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We investigate analog black holes generated in an array of direct current superconducting quantum
interference devices (dc SQUIDs) coupled in parallel with a one-dimensional chain of single-domain
nanomagnets. Magnetic solitons in the chain provide magnetic fields perpendicular to the SQUID array.
This leads to the spatially varying velocities of electromagnetic waves through the nonlinear inductance in
the array required for creating effective event horizons, resulting in analog black holes. We derive the
Hawking temperature in this analog black hole based on the tunneling mechanism for Hawking radiation.
The formula reflecting the soliton properties shows that Hawking radiation is observable using the current
state-of-the-art technologies.
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I. INTRODUCTION

Hawking radiation is blackbody radiation emitted
from a black hole, from which even light is believed to
be unable to escape [1,2]. This occurs due to quantum-
mechanical effects near the black hole event horizon.
According to the uncertainty principle, virtual particle
pairs are constantly being created and then quickly anni-
hilate each other everywhere. But, near the horizon of a
black hole, it is possible for one to fall in before the
annihilation can happen, in which case the other one
escapes as Hawking radiation. Hawking radiation is a rare
example where general relativity and quantum mechanics
meet. Therefore, the observation of Hawking radiation is a
touchstone for the unified theory incorporating both gen-
eral relativity and quantum mechanics. Unfortunately,
Hawking radiation has never been observed, because the
Hawking temperature is about 10−8 K for a solar mass
black hole, which is much smaller than the cosmic back-
ground radiation temperature (3K). As a result, it is difficult
to study actual black holes.
This brought us to the analog black hole scenario

pioneered by Unruh in sonic systems [3]. Since then, analog
black holes have been investigated in various systems such
as liquid helium [4], optical fibers [5], and Bose-Einstein
condensates [6]. In addition, Schützhold and Unruh
proposed the analog black holes using electromagnetic

transmission lines [7]. Later, Nation et al. extended their
idea to superconducting transmission lines equipped with
direct current superconducting interference devices (dc
SQUIDs) [8]. They have overcome the main drawback in
the Schützhold and Unruh system, namely, heating due to
the dissipative processes that hinder observation, by using
superconductors for thewaveguides themselves. In addition,
there are many advantages to superconducting devices, such
as lithographic scalability, compatibilitywith high-precision
microwave control due to their strong coupling and oper-
ability at nanosecond timescales.
Their proposed scheme for creating an effective event

horizon is dual to the previous one. The analog event
horizon occurs where the speed of analog light equals the
spatially varying background flow. Note that the roles of
light and the background field are reversed in the trans-
mission line. That is, the velocity of electromagnetic waves
changes spatially. The velocity of electromagnetic waves
per unit length a in the transmission line is represented by
c ¼ a=

ffiffiffiffiffiffiffi
LC

p
with the inductance L and the capacity C of

the circuit. Therefore, spatial dependence can be introduced
into the velocity of electromagnetic waves through induct-
ance or capacitance. An externally applied laser beam to
the transmission line for modulating the capacitance is
employed in the previous study. However, the laser-based
illumination generates a large number of excess environ-
mental photons, leading to heating problems. To avoid
these unwanted dissipations, Nation et al. applied an
external magnetic flux to the SQUID array in the form*noriyuki@hiroshima-u.ac.jp
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of a steplike moving flux pulse with a fixed velocity. Then
they theoretically succeeded in generating the horizon
where the pulse velocity is equal to the velocity of
electromagnetic waves in the dc-SQUID array transmission
line.
Here, we further extend their theory to an external

magnetic field using magnetic solitons to create analog
black hole solitons. The pulse current that generates the
magnetic field applied to the SQUID array generally
changes its shape with time due to wave number dispersion.
This makes the analog event horizon unstable. To create a
stable horizon, we utilize solitons that propagate stably in
nonlinear dispersive systems due to their self-reinforcing
nature caused by balancing nonlinear and dispersive effects
[9–11]. This feature also provides an alternative platform
for exploring uncharted aspects of analog black hokes like
dynamical features of event horizons and quantum birth of
a micro black hole pair.
Solitons in magnetic chains with easy-axis anisotropy

are formed by the competition between the exchange
energy J and the anisotropy energy D, leading to moving
domain walls connecting between two different but ener-
getically degenerate ground states [12,13]. In a ferromag-
net, a π soliton mediates between the ground states of the
upward and downward magnetic moments, for example. In
our proposed system, magnetic solitons play a role in
generating the magnetic field applied to the dc-SQUID
array. Thus, single-domain magnetic nanoparticles are
aligned just below the dc-SQUID transmission line indi-
cated in Fig. 1.
The remainder of this paper is organized as follows. We

begin with a description of the magnetic soliton in a single-
domain magnetic nanoparticle chain that provides the
external magnetic field applied to the SQUID array, which
is the key issue in this paper. In particular, the alternating
upward and downward magnetic moments in the chain in
Fig. 1(b) are effectively treated as the magnetic moments
pointing in the same direction. We consider two types of
solitons that produce black holes and black hole–white
hole pairs. We then describe black holes using solitons
and discuss the observability of Hawking radiation in
our analog black holes by assessing the Hawking temper-
ature. The soliton characteristics appearing in the
Hawking temperature formula play a critical role in the
identification of Hawking radiation. The paper ends with a
discussion.

II. MAGNETIC BIAS CONTROLLED BY
MAGNETIC SOLITONS

A. Model

Let us consider a coplanar dc-SQUID array consisting of
identical capacitance C and critical current Ic in all
Josephson junctions together with a single-domain mag-
netic nanoparticle chain as shown in Fig. 1. As shown in

Fig. 1(b), the chain composed of alternating nanosized
single-domain magnets with different magnetic moment
spacing a=2 is arranged in parallel at a distance l just below
the dc-SQUID array.
Suppose that all of the single-domain nanoparticles have

the same size. The magnetic moments in the single-domain
nanoparticle chain are inevitably forced to align alternately
due to the dipole-dipole interaction. Therefore, we have no
choice but to use a soliton-bearing nanoparticle model with
antiferromagnetic interaction [14] as a starting point.
However, the single-domain nanoparticle chain with anti-
ferromagnetic interaction results in generating a nonmag-
netic field. In order to generate the suitable external
magnetic field applying to the dc-SQUID array, we adopt
the arrangement of single-domain nanoparticles of two
sizes that alternate, in which magnetic moments alternate
upward and downward similar to ferrimagnet as shown in
Fig. 1(b). Hereafter, we call this chain a ferrimagnetic-
aligned nanoparticle chain. In the following, we will show
that a nanomagnetic material with a small magnetic
moment is substantially renormalized into a nanomagnetic
material with a large magnetic moment in the ferrimag-
netic-aligned nanoparticle chain and can be effectively
regarded as an alignment of same-sized nanoparticles
similar to ferromagnets, i.e., a ferromagnetic-aligned nano-
particle chain. The system we consider is, thus, a system
that introduces a magnetic field generated by a well-
controllable soliton into the framework of Nation’s black
hole system.

FIG. 1. (a) Diagram of a dc-SQUID array transmission line with
identical capacitance C and critical current Ic in all Josephson
junctions (top view). A circled dot and a cross inside the circle
represent the magnetic flux applied from back to front and the
opposite direction, respectively, when viewed from a vertical
direction on a page. (b) Schematic diagram of our system.
Nanosized single-domain magnets with magnetic moments
different in size arranged below the dc-SQUID transmission
line. The magnetic flux line exits from the large upward magnetic
moment and enters the small downward magnetic moment.
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B. Ferrimagnetic-aligned nanoparticle chains

The model Hamiltonian for the ferrimagnetic-aligned
nanoparticle chain with different sublattice anisotropies
placed just below the dc-SQUID array is represented by

Ĥ ¼ J
X
n

ðŜ2n−1 · σ̂2n þ σ̂2n · Ŝ2nþ1Þ

þ
X
n

fKz
σðσ̂z2nÞ2 − Kx

σðσ̂x2nÞ2g

þ
X
n

�
Kz

SðŜz2n−1Þ2 − Kx
SðŜx2n−1Þ2

−
Kxy

S

4
fðŜx2n−1Þ2 − ðŜy2n−1Þ2g2

�
; ð1Þ

where the operators Ŝn and σ̂n refer to the large and
small magnetic moments of the single-domain magnets at
the nth site of each sublattice, respectively. The first
parenthesis on the right-hand side of Eq. (1) represents
the dipole-dipole interaction energy with antiferromagnetic
coupling (J > 0) between them. The second one represents
magnetic anisotropy energy for small magnetic moments

with KxðzÞ
σ ð>0Þ being the magnetic anisotropy parameter of

the xðzÞ component. Similarly, the last one expresses
magnetic anisotropy energy for large magnetic moments,
including two types of anisotropy. One is uniaxial

anisotropy with KxðzÞ
S ð>0Þ being the anisotropy parameter

of the xðzÞ component, similar to small magnetic moments.
The other is biaxial anisotropy [15] with anisotropy
constant Kxy

S ð>0Þ coming from fourfold symmetric, which
is not available in small magnetic moments. Let us assume
here the relations Kz

S ≫ Kx
S; K

xy
S and Kz

σ ≫ Kx
σ . This

implies that the single-domain magnetic nanoparticle
at each site has an xy easy plane. In this paper, the magnetic
moment operators can be treated as classical vectors
due to large magnitudes of magnetic moments in the
single-domain nanoparticles; Ŝn → Sn ¼ ðSxn; Syn; SznÞ, and
σ̂n → σn ¼ ðσxn; σyn; σznÞ.

C. Effective ferromagnetic-aligned
nanoparticle chains

Here, we derive the effective ferromagnetic Hamiltonian
from our original ferrimagnetic Hamiltonian for a single-
domain ferrimagnetic-aligned nanoparticle chain by elimi-
nating the variables σ for small magnetic moments [16].
This can be achieved by tracing out the relevant variables in
the partition function. For the sake of simplicity, let us
focus on the specific Hamiltonian Hð2nÞ, which is related
only to S2n�1 and σ2n. By integrating the classical partition
function over σ2n, the effective Hamiltonian H0ð2nÞ depend-
ing only on S2n is obtained as follows: The partition
function is given as

Z ¼
Z

dσ2n expð−βHð2nÞÞ ¼ exp½−βH0ð2nÞ�; ð2Þ

with inverse temperature β and the Hamiltonian Hð2nÞ
written as

Hð2nÞ ¼ Hð2nÞ
S þHð2nÞ

σ þHð2nÞ
Sσ ; ð3Þ

where the first and second terms are Hamiltonians for large
magnetic moments and small magnetic moments, respec-
tively, and the last term is their interaction Hamiltonian. In
carrying out the integration over σ2n, it is convenient to
introduce a mean field for the magnetic moment, i.e.,

Hð2nÞ
σ þHð2nÞ

Sσ ¼ −σ2n · B2n − Kz
σhσz2ni2 þ Kx

σhσx2ni2; ð4Þ

with

B2n¼−JðS2n−1þS2nþ1Þ−2Kz
σhσz2niezþ2Kx

σhσx2niex; ð5Þ

under the mean field approximation ðσxðzÞ2n − hσxðzÞ2n iÞ2 ≃ 0,
where exðzÞ represents the unit vector pointing in the
xðzÞ direction. Based on the calculations shown in the
Appendix, we obtain the effective Hamiltonian H0:

H0 ¼ −J0
X
hi;ji

Si · Sj þ
X
i

�
K0

zðSzi Þ2 − K0
xðSxi Þ2

−
Kxy

S

4
fðSxi Þ2 − ðSyi Þ2g2

�
; ð6Þ

where hi; ji represents the sum over the nearest neighbors
only. The exchange (J0 > 0) and anisotropy (K0

x and K0
z)

coefficients together with the conditions J0 > 0, K0
z ≫ K0

x,
and Kxy

S > 0 are given, respectively, by

J0 ¼ Jσ
2S

; ð7Þ

K0
x ¼ Kx

S −
σ2

S2
Kx

σ; ð8Þ

K0
z ¼ Kz

S þ
σ2

S2
Kz

σ: ð9Þ

This means that the ferrimagnetic-aligned nanoparticle
chain indicated in Fig. 2(a) can be effectively considered
as single-domain magnets with the same size magnetic
moments aligned with a fixed space a, leading to the
ferromagnetic-aligned nanoparticle chain as shown in
Fig. 2(b). The magnetic moment vector S rotates in the
xy plane due to the condition K0

z ≫ K0
x; K

xy
S .
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D. Magnetic solitons as a magnetic-field source

Now let us consider dynamics of magnetic moments in
the effective ferromagnetic-aligned nanoparticle chain
obtained above and derive two types of soliton solutions
as a magnetic-field source. The effective magnetic field Bi
generated by the magnetic moment Si in the nanoparticles
is given as

Bi ¼ −
dH0

dSi
: ð10Þ

This causes Larmor precession in magnetic moments [12].
The equation of motion is

dSi
dt

¼ Si × Bi: ð11Þ

Under the continuum approximation, magnetic moments
are expressed in spherical coordinates as follows:

Si ¼ SðzÞ
¼ Sð cos δ cosϕðzÞ; cos δ sinϕðzÞ; sin δ Þ; ð12Þ

where ϕ is the azimuthal angle and δð¼ π=2 − θÞ is the
perturbation angle with θ being the polar angle. The
perturbation angle δ is assumed to be sufficiently small,
so that sin δ ≃ δ and cos δ ≃ 1 hold. We also use the
approximation ð∂ϕ=∂zÞ2 ≃ 0. From Eq. (11), we obtain

∂δ
∂t ¼ J0Sa2

∂2ϕ

∂z2 − K0
xS sin 2ϕ −

1

2
Kxy

S S3 sin 4ϕ; ð13Þ

∂ϕ
∂t ¼ 2K0

zSδþ 2K0
xSδcos2ϕþ Kxy

S S3δcos22ϕ

≃ 2K0
zSδ; ð14Þ

leading to double sine-Gordon equation

∂2ϕ

∂t2 − v20
∂2ϕ

∂z2 þm2
1 sin 2ϕþm2

2 sin 4ϕ ¼ 0; ð15Þ

where v20¼2K0
zJ0S2a2, m2

1¼2K0
xK0

zS2, and m2
2¼Kxy

S K0
zS4.

v0 stands for the velocity of the linear wave. The double
sine-Gordon equation has been investigated in detail and is
known to have various types of soliton solutions depending
on the parameters [17]. Here, let us focus on two types of
solitons that are useful for the generation of black hole
solitons to be discussed below.

E. 90-degree magnetic solitons

The first type of soliton is the 90-degree (⊥) magnetic
soliton as shown in Fig. 3(a), which reproduces a single
black hole equivalent to the black hole proposed by Nation
et al. [8] except for the characteristics of the soliton. This
soliton solution is obtained in the double sine-Gordon
equation [Eq. (15)] when m1 ¼ 0, that is, the uniaxial
coefficientK0

x is 0. The 90-degree magnetic soliton solution
is expressed as

ϕ⊥ðz; tÞ ¼ arctanfe�ðγ=d⊥
0
Þðz−vstÞg; ð16Þ

with the soliton velocity vs, d⊥0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0=4Kxy

S S2
p

, and

Lorentz factor γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvs=v0Þ2

p
. Figure 3(a) shows

the 90-degree magnetic soliton expressed by the soliton

FIG. 3. Sketch of the soliton with the width d ∼ 2d⊥ðkÞ
0 =γ in the

effective ferromagnetic-aligned nanoparticle chain, where nano-
particles are arranged at uniform distance a. z=a denotes the
number of dc SQUIDs. (a) 90-degree magnetic soliton and
(b) 180-degree magnetic soliton.

FIG. 2. (a) Ferrimagnetic-aligned nanoparticle chain. The
nanoparticles of different sizes are aligned with fixed space
a=2. The magnetic moments alternatively direct upward and
downward for the energetical stability similar to the ferrimagnets.
(b) The effective ferromagnetic-aligned nanoparticle chain, where
the same size magnetic moments are aligned with fixed space a.
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solution Eq. (16) with the width d ∼ 2d⊥0 =γ. The continuum
approximation is applicable when the soliton width is larger
than the unit length d=a ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0=4Kxy

S S2
p

=γ > 1. This con-
dition can be satisfied by properly designing the system
parameters and soliton velocity. This type of soliton results
from biaxial magnetic anisotropy with the anisotropy
energy −Kxy

S fðSxi Þ2 − ðSzi Þ2g2=4 where the magnetization
along þx and þy is degenerate. Therefore, the magnetic
moments in the effective ferromagnetic-aligned nanopar-
ticle chain are forced to rotate 90° for a transition between
two equilibrium states.

F. 180-degree magnetic solitons

On the other hand, the 180-degree (k) magnetic solitons
are formed when m2 ¼ 0, equivalently, the biaxial mag-
netic anisotropy constant Kxy

S ¼ 0. The soliton solution of
Eq. (15) is similarly expressed as

ϕkðz; tÞ ¼ 2 arctanfe�ðγ=dk
0
Þðz−vstÞg; ð17Þ

with dk0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0=2K0

x

p
. Figure 3(b) shows the 180-degree

magnetic soliton formed by the soliton solution Eq. (17)

with the width d ∼ 2dk0=γ. In this case, the magnetization
alongþx and −x is degenerate due to the uniaxial magnetic
anisotropy energy −K0

xðSxi Þ2. The magnetic moments in the
effective ferromagnetic-aligned nanoparticle chain are
forced to rotate 180° for a transition between two equilib-
rium states. This is the origin of the 180-degree magnetic
soliton generation. Unlike 90-degree magnetic solitons, the
180-degree magnetic solitons form black hole pairs as
described below.

III. BLACK HOLE SOLITONS

Here, let us discuss black hole solitons generated using
magnetic solitons. In the Josephson circuit, the kinetic
inductance LðΦÞ of the junction depends on the flux Φ
through dc SQUID as follows:

LðΦÞ ¼ L0

cosð2πΦ=Φ0Þ
ð18Þ

with magnetic flux quantum Φ0 ¼ h=2e and the Josephson
inductance L0 ¼ ℏ=2eIc. As is well known, the propaga-
tion velocity of electromagnetic wave c in this circuit is
given by c ¼ a=

ffiffiffiffiffiffiffi
LC

p
. Thus, the propagation velocity

depending on the magnetic flux through dc SQUID is
expressed as

c̄ðΦÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2πΦ=Φ0Þ

p
; ð19Þ

where c is normalized by c0 ¼ a=
ffiffiffiffiffiffiffiffiffi
L0C

p
. In our model, the

magnetic field perpendicular to the SQUID is generated by
the magnetic moments of the single-domain magnets chain.
The magnetic flux threading through the dc SQUID with its
area A is

Φ ¼ BxA ¼ SA
2πl3

cosϕ ¼ Φ1

2π
cosϕ ð20Þ

with Φ1 ¼ SA=l3. By substituting soliton solutions for the
azimuthal angle ϕ of the magnetic moments, the magnetic
flux is then obtained. The magnetic flux induced by the
magnetic solitons modulates the velocity of an electromag-
netic wave spatially as

c̄ðz; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos fΦ̄ cosϕðz; tÞg

q
; ð21Þ

where Φ̄ ¼ Φ1=Φ0, leading to the analog black holes.
There are three conditions for creating analog black

holes in our system. First, the velocity of an electromag-
netic wave in the circuit expressed in Eq. (21) must be
real. This leads to the condition 0 ≤ Φ̄ ≤ π=2. Second,
the soliton velocity is faster than the lower limit of the
velocity of an electromagnetic wave in the circuit, i.e.,
limz→�∞c̄ðz; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
cos Φ̄

p
< v̄s. The third is the natural

condition that the velocity of an electromagnetic wave in
the circuit under the magnetic field is slower than the
velocity of an electromagnetic wave with no magnetic field.
As a result, the soliton velocity is restricted in the
range

ffiffiffiffiffiffiffiffiffiffiffi
cos Φ̄

p
< v̄s < 1.

In addition, we discuss the observability of the Hawking
radiation in our system by deriving the Hawking temper-
ature TH analytically using the formula [18]

TH ¼ ℏ
2πkB

���� ∂c∂z
����
z¼zh

; ð22Þ

where kB is the Boltzmann constant. Note that this formula
is applicable only under the continuum approximation
d > a. Otherwise, a well-known trans-Planckian problem
in general relativity occurs when the discreteness is
pronounced [19–24]. The inter-SQUID distance a plays
the role of the Planck length in this system, but this is
beyond the scope of this paper.

A. Black hole solitons induced by the 90-degree
magnetic solitons

Here, let us consider the black hole solitons induced by a
90-degree magnetic soliton obeying Eq. (16). The magnetic
flux through the dc SQUID is written as

Φ⊥ðz; tÞ ¼ Φ1

2π
cos ½arctanfe�ðγ=d⊥

0
Þðz−vstÞg�

¼ Φ1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
f1 ∓ tanh ðγðz − vstÞ=d⊥0 Þg

r
; ð23Þ

by using Eq. (20). The magnetic flux through the dc
SQUID in the transmission line changes spatially between
0 and Φ1=2π as shown in Fig. 4(b), since the magnetic
moments rotate 90° as shown in Fig. 4(a). From Eq. (18),
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one has the spatially varying Josephson inductance LðΦÞ as
follows:

L⊥ðΦÞ ¼ L0

cos
h
Φ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
f1 ∓ tanh ðγðz − vstÞ=d⊥0 Þg

q i : ð24Þ

As a result, the effective velocity of an electromagnetic
wave in the dc-SQUID array transmission line is obtained
from Eq. (19) as

c̄⊥ðz; tÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

�
Φ̄ffiffiffi
2

p f1∓ tanhðγðz−vstÞ=d⊥0 Þg1=2
�s
: ð25Þ

Figure 4(c) shows the normalized space-dependent velocity
of an electromagnetic wave in the comoving frame at
v̄s ¼ 0.98 as an example. The event horizon occurs at
ðc̄ðξ⊥h ÞÞ2 ¼ v̄2s . The position of the event horizon in the
comoving frame is given by

ξ⊥h ¼ � d⊥0
γ
arctanh

�
2

Φ̄2
arccos2 v̄2s − 1

�
ð26Þ

and is shown in Fig. 5(b). An analog black hole can be
formed where the velocity of the electromagnetic wave is
slower than the soliton velocity.
Now, we derive the Hawking temperature in the obtained

analog black hole. Substituting Eq. (25) into Eq. (22), we
obtain the formula

T⊥
H ¼ ðT0

HÞ⊥f⊥ðv̄sÞ; ð27Þ

where ðT0
HÞ⊥ and f⊥ðv̄sÞ stand for bare Hawking temper-

ature and soliton characteristic function, respectively, and
are given as follows:

ðT0
HÞ⊥ ¼ ℏ

2πkB
c0

1

d⊥0
; ð28Þ

f⊥ðv̄sÞ ¼
1

2
ðarccos v̄2sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

v̄2s

s ����1 −
�
arccos v̄2s

Φ̄

�
2
����: ð29Þ

The bare Hawking temperature ðT0
HÞ⊥ given solely by the

system parameters determines the rough temperature scale.
Thus, one can control ðT0

HÞ⊥ by designing the system
parameters. For example, assuming d ∼ 2d⊥0 =γ > a to
satisfy the continuum approximation together with circuit
parameters accessible with current technology, typically,
C ∼ 10−16F and I0 ∼ 10−7A, the bare Hawking temperature
T0
H is in the sub-Kelvin order and is fully observable.
In addition, it is found that the Hawking temperature also

depends on the soliton velocity v̄s as shown in Fig. 5(d),
which was not found in previous studies. This is essentially
due to the relativistic dynamical contribution of the soliton
f⊥ðv̄sÞ through the Lorentz factor as discussed below.
According to Eq. (22), the Hawking temperature is deter-
mined by the velocity gradient of the electromagnetic wave
in the circuit at the event horizon. The two elements of the
definition, the velocity gradient and the position of the
event horizon, both depend on the soliton velocity.
First, let us discuss the velocity gradient of the electro-

magnetic wave in the circuit, which is introduced by the
magnetic soliton. The velocity gradient then depends on the
soliton shape that is characterized by the soliton width
d ∼ 2d⊥0 =γ. A short soliton width means a steep velocity

FIG. 4. (a) The rotation angle of the magnetic moments in the
xy plane at ξ in the comoving frame. (b) The spatially varying
magnetic flux applying to the dc-SQUID array in the comoving
frame. (c) The normalized velocity of the electromagnetic wave
with Φ̄ ¼ 1 in the comoving frame. The horizontal dotted line
represents the normalized soliton velocity v̄s ¼ 0.98. ξ⊥h indicates
the position of the event horizon.

(b)

(d)

FIG. 5. (a) Spatial dependence of squared velocity of the
electromagnetic wave ðc̄⊥ðξÞÞ2 for some typical soliton veloc-
ities; v̄s ¼ 0.75 (dotted line), 0.87 (one-dot chain line), 0.91
(dashed line), and 0.99 (solid line). The position of event horizons
is depicted by the bold line with circles corresponding to the
typical soliton velocities shown above, such as v̄s ¼ 0.75 (cross
inside circle), 0.86 (open circle), 0.91 (circled dot), and 0.99
(filled circle). The circles in all embedded figures correspond to
these values. (b) The position of the event horizon as a function of
the soliton velocity. (c) The velocity gradient of the electromag-
netic wave j∂c̄⊥=∂ξj. (d) The Hawking temperatures f⊥ðv̄sÞ
given in Eq. (29) under the condition Φ̄ ¼ 1 as a function of the
soliton velocity v̄s.
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gradient. The width contains the Lorentz factor γ depending
on the soliton velocity. Thus, the soliton width decreases as
the soliton velocity increases due to the Lorentz contrac-
tion. This makes the tanh-type soliton shape steeper. In
other words, the relativistic effect γ increases the slope of
the soliton, resulting in a steeper velocity gradient of the
electromagnetic wave.
The second factor that affects the Hawking temperature,

which involves the soliton velocity, is the position of the
event horizon. Figure 5(b) shows the position of the event
horizon as a function of the soliton velocity. This strange
behavior is due to the peculiar soliton-velocity dependence
on the Lorentz factor. As you can see in Fig. 5(a), when the
soliton velocity increases, the position of the event horizon
shifts to the right at first. This is simply because c̄⊥ðξ⊥h Þ,
which satisfies the event horizon condition, increases.
Lorentz contractions are less important for slow solitons.
However, it then turns to the left from a certain point. This
is due to the Lorentz contraction manifested at a soliton
velocity close to the speed of light. The soliton width
becomes shorter, and the points that satisfy the condition
shift to the left.
To summarize the above discussion, the Hawking

temperature increases monotonically with increasing sol-
iton velocity and decreases rapidly to zero at high velocities
where Lorentz contraction becomes prominent. In these
decreasing parts in temperature, the soliton width shortens
rapidly and the velocity gradient j∂c̄⊥=∂ξj approaches the
delta function. Therefore, the velocity gradient at the event
horizon decreases rapidly and finally becomes 0. In other
words, the change of the velocity gradient approaching the
delta function is more rapid than the change of the position
of the event horizon as a function of the soliton velocity.

B. Black hole solitons induced by the 180-degree
magnetic solitons

Here, let us consider the black hole solitons created by
the 180-degree magnetic soliton obtained in Eq. (17). The
magnetic flux through the dc SQUID is written as

Φkðz; tÞ ¼ Φ1

2π
cos ½2 arctanfe�ðγ=dk

0
Þðz−vstÞg�

¼ Φ1

2π
tanh f∓γðz − vstÞ=dk0g; ð30Þ

by using Eq. (20). The magnetic flux through the dc
SQUID in the transmission line changes spatially between
−Φ1=2π and Φ1=2π as shown in Fig. 6(b), since the
magnetic moments rotate 180° shown in Fig. 6(a). From
Eq. (18), the Josephson inductance is given as

LkðΦÞ ¼ L0

cos ½Φ̄ tanh f∓γðz − vstÞ=dk0g�
: ð31Þ

The effective velocity of an electromagnetic wave in the
transmission line is then obtained from Eq. (19) as

c̄kðz; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ½Φ̄ tanh f∓γðz − vstÞ=dk0g�

q
: ð32Þ

Figure 6(c) shows the normalized space-dependent velocity
of electromagnetic wave in the comoving frame at
v̄s ¼ 0.98 similar to the example at the 90-degree soliton.

The event horizon occurs at ðc̄ðξkhÞÞ2 ¼ v̄2s . The position of
the event horizon in the comoving frame is given by

ξk�h ¼ � dk0
γ
arctanh

�
1

Φ̄
arccos v̄2s

�
ð33Þ

[see Fig. 7(b)]. Unlike the analog black hole induced by
90-degree magnetic solitons, the pair of analog black holes
can be created where the velocity of the electromagnetic
wave is slower than the soliton velocity.
Here, we discuss the observability of the Hawking

radiation in the pair of the analog black holes by deriving
the Hawking temperature analytically using Eq. (22). The
Hawking temperature is expressed as

Tk
H ¼ ðT0

HÞkfkðv̄sÞ; ð34Þ

where ðT0
HÞk and fkðv̄sÞ represent the bare Hawking

temperature and the soliton characteristic function, respec-
tively, and are written as follows:

ðT0
HÞk ¼

ℏ
2πkB

c0Φ̄
1

dk0
; ð35Þ

FIG. 6. (a) The rotation angle of the magnetic moments in the
xy plane at ξ in the comoving frame. (b) The spatially varying
magnetic flux applying to the dc-SQUID array in the comoving
frame. (c) The normalized velocity of the electromagnetic wave
with Φ̄ ¼ 1 in the comoving frame. The horizontal dotted line

represents the normalized soliton velocity v̄s ¼ 0.98. ξk−h and ξkþh
indicate the black hole and white hole horizon positions,
respectively.
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fkðv̄sÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

v̄2s

s ����1 −
�
arccos v̄2s

Φ̄

�
2
����: ð36Þ

The bare Hawking temperature ðT0
HÞk determines the rough

temperature scale. One can control ðT0
HÞk by designing the

system parameters, since it depends solely on the system

parameters. For example, assuming d ∼ 2dk0=γ > a at
Φ̄ ¼ 1 together with circuit parameters accessible with
current technology, the bare Hawking temperature T0

H is in
the sub-Kelvin order and is also observable.
Similar to the black hole soliton formed by the 90-degree

magnetic solitons, the Hawking temperature is also found
to be dependent on the soliton velocity v̄s as shown in
Fig. 7(d), which has not been found in the previous studies.
This is due to the same relativistic mechanism as the black
hole soliton induced by 90-degree magnetic solitons. Here,
only the differences are described. The velocity of the
electromagnetic wave in the circuit is symmetric with
respect to the origin. This is the origin of two degenerate
event horizons. Therefore, the soliton-velocity dependence
is the same for two event horizons. In fact, the soliton-
velocity dependence on the Hawking temperature is exactly
the same for black holes and white holes as shown in
Fig. 7(d).
To summarize our black hole solitons, their Hawking

temperatures reflect the dynamic properties of soliton and

show unprecedented properties that depend on the soliton
velocity. This dependence implies that the Hawking temper-
ature can be controlled simply by changing the soliton
velocity without changing the circuit configuration at all.
Therefore, this change confirms that the experimentally
detected radiation is actually due to Hawking radiation.
This is an excellent advantage that has never been seen before.

IV. SUMMARY

We have investigated analog black holes generated
in an array of dc SQUIDs coupled in parallel with a
one-dimensional chain of single-domain nanomagnets.
Starting with a ferrimagnetic-aligned nanoparticle chain
with alternating magnetic moments in both direction and
magnitude, we have shown that the ferrimagnetic-aligned
nanoparticle chain can be effectively reduced to a ferro-
magnetic-aligned nanoparticle chain. Then, we derived two
types of solitons that appear there. The magnetic solitons in
the chain produce magnetic fields perpendicular to the
SQUID array, leading to the spatially varying velocities of
electromagnetic waves through the nonlinear inductance in
the array. The effective event horizon is established where
the soliton velocity is equal to the spatially varying velocity
of the electromagnetic wave in the circuit. Therefore, an
analog black hole is created in the region of the circuit with
an effective velocity of the electromagnetic wave lower
than the soliton velocity. It was found that 90-degree
magnetic solitons produce single analog black holes as
described in previous studies, whereas 180-degree mag-
netic solitons produce analog black hole pairs.
We have also derived the Hawking temperature in these

analog black holes based on the tunneling mechanism for
Hawking radiation. In our system, the electromagnetic
wave produced by the quantum fluctuation of the
Josephson phase near the classical soliton is observed as
the Hawking radiation. According to the formula, Hawking
radiation is observable in the circuit using existing tech-
nologies. In addition, the Hawking temperature reflects the
characteristics of solitons, because the black holes are
derived from solitons. That is, it depends on the soliton
velocity. If this dependence can be confirmed experimen-
tally, it can be identified that the observed radiation is
certainly from an analog black hole. This might reinforce
the previously known identification method based on the
entanglement of radiated light [25].
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APPENDIX: DERIVATION OF THE EFFECTIVE
FERROMAGNETIC HAMILTONIAN

Here, we derive the effective ferromagnetic Hamiltonian
starting from our original ferrimagnetic Hamiltonian for a
single-domain ferrimagnetic chain given in Eq. (1), which

(b)

(d)

FIG. 7. (a) Spatial dependence of squared velocity of the
electromagnetic wave ðc̄kðξÞÞ2 for some typical soliton velocities;
v̄s ¼ 0.75 (dotted line), 0.87 (one-dot chain line), 0.91 (dashed
line), and 0.99 (solid line). The pair of event horizons are formed
for each soliton velocities unlike 90-degree magnetic solitons.
The position of event horizons is depicted by the bold line with
circles corresponding to the typical soliton velocities shown
above, such as v̄s ¼ 0.75 (cross inside circle), 0.86 (open circle),
0.91 (circled dot), and 0.99 (filled circle). The circles in all
embedded figures correspond to these values. (b) The position of
the event horizon as a function of the soliton velocity. (c) The
velocity gradient of the electromagnetic wave j∂c̄k=∂ξj. It is
symmetric about the vertical axis so that the Hawking temper-
atures are the same at both positions of the event horizons.
(d) The Hawking temperatures fkðv̄sÞ given in Eq. (36) under the
condition Φ̄ ¼ 1 as a function of the soliton velocity v̄s.
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is rewritten as

H ¼
X
n

ðHð2nÞ
Sσ þHð2nÞ

S þHð2nÞ
σ Þ; ðA1Þ

where

Hð2nÞ
Sσ ¼ JðS2n−1 · σ2n þ σ2n · S2nþ1Þ; ðA2Þ

Hð2nÞ
S ¼ Kz

SðSz2n−1Þ2 − Kx
SðSx2n−1Þ2

−
Kxy

S

4
fðSx2n−1Þ2 − ðSy2n−1Þ2g2; ðA3Þ

Hð2nÞ
σ ¼ Kz

σðσz2nÞ2 − Kx
σðσx2nÞ2: ðA4Þ

In order to remove the variables σ2n from this Hamiltonian,
let us consider the integration over σ2n of the partition
function as follows:

Zð2nÞ ¼ Zð2nÞ
S · Zð2nÞ

σ;Sσ; ðA5Þ

where

Zð2nÞ
S ¼ expð−βHð2nÞ

S Þ ðA6Þ

Zð2nÞ
σ;Sσ ¼

Z
dσ2n expf−βðHð2nÞ

σ þHð2nÞ
Sσ Þg: ðA7Þ

Equation (4) is derived by substituting Eq. (A8) for

Eq. (A4) with ðσxðzÞ2n − hσxðzÞ2n iÞ2 ≃ 0:

ðσxðzÞ2n Þ2 ¼ ðσxðzÞ2n − hσxðzÞ2n i þ hσxðzÞ2n iÞ2

≃ 2ðσxðzÞ2n − hσxðzÞ2n iÞhσxðzÞ2n i þ hσxðzÞ2n i2: ðA8Þ

Then, we obtain

Zð2nÞ
σ;Sσ ¼

Z
dσ2n expf−βð−σ2n · B2n

− Kz
σhσz2ni2 þ Kx

σhσx2ni2Þg: ðA9Þ

In order to carry out the integration over σ2n in Eq. (A9), we
use the polar variables with the azimuthal angle ϕ and the
angle Θ between σ2n and B2n as follows:

Zð2nÞ
σ;Sσ ¼

Z
2π

0

Z
1

−1
exp ½−βð−σjB2nj cosΘ

−Kz
σhσz2ni2 þ Kx

σhσx2ni2Þ�dðcosΘÞdϕ ðA10Þ

¼ 2π exp ½−βð−Kz
σhσz2ni2 þ Kx

σhσx2ni2Þ�

×
Z

1

−1
exp ½βσjB2nj cosΘ�dðcosΘÞ ðA11Þ

¼ 2π

βσjB2nj
exp ½−βð−Kz

σhσz2ni2 þ Kx
σhσx2ni2Þ�

× ðexp ½βσjB2nj� − exp ½−βσjB2nj�Þ: ðA12Þ

In the limit β → 0, Zð2nÞ
σ;Sσ converges as follows:

Zð2nÞ
σ;Sσ →

2π

βσjB2nj
exp ½−βð−Kz

σhσz2ni2 þ Kx
σhσx2ni2Þ�

× exp ½βσjB2nj� ðA13Þ

∼exp ½−βð−σjB2nj−Kz
σhσz2ni2þKx

σhσx2ni2Þ�: ðA14Þ

From Eq. (A5), we obtain

Zð2nÞ ∼ exp ½−βðHð2nÞ
S − σjB2nj − Kz

σhσz2ni2 þ Kx
σhσx2ni2Þ�:

ðA15Þ

In comparison with the right-hand side of Eq. (2), the
effective Hamiltonian is given as

H0ð2nÞ ∼Hð2nÞ
S − σjB2nj − Kz

σhσz2ni2 þ Kx
σhσx2ni2: ðA16Þ

Now let us derive jB2nj from Eq. (5) as follows:

jB2nj2 ¼ J2ðS2n−1 þ S2nþ1Þ2 þ 4ðKz
σÞ2hσz2ni2e2z þ 4ðKx

σÞ2hσx2ni2e2x þ 4JKz
σðS2n−1 þ S2nþ1Þhσz2niez

− 4JKx
σðS2n−1 þ S2nþ1Þhσx2niex − 4Kx

σKz
σhσx2nihσz2niez · ex

¼ 4J2S2 − J2ðS2n−1 − S2nþ1Þ2 þ 4ðKz
σÞ2hσz2ni2 þ 4ðKx

σÞ2hσx2ni2 þ 4JKz
σðSz2n−1 þ Sz2nþ1Þhσz2ni

− 4JKx
σðSx2n−1 þ Sx2nþ1Þhσx2ni

≃ 4J2S2 − J2ðS2n−1 − S2nþ1Þ2 þ 4JKz
σðSz2n−1 þ Sz2nþ1Þhσz2ni − 4JKx

σðSx2n−1 þ Sx2nþ1Þhσx2ni

¼ 4J2S2
�
1 −

1

4S2
ðS2n−1 − S2nþ1Þ2þ

Kz
σ

JS2
hσz2niðSz2n−1 þ Sz2nþ1Þ−

Kx
σ

JS2
hσx2niðSx2n−1 þ Sx2nþ1Þ

	
; ðA17Þ
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where we use the approximation 4ðKz
σÞ2hσz2ni2 þ

4ðKx
σÞ2hσx2ni2 ≪ J2S2. This leads to

jB2nj ≃ 2JS

�
1 −

1

8S2
ðS2n−1 − S2nþ1Þ2

−
Kz

σ

2JS2
hσz2niðSz2n−1 þ Sz2nþ1Þ

þ Kx
σ

2JS2
hσx2niðSx2n−1 þ Sx2nþ1Þ

	
; ðA18Þ

by applying the approximation
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
≃ 1þ x=2 for small

x. We obtain

Zð2nÞ
σ;Sσ ∼ exp

�
−β

�
−2JSσ þ Jσ

4S
ðS2n−1 − S2nþ1Þ2

þ σKx
σ

S
hσ22niðSx2n−1 þ Sx2nþ1Þ

−
σKz

σ

S
hσ22niðSz2n−1 þ Sz2nþ1Þ

−Kz
σhσz2ni2 þ Kx

σhσx2ni2
	�

ðA19Þ

by substituting Eq. (A18) into Eq. (A14). The quantity
hσx2ni is obtained in self-consistent calculations using the
following relation:

hσx2ni2 ¼
1

β

∂
∂Kx

σ
lnZð2nÞ

σ;Sσ; ðA20Þ

that holds from Eq. (A9). In addition, Eq. (A19) leads to the
relation as follows:

1

β

∂
∂Kx

σ
lnZð2nÞ

σ;Sσ ∼−
σ

S
hσ22niðSx2n−1þSx2nþ1Þ− hσx2ni2: ðA21Þ

These relations result in

hσx2ni2 ¼ −
σ

S
hσx2niðSx2n−1 þ Sx2nþ1Þ − hσx2ni2; ðA22Þ

hσx2ni ¼ −
σ

2S
ðSx2n−1 þ Sx2nþ1Þ: ðA23Þ

We also obtain

hσz2ni ¼ −
σ

S
ðSz2n−1 þ Sz2nþ1Þ; ðA24Þ

through procedures parallel to those described above.
Finally, we reach the effective Hamiltonian by substitut-

ing Eqs. (A18), (A23), and (A24) into Eq. (A16) as follows:

H0ð2nÞ ∼Hð2nÞ
S − 2JSσ þ Jσ

4S
ðS2n−1 − S2nþ1Þ2

þ σ2Kz
σ

4S2
ðSz2n−1 þ Sz2nþ1Þ2

−
σ2Kx

σ

4S2
ðSx2n−1 þ Sx2nþ1Þ2 ðA25Þ

∼Hð2nÞ
S −

Jσ
2S

S2n−1 · S2nþ1

þ σ2

S2
Kz

σðSz2n−1Þ2 −
σ2

S2
Kx

σðSx2n−1Þ2; ðA26Þ

where SxðzÞ2n−1 ≃ SxðzÞ2nþ1. The total effective ferromagnetic
Hamiltonian for a ferrimagnetic-aligned nanoparticle chain
is shown in Eq. (6).
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