contrasts with the covariant BS model calculation,

in which ½fð−ÞP �LFBSon ≠ ½fðþÞ
P �LFBSon . We also should note that

our confirmation for ½fð−ÞP �SLFon ¼ ½fðþÞ
P �SLFon is independent of

the form of the radial wave function, e.g., the power-law
type wave function such as ϕ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂kz=∂x
p ð1þ k⃗2=β2Þ−2

also shows ½fð−ÞP �SLFon ¼ ½fðþÞ
P �SLFon .

III. SEMILEPTONIC DECAYS BETWEEN
TWO PSEUDOSCALAR MESONS

The transition form factors for the PðP1Þ → PðP2Þlνl
semileptonic decays between two pseudoscalar mesons are
given by

hP2jVμjP1i ¼ fþðq2ÞðP1 þ P2Þμ þ f−ðq2Þqμ; ð15Þ

where qμ ¼ ðP1 − P2Þμ is the four-momentum transfer to
the lepton pair(lνl) and m2

l ≤ q2 ≤ ðM1 −M2Þ2. The two
form factors f�ðq2Þ also satisfy

f0ðq2Þ ¼ fþðq2Þ þ
q2

M2
1 −M2

2

f−ðq2Þ: ð16Þ

The matrix element ℳμ ≡ hP2jVμjP1i in the BS model
is given by

ℳμ ¼ iNc

Z
d4k
ð2πÞ4

Hp1
TμHp2

Np1
NkNp2

; ð17Þ

where Nk ¼ k2 −m2
q þ iϵ and Npj

¼ p2
j −m2

j þ iϵ with
pj ¼ Pj − k (j ¼ 1, 2). To be consistent with the analysis
of the decay constant, we take the qq̄ bound-state vertex
functions Hpj

ðp2
j ; k

2Þ ¼ gj=ðp2
j − Λ2

j þ iϵÞ of the initial
(j ¼ 1) and final (j ¼ 2) state pseudoscalar mesons. The
trace term is given by

Tμ ¼ Tr½γ5ðp1 þm1Þγμðp2 þm2Þγ5ð−=kþmqÞ�: ð18Þ

Performing the LF calculation of Eq. (17) in the valence
region (0 < kþ < Pþ

2 ) of the q
þ ¼ 0 frame, where the pole

k− ¼ k−on ¼ ðk2⊥ þm2
q − iϵÞ=kþ (i.e., the spectator quark)

is located in the lower half of the complex k− plane, the
Cauchy integration formula for the k− integral in Eq. (17)
gives

½ℳμ�LFBSval ¼Nc

Z
1

0

dx
ð1−xÞ

Z
d2k⊥
16π3

χ1ðx;k⊥Þχ2ðx;k0⊥ÞTμ
val;

ð19Þ
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where

χ1ð2Þ ¼
g1ð2Þ

x2ðM2
1ð2Þ −Mð0Þ2

0 ÞðM2
1ð2Þ −M2

Λ1ð2Þ Þ
; ð20Þ

with M2
0ðΛ1Þ ¼

k2⊥þm2
1
ðΛ2

1
Þ

x þ k2⊥þm2
q

1−x and M02
0ðΛ2Þ ¼ M2

0ðΛ1Þ ×
ðm1ðΛ1Þ → m2ðΛ2Þ;k⊥ → k0⊥ ¼ k⊥ þ ð1 − xÞq⊥). The
explicit LF calculation of Eq. (19) in parallel with the
manifestly covariant calculation of Eq. (17) can be found in
[19]. As shown in Ref. [19], while fþðq2Þ was obtained
from Jþ and immune to the zero mode, the form factor
f−ðq2Þ was obtained from ðJþ; J⊥Þ and received both the
instantaneous and the zero-mode contributions. Of course,
one cannot avoid such treacherous points in the BS model
even if f−ðq2Þ is obtained from the two components
ðJþ; J−Þ of the current.
In this work, we shall show that f−ðq2Þ in the standard

LFQM is independent of the components of the current,
i.e., regardless of using ðJþ; J⊥Þ or ðJþ; J−Þ, as far as we
apply Eq. (13) in the BS model to get the standard LFQM
results. So, from now on, we discuss only for the on-mass
shell contribution in the valence region of the qþ ¼ 0

frame. Of the trace terms Tμ
val ¼ Tμ

on þTμ
inst, the on-shell

contribution is given by

Tμ
on¼ 4½pμ

1onðp2on ·konÞ−kμonðp1on ·p2onÞþpμ
2onðp1on ·konÞ

þm2mq̄p
μ
1onþm1mq̄p

μ
2onþm1m2k

μ
on�; ð21Þ

where

p1on ¼
�
xPþ

1 ;
m2

1 þ k2⊥
xPþ

1

;−k⊥
�
;

p2on ¼
�
xPþ

1 ;
m2

2 þ ðk⊥ þ q⊥Þ2
xPþ

1

;−k⊥ − q⊥
�
;

kon ¼
�
ð1 − xÞPþ

1 ;
m2

q þ k2⊥
ð1 − xÞPþ

1

;k⊥
�
: ð22Þ

The explicit form of the instantaneous contribution Tμ
inst

can be found in [19]. On the one hand, the transition form
factors f�ðq2Þ obtained from ðJþ; J⊥Þ are given by

fþðq2Þ ¼
ℳþ

2Pþ
1

;

fð⊥Þ
− ðq2Þ ¼ Mþ

2Pþ
1

þM⊥ · q⊥
q2⊥

: ð23Þ

On the other hand, the form factor f−ðq2Þ obtained from
ðJþ; J−Þ is given by

fð−Þ− ðq2Þ ¼ −
ℳþ

2Pþ
1

�
ΔM2þ þ q2⊥
ΔM2

− − q2⊥

�
þ Pþ

1 ℳ
−

ΔM2
− − q2⊥

; ð24Þ

where ΔM2
� ¼ M2

1 �M2
2. For convenience sake, the form

factor f−ðq2Þ obtained from ðJþ; J⊥Þ and ðJþ; J−Þ is
denoted by fð⊥Þ

− ðq2Þ and fð−Þ− ðq2Þ, respectively. In the
manifestly covariant BS model given by Eq. (17),

we note that while ½fðþÞ
þ �LFBSfull ¼ ½fðþÞ

þ �LFBSon , ½fð⊥Þ
− �LFBSfull ¼

½fð⊥Þ
− �LFBSon þ ½fð⊥Þ

− �LFBSinst þ ½fð⊥Þ
− �LFBSZ:M: . The full result

fð−Þ− ðq2Þ has the same structure as fð⊥Þ
− ðq2Þ, i.e.,

½fð−Þ− �LFBSfull ¼ ½fð−Þ− �LFBSon þ ½fð−Þ− �LFBSinst þ ½fð−Þ− �LFBSZ:M: although
the explicit forms of the instantaneous and zero-mode
contributions are different from those for fð⊥Þ

− ðq2Þ.
For the calculation of the transition form factors f�ðq2Þ,

our new correspondence relations between the covariant
BS model and the standard LFQM are given by

ffiffiffiffiffiffiffiffi
2Nc

p χ1ðx;k⊥Þ
1 − x

→
ϕ1ðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2⊥
p ; M1 → M0;

ffiffiffiffiffiffiffiffi
2Nc

p χ2ðx;k0⊥Þ
1 − x

→
ϕ2ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 þ k02⊥
p ; M2 → M0

0: ð25Þ

In order to obtain the self-consistent description of our
standard LFQM, we first compute ½fþ�LFBSfull ¼ ½fþ�LFBSon ,
½fð⊥Þ

− �LFBSon , and ½fð−Þ− �LFBSon from the BS model and apply
Eq. (25) to get the corresponding standard LFQM results,
i.e., ½fþ�SLFon , ½fð⊥Þ

− �SLFon and ½fð−Þ− �SLFon , respectively. The final
standard LFQM results for f�ðq2Þ are given by

½fþðq2Þ�SLFon ¼
Z

1

0

dx
Z

d2k⊥
16π3

ϕ1ðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2⊥
p ϕ2ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ k02⊥

p

×
ð1 − xÞ

2

�
T þ

on

2Pþ
1

�
; ð26Þ

½fð⊥Þ
− ðq2Þ�SLFon ¼

Z
1

0

dx
Z

d2k⊥
16π3

ϕ1ðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2⊥
p ϕ2ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ k02⊥

p

×
ð1 − xÞ

2

�
T þ

on

2Pþ
1

þ T ⊥on · q⊥
q2⊥

�
; ð27Þ

and

½fð−Þ− ðq2Þ�SLFon ¼
Z

1

0

dx
Z

d2k⊥
16π3

ϕ1ðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2⊥
p ϕ2ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ k02⊥

p

×
ð1 − xÞ½Pþ

1 T
−
on −

T þ
on

2Pþ
1

ðΔM2
0þ þ q2⊥Þ�

2ðΔM2
0− − q2⊥Þ

;

ð28Þ

respectively, where ΔM2
0� ¼ M2

0 �M02
0 obtained from

the on-mass shell condition (i.e., Mð0Þ → Mð0Þ
0 ) and Ai ¼

ð1 − xÞmi þ xmq (i ¼ 1, 2). We numerically confirm that
½fð⊥Þ

− ðq2Þ�SLFon ¼ ½fð−Þ− ðq2Þ�SLFon , which supports the self-
consistency of our standard LFQM. The explicit forms
of the on shell trace terms and the form factors in
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Eqs. (26)–(28) are given in the Appendix. We note that the
form factors obtained in the spacelike region using the
qþ ¼ 0 frame are analytically continued to the timelike
region by changing q2⊥ to −q2 in the form factors.
Including the nonzero lepton mass (ml), the differential

decay rate for the exclusivePðP1Þ → PðP2Þlνl process is
given by [37,38]

dΓ
dq2

¼ 8Njp⃗�j
3

��
1þ m2

l

2q2

�
jHþj2 þ

3m2
l

2q2
jH0j2

�
; ð29Þ

where

jp⃗�j ¼ 1

2M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

1 þM2
2 − q2Þ2 − 4M2

1M
2
2

q
ð30Þ

is the modulus of the three momentum of the daughter
meson in the parent meson rest frame, and the helicity
amplitudes H0 and Ht corresponding to the longitudinal
parts of the spin-1 and spin-0 hadronic contributions,
respectively, can be expressed in terms of fþ and f0 as
follows:

Hþ ¼ 2M1jp⃗�jffiffiffiffiffi
q2

p fþðq2Þ; H0 ¼
M2

1 −M2
2ffiffiffiffiffi

q2
p f0ðq2Þ: ð31Þ

The normalization factor in Eq. (29) is

N ¼ G2
F

256π3
η2EWjVQ1Q̄2

j2 q2

M2
1

�
1 −

m2
l

q2

�
2

; ð32Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi constant,
VQ1Q̄2

is the relevant CKM mixing matrix element and the
factor ηEW ¼ 1.0066 accounts for the leading order electro-
weak corrections [39].
The kinematics of the PðP1Þ → PðP2Þlνl decay

can also be expressed in terms of the recoil variable w
defined by

w ¼ v1 · v2 ¼
M2

1 þM2
2 − q2

2M1M2

; ð33Þ

where v1ð2Þ ¼ P1ð2Þ
M1ð2Þ

is the four velocity of the initial (final)

meson and q2 ¼ ðP1 − P2Þ2 ¼ ðPl þ PνÞ2. While the
minimum value of w ¼ 1 (or q2 ¼ q2max) corresponds to
zero recoil of the final meson in the initial meson rest frame,
the maximum value of w (or q2 ¼ 0) corresponds to the
maximum recoil of the final meson recoiling with the

maximum three momentum jP⃗2j ¼ ðM2
1
−M2

2
Þ

2M1
.

IV. NUMERICAL RESULTS

In our numerical calculations for the semileptonic
B → Dlνl (l ¼ e, μ, τ) decays, we use two sets of
model parameters (m, β) for the linear and harmonic

oscillator (HO) confining potentials given in Table I
obtained from the calculation of the ground state meson
mass spectra [19,35]. For the physical ðB;DÞ meson
masses, we use the central values quoted by the Particle
Data Group (PDG) [40]. Our predictions for the decay
constants of ðD;BÞ mesons obtained from the model
parameters in Table I are fD ¼ 197ð180Þ MeV and fB ¼
171ð161Þ MeV for the linear (HO) parameters, respec-
tively, while the current available experimental data
are given by fexpD ¼ 205.8ð4.5Þð0.4Þð2.7Þ MeV [40] and
fexpB ¼ 229þ39þ34

−31−37 MeV [41].
In Fig. 1, we show the q2 dependences of fþðq2Þ (solid

line), f0ðq2Þ (dashed line), and f−ðq2Þ for B → Dlνl
decay obtained from Eqs. (26)–(28) with the linear poten-
tial parameters. As one can see, our result for f−ðq2Þ (dot-
dashed line) obtained from ðJþ; J⊥Þ [see Eq. (27)] shows a
complete agreement with f−ðq2Þ (circle) obtained from
ðJþ; J−Þ [see Eq. (28)] substantiating the self-consistency
of our LFQM. We also should note that the form factors are
displayed not only for the whole timelike kinematic region
[m2

l ≤ q2 ≤ ðMB −MDÞ2] (in unit of GeV2) but also for the

TABLE I. The constituent quark mass mq (in GeV) and the
Gaussian parameters βqq̄ (in GeV) for the linear and HO
confining potential obtained by the variational principle [19,35].
q ¼ u and d.

Model mq mc mb βqc βqb

Linear 0.22 1.8 5.2 0.4679 0.5266
HO 0.25 1.8 5.2 0.4216 0.4960

-2 0 2 4 6 8 10 12

q
2
[GeV

2
]

-0.4
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0.2
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,-
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f
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2
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f
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2
) from "perp" current

f
-
(q

2
) from "minus" current

B → D

FIG. 1. The q2 dependent form factors (fþ, f0, f−) of the B →
Dlνl decay for both spacelike and the kinematic timelike
regions, −2 ≤ q2 ≤ ðMB −MDÞ2 GeV2.
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spacelike region (−2 ≤ q2 ≤ 0) (in unit of GeV2) to
demonstrate the validity of our analytic continuation
from spacelike region to the timelike by changing q2⊥ to
−q2⊥ð¼ q2 > 0Þ in the form factors.
Our results of the form factors ðf�; f0Þ obtained from

the linear (HO) potential parameters at the maximum recoil
(q2 ¼ 0) and minimum recoil (q2 ¼ q2max) points are
summarized in Table II. Our direct LFQM results for the
form factors fiðq2Þ (i ¼ �, 0) obtained from Eqs. (26)–
(28) are well described by the following parametrization [9]

fiðq2Þ ¼
fið0Þ

1 − biðq2=M2
BÞ þ ciðq2=M2

BÞ2
; ð34Þ

where the parameters ðbi; ciÞ can be obtained from

our LFQM results in Eqs. (26)–(28) via bi ¼ M2
B

fið0Þ f
0
ið0Þ

and ci ¼ b2i −
f00i ð0ÞM4

B
2fið0Þ . The fitted parameters ðbi; ciÞ for

ðfþ; f0Þ are also summarized in Table III and those
for f− are obtained as b− ¼ 0.970071ð1.00817Þ and c− ¼
0.200821ð0.2384Þ for the liner (HO) parameters, respec-
tively. We should note that our direct LFQM results and the
ones obtained from Eq. (34) are in excellent agreement with
each other within 0.1% error.
In Fig. 2, we show the recoil variable w dependent form

factor fþðwÞ (solid line) and f0ðwÞ (dashed line) obtained
from both linear (black lines) and HO (blue line) potential
parameters and compare them with the data from the Belle
experiment [42] and the lattice QCD (HPQCD collabora-
tion) [5]. Our results are overall in good agreement with
those from [5,42].
Of special interest, while our results for fþðwÞ and f0ðwÞ

obtained from the linear potential parameters (black line)
are somewhat different from those obtained from the HO
potential parameters (blue lines) at the maximum recoil
point (i.e., w ≃ 1.6), both potential parameters give almost
the same results at the zero recoil point (i.e., w ¼ 1). This is
related with the heavy-quark symmetry (HQS); i.e., in the

infinite quark mass limit, the heavy-to-heavy transition
form factors between two pseudoscalar mesons such as
B → Dlνl decay are reduced to single universal Isgur-

Wise function [43,44] GðwÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
MBMD

p
MBþMD

fþðwÞ, which
should in principle satisfy the following normalization
Gð1Þ ¼ 1 in the exact HQS limit. Our LFQM results of
Gð1Þ ¼ 0.988ð0.984Þ obtained from the linear (HO)
parameters are in good agreement with the exact HQS
limit within 2% errors. Our results also should be compared
with other theoretical predictions such asGð1Þ¼1.035ð40Þ
[5], Gð1Þ ¼ 1.0541ð83Þ [6], and Gð1Þ ¼ 1.033ð95Þ [45]
from the lattice QCD and Gð1Þ ¼ 0.981þ0.045

−0.048 from the
QCD sum rules [46].
In Fig. 3, we show our results for the differential width of

B → Dlνl (l ¼ e, μ, τ) decay obtained from both linear
(black lines) and HO (blue lines) parameters. The solid
lines represent our results for the light (e, μ) decay modes
compared with the experimental data from Belle [42].
The dashed lines represent our results for the semitauonic
B → Dτντ decay. We summarize our LFQM predictions on
the branching ratios for B → Dlνl decays obtained from
both linear and HO potential parameters in Table IV and
compare ours with the results from PDG [40] and other
theoretical predictions such as LCSR [9] and heavy quark
effective theory [47]. For the numerical calculations of the
branching ratios, we use the CKM matrix element
jVcbj ¼ ð40.5� 1.5Þ × 10−3, the PDG values [40] of the
lepton (e, μ, τ) and hadron ðB;DÞ masses together with the
lifetimes of ðB0; B�Þ. As one can see from Table IV, our

TABLE II. Form Factors of the B → Dlνl decay at q2 ¼ 0 and
q2 ¼ q2max obtained from the linear (HO) potential parameters.

fþð0Þ fþðq2maxÞ f0ðq2maxÞ f−ð0Þ f−ðq2maxÞ
0.7157 1.1235 0.8739 −0.3298 −0.5231
(0.6969) (1.1209) (0.8755) (−0.3190) (−0.5142)

TABLE III. The fitted parameters bþð0Þ and cþð0Þ for the
parametric form factors in Eq. (34) obtained from the linear
(HO) potential parameters.

fþ;0ð0Þ bþ cþ b0 c0

0.7157 0.955259 0.203408 0.428416 −0.014496
(0.6969) (1.00776) (0.245602) (0.484403) (−0.007704)
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w

0.6
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HPQCD for f
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0

B → D

FIG. 2. The recoil variable w dependent form factors ðfþ; f0Þ
of B → Dlνl obtained from the linear and HO potential
parameters, and the result of the combined fit to experimental
[42] and lattice QCD (HPQCD) [5] data.
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results obtained from the linear parameters are slightly
larger than those obtained from the HO parameters. Our
predictions for three decay modes such as B0 → D−l0νl0 ,
Bþ → D̄0l0νl0 , and Bþ → D̄0τντ also agree with other
theoretical results [9,47] as well as PDG values [40] within
the errors. For the semitauonic B0 → D−τντ decay, while
three theoretical predictions agree with each other, those
theoretical predictions are smaller than the data from PDG.
From the results given in Table IV, our predictions for the

ratio ℛðDÞ ¼ BrðB→DτντÞ
BrðB→Dl0νl0 Þ ðl

0 ¼ e; μÞ are as follows

ℛðDÞ ¼ 0.284þ0.046
−0.039 ½0.286þ0.046

−0.040 � ð35Þ

for the linear [HO] potential parameters. Our predictions
for the ratio ℛðDÞ are consistent with other theoretical
predictions such as 0.300(8) [5] and 0.299(11) [6] from the
lattice QCD and 0.320þ0.018

−0.021 [9] within the errors. While
our results are quite smaller than the experimental
values, ℛexpðDÞ ¼ 0.440ð58Þð42Þ from BABAR [1,2]
and ℛexpðDÞ ¼ 0.375ð64Þð26Þ from Belle [3], we also

take note of a new preliminary result ℛexpðDÞ ¼
0.307ð37Þð16Þ [48] reported from the Belle collaboration,
which is consistent with the SM at the 1.2σ level.

V. SUMMARY AND DISCUSSION

In this work, we discussed the self-consistent description
on the decay constant fP of a pseudoscalar (P) meson and
the weak form factors fþ and f− (or f0) for the exclusive
semileptonic B → Dlνl (l ¼ e, μ, τ) decays in the
standard LFQM. It has been a common perception in
the LF formulation that while the plus component (Jþ) of
the LF current Jμ in the matrix element can be regarded as
the “good” current, the perpendicular (J⊥) and the minus
(J−) components of the current were known as the “bad”
currents since ðJ⊥; J−Þ are easily contaminated by the
treacherous points such as the LF zero mode and the off-
mass shell instantaneous contributions.
To scrutinize such treacherous points when the usage of

J⊥ or J− is unavoidable, we employed the exactly solvable
manifestly covariant BS model using the multipole type of
qq̄ bound state vertex function. Carrying out the LF
calculations for fP and f�ðq2Þ in the BS model, we found
that fP and f−ðq2Þ obtained from the so-called bad
components of the current receive the zero-mode contri-
butions as well as the instantaneous ones. We then linked
the covariant BS model to the standard LFQM following
the same universal correspondence Eq. (13) between the
two models that we found in our previous analysis of the
twist-2 and twist-3 DAs of pseudoscalar and vector mesons
[21–23] and replaced the LF vertex function in the BS
model with the more phenomenologically accessible
Gaussian wave function provided by the LFQM analysis
of meson mass spectra [33,34]. As in the previous analysis
[21–23], it is striking to observe that the zero mode and the
instantaneous contribution present in the BS model become
absent in the LFQM. In other words, our LFQM results of
the decay constant fP and the TFFs f�ðq2Þ are shown to be
independent of the components of the current without
involving any of those treacherous contributions.
We then apply our current independent form factors

f�ðq2Þ for the self-consistent analysis of B → Dlνl
(l ¼ e, μ, τ) decay using our LFQM constrained by the
variational principle for the QCD-motivated effective
Hamiltonian with the linear (or HO) plus Coulomb inter-
action [19,33–35]. The form factors f�ðq2Þ are obtained in
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B → D

FIG. 3. Differential decay width of B → Dlνl (l ¼ e, μ, τ)
compared with the experimental data [42] measured from the
light leptonic decay mode.

TABLE IV. Our LFQM predictions on the branching ratios (in%) for B → Dlνl (l ¼ e, μ, τ) decays compared with the results from
other theoretical predictions [9,47] and PDG [40]. l0 ¼ e, μ.

Channel Linear HO LCSR [9] HQET [47] PDG [40]

B0 → D−l0νl0 2.34� 0.18 2.25� 0.17 2.086þ0.230
−0.232 − 2.19� 0.12

B0 → D−τντ 0.66� 0.05 0.64� 0.05 0.666þ0.058
−0.057 0.64� 0.05 1.03� 0.22

Bþ → D̄0l0νl0 2.53� 0.19 2.44� 0.19 2.260þ0.249
−0.251 − 2.27� 0.11

Bþ → D̄0τντ 0.72� 0.05 0.70� 0.05 0.724þ0.063
−0.062 0.66� 0.05 0.77� 0.25
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the qþ ¼ 0 frame (q2 ¼ −q2⊥ < 0) and then analytically
continued to the timelike region by changing q2⊥ to −q2 in
the form factors. We obtain BrðB → DlνlÞ for both neutral
and charged B mesons and compare with the experimental
data as well as other theoretical model predictions. Our
results for BrðB → DlνlÞ show reasonable agreement with
the data except for the semitauonic B0 → D−τντ decay. Our
results for the ratio ℛðDÞ are consistent with other
theoretical predictions as well as the new preliminary result
from the Belle collaboration [48] although the previous
data from BABAR [1,2] and Belle [3] show quite larger
values than our predictions.
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APPENDIX: EXPLICIT FORMS
FOR f + ðq2Þ AND f − ðq2Þ

The on shell contributions of the trace terms in
Eqs. (26)–(28) are given by

T þ
on ¼

4Pþ
1

x̄
ðk⊥ · k0⊥ þA1A2Þ;

T ⊥
on ¼

−2k⊥
xx̄

½2k⊥ · k0⊥ þ x̄ðq2⊥ þm2
1 þm2

2Þ þ 2x2m2
q

þ 2xx̄ðm1mq þm2mq −m1m2Þ� −
2q⊥
xx̄

ðk2⊥ þA2
1Þ;

T −
on ¼

4

x2x̄Pþ ½x̄ðm1A1 þ k2⊥Þ½m2
2 þ ðk⊥ þ q⊥Þ2�

þ x2x̄M2
0ðk2⊥ þ k⊥ · q⊥Þ þ x2m1m2ðm2

q þ k2⊥Þ
þ xx̄m2mqðm2

1 þ k2⊥Þ�; ðA1Þ

where x̄ ¼ 1 − x. The final standard LFQM results for
fþðq2Þ and f−ðq2Þ are given by

½fðþÞ
þ �SLFon ¼

Z
1

0

dx
Z

d2k⊥
16π3

ϕ1ðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2⊥
p ϕ2ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ k02⊥

p
× ðA1A2 þ k⊥ · k0⊥Þ; ðA2Þ

½fð⊥Þ
− �SLFon ¼

Z
1

0

x̄dx
Z

d2k⊥
16π3

ϕ1ðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1þk2⊥
p ϕ2ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2þk02⊥

p

×

�
−x̄M2

0þðm2−mqÞA1−mqðm1−mqÞ

þk⊥ ·q⊥
q2

½M2
0þM02

0− 2ðm1−mqÞðm2 −mqÞ�
�
;

ðA3Þ

and

½fð−Þ− �SLFon ¼
Z

1

0

dx
x2

Z
d2k⊥
16π3

ϕ1ðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2⊥
p ϕ2ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ k02⊥

p
× fa0½x2x̄M2

0ðk2⊥ þ k⊥ · q⊥Þ
þ x̄ðm1A1 þ k2⊥Þ½m2

2 þ ðk⊥ þ q⊥Þ2�
þ x2m1m2ðm2

q þ k2⊥Þ þ xx̄m2mqðm2
1 þ k2⊥Þ�

− x2b0ðk⊥ · k0⊥ þA1A2Þg; ðA4Þ

where a0 ¼ 2
M2

0
−M02

0
−q2⊥

and b0 ¼ M2
0
þM02

0
þq2⊥

M2
0
−M02

0
−q2⊥
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