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We study supersymmetric solutions in four-dimensional N = 6 gauged supergravity with the SO(6)
gauge group. There is a unique N = 6 supersymmetric AdS, vacuum with SO(6) symmetry dual to an
N = 6 superconformal field theory (SCFT) in three dimensions. We find a number of domain walls
interpolating between this AdS, vacuum and singular geometries in the IR with SO(2) x SO(4), U(3),
SO(3), and SO(2) x SO(2) x SO(2) symmetries. The SO(3) case admits N =6 or N =2 solutions
depending on whether the pseudoscalars are present or not. On the other hand, all the remaining solutions
preserve N = 6 supersymmetry. These solutions describe renormalization-group (RG) flows from the
N = 6 SCFT to nonconformal field theories driven by mass deformations. In particular, the SO(2) x
SO(4) solution is in agreement with the previously known mass deformations of the dual N = 6 SCFT. We
also give a supersymmetric Janus solution with SO(2) x SO(4) symmetry, describing two-dimensional
conformal defects in the N = 6 SCFT with unbroken N = (4, 2) supersymmetry. Finally, we find an N = 2
supersymmetric AdS, x H? solution with SO(2) x SO(4) symmetry and the corresponding domain wall
interpolating between this fixed point and the AdS, vacuum. The solution describes an AdS, black hole
with a magnetic charge and is dual to a twisted compactification of the N = 6 SCFT on a hyperbolic space
H?. We also give a domain wall interpolating between a locally supersymmetric AdS, and a curved domain
wall with SO(2) x SO(2) x SO(2) symmetry dual to an RG flow across dimensions from the N = 6 SCFT

to a supersymmetric quantum mechanics.

DOI: 10.1103/PhysRevD.103.066023

I. INTRODUCTION

Supersymmetric solutions of gauged supergravities in
various space-time dimensions play an important role
in string and M theory. In the AdS/CFT correspondence
[1-3], these solutions provide holographic descriptions of
strongly coupled systems such as (non)conformal field
theories, conformal defects, AdS black holes, and con-
densed matter physics. In many cases, solutions of lower-
dimensional gauged supergravities can be uplifted to ten
or 11 dimensions via consistent truncations resulting in
complete AdS/CFT dualities in the context of string and
M theory.

In this paper, we are interested in supersymmetric
solutions of four-dimensional N = 6 gauged supergravity
with the SO(6) gauge group; see [4] for all timelike
supersymmetric solutions in ungauged N = 6 supergravity.
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This has been constructed in Ref. [5] in the embedding
tensor formalism obtained from truncating the maximal
N = 8 gauged supergravity [6]; see also [7-9]. The N = 6
gauged supergravity has been shown to admit a unique
N = 6 supersymmetric AdS, vacuum, with the full SO(6)
symmetry unbroken, dual to an N = 6 superconformal field
theory (SCFT) in three dimensions. The uniqueness of the
N = 6 AdS, vacua has also been shown in a recent result
on supersymmetric AdS vacua [10]. It has been pointed out
in Ref. [5] that this AdS, fixed point describes a truncation
of type IIA theory on CP?, so the AdS, vacuum can be
uplifted to AdS, x CP3 geometry in type IIA theory. This
truncation has been studied long ago in Ref. [11], in which
the full mass spectrum has also been given; for more recent
studies, see, for example, [12—-15].

The very first example of the dual N = 6 SCFT from
type IIA theory has been given in Ref. [16]. In general,
SCFTs in three dimensions take the form of Chern-Simons-
matter (CSM) theories, since the usual gauge theories with
Yang-Mills gauge kinetic terms are not conformal. A
number of these SCFTs with different numbers of super-
symmetries have already been constructed; see [17-36] for
an incomplete list. These SCFTs arise as world-volume
theories of M2-branes on various transverse spaces and
play an important role in understanding the dynamics of
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M2-branes. Supersymmetric solutions of four-dimensional
gauged supergravities are expected to be very useful for
their holographic descriptions, at least in the large-N limit.

Various types of supersymmetric solutions from gauged
supergravities have been considered and given interpreta-
tions in terms of the corresponding dual field theories. We
will study these solutions in N = 6 gauged supergravity
beginning with supersymmetric domain walls interpolating
between the N = 6 supersymmetric AdS,; vacuum and
singular geometries. The solutions describe holographic
renormalization-group (RG) flows from the dual N =6
SCFT in the UV to nonconformal phases in the IR arising
from mass deformations of the UV N = 6 SCFT. Similar
solutions have been extensively studied in N =8 and
N =2 gauged supergravities; see, for example, [37-45].
Solutions in gauged supergravities with N =3, 4, 5
supersymmetries have also been considered recently in
Refs. [46-51]. This work could hopefully fill the existing
gap by providing a number of supersymmetric solutions in
N = 6 gauged supergravity.

We will also find Janus solutions in the form of AdS;-
sliced domain walls interpolating between asymptotically
AdS, spaces. These are holographically dual to two-
dimensional conformal defects within the N =6 SCFT
and break the superconformal symmetry in the three-
dimensional bulk to a smaller one on the two-dimensional
surfaces. Solutions of this type in other four-dimensional
gauged supergravities have previously been studied in
Refs. [48,49,51-55]. Finally, we will look for AdS, x X?
geometries with £? being a Riemann surface together with
solutions interpolating between these backgrounds and the
supersymmetric AdS,; vacuum. The solutions describe
supersymmetric black holes in asymptotically AdS, space,
and a number of these solutions have already been studied
in other gauged supergravities in Refs. [51,56-66]. In the
dual field theory, the solutions describe RG flows from the
N =6 SCFT to superconformal quantum mechanics in
the IR which play a prominent role in microscopic com-
putation of black hole entropy in asymptotically AdS,
spaces; see, for example, [67-69]. In this context, the
superconformal quantum mechanics, or one-dimensional
SCFT, is obtained from the N =6 SCFT via twisted
compactifications on X2

Four-dimensional N =6 gauged supergravity has
SO*(12) global symmetry with the maximal compact
subgroup U(6) ~SU(6) x U(1). There are 30 scalars
encoded in the SO*(12)/U(6) coset manifold. The
SO(6) gauging of this supergravity can be obtained from
a consistent truncation of the maximal N =8 gauged
supergravity with the SO(8) gauge group. The latter is,
in turn, a consistent truncation of 11-dimensional super-
gravity on S7 [70-75]. The N = 6 gauged supergravity
with the SO(6) gauge group can accordingly be uplifted to
11 dimensions via a series of consistent truncations. On the
other hand, the SO(6), N =6 gauged supergravity is a

consistent truncation of type IIA theory on CP?. Therefore,
all the solutions given here have known higher-dimensional
origins and can be embedded in ten- or 11-dimensional
supergravities. The scalar potential of the N = 6 gauged
supergravity has been analyzed for a long time in Ref. [76].
More recently, this gauged supergravity has been rewritten
in a more general setting of the embedding tensor formal-
ism in Ref. [5], in which the fermion-shift matrices and
the scalar potential have been given by truncating the
N = 8 theory. In this paper, we first complete the task
by extending the truncation to all terms in the bosonic
Lagrangian and fermionic supersymmetry transformations.
Both of these are, of course, a relevant part in the present
analysis.

The paper is organized as follows. In Sec. II, we review
four-dimensional N = 6 gauged supergravity with SO(6)
gauge group in the embedding tensor formalism. In Sec. III,
we study supersymmetric domain wall solutions describing
RG flows in the dual N = 6 SCFT to nonconformal phases
in the IR. We then turn to supersymmetric Janus solutions
in Sec. IV and finally look for possible supersymmetric
AdS, x ¥? solutions together with flow solutions interpo-
lating between the AdS, vacuum and these geometries in
Sec. V. Conclusions and comments are given in Sec. VL

II. N=6 GAUGED SUPERGRAVITY
WITH S0O(6) GAUGE GROUP

We first give a review of N = 6 gauged supergravity in
the embedding tensor formalism as described in Ref. [5].
We will follow most of the convention in Ref. [5] but with a
mostly plus signature for the space-time metric. The only
supermultiplet in N = 6 supersymmetry is the gravity
multiplet with the field content

(ez,l//ymAﬁB,Ag,)(ABcJ(A,¢AB)- (1)

The component fields correspond to the graviton e, six
gravitini 4, 16 vectors A8 = —AB4 and AY), and 26 spin-
% fields yapc = xuBc) and y, together with 15 complex
scalars ¢pop = —¢pps. Real and imaginary parts of ¢,p are
usually called scalars and pseudoscalars, respectively.

In this work, space-time and tangent space indices are
denoted by y,v,... =0, 1,2, 3 and f,0,... =0, 1, 2, 3,
respectively. Indices A,B,...=1,2,...,6 correspond to
the fundamental representation of SU(6) which is, in turn,
a subgroup of the R-symmetry U(6)~ SU(6) x U(1).
The 30 real scalars within ¢4z are coordinates of the
scalar manifold SO*(12)/U(6) and can be described by
the coset representative in representation 32 of SO*(12) of
the form

Vil = Al e 2)

with the Cayley matrix
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1 I il
s < o o ) 3)
V2 \Iig —ilys
and
O OIXIS O ¢CD
o 015X1 015><15 ¢AB %EABCDEF¢EF¢CD
oo PP 0 0115

HAB 1 ABCDEF
d) EEA ¢EF 0]5><1 015><15

4)

We also note that ¢*% = (¢,5)".
In subsequent analysis, it is useful to define 16 x 16
submatrices of V)2 by the following identification:

TG
VM= (}iﬁ fﬁi) (5)

in which f, h, f, and h satisfy the relations

(FF)T = £f7,
fth —h'f = —il,q,

(hh")" =hh', fhf—fh’ =il
fTh—h’f =0. (6)

The inverse of V4 can accordingly be written in terms of f

and h as
ihyp
%) )

—ihp 2

1% M_(_ifAA
M =

ifhA

The 16 electric gauge fields A4% and A° combine into
AN = (A%, AB), Together with the magnetic dual A,, the
gauge fields transform as the 32 representation of SO*(12):

AM = (AMAY). (8)

Gaugings are efficiently described by the embedding
tensor formalism in which the corresponding gauge gen-
erators are defined as

Xy = 0y"t, 9)

with #* being the SO*(12) generators. 6,," is called the
embedding tensor in terms of which the covariant derivative
implementing the minimal coupling of various fields can be
written as

D, =V, — gA¥X,,. (10)

V,, is the usual space-time covariant derivative including
(possibly) the local U(6) composite connection. The
parameter g is the gauge coupling constant which can be
absorbed in the definition of 8,,™.

In 32 representation, with SO*(12) generators (1,,),,",
the embedding tensor can be described by the generalized
structure constants

Xun® = 0y" (1,)5". (11)

To define a proper gauging and preserve the full
supersymmetry of the ungauged theory, the embedding
tensor needs to satisfy the so-called linear and quadratic
constraints given, respectively, by

Xun"Qpy =0 and 0y 0N" f " + Xun"0p? =0
(12)

with f,,” being the SO*(12) structure constants. The
former implies that the embedding tensor 6,,” is in the
representation 351 of SO*(12), while the latter gives rise to

[Xars X)) = —Xun"Xp. (13)

The gauge generators then form a closed subalgebra for
which X ;5" act as the corresponding structure constants.

As usual in gauging a supergravity theory, super-
symmetry requires some modifications to the ungauged
Lagrangian and supersymmetry transformations. These
modifications are of first and second order in the gauge
coupling constant and can be written in terms of the so-
called T tensor:

TMEB = VMMVNNVPEXMNP. (14)

The bosonic Lagrangian of the N = 6 gauged supergravity
can be written as

11
e_l;C - ER - ﬂPﬂABCDPﬂABCD
- i (N axFIAF Y0 — Ny FoAF=2) — v, (15)

The scalar kinetic term is given in terms of the vielbein
PABED = (P apcp)” on the SO*(12)/U(6) coset which is
defined by

PABCD _ pABM [y y) CD
U U
— l-(]'cAABDMITlACD _ f_lAABDM]_CACD). (16)

The scalar matrix appearing in the gauge kinetic terms is
given by

Npz = —EAA(f_I)Az (17)

with Ny, being its complex conjugate. The complex
self-dual and anti-self-dual gauge field strengths are
defined by
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1
Fff,f\ =3 <FA + 2eﬂyp(,F’V"’> (18)
with F4, given by
Fi, = 0,A} — 0,A} + Xrs"AL AL (19)

The scalar potential is obtained from the fermion-shift
matrices as follows:

1 1
V = 28,5548 + %NABCDNABCD + ENABNAB. (20)

We note that upper and lower SU(6) indices are related by
complex conjugation. In terms of the various components
of the T tensor with the splitting of indices A, X, ... as
(0, [AB]), we have

V2 8v2
Sap = 5 T piet. Nyp = — 3 Teiapieet,
NAy = =2v/2T pcAC,
1
NApep = _2\/§T[CD,B]EAE - Z‘sﬁchD]- (21)

The fermionic supersymmetry transformations, with all
fermionic fields vanishing, are given by

1 .
51»”;4A = D[leA - SAByueB - mF:o-AB}/pgyﬂer (22)
1 BCDE, B 1

oxa = _47€ABCDEFP et + N8 yep —m ,M’ Ve,
(23)

Sy apc = —P #el + NP ypce _ijﬁ €

ABC UABCDY’ ABCED 2\/5 wlAB€C):

(24)

We note here the chiralities of the fermionic fields

VsWua = —WuAs  V5XABC = —XABCs>  V5XA= XA (25)

, and y* having opposite chiralities. The
(F ~4B)+ can be obtained from

with 1//”, 7B
tensors | WAB =

FP =GR (26)
with
F»
o= (") @7
Auv

and Gy, =ie Similarly,
(VMOG;sz )*
The covariant derivative of €, is defined by

oL it
wpo G we have F),, =

1 1
DﬂGA = aMGA + ZwﬂabYabeA + EQﬂABeB' (28)

The connection Q”AB is given by

2i - -
04" = 3 (hpacO, ™8 — 2400, hpBC) — gAY Qpra®
(29)
with Q48 obtained from
Ouas” = Vag"Xup VP (30)

D = 45 Q"

In general, both electric and magnetic gauge fields can
participate in the gaugings, leading to many possibilities
of viable gauge groups. However, in this work, we will
consider only the SO(6) gauge group embedded electri-
cally in U(6) C SO*(12). This gauging involves only
electric gauge fields A%8. In this case, we have

by the relation Q5

Xp0,50,50 = 49513512 125J3]

and  X; ;"5 ==X 0,57 (31)

with all remaining components vanishing. In particular,
there are no X*,," components which couple to magnetic
gauge fields.

With the splitting of indices A, X, ...
from the definition (14) that

= (0, [1J]), we find

1 B _
Tag” = _Eflljo(f”‘AthJ] Pt hy g, afP), (32)

1 - _
Terap? = _EfIIJEF(fJJIABhllJl Pt by g apfEP).

(33)

From these, it is straightforward to obtain all the fermion-
shift matrices and the scalar potential.

In subsequent sections, we will look for various types of
supersymmetric solutions to this N =6 gauged super-
gravity with the SO(6) gauge group. It has been shown
in Ref. [5] that this gauged supergravity admits a super-
symmetric N = 6 AdS; vacuum with the cosmological
constant V, = —48g” when all scalars vanish. According to
the AdS/CFT correspondence, this is dual to an N =6
SCFT in three dimensions. We will find solutions that are
asymptotic to this AdS, geometry and can be interpreted as
different types of deformations of the dual N = 6 SCFT.
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III. HOLOGRAPHIC RG FLOWS

We first consider holographic RG flow solutions in the
form of domain walls interpolating between the super-
symmetric AdS,; vacuum and another AdS, vacuum (if it
exists) or a singular geometry. These solutions correspond,
respectively, to RG flows of the dual UV N = 6 SCFT to
another conformal fixed point or to a nonconformal phase
in the IR.

The metric ansatz is taken to be

ds* = eZA(r)dx%2 +dr? (34)

with dx7, being the flat metric on three-dimensional
Minkowski space. Scalar fields are allowed to depend
only on the radial coordinate r with all the other fields set
to zero.

A. Solutions with SO(2) x SO(4) symmetry

We first consider a simple case of solutions with
SO(2) x SO(4) symmetry. The embedding of SO(6)
implies that the scalars ¢,p transform as an adjoint
representation of SO(6). There is one singlet scalar
under SO(2) x SO(4) C SO(6) given explicitly by

Pap = P(545% — 5353). (35)

We will also write
¢ = pe* (36)

for real scalars ¢ and ¢ depending only on r.
By a straightforward computation, we find the tensor S, 5
of the form

1
SAB = 29COSh(p5AB = EW6AB. (37)

We have introduced the “superpotential” ¥V for conven-
ience. In general, the function W is related to the
eigenvalue of S,p corresponding to the unbroken super-
symmetry. In the present case, S,p is proportional to
the identity matrix, indicating that the solutions will
preserve either N = 6 supersymmetry with all e, non-
vanishing or no supersymmetry at all. Note also that V' has
a critical point at ¢ = 0 which is the supersymmetric N = 6
AdS, vacuum mentioned above.

To solve all the Bogomol’'nyi-Prasad-Sommerfield
(BPS) conditions, we will, as in other previous works,
impose the following projector:

vieq = eet (38)
for a real function A. Throughout the paper, we will use

Majorana representation for gamma matrices in which
all y# are real but y5 is purely imaginary. This implies that

€, and € are related by complex conjugation. Note also
that the projector (38) relates the two chiralities of €, so the
full flow solutions will preserve only half of the original
supersymmetry or 12 supercharges.

Considering the conditions oy, =0 for 4 =0, 1, 2,
we find

eMA =W =0 (39)
with the prime denoting r derivatives. This equation gives

4%

A'=+W| and et =+_——.
W

(40)

In what follows, we will write W = |W| for convenience.
We will also choose the upper signs in order to make
the supersymmetric AdS, critical point correspond to
r — oo. Since, in this case, the superpotential is real, we
simply have

A’ =4gcoshg and €™ =1. (41)

The condition y,, = 0 gives the standard Killing spinors
of the domain walls

€p = eA/ZEA(O) (42)
for spinors €, satisfying Eq. (38).

Using the projection (38) in the variations dy 4pc and Sy 4
gives the following BPS equations:

¢ = —4gsinhg and ¢ =0. (43)

We have now obtained the BPS equations that solve all
the supersymmetry conditions. It can also be readily
verified that these equations imply the second-order field
equations.

We can analytically solve the above BPS equations with
the following solution:

4gr =1In(1 + e?) —In(1 — e?), (44)
A:(p—ll’l(l—€2(p). (45)

We have neglected the integration constants in these
equations, since they can be removed by shifting the radial
coordinate and scaling the x*!? coordinates, respectively.
As r — co, we find that

—4gr —r/L

@~ e e and A~4gr~£ (46)

with L being the AdS, radius related to the cosmological
constant by
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L= /-—=—. (47)

We have also taken g > 0 for convenience.

The behavior of ¢ implies that ¢ is dual to a relevant
operator of dimensions A =1, 2 in the dual SCFT. In
addition, the solution is singular at r — 0 with

@~ =+In(4gr) and A ~In(4gr). (48)
We then find that ¢ — +oo near the singularity. From the
explicit form of the scalar potential, we have

V ~—8g%et? — —co. (49)

By the criterion given in Ref. [77], we conclude that the
singularity is physical. Therefore, the solution describes an
RG flow from the UV N =6 SCFT to a nonconformal
phase in the IR. The flow is driven by an operator of
dimensions A =1, 2 corresponding to scalar or fermion
mass terms in three dimensions. The flow breaks super-
conformal symmetry but preserves the full N = 6 Poincaré
supersymmetry. Moreover, the R symmetry SO(6) is
broken to SO(2) x SO(4) subgroup. This is precisely in
agreement with the field theory result given in Ref. [25].
We then expect the solution to describe mass deformations
of the three-dimensional N = 6 SCFT.

B. Solutions with U(3) symmetry

We now consider another residual symmetry, namely,
U(3)~SU(3)x U(1) c SO(6). The U(3) generators in
the fundamental representation of SO(6) can be written as

¥ < Az S3x3) (50)

_S3><3 A3><3

in which As,3 and S3,3 are antisymmetric and symmetric
3 x 3 matrices, respectively. The matrices A;,; generate
an SO(3) c SU(3) which is a diagonal subgroup of
SO(3) x SO(3) C SO(6). The U(1) factor corresponds
to 3,3 = I3. There is only one U(3) singlet scalar given by

A
¢AB—(_ . O3X3)—¢JAB. (51)

The matrix J 45 is identified with the Kéhler form of CP? on
which the ten-dimensional type IIA theory compactifies [5].

By writing ¢ = @e' and repeating the same analysis as
in the previous case, we find the scalar potential

V =-24ge"2(1 + %), (52)

which is exactly the same as that given in Ref. [5]. As in the
SO(2) x SO(4) case, this potential admits an N = 6 AdS,

critical point at ¢ =0 dual to an N =6 SCFT in three
dimensions.
The matrix S,p is proportional to the identity

1
Sap = §W5AB (53)
with a complex superpotential

1 . . .
4% :§€_3w_l§[(€6¢ +3e%)(1+ %)+ (1+e*) (e —1)].

(54)
The variations dy, and dy,pc lead to

e "N(2¢ + isinh(2¢)¢")
= —ge (et = D)l - e + (1 o), (55)

which implies ¢’ = 0. It turns out that ' =0 is also
required by the field equations. For constant { = ¢, we
have verified that all the resulting BPS equations are
compactible with the field equations. In the following
analysis, we will set {; =0 and end up with the BPS
equations

@ =—e?(* —1) and A = ge*(3+ ). (56)

The solution can be readily obtained:
A =3p—In(1—e*), (57)
4gr =2tan"'e? —In(1 — e?) +1In(1 +¢?). (58)

As in the previous case, the solution is asymptotic to
the supersymmetric AdS, with ¢ dual to an operator of
dimensions A = 1, 2, while at » = 0 the solution is singular
with

@~In(gr) and A~3¢p~3In(gr) (59)

and

@~—In(gr) and A~ —@~In(gr). (60)

Both of these give
V ~ =247 - —c0, (61)

so the two singularities are physical. We can accordingly
interpret the solution as a holographic dual of RG flows
from the N = 6 SCFT to nonconformal phases in the IR.
The flow preserves N = 6 Poincaré supersymmetry in three
dimensions as in the SO(2) x SO(4) case but breaks the
SO(6) R symmetry to U(3). It would be interesting to
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identify the corresponding mass deformations in the dual
N = 6 SCFT similar to the SO(2) x SO(4) case.

C. Solutions with SO(2) x SO(2) x SO(2) symmetry

To obtain more interesting and more complicated sol-
utions, we consider solutions with a smaller symmetry,
namely, SO(2) x SO(2) x SO(2) c SO(6) symmetry. There
are three complex scalars which are singlets under this
SO(2) x SO(2) x SO(2). The explicit parametrization of
these singlets can be written as

$iicy 0y 022
Dap = 002 hricy 0yr |- (62)
022 02 h3i0,
By setting
by = @ge'e, a=1,2,3, (63)

we find the scalar potential
V = —16¢%[cosh(2¢,) + cosh(2¢,) + cosh(2¢p3)].  (64)

It is clearly seen that this potential admits only one critical
point at ¢; = ¢, = @3 = 0 which is the aforementioned
N = 6 AdS, vacuum.

The matrix S,p is given by

WI]IZ 02><2 O2><2
SAB = E 02><2 WZ]IZ O2><2 (65)
O2><2 02><2 W3]I2

with

Wl = %ge—(/’l—lﬂz—lﬂz
x [e/C1=0=8) (&2 — 1)(e22 — 1)(e25 — 1)
= (L4 e2)(1+ e22)(1 + )], (66)

W, and W take a similar form with the phase e/(é1=%27%)
replaced by e/(©27617%) and /(©=¢17%) | respectively.

It turns out that none of these W, gives rise to the
superpotential in term of which the scalar potential (64) can
be written unless §; = {, = {3 = 0. This is also implied by
the consistency between the resulting BPS equations and
the field equations. We now set | = {, = {3 = 0, resulting
in ¢’> = £1, and obtain the following BPS equations:

@) = —ge P12 [62(lﬂ1+(/’2) 1 e2etes) _ p2eates) 1],
(67)

¢ = —ge™ V192703 [62((/11""(/)2) 4 2loates) _ p2(0ites) _ 1],
(68)

@y, = —ge "2 {ez(¢1+(ﬂ3) 1 e2mates) _ p2(eiten) 1],

(69)
A = gem =003 [2eten) o 2etes) 4 p2005tes) ],
(70)

To find the solution to these equations, we first take a
linear combination:

@+ @h = —2ge” 01~ (62(¢1+w2) -1). (71)
After changing to a new radial coordinate p defined by

d,
d_i = e~ P1=P2=3 (72)

we find

1
2 =29p — ) — Eln(e“-‘”’ +Cy) (73)

for a constant C,.
Similarly, taking a linear combination ¢} + ¢} gives rise
to

1
93 = 2gp = @1 =5 In(e"” + C3). (74)

Using these results in Eq. (67), we find

1 e (M 4 C))

=1 .
L (RGN TR ey

(75)
Finally, with all these results, the solution for A is given by

1 1
A=gp+ Zln(e“g/’ +C))+ Zln(e“y/’ + Cy)

1
+ le’l(€4gﬂ + C’;) (76)

We now look at the behavior of the solution as ¢, ~ 0
which gives p ~ r and

! I
P1~3(C -G C3)e™ . o5~ ;G- Csp)e ™,

A~dgp. (77)

This is the expected behavior of the solution asymptotic to
the supersymmetric AdS; vacuum. As in the previous
cases, the solution is singular as 4gp — In(—C,). For
C, # C, # C;, there are three possibilities.
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(i) C; < Cy3.—In this case, the solution is singular
when 4gp — In(—C,) with

1 ~ -
@1 N110(4gﬂ - Cy), C, =In(=Cy),

P23~ =Py, A~q. (78)

(i) C; < Cy3 or C3 < Cy,.—In this case, we find

1 - ~
@ ~ —Zln(4gp - Cy3), Ca3 =1In(=Cy3),

P23~ P15 A~ —p. (79)
In the first case, we have ¢; - —oo0 and ¢, 3 — oo, while
in the second case, the solution gives ¢;,3 — oco. It can
be easily verified that all of these behaviors lead to
V — —o0, so the singularities are physically acceptable.
The solution then describes different types of mass defor-
mations within the dual N =6 SCFT to nonconformal
phases with SO(2) x SO(2) x SO(2) symmetry. The sol-
ution also preserves N = 6 Poincaré supersymmetry as in
the previous cases.

D. Solutions with SO(3) symmetry

We further reduce the residual symmetry to SO(3) C
SO(3) x SO(3) € SO(6) generated by the antisymmetric
|

matrices As,3 in the upper-left block of Eq. (50). There are
three singlet scalars parametrized by

. O3><3 03><3
¢AB B <O3><3 A3:><3> (80)
with
0 ¢ &
A= —&51 0 553 : (81)
~¢y —¢s 0

By writing ¢, = @ e« with

@, = Dcosb, @, = Dsinfcos I, @3 = Dsinfsind
(82)

and
&1 =¢, L =0+n, G=C+&  (83)

we find the scalar potential

V = —g*[16c0s*0(2 + cosh 2®) + 16cosh*@sin*@(2 + cosh 2d) + 16sin*@sin*9(2 + cosh 2®) — cos’Psin?fcos>S
X (cosh 4® — 8 cos 2sinh*® — 36 cosh 2d — 61) + sin?dsin?9 x [8sinh*®(cos?d cos 2& + cos?Isin’d cos[2(n7 — £)])

+ (61 + 36 cosh 2® — cosh 4®)(cos?d + cos>Isin?0)]].

(34)

In this case, the scalar potential depends on phases of the complex scalars, and the analysis is more complicated. To make
the analysis more traceable, we will further truncate to two scalars by setting 9 = 0 and £ = —{. This is equivalent to setting
¢3 = 0. We now begin with the eigenvalues of the matrix S,5. These are of the form, after diagonalization,

» 1 1
slize _ diag(—zg cosh @i, 5 W, EW_) (85)
with W, given by
. ., @ . . 1
W, = 2g(cos2n + 2 sinn)sinh 3 (cos40sinn + isin260) — 19(3 + 12 cosh @ + cosh 2®). (86)
The corresponding eigenvectors are
A 1 . -2
& = —5sec 20 (2 cos#sin 20 F \/3 + cos 25y + 2 cos 46sin 17) €5 + €. (87)

The scalar kinetic term is given by

1
‘Ckin = - E Gaﬂ¢a/¢ﬂ/

1 1 1
= —®"” — sinh’PY'? — i sinh?2®¢"? — Esinzesinh22<l>cj’n’ - Zsinzﬁsinh2d>(3 + cosh 2® — 2 cos 20sinh*®)?  (88)
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with ¢* = (@,6,,5). It is useful to give an explicit form of the inverse of G4 here:

1 0 0 0
1|0 csch’® 0 0
G = -3 2 2 2 2 2 (89)
210 0 —sech"® + csch*®sec”@ —csch*®sec 6
0 0 —csch?®sec?d 4csc?20csch®
The scalar potential can be written in term of the real superpotential W = |[W, | = PDV_| as
oW oW
V=-2G"_——_———3W?
a¢a a¢ﬁ
= ¢*[cos?Osin?@(cosh 4® — § cos 2sinh*® — 36 cosh 2 — 61)—4(3 + cos 46)(2 + cosh 2®)]. (90)
After setting €/>3* = 0 and imposing the projection conditions
yiey = ethe™  with TN = & (91)
w
we find the following BPS equations:
1
= Wgz 8 sinh® @ cosh @ (cos 217 + 2 cos 40 sin’ 17) — 30 sin 2@ — sinh 4@)], (92)
/ LTI 12
0 = — 9 sin 7 sin 46 sinh” @, (93)
|
o) This is very similar to the N =5 gauged supergravity
= W % sin 27 sin @ sinh® @, (94)  studied in Ref. [51] in which the differences in the phases of
the scalars are crucial for breaking the original supersym-
2 . metry to a lower amount.
N = —Wgz sin 277 sinh? @, (95) We now look at the solution to the above equations.
Combining 7’ and € equations gives
[
Al =W. (96) w0 1
o= s 40 tann (99)
The flow equations for the scalars can be written in a dn

compact form as

ow
¢a/ — 2Ga/3 W . (97)

It can straightforwardly be verified that all these equations
satisfy the second-order field equations. We also see that,
from these equations, there is only one supersymmetric
critical point, with @ =0 ="' =5 =0, at ¢* = 0.

We note that, although the superpotential and the scalar
potential do not depend on £, {’ is still nonvanishing due to
the mixed terms between { and 5 in the matrix Ggp.
Moreover, further truncations such as 7 =0 or 8 = 0 will
lead to the BPS equations in the case of N = 6 supersym-
metry with all six eigenvalues of S,p leading to

W = 4gcosh ®. (98)

with the solution given by

cot26 = C, cos. (100)

Similarly, taking the combination between ¢’ and #
equations leads to

ac _ —sin? 6.

7 (101)

After using the above solution for 8, we find the solution
V2C | sing

) 2 BV vs e
) \/WCOS ntan 2+C3(14cos2)
{=Co—5+ 7
2 V/4+2C(1+cos2n)

(102)

for constant .
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Combining @ and #’ equations by taking into account all the previous results together with a redefinition

® = sinh @, (103)
we find
dd - dtan’y 2
— =cse2p(1+ )| ——5—+ = |, 104
an ¢ n(1+ )<C%+sec211 d)) (104)
whose solution is given by
o 1 + C2cos’ny — Cy/(1 + cos27) (2 + C3(1 + cos 277)) (105)
4 3 4+ 4C2cos2n + cos 217 — 4Cy+/(1 + cos 217) (2 + C3(1 4 cos 2y))
Using all these results in the 7" equation, we find the solution for #(r) implicitly from
. E-1 (14+C?-4C3)(1+E)
8gr = sinh™! |2C —tanh—l\/ ‘ . : 106
g 2\/(1+c§)[2+(c§-4c§)(1+a)]‘ E-1 (106)
in which we have defined
E =cos2p (107)
Finally, we can find the solution for A(E) as
1 B 1 41
A:Z(tanh 1a+—tanh la_)—itanh 1 2C2 m
1 4 =2 =2 VIRE2 1 (2 (A2 = = 1 =\ ( (2 2
—gln ACI(1+E)*+(3+E)°—4(1+E)[8C5+ Ci(4C5(1 +E) -3 -F)]] +Zln[2 +(1+E5)(C;—-4C3)]  (108)
with a, defined by
24+ CH 142
ay = |- + G +E) . (109)
(1+E)[1+ C3—4C5(2C, + £4/4C3 = C3 = 1)]

The solution preserves N = 2 supersymmetry and breaks
the SO(6) R symmetry to SO(3). The solution is singular
when

1

cos’n = — )
14+2C2 —8C2+4C, /4G - C — 1

(110)

This gives ® — +00 or ® — +o0, which, in turn, leads to

V — g2e*1® cos? 0 sin? 57 sin? 6. (111)
We can see that the scalar potential is unbounded from
above, V — 400, unless @ = 0 or y = 0, both of which give
the N = 6 solution as previously mentioned. Therefore, the

IR singularities of the N = 2 solutions are unphysical by
the criterion of Ref. [77].

IV. SUPERSYMMETRIC JANUS SOLUTIONS

In this section, we consider supersymmetric Janus
solutions in the form of curved domain walls. The solutions
can be obtained from an AdS;-sliced domain wall ansatz

ds* = e (e*/7dx} | + d&*) + dr’. (112)

Since the analysis closely follows that given in Ref. [52]
(see also [53]), we will not repeat all the detail here but
mainly review relevant results for deriving the correspond-
ing BPS equations.
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Compared to the RG flow case, the BPS equations will
be modified by the curvature of the three-dimensional
slices. In addition, as pointed out in Ref. [52], the existence
of Janus solutions requires nonvanishing pseudoscalars,
resulting in a more complicated set of BPS equations in
contrast to the simple flat domain wall or RG flow case. We
begin with the conditions 51//}4 = 0 for i =0, 1, which give

1
A/}/;,€A +?e_A}’&€A —WEA =0. (113)
This leads to the following BPS equation:
A? = W? L -2 114
= —ﬁe (114)

for W= |W|. We still use the y; projection given in
Eq. (38). Imposing the y; projection of the form
reeq = ixehe (115)

with k> = 1, we can solve the condition (113) for the y;
projector, leading to the phase factor

A ke
in 2 e 116
CEwtew (116)
for real YV and
. w
24 S 117
¢ A K (117)

for complex . We also note that the constant x = £1
corresponds to the chiralities of the Killing spinors on the
two-dimensional conformal defects described by the AdS;
slices. Finally, the conditions 51//? =0 and Sy4 =0 can

be solved to obtain the explicit form of the Killing spinors
(see details in [52]):

AJ2)+(E/26)+i(A)2) 820)7 (118)

€A:€(

in which the constant spinors 8/(40)

r-dependent phase and satisfy

could possibly have an

(0)

@4 and  yze,

Y€y =€ =ike®4.  (119)

It turns out that among the previously considered cases
only SO(2) x SO(4) and SO(3) symmetric scalars can
possibly possess supersymmetric Janus solutions. This is
mainly a consequence of the consistency in turning on
nonvanishing pseudoscalars. For the SO(3) case, the
analysis is highly complicated as already seen in the case
of RG flows considered in the previous section. Therefore,
we will give only the Janus solution with SO(2) x SO(4)

symmetry. This case is more traceable, and it turns out that
the solution can be analytically obtained.

A. Janus solutions with SO(2) x SO(4) symmetry

In this case, the superpotential is real, so we will use the
phase e from Eq. (116). In general, since €!-? and €4 with
A =3,4,5, 6 transform differently under SO(2) x SO(4),
namely, as (2,1) + (1,4), the two sets of Killing spinors
can satisfy different projectors. We find that, in order to
obtain a consistent set of BPS equations, we need to choose
opposite signs of k for €1-> and e*-°. Therefore, the surface
defect will preserve N = (2,4) or N = (4, 2) superconfor-
mal symmetry.

With the superpotential

W = 4gcosh g, (120)
we find the following BPS equations:
. 8g72A’e* sinh(2¢) 1
L TR VoY S (121)
16g°kt et

&=- 1+ %A% (122)

oA
A? t = 16¢°£? cosh? ¢. (123)

It should be noted that, for £ — oo, these equations reduce
to those of the RG flow studied in the previous section.
Furthermore, these equations take a very similar form to the
SO(4) symmetric Janus solution in N = 5 gauged super-
gravity studied in Ref. [51].

By taking ¢ as an independent variable, we can solve for
A(e) and {(¢@). The complete solution is given by
A = C —Insinh ¢, (124)

32¢*¢? tanh?[4g(r — ry)]
16¢°¢% — 1 '

ktan{ = —y/ 1 — 16¢g*¢? sinh[4g(r — ry)]  (126)

for constants C and r,. This solution takes the same form as
the solution given in Refs. [52,51,53], respectively, in
N =38, 5, and 3 gauged supergravities. We also note
the unbroken supersymmetries on the conformal defects
in these cases as follows: N = (4,4), N = (4,1), and
N = (2,1). All of these solutions should be related by
truncations of N = 8 gauged supergravity to N = 3 and
N =5, 6 theories. This indicates that the N = (4, 4) Janus
solution of Ref. [52] survives in the truncation to N = 3, 5,
6 gauged supergravities. According to the AdS/CFT
correspondence, we then expect the dual N =3, 5, 6

cosh(2¢) = (125)
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SCFTs to possess the same two-dimensional conformal
defect as in the N = 8 SCFT.

We end this section by giving a brief comment on the
possible SO(3) symmetric Janus solution. A partial analy-
sis shows that there appears to be no obstruction in
obtaining the BPS equations for Janus solutions in this
case as in a similar analysis of N =5 theory in Ref. [51].
Therefore, we expect a supersymmetric N = 2 Janus
solution with SO(3) symmetry to exist in N = 6 gauged
supergravity as well. Since the analysis is far more
complicated than the SO(2) x SO(4) case, we refrain from
giving any definite result here.

V. SUPERSYMMETRIC AdS; BLACK HOLES

In this section, we look for supersymmetric AdS,
black holes in the form of curved-domain wall solutions
interpolating between a locally asymptotically AdS, and
AdS, x ¥? geometries. The AdS, x X? space describes the
near-horizon geometry of the black holes. In the following
analysis, we will consider only the cases of X? being a two-
sphere (S?) and a hyperbolic space (H?).

The metric ansatz is taken to be

ds®> = —e¥("di> + dr* + " (d6? + F*(0)dg*)  (127)
with the function F(6) defined by
sinf, X, =52,
ﬂmz{. ’ (128)
sinh@, X, = H>.

It is straightforward to derive nonvanishing components of
the spin connection

(129)

with F'(0) = ‘é—g.

In general, the curvature of the X2 part on the world
volume of the domain wall will completely break super-
symmetry. However, it is well known that some amount of
supersymmetry can be preserved by performing a topo-
logical twist. This can be achieved by turning on some

gauge fields along X2 in such a way that the corresponding

spin connection, @”? in the above metric, is canceled. This
turns the covariant derivative of ¢4 along X? into a partial
one. The resulting Killing spinors are accordingly given by
spinors that are independent of the X2 coordinates.

A. SO(2) x SO(2) x SO(2) symmetric solutions

We first consider the SO(2) x SO(2) x SO(2) twist with
the following ansatz for the gauge fields:

A = A(r)dt = p,F'(0)dd.
AY = Ay(r)dt = p,F'(0)ddp.

A% = Ay(r)dt — p;F'(0)dg. (130)

The constants p;, i = 1, 2, 3, are identified with magnetic
charges. The corresponding field strengths are given by

F'2 = Aldr A dt + xp,F(0)d6 A dg.
F3* = Aldr A dt + kp,F(0)d6 A dg.

F3¢ = Aldr A dt + kp3F(0)dO A dep. (131)
We have introduced a parameter k with k = 1, —1 for X2
being S? or H?, respectively. We also note that F”(6) =
—kF(0).

With the SO(2) x SO(2) x SO(2) singlet scalars given
by Eq. (62), we find nonvanishing components of the
composite connection:

A12
QAB = 2gi02 ® A34 (132)
A56

With the component Q P B, the spin connection @?? can be

canceled by imposing the following projector:
Yopea = (ioy ® ;) ,Peg (133)

and the twist conditions

2gpy = 2gp> =2gp3 = 1. (134)

These conditions imply that p; = p, = p;. The twist is
then obtained from the diagonal subgroup SO(2)g,, C
SO(2) x SO(2) x SO(2) as in the pure N =4 and N =5
gauged supergravities studied in Refs. [78,51], respectively.
For consistency, we will also set A; = A, = A;.

For all p; nonvanishing, the twists allow all the super-
symmetries corresponding to €4, A =1,2,...,6, to be
unbroken subject to the projector (133). We also note
some useful relations for deriving the full set of BPS
equations. Using €o50p = 1 and yse4 = —€,, we find

Py = —iyfley = (0 @ 1), e (135)
It turns out that we need to turn on the SO(2) ~ U(1) gauge
field of U(6) ~ SU(6) x U(1) in order to find a consistent
set of BPS equations. We similarly take the ansatz for this

U(1) gauge field to be

AY = Ay(r)dt — poF'(0)d¢ and

FO = A{(r)dr A dt + kpydf A dop. (136)
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We also note that both A° and A" can appear in the BPS
equations due to the off-diagonal element of the scalar coset
representative. In particular, we have the relations

A 1
FXB = hAABF+A = hOABFJrO + Ehu,ABFJr”, (137)

. 1
F+ = hA0F+A = h00F+0 + §h1J0F+IJ. (138)

However, A? does not participate in the twist, since €, are
not charged under the U(1) factor outside SU(6).
It is also useful to define the “central charge” matrix

1 . 2 .
Zup = _ﬁ( phac zF(f)FMC)(wz ®L)¢. (139)
In the present case, it turns out that Z,5 is proportional to
the identity matrix: Z,5 = Zd,5.
With all these and the projector (38), we find the
following BPS equation, from 6y, and W,

Weh —W—Z=0, (140)
which leads to

W+ Z

W=+W+2Z| and er=4+—""_
| | W+ Z|

(141)

With the projectors (38) and (135), the condition oy, =
0 gives

Iw+z

@) =
! O,

(f' +2igA))e® =W+ Z =0, (142)
which implies

f'=Rele*W=Z2)] and 2g¢A, = Im[e" (W - Z)].
(143)

The latter fixes the time component of the gauge fields.
Finally, as in the case of domain walls and Janus solutions,
the condition dy;4, = 0 determines the r dependence of the
Killing spinors giving rise to €, = e// 2€A(0).

Similar to the RG flow case, it turns out that we need to
set {1 = ¢, = {3 = 0 for consistency. This gives real W
and Z resulting in e’* = £1 and A, = 0. We will also set
Ao(r) = 0 for simplicity, although it is not constrained by
the previously obtained conditions. In addition, the com-
patibility between the BPS equations coming from &y, and
Oy apc Tequires

Po = KP- (144)

We also note that, in this case, the choice p, = 0 breaks all
supersymmetry. This implies that the SO(2) x SO(2) x
SO(2) twist needs to be accompanied by the U(1) gauge
field Ap.

With all these, we find a consistent set of BPS equations
given by

= %e—(ﬂl—lﬂz—% [29(1 + 2 2t03) _ p2(01+92) _ ez(fﬂl+(P3))_plke—2h+2(ﬂ1+2(ﬂz+¢3],

W+ Z|

A
() a(pz

= le—f/’l—(liz—% [2g(1 - e2(02t03) _ p2(p1+m2) 62(¢1+(/73>)_plke—2h+2(ﬂl+2lﬂz+lﬂ3]
2 ki

Iw+z

¥y =
’ O3

1
B 2 2 2 21420, +2
= Ee M= 2g(1 — e (02t03) 1 Q2(e1+02) _ o (¢1+(ﬂ3))_p1,<e F2n 2004 03]

W=W+Z|

= le—(/ﬂ—fﬂz—(/}s 2g(1 + e2(@2t03) 1 p2e1te2) o 62(¢1+fﬂ3))+p1Ke—2h+2¢1+2¢2+¢3]
2 b
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==zl

— 16_1171_(/72—(/73 [Zg(] + 62(072+¢3> + eZ((p|+1p2) + 62((’7]+(/)3>)_pIKe_2h+2{ﬂl+2¢2+(p3],
2

For an AdS, x X? fixed point to exist, we require that ¢} =
¢, =¢y=n=0and f' ~ ﬁ It can be easily verified
2

that the above equations do not admit any AdS, x X? fixed
points.

Although there is no supersymmetric AdS, x X? fixed
point, we are able to analytically obtain the complete
solution to these BPS equations. Since it might be useful for
some holographic studies, we will present the solution here.
By changing to a new radial coordinate p using the relation

(149)
|
d 1= @1+92—2¢
d—p(fﬂz—%) =2g(e? ™% — e r70s) (151)
The first equation can be solved by
61/72 (e4qp _|_ 64.(//)0)

with an integration constant p,. Using this result in the

% — ¢#3, we can form the following linear combinations: second equation, we find the solution
d e¢3—2gﬂ(e4gp — e4gpo)
. _ - =1 153
%((Pl — (2) = 2g(e?” 70 — e172) (150) ¢ = [\/6451/) + €890 + 8¢C (153)
and with another integration constant C.
|
By treating f and 4 as functions of ¢3, we find the following solutions for f and A:
1 . . 1 + 39(=r0) 1 8gCe*9r—89r0
= —— 4gp 3 — 8gp
f 2ln {e 0 (2569 CC —16gCe®%0 4 kp, ln{ ) 1
—SgCKpltanh‘]e4g(f’_/’°>] + h, (154)
1 . . 1 + e390=r0) 1 8gCe*9r—89r0
= — 9P 8agpo _ 2072\ _
h 21n {e 0 <l6gC(e 0 —16g°C*) — kp, ln{ S 1
1 el2ypo(1 - eSQ(ﬂ—po))2
—Lo4glp=po) | 4 — —
+8gCkp tanh™' e*9PPo ] + 2ln[8g(e891’0 “1652C%) } + @3 —4gp. (155)
Finally, the solution ¢3(p) can be given implicitly in the following equation:
dao( g 8gp agp etlpo=r) 11 e89=r0) _
0 — P
4Cye* P (€% + %% + 8gCe™) = By + f; In L4g(po—p) - 1] + > In [1 o 8gCe49/’] (156)
in which Cj, is a constant and the coefficients f, $;, and 3, are defined, respectively, by
Bo = —16gCe* (16Cg> — 689/10)[264¢3+89(p+po) + 8gCe* (89 4 89P0) (10970 4 109P) (1 — £493) 4 2689(p+po)]7 (157)
— Kp1 12gp 1 ,49(p+2p0) 8gp 4o
Pr= 2(e*P 4 e*903r=200) 8CgeSg(ﬂ—po>)] [ +e Y+ 4Cge (3 + ™)
+16g2C%e* (1 + €89r=r0)) — 2Cg(e*?s — 1) (€890 4 89—}, (158)
890 890 1 8Cget9P)2 — o403 (89r0 — o89r)2
ﬂzzkpl[(e + e®% + 8Cge™)* — ™3 (e e%9)?] (159)

4et9(p=ro) (890 - @390 4 8Cgetor)
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Since there is no AdS, x X? fixed point in the IR, the
solution describes a flow from the locally supersymmetric
AdS, vacuum to a curved domain wall with world volume
R x X2. According to the AdS/CFT correspondence, the
solution is expected to describe an RG flow fromthe N = 6
SCFT in three dimensions to a supersymmetric quantum
mechanics in the IR. The latter arises from the former by a
twisted compactification on X2,

B. SO(2) x SO(4) symmetric solutions

We now look at a truncation of the previous result by
setting p, = p3 = 0 and @, = @3 = 0. The resulting sol-
utions will preserve SO(2) x SO(4) symmetry with the
twist performed along the SO(2) factor. In this case, the
supersymmetry corresponding to €>*3° will be broken,
since we cannot perform a twist along these directions.
With €336 = 0, we find the BPS equations

/

1
¢ = 16‘”"4” [8ge*" — po +kpy — €**(8ge* + py +kp1 )],
(160)

1
W =0 [8ge™ — po+xpy + ¢ (8ge + po +xp1 )],
(161)

1
' =7¢7"""8ge* + po —kpy + €/ (8ge™ — po —xpy)],
(162)

in which we have set ¢; = . We also note that, with only
the SO(2) twist, it is not necessary to set py, = kp;.
However, the existence of an AdS, x ¥? fixed point
requires vanishing p,. For py = 0, we find a fixed point

1 Kp 1
» = @, h=—In |:——1:|, LAdSZ_

2 8g ~ 8gcosh2¢y’
(163)

for constant ¢,. This is an AdS, x H? fixed point, since the
reality of & implies x = —1.

The complete flow solution can be obtained by using the
same procedure as in the previous sections. The resulting
solution is given by

h=¢—In(l-e*)+C, (164)

f=h=2¢+[kp,(1+e*) +2e*(4g —kp))]. (165)

2g [4g+xp, (22 =1
89(p — po) =2 tan 1[ ! )
kp1 —2g 2+/29(kpy —29)

tin kpy (1 4+ e*) 4+ 2% (4g — kp,) ,
(1 —e%)?

(166)

in which we have defined the new radial coordinate p by

% = e”. We have neglected the integration constant of f by

absorbing it in the rescaling of the time coordinate ¢.
Near r ~ p — oo, we find

@~ et h~f~dgr (167)

which gives an asymptotically locally AdS, critical point.

On the other hand, by choosing ¢y = 31n (1 -2 _Kz_zf])

and C = —¢,, we find that as ¢ — @

1-,/-=

1 X
h~—In [—@} and f~89r—pl,
8g

which is the AdS, x H? fixed point identified above.

It should be noted that, in this case, the solution can
be regarded as a solution of a truncated N = 2 gauged
supergravity. In particular, the solution with vanishing
scalar corresponds to a universal RG flow across dimension
of which the uplifts to M theory and massive type IIA
theory have been extensively studied in Refs. [67].

C. U(3) symmetric solutions

As a final case, we consider U(3) symmetric solutions
with a twist performed along the SO(2) ~ U(1) factor. The
corresponding gauge generator of this U(1) factor is given
by X4 + X»5 + X3¢. We then turn on the following gauge
fields:

A =AM =A% = A3 = A(r)dt —xpF'(0)d¢p. (169)
With the U(3) singlet scalar given in Eq. (51), we find the
composite connection

04" = 2giA(l; ® 63),”. (170)
The twist is implemented by imposing
Yopea = (3 ® ioy),Peg and 2gp = 1. (171)

We also note that, similar to the SO(2) x SO(2) x SO(2)
twist, all €4 can be nonvanishing. In addition, we also need
nonvanishing A°, which we will again use the ansatz (136).
In this case, consistency requires py = —kp.
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As in the RG flow case, we need to set { =0 for
consistency between the BPS equations and the field
equations. This again results in A(r) = 0. Repeating the
same analysis as in the previous cases, we find the
following BPS equations:

1

@ =gle? —e)+ Ekpe_z}’_3¢, (172)
1

h = g(3e™? + &) + Eer_Zh_B(p, (173)
1

@ =g(3e7? + &) — Ekpe‘z”‘3"’. (174)

It is easily verified that there is no AdS, x X? fixed point in
these equations. In this case, we are not able to obtain the
analytic flow solution.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied N = 6 gauged super-
gravity in four dimensions with the SO(6) gauge group.
The gauged supergravity can be obtained from a truncation
of the maximal N = 8 theory with the SO(8) gauge group.
There is a unique N = 6 supersymmetric AdS, vacuum
preserving the full SO(6) gauge symmetry. This can be
identified with AdS, x CP? geometry in type IIA theory
dual to an N = 6 SCFT in three dimensions. We have found
a number of RG flow solutions with various symmetries
from this N = 6 SCFT to possible nonconformal phases in
the IR. In particular, there is one solution, breaking the
SO(6) R symmetry to SO(2) x SO(4), with unbroken
N = 6 Poincaré supersymmetry. This is precisely in agree-
ment with the field theory result on mass deformations of
N = 6 SCFTs given in Ref. [25]. Other solutions preserve
U(3), SO(3), and SO(2) x SO(2) x SO(2) symmetries.
While most of the solutions preserve N = 6 supersym-
metry, in the case of SO(3) symmetry, it is possible to find
N =2 supersymmetric solutions. We have analytically
given all of these solutions and also checked that, except
for the N = 2 solution, the resulting IR singularities are
physical by the criterion given in Ref. [77].

We have also considered more complicated solutions by
generalizing the flat domain walls to the curved ones. In the
case of AdS;-sliced domain walls, we have found a
supersymmetric Janus solution, describing a two-dimen-
sional conformal defect within the N = 6 SCFT, with
SO(2) x SO(4) symmetry and N = (2,4) supersymmetry
on the defect. The resulting solution takes the same form as
those given in N =8, N =5, and N = 3 gauged super-
gravities studied in Refs. [52,51,53], respectively. We
therefore argue that these solutions are related to the
N = 8 solution by truncations. In order for Janus solutions
to exist, it is necessary that pseudoscalars are nonvanishing
as pointed out in Ref. [52]. It turns out that, among the

remaining cases studied in this work, only the SO(3)
invariant sector could possibly admit supersymmetric Janus
solutions.

Furthermore, we have studied supersymmetric solutions
of the form AdS, x ¥? and the interpolating solutions
between these geometries and the N = 6 AdS, vacuum. We
have found one AdS, x H? fixed point with SO(2) x
SO(4) symmetry from SO(2) twist. The solution interpo-
lating between this fixed point and the AdS,; vacuum
preserves two supercharges, while the IR fixed point
AdS, x H? has four supercharges. Holographically, this
solution corresponds to an RG flow from the N =6
SCFT to superconformal quantum mechanics which is
useful in computing black hole entropy along the lines of
Refs. [67-69].

For SO(2) x SO(2) x SO(2) twist, the BPS equations
are more complicated but admit no AdS, x X? fixed point.
However, in this case, we are able to obtain a complete flow
solution between the AdS, critical point to a curved domain
wall with world volume R x X2 in the IR. The solution
preserves N = 6 supersymmetry in three dimensions, or 12
supercharges, and SO(2) x SO(2) x SO(2) symmetry.
This should be dual to a twisted compactification on X?
of the UV N =6 SCFT to a supersymmetric quantum
mechanics in the IR. We have also looked for AdS, x X2
geometries from an SO(2) ~ U(1) twist in the case of U(3)
symmetric solutions, but there do not exist any AdS, x X?
fixed points.

Since all the solutions presented here are fully analytic,
we hope they could be useful in the study of gauge and
gravity holography and other related aspects. We also note
that most of the structures of the solutions are very similar
to those of the N =5 gauged supergravity studied in
Ref. [51]. In particular, the N = 6 Poincaré supersymmetry
in three dimensions is unbroken on the domain wall
solutions if there are no nonvanishing pseudoscalars.
Unlike in the N = 5 theory, we are not able to find a definite
conclusion on whether this is true, in general, due to a more
complicated scalar coset manifold. However, many similar-
ities in the structures of various types of supersymmetric
solutions suggest that this should be the case.

There are a number of directions to extend the present
work, which is clearly only the first step in classifying
supersymmetric solutions of N = 6 gauged supergravity.
First of all, it would be interesting to uplift the RG flow
solutions to M theory via the embedding in N = 8 gauged
supergravity, which, in turn, can be obtained from a
truncation of M theory on S’. The time component g,
of the 11-dimensional metric can be used to determine
whether the four-dimensional singularities, in particular,
the N =2 case, are physically acceptable in M theory
using the criterion given in Ref. [79]. This would lead to a
complete holographic description of mass deformations
of N=6 CSM theory and possible related M-brane
configurations.
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We have considered only gauged supergravity with the
SO(6) gauge group electrically embedded in the global
SO*(12) symmetry. It would be interesting to study mag-
netic and dyonic gaugings involving also magnetic gauge
fields. In particular, performing a similar study in the case of
N = 6 gauged supergravity with the electric-magnetic phase
w (see [80-82]) could be of particular interest, since, in the
omega deformed N = 8 theory, the structure of vacua and
domain walls are much richer than the electric counterpart;
see [43,83-85] for more detail. In addition, the study of
genuine N = 6 gaugings which cannot be embedded in the
N = 8theory is worth considering. In this case, the gaugings

do not satisfy extra quadratic constraints coming from
the truncation of the N = 8 theory (see the discussion in
Ref. [86]), so the corresponding solutions cannot be
embedded in the maximal theory.
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