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We explore the possibility of CP violation in baryonic A, — (Af, p™)a"u~u~ decays which are
mediated by two Majorana sterile neutrinos and are |AL| =2 lepton-number-violating processes.
Appreciable CP asymmetry can be obtained if there are two on-shell Majorana neutrinos that are
quasidegenerate in mass with the mass difference of the order of average decay widths. We find that,
given the present constraints on the heavy to light mixing element |V,y|, the A, — p*z*u~u~ and
A, = Afxtpup~ decay rates are suppressed but could be within the experimental reach at the LHC.
If searches of the modes are performed, then experimental limits on the rates can be translated to constraints
on the Majorana neutrino mass my and heavy to light mixing element squared |V”N|2. We show that the

constraints on the (my,

V,n|?) parameter space coming from the |AL|=2 baryonic decays are

complementary to the bounds coming from other processes.

DOI: 10.1103/PhysRevD.103.073001

I. INTRODUCTION

The neutrino oscillation experiments confirm that at least
two of the three active light neutrinos are massive [1-3].
This opens up the possibility of CP violation in the leptonic
interactions which can be searched in neutrino oscillation
experiments [4]. Leptonic CP violation can arise in the
same manner as in the quark sector, namely, complex
phases in the leptonic mixing matrix. Whether the neutrinos
are of the Dirac or Majorana type, CP violation is expected
in both cases. But two additional sources of CP-violating
phases can arise if the neutrinos are Majorana rather than if
they are Dirac. Majorana character plays an important role
as far as the origin of the smallness of the active neutrino
masses is concerned. If Ny is a Standard Model right-
handed gauge-singlet (and, hence, sterile) neutrino, then
the Standard Model allows both a Dirac mass term of the
type mp(v,Ng + H.c.) and a Majorana term of the type
myNrNg. Then, via a “seesaw” mechanism, one can have
small active neutrino mass m, ~ m%/my if mp is at the
electroweak scale or lower [5—11]. In the simplest version
of the mechanism, the so-called type-I seesaw, the heavy
electroweak singlets Np of a few TeV are introduced
that give rise to the light eigenstates m, <1 eV.
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However, low-energy seesaw mechanisms, where the
sterile states Ny are in the range of a few hundreds of
MeV to a few GeV, also have been proposed [12-18].
These so-called GeV-scale sterile neutrinos have several
advantages: They could simultaneously explain the baryon
asymmetry of the Universe [13,19-22] and can be exper-
imentally searched at both the intensity and the energy
frontiers.

An important distinguishing feature between Dirac and
Majorana sterile neutrinos is that the latter participates in
|AL| =2 lepton-number-violating (LNV) decays. For a
light Majorana exchange, the neutrinoless double-beta
decay (Oupp) [23-26] is one of the most sensitive
probes of lepton number violation. But it was recently
pointed out that, with the exchange of heavy Majorana
neutrinos at the GeV scale, this rate can be enhanced
[27,28]. Unfortunately, the Ouvff process is yet to be
experimentally verified, and the best limits on the half-
lives of different isotopes ("°Ge, '*°Xe, and '3°Te) come
from several different experiments [29-33]. Because of the
lack of evidence of LNV decay so far, it is imperative to
pursue complementary search strategies. This is further
reinforced by the fact that observation of Ouvff confirms
lepton number violation only in the first family of
neutrinos, and, to observe the same in other families,
alternative processes must be investigated. Lepton-
number-violating rare decays of mesons and baryons which
are mediated by Majorana neutrinos are important in this
regard. For light or heavy Majorana neutrino exchange,
decay rates are too suppressed to be accessed by current
experiments. But, if the Majorana mass is within a few
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hundred MeV to a few GeV, then the decay rates can be
within the sensitivity reach of future experiments [34,35].
Because of ongoing searches of LNV processes at flavor
factories including the LHC and Belle-II, there has been
theoretical interest in the LNV decays of hadrons [34-66],
z-lepton decays [67-71], and different scattering processes
[72-81]. The LHCb has searched for the process
B~ - xtuu~ [82] and the NA48/2 has searched for
K~ — nu~u~ [83], and these experiments provide strin-
gent constraints on the heavy to light mixing matrix
elements. With large integrated luminosity coming from
Belle-II as well as the upgrade of the LHCb, sensitivity
to |[AL| = 2 processes in mesons and baryons is expected
to increase.

In this paper, we study lepton-number-violating four-
body B, —» B zFT¢1¢5 decay, where BY is A,, BJ is
either a Al or p™, and #, and ¢, can, in general, be of
different flavors. Previously, in Ref. [48], these decays
were considered in a model involving single on-shell
Majorana exchange at the GeV scale. We are interested in
a scenario where the decays are mediated by the exchange
of two almost degenerate Majorana neutrinos of mass in
the range between a few hundred MeV to a few GeV so
that they can be on shell. An interesting consequence of
two-Majorana exchange is the possibility of CP violation.
We show that the CP violation can be appreciable if the
two Majoranas are almost degenerate with the mass
difference of the order of decay widths, Amy ~Ty.
There are well-motivated models where quasidegenerate
Majorana neutrinos in the range of a few hundreds
of MeV to a few GeV are predicted [84]. We calculate
the branching ratios for Amy ~I'y and find that, for the
present experimental bound on [V, 2, the A, —
(AL, pT)xTpp rates might be within the reach of the
LHC in the future. Even if the modes are not immediately
seen, experimental limits on the decay rates can be used
to obtain constraints on the neutrino mass my and the
neutrino mixing matrix elements |V,,y|?. Lepton-number-
violating decays in baryons have been searched by the
HyperCP, E653, and BESIII Collaborations in three-body
B = pup [85], Af - X utuT [86], and T — pe~e”
[87] decays, respectively. To the best of our knowledge,
LNV processes in four-body baryonic decays have not yet
been searched. The LHCb has observed the A, — Au™p~
decay where the A is reconstructed in the A — pz~
[88,89] processes. The final state of this decay is similar
to one of the mode considered in this paper. Therefore, it
is possible in the near future for the LHCb to search for
four-body LNV decays.

The paper is organized as follows. In Sec. 1I, we work
out the formalism for a generic B; — B n¥¢7¢5 decay
mediated by on-shell Majorana neutrino. In Sec. III, we
perform a numerical analysis of the CP asymmetry for
Ay = (A., p)muu and discuss the constraint on the
(my,|V,y|*) parameter space assuming experimental

upper limits. We summarize our results in Sec. IV. Some
details of our derivations are given in the Appendixes.

1L B, » B z¥¢:¢f FORMALISM

We consider a model scenario where, in addition to the
components v,; of the left-handed SU(2), doublets of the
Standard Model, there are two right-handed singlet sterile
neutrinos denoted by N and N,. The flavor eigenstates v,
can be written in terms of the mass eigenstates as

Usivi, + Ven, N1+ Ven,Nay  (2.1)

3
Ve =

i=1

where v;; are the light mass eigenstates. We assume that the
heavy to light mixing elements V,y, and V.y, are free
parameters and can be constrained by experiments. They, in
general, can be complex:

Ven, = Ven e (j=1,2), (22)
where ¢,; is a CP-odd phase. According to our convention,
V,y is the mixing element between negatively charged
lepton ¢ and Majorana neutrino N.

We are interested to calculate the decay widths of
Bi(ps,) = Ba(pp, )" (px)¢1 (p1)¢7 (p2) and its CP con-
jugate mode B,(pg,) = By(pp,) 7™ (po)¢} (P1)?3 (p2) in
this model. The decays can be viewed as a two-step
processes: First, the 3; decays via a charged current
interaction B; — B3I N;¢T, followed by the decay of the
heavy neutrino N; — ¢5nF. For these processes there
are two dominant ““s-channel” topologies, the direct channel
(D) and the crossed channel (C), as shown in Fig. 1.
A “t-channel” Feynman diagram is also shown in Fig. 2.
Here, the neutrino is off shell and the amplitude is suppressed,
so we neglect the t-channel diagrams in our calculations.

Appreciable decay rates can be obtained if the neutrinos
have kinematically allowed mass

m,+ ¢ <my < (mg —mp, —¢,) or/and

Mg+, <my, < (mg —mp, —¢)). (2.3)

We denote the momentum of the heavy neutrino in the D
channel by py = pg, — ps, — p1, and for the C channel by

Py =DPB, — ps, ~ P2 Defining I'y, =I'(B, = By ¢1¢5)
and Ty =T (B, = B,z ¢{¢5) the decay widths can be
written as

1 1

T = 2 =000) 513, | MaTF 24)
1

The symmetry factor 1/2! comes because the two charged
leptons can be the same. The |M5|> (| Mg,|?) is the total
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FIG. 1.

The direct (D) and cross (C) channel Feynman diagrams for B, — Bf 2T ¢{¢5 decay.

matrix element mod squared of B, — B,a"¢7¢5 (B, — Bya~ ¢ ¢3) after averaging over the initial spin and summing

over the final spins

tot Z | M tol

spms

-1z

spins

2
ZMi + M)

Jj=

—_Z[ZMﬂz Mi) +ZM¢ Mj:

spins ~i,j

2

2
:N[Zvii(v )'my,my, Pp P, T+(DD") )+ > vE(
i,j=

ij=1

+we@]

In the second line of Eq. (2.5), the suffix D; (C;) stand for
the direct (cross) channel with jth neutrino exchange, and
in the last line we have introduced the following notations:

1
N = EG?|Vud|2|qu|2 z ”,+ = Vle[szN;,

vi = ()", (2.6)
where V,, =V, for A, = ptatc¢7, Vi, =V, for
A, = Afnt¢~¢~, and f is the pion decay constant. In the
last line of Eq. (2.5), the spin summed and averaged
matrix element mod squared splits into universal functions

FIG. 2. A t-channel diagram for A, - Afz"¢7¢5 decay.

2

Z My (ME) + S Mawa)*]
i,j=1

ij=1

i)*mN,-mNjPD,va‘jTi(DC*)
1

(2.5)

T4 (XY"), where X(Y) =D, C, and the functions Py,
which are functions of the masses my, and my, and decay
widths T'y, and 'y, of the exchanged neutrinos:

(2.7)

Using Eq. (2.5), the total decay widths can be conveniently
written as

v

N

Il
=

[, = (2-6¢0,) ;(v})(E(DD"); + T(CC),;;

i
Jrer(DC*)ij

+1.(D°C);)), (2.8)

2

(2-6s,0,) Z

I(DD*),; + T (CC*),
I.(DC),; +

(D*C) s (2.9)

where the quantities I, are
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i * N * *
Fj:(XY )U = 2m8]2' mNile_le_Piji(XY )dq)4,
X,Y=C,D. (2.10)

The expressions of 7, (XY*) and the requisite kinematics to
evaluate these expressions are given in Appendixes A and B,
respectively, and the four-body phase space d®, is given in
Appendix C. In Egs. (2.8) and (2.9), using the relation
T, (XX*) =T_(XX") (see Appendix A), we have defined
F(xx*), =0, (xx*),=I_(XX*),;, X=D.C.  (2.11)

ij
|

To physically interpret the terms, ['(XX*), ; are the contri-
butions of N; exchange in the X channel and the conjugate of
N; exchange in the X* channel. The interference terms
(xy *);; are the contributions of N; exchange in the X
channel and the conjugate of N; exchange the Y channel.
Numerically, D — C channel interference contributions
(xY*), ; for X#7Y are insignificant compared to
(xx*), ; and are ignored in our calculations.

In addition to the decay rates, the quantities of interest
are their sum and differences:

g, +Tg =22 =8:,2)IVen, Ve, *(T(DD*),, +T(CC)yy) + |Vf1N2|2|V52N2|2(f(DD*)22 +1(CC)y)

+2¢08(621)| Ve, ||Vf21v1||Vf11v2HszN2|(Ref(DD*)12 + Rel'(CCY),)].

g, =T = 4(2 - 5f1f2)‘vle1 vale ||Vf1N2||V),’2N2|[Sin(021)(lmf(DD*>12 + Imf(CC*>12)]7

(2.12)

(2.13)

where the CP-odd phase, based on the convention adopted in Eq. (2.2), is

0;; = arg(Ven,) +arg(Ven,) —arg(Ven,) —arg(Ve,n,)

= (i + hoi — D1 — b)),

ij=12. (2.14)

A CP-even phase A& = & — &, essential for CP violation is also present in the interference of N, and N, contributions:

Ref(XX*)lz = 2/\/2'/ le mN2|PXI HPX2| COS(A&)T(XX*)dES, X = C, D, (215)
mBI :
oo N : ) 7PS
Im['(XX*),, = Imp 21 my my,|Py, ||Px,| sin(A&)T(XX*)d,>, X=D,C, (2.16)
2!
|
where &, , are given as the lattice QCD calculations [90], and we take the decay
constant of pion f, = 130.2(0.8) MeV from Ref. [91].
~ my Iy, ~ my, Iy, 517 We also need to know the total decay widths of the
tang; = Ky —my tan g, = Ky —my (2.17) heavy neutrinos I'y , as a function of their masses. For a
1 2 ’

and k% = p3, for D channel and k%, = (p/y)? for C channel.

III. RESULTS

Following the formalism in the previous section, we
turn to numerical analysis with specific decay modes. At
the LHC, about 5% of the total » hadrons produced are A,
baryons, and both at the LHCb and CMS the muon
reconstruction efficiency is comparatively higher than the
other two charged leptons. We therefore are interested in the
modes A, — A.auu and A, — pmuu channels. Since
¢y =t¢,=pu, the CP-odd phase is 0,; =2(¢,»—¢,1). For
numerical analysis, form factors parameterizing the Ag -
A and AY — p* hadronic matrix elements are taken from

Majorana neutrino mass between m, +m, < my <
(mp, — mp, —m,), both purely leptonic as well as semi-
hadronic decays may be relevant. For my < 1 GeV, the
decays to leptonic modes as well as to light pseudoscalar
and vector mesons have been calculated in Ref. [92]. For
higher values of my, decays to semihadronic modes are
increasingly difficult due to the limited knowledge of
the resonances. An inclusive approach based on quark-
hadron duality was adopted in Refs. [35,93] to calculate
the widths of the semihadronic channel. For this analy-
sis, we leave the decay width as a phenomenological
parameter that can be measured by experiments.
Following the analysis of Ref. [48], we take the
neutrino the lifetimes zy = /Ty = [10, 100, 1000] ps
for numerical illustration.
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We are interested in the signal of leptonic CP asymmetry

I'p, =T,

ACP - = = -
s, + T,

(3.1)

The reason this asymmetry will be present in the decay can
be understood as follows. There are two interfering
amplitudes coming from the two intermediate neutrinos
N; and N,. The interfering amplitudes have CP-odd phase
0, that changes sign for the conjugate process. A CP-even
phase A& comes from an absorptive part that is generated
due to the interference of the two neutrino contributions
and does not change sign in the conjugate process. In
general, 0,; can be anything, but a maximal A.p can be
obtained for #,; = x/2 as can be seen from Eq. (2.13). To
understand the behavior of A-p with the neutrino mass, we
note that Im[f(DD*) ; j} I Im[PDI_P}‘)j]. For our choices of

|

1

N N,

Im[PD,PEZHFNj«AmN = P(m) z8(py — my,) — P(

T

the neutrino lifetime 7z, and the kinematically allowed
neutrino mass my, the approximation Iy, <my, is always

valid so that

7
P2 = s(p2 —m3 ).
| D,| my Ty, (Py mN,)
b2
Pof = oo =) (32)
which yields
rxxs).. Ty,
LX)y _ N, (3.3)
L(xx*),; Ty,

When the mass difference between the neutrinos is such
that FN]_ < Amy, then we can write

1
S 2 02
Py — m%;)ﬂ (P =my,)

= ———(8(py — my,) +8(px — my,))

my, — my,
1 2w

y (my, +my,)(Cy, +Ty,)

where y = Amy /Ty and 'y = (I'y, +I'y,)/2. This yields

Iml(XX*);, Irnr(XX*>12‘FNj<<AmN
f(xx*); T(xx*);

Iml"(XX*)},
Imf(XX*)12|FNj<<AmN

1 4 mN,FN/-
y(my, +my) Ty, +Ty,) =

(3.5)
where the suppression factor

Imi(XX*),,
ImI'(XX*);, |FNj<<AmN

n= (3.6)

accounts for the departure from the approximation FN,- <
Amy in the term ImI'(XX*). Assuming the neutrinos to be
almost degenerate my, ~ my, = my,

(6(px —my,) +8(px — my,)), (3.4)
|
We define another factor
Rel'(XX*
6(y) = R XX 3.8
I(xx*) i

which measures the interference of the two neutrinos in the
real part of I'(XX*). Following Eq. (3.3), we get

6 T

o _Iw (3.9)
6, Iy,

Since we are considering a same-sign dimuon in the final

state, 7 and 6; are the same for the D and C channels, which
follows from the fact that

[(DD*);; =1(CC*);;, Rel(DD*),, = Rel(CC*),,,

Iml'(DD*),, = Im["(CC*),,. (3.10)
Iml(XX* 20y,
= ( " Ji = y_ ) . (3.7) The CP asymmetry can now be written in a convenient
Fxx7),; Ty, +Tw,) y form as
|
4sin 6
Acr = [Ven [IVen, | Iy, \Vfleanle Iy, 4 0 rl(;}) ’ (311)
[Veny IV en, | ( m) + Ven Ve, | (1 + m) + 5()’) cos 01
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The factors §(y) and n(y)/y as a function of y = Amy/Ty. The CP asymmetry observable Aqp for A, - A zup is

shown as a function of y for different values of the weak phase. An identical plot is obtained for A, — pauu. In these plots, we

have taken |V, |* = |V,y,|* = 1.

where we define

(v) +6,(y) '

s(y) = - (3.12)

For nearly degenerate neutrinos, it is natural to assume

|Vun,| ~Vun,| = [Vyuy|. This further simplifies the ex-
pression of Acp:
4sinf n(y)
Acp=—+ — . (3.13)
(I+52) + (1451 +45(y)costy Y

In Fig. 3, we show the suppression factor 7(y)/y and
5(y) as a function of y. This figure demonstrates that the
Acp will be maximum for y ~ 1, i.e., when Amy ~Ty. In
Fig. 3, we also show the A for the A, —» Azpu mode for
different values of 6, and as a function of y. An identical
plot is obtained for A, — pzuu. For a particular mode, the
possibility to observe Aqp does not depend entirely on its
size but also depends on the decay rates. In Fig. 4, we show
the CP-averaged branching ratios

10
—Npmsprpp
1 — Ao A mpp
0.100 }
[¢)]
o
‘E 0.010}
Q
0.001
10~
Tv, ~ Tn, = 1000 ps
107°
1 2 3 4 5
my,(GeV)

1
Br(B, — Bymuu) = i(Br(Bl = Bomtpmu”)

+ Br(By = Bonptpt)) (3.14)
of Ay, = A.zup and A, — prup as a function of sterile
neutrino mass my, forneutrino lifetimes 7y ~ 7y, ~ 100 and
1000 ps, |V,y|*~107>, 6, = x/4, and the neutrino mass
difference Amy = 1075 GeV. We find that the branching
ratio of A, = A muu can be within the 1079 — 10~ range,
whereas B(A, — pruu)~10712—107!" is suppressed due to
small Cabibbo-Kobayashi-Maskawa (CKM) element V.
The LHCb has already observed the lepton-number-
conserving mode A, — A(— px)u*u~ [88,89]. In the next
LHCb upgrade, about ~10'?> number of A, is expected to be
produced [94,95]. Hence, the LNV rates could be within the
reach of the future LHC sensitivity. For a detailed discussion
of the number of expected events at the LHCb and CMS,
please see Refs. [48,49].

Even if the decays are not fully observed, upper limits
can be translated to bounds on the my vs |V, v|? parameter

10
—NospTTpp
1 — N> ATy
0.100}
e
o
‘g 0.010}
K
0.001
107
Tv, ~ Tn, = 100 ps
1075
1 2 3 4 5
my,(GeV)

FIG.4. The branching ratios B(A, — A.zuu) and B(A, — prpup) for |V |* ~ |V, > = |V,n|* = 1075, the weak phase 6, = 7/4,
the mass difference Amy = 107" GeV, and the neutrino lifetimes 7y = [100, 1000] ps.
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1
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IVin|?

1076
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IVin|?

Br(A, »>p rpp)<107®

0.2 0.5 1 3

mp, (GeV)

FIG. 5. Exclusion regions on the (mNI,

0.5 1 3 6

1072

|VuN|2

107®

Br(Ap > A, 7t p ) <1077

107°
0.2

0.5 1 3 6
my,(GeV)

V,n|*) parameter space for Br(A, — pmupu) < 1078,107° and Br(A, — A aup) <

1077, 108 for different values of 7y, 6, = 7/4, and Amy = 10~ GeV.

space. In Fig. 5, we show the exclusion region in the
(my,|V,n|*) plane obtained by assuming upper bounds
Br(A,— prup) <1078, 107 and Br(A, = A zup) <107,
1078 for different choices of the heavy neutrino lifetimes.
The regions shown in brown, light green, and light red
correspond to exclusion regions obtained for 7y = 10, 100,
and 1000 ps, respectively. To compare our bounds, in
Fig. 5, we also show the exclusion limits from LHCb
[43,82], Belle [96], L3 [97], Delphi [98], NA3 [99],
CHARM [100], NuTeV [101], and NA48 [83] experiments.
These comparisons show that the LNV modes A, — pzuu
and A, — pmuu can give complementary bounds on the
sterile neutrino parameters. And, with the possibility to
observe CP asymmetry, the modes should be searched at
the LHC.

IV. SUMMARY

In this paper, we have studied lepton-number-violating
baryonic decays A, — A.zpuu and A, — prup that are
mediated by on-shell sterile Majorana neutrinos. The
decays are studied in a model where there are two
Majorana neutrinos. An interesting consequence of con-
sidering two Majorana neutrinos is that it gives rise to the

possibility of CP violation in these modes. We find that
appreciable CP asymmetry can be achieved if neutrinos are
quasidegenerate and the mass difference is of the order of
decay widths. We have shown that, in the absence of
observation, upper limits to the branching ratios can give
limits on the my vs |V,y|* parameter space that is
comparable to limits obtained by other methods.
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APPENDIX A: B, — Bfz¥¢;{¢5 AMPLITUDES

The effective Hamiltonian for the B; — B,ZN decay
and the subsequent decay of the intermediate neutrino
N — Cr are
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. G . T 3 . T n B
Ho 1N = 7’%%;;%(1 —7s)b (Z D Ui (1 =ys)E+ Y ) Ve, Noph(1 - 7s)f> +Hec., (Al)
f=e i=1 = j=1
Njtn GF _ T n o .
Het == Viady, (1 =75)uY > Vey Zy"(1 —ys)NS + Hee. (A2)
\/j r=e j=1
The B — B,z¢¢ amplitudes for the D- and C-channel diagrams are

Mp, = (GEV oMy ) (VN Ve, ) Pp, Hy L T (A3)

MG, = (GEV oMy ) (Ve Ve, ) Pe, HiLE T (A4)

where the + corresponds to the modes A) — (A, p*)nt#7¢5 and the — corresponds to the conjugate modes.
According to our convention, H,” = H, and H; = H;. The CKM elements V , =V, for Ag - ptatt and V,, =
V., for Ag — Al nf¢ modes. The leptonic parts of the amplitudes are

Llﬁli = Uy, (p)r*r*(1 £ Ys)”fz(l’z)’ L{é”i = Uy, (p)rrr(1 £ Ys)”fz(Pz)- (AS)

The hadronic amplitudes H* are calculated using the form factor parametrization of B; — B, transitions from Ref. [90]:

< - H mp, + mpg, H
(Bl s lsr B 5y = 0(hese) |7, = )T+ 73 a2) 20 L o =) |
2m 2m
+fK(q2){r” - sz P 2 k"H u(p,sp), (A6)
+

H Mmr —m H
(By(k, sp)[57"75b|By (p.s,)) = —ia(k, si)ys | f1(q*) (mp, + mBz)%+f3(q2)M Ptk —iz(mél - méz)
q S— q

2m3 2m3
Frta@ s 2 - 20 s, (A7)
Using Egs. (A6) and (A7), we can write the expression of Ay = fY, (A11)
H* as
_ mg +m mg —m ml — ms
1 = (B (k.5)|e(1 = 75)blB (p.5,) Ao = g T gy o (1 M Bz)
= i(k, sp)(A1g" + Ak + Asy” 2 B
7 H H "‘fﬁ—z’ (A12)
+rs{Asq" + Ask* + Agy* Hu(p. s,), (A8) S_
where the g*-dependent functions A; can be written in
mpg — mpg sz 2m3
terms of the form factors as As =2f4 — 2+ 4 2 _ L), (A13)
S_ S_ S_
1 2
mp, —mg mp, +mpg mg, — My
A, = fY 1 2 4 14 1 2 (1 _ 2 2>
L L — 7 Ag=f1. (A14)
v 2m32 A9
- /1 P (A9) Finally, the amplitudes for the pion production are
+
VmBI + mpg, v 2m32 2m31 Jj; = <”+(k)|a7/u(1 - ]/5)d|0> = ikﬂvudfm
A2:2f0 —J1 + ’ (AlO) - * _ (7H\TF
S+ S+ St Jo = —ik,Viafz = (Ja)'. (A15)
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The matrix element mod squared after summing over the
final spins and averaging over the initial spin is given in
Eq. (2.5). The quadratic terms 7. (XY*) and T(XY*) given
in Eq. (2.5) are

Ti(DD*) = Z[H}(H/?)*]Z[Lll/)ai(l'tgi)*}kﬂakﬂﬁ’

spins spins
(A16)
TL(CCT) = Y [HE(Hy )Y _[LEH (L) Thnaap.
spins spins
(A17)
T.(DC) =Y [Hy (Hy) 1Y ILE=(LE™) Tknakep:
spins spins
(A18)

To(D*C) =Y [(H) Hy]Y (L) L [heakep,

spins spins
(A19)
T(DD*) =T, (DD*) = T_(DD"),
T(CC*) =T, (CC*) = T_(CC¥), (A20)
T.(DC*) =T_(D*C),  T_(DC*) =T, (DC).
(A21)

In Appendix B, we describe the kinematics required to
calculate the momentum dot products required to evaluate
the quadratic terms 7. (XY*).

APPENDIX B: KINEMATICS

As mentioned in the text, the contributions coming
from the interference of the direct and cross channel
diagrams are negligibly small and neglected in our calcu-
lations. Therefore, kinematics of the direct and cross
channel can be evaluated independently. In this section,
we work out the kinematics for the direct channel. The
cross channel can be obtained trivially from the results
presented here.

71 —71Pix
ﬁZ
b 1+ (1 — l)ﬁ
AW'—>B = B '
] —71,31): (71 - 1)%

P
=71B1; (?’1 - 1)%

Referring to the diagrams in Fig. 1, in this section,
we work out the Kkinematics of B(l)(pBl) -
By(pp,)n" (p2)¢7(P1)¢5 (p2) decay in the By(pg,) rest
frame (B,-RF). In this frame, the four momentum of
By(pp,) and Wy(q) are

Pt = (mp, — E¢,0,0,p ™), (BI)

g" R = (E97,0,0,—pg ™), (B2)
where the ¢° and the pg;'RF are
2mp,

R A(myg, . mp,, qz)’ 53

2m31

and A(a,b,c) = a®> + b* + ¢* —=2(ab + bc + ca). In the
W~-RF, we define 8, as the angle made by ¢ with respect
to the B,, i.e., in the +Z direction. The four momentum of
Z(p1) and N(py) read

pi R = (B ) sin 0,0,

p} ®F|cos ).

(B4)
Pl RE ( [ - EVRE _|pW"RF|5in g, 0,
—|p} | cos 91), (BS)

W~-RF

and p,

where E} RF

are given, respectively, as

Ag*.mi, py)

2V/q

pwre _ 4 mi—py
WORF

NV

py R =
(B6)

The Lorentz boost matrix to transform four vectors from the
W~-RF to the 5,-RF reads

—71h1y ~71b1:
(71 1) 7 (71 1) 7 ( )
2 ’ B7
I+ (=17 (71—1)%
! 1

Prybi _ A
(ri=1) 7 1+ (71 1) 7
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where the velocity ,El is the velocity of the W~ (g) as seen in the 5;-RF and

1 P
7 =—— P =0, By =0, ﬂlz_w- (B8)
q

V1-A
In the heavy neutrino rest frame N-RF, the four momentum of #,(p,) and the W' (p,) are given as
Py R = (ESR, [pYRF| sin 0, cos ¢, [py ™" sin 6, sin ¢, [p)*F| cos 6,), (B9)
pRRE = (BT, |5 sin 0, cos ¢, —|p5™"| sin 0, sin ¢, —[p)KF| cos 6,), (B10)

where 0, is the angle made by the lepton £, with respect to the +Z direction. The angle ¢ is made by the plane containing £,
and W with respect to the plane containing #; and N as seen in the B;-RF and is defined as

~B,-RF ~B-RF ~ B;-RF ~ B;-RF
cosp = (P X pyT )Py X P )s (B11)
sing = —[(pP" x py ™) x (p5 R x pu RO py (B12)

The energies EYRF and EYRF and three momentum [p)RF| are

2 2 2 2 2 2
. py +m3 — pz . . . Mpy,m3, pz)
EYRF — N 22 , ENRF _ /p]2V — E)RF |pYRF| = N 22 . (B13)
2 PN 2\/ PN

The Lorentz boost required to go from the heavy neutrino rest frame to the W~ rest frame is given as

72 —Y2Pax —Yzﬁzy =722
2
b 1Hn-D (-0 (n- DB
AN—)W’ = V5 ’ (B14)
—12by (12— l)ﬂ”ﬂz” I+ (n-% - l)ﬁzl}fz
_ _ ﬂz:ﬂz _ ﬂZ,\ﬂZ: i
raBr (ra—1)=%% 2 (r2-1) 7 + (- 1) 7
where the velocity /_);2 is the velocity of the N as seen in the W™-RF
1 pl/ RF pl/ RF
V2 = —F—, P = | W RF' sinf, Py =0, Pa. = | I‘X/—_Rpl cos ;. (B15)
22 Ey Ey
1=/
APPENDIX C: PHASE SPACE
The differential width for the four-body final state is
1
dF:—|M|2d®4<Bl —)Bzflfzﬂ') (Cl)
2m31
The four-body phase space can be split up as
dpy
dq)4(61 - B2Lﬂlf2ﬂ'> = ch3<Bl g Bzle) z—dq)z(N i fzﬂ'), for D channel, (CZ)
b2
dpy
= d®;(B, - B,¢,N) 2—dd>2(N — ¢x), for Cchannel. (C3)
b2
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The expressions of different phase spaces are given below:

AL mE ml g ml )\ J2(Lm2 [ PR/ )

dq):;(Bl g Bzle) —

dq)z(N - I/ﬂzﬂ') =

The limits of the integration of the angles are as follows:

—1<cosf; <1,

dqg*d 0 C4
4z (87)? / TAOSTL (C4)
\/’1<1am§2/P%v,P72r/P12v) dcos 0, dep s
[t (©s)

—1<cosh, <1, 0<¢<2nm. (C6)
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