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We study supersymmetric solutions in four-dimensional N ¼ 6 gauged supergravity with the SOð6Þ
gauge group. There is a unique N ¼ 6 supersymmetric AdS4 vacuum with SOð6Þ symmetry dual to an
N ¼ 6 superconformal field theory (SCFT) in three dimensions. We find a number of domain walls
interpolating between this AdS4 vacuum and singular geometries in the IR with SOð2Þ × SOð4Þ, Uð3Þ,
SOð3Þ, and SOð2Þ × SOð2Þ × SOð2Þ symmetries. The SOð3Þ case admits N ¼ 6 or N ¼ 2 solutions
depending on whether the pseudoscalars are present or not. On the other hand, all the remaining solutions
preserve N ¼ 6 supersymmetry. These solutions describe renormalization-group (RG) flows from the
N ¼ 6 SCFT to nonconformal field theories driven by mass deformations. In particular, the SOð2Þ ×
SOð4Þ solution is in agreement with the previously known mass deformations of the dual N ¼ 6 SCFT. We
also give a supersymmetric Janus solution with SOð2Þ × SOð4Þ symmetry, describing two-dimensional
conformal defects in the N ¼ 6 SCFTwith unbroken N ¼ ð4; 2Þ supersymmetry. Finally, we find an N ¼ 2

supersymmetric AdS2 ×H2 solution with SOð2Þ × SOð4Þ symmetry and the corresponding domain wall
interpolating between this fixed point and the AdS4 vacuum. The solution describes an AdS4 black hole
with a magnetic charge and is dual to a twisted compactification of the N ¼ 6 SCFT on a hyperbolic space
H2. We also give a domain wall interpolating between a locally supersymmetric AdS4 and a curved domain
wall with SOð2Þ × SOð2Þ × SOð2Þ symmetry dual to an RG flow across dimensions from the N ¼ 6 SCFT
to a supersymmetric quantum mechanics.

DOI: 10.1103/PhysRevD.103.066023

I. INTRODUCTION

Supersymmetric solutions of gauged supergravities in
various space-time dimensions play an important role
in string and M theory. In the AdS=CFT correspondence
[1–3], these solutions provide holographic descriptions of
strongly coupled systems such as (non)conformal field
theories, conformal defects, AdS black holes, and con-
densed matter physics. In many cases, solutions of lower-
dimensional gauged supergravities can be uplifted to ten
or 11 dimensions via consistent truncations resulting in
complete AdS=CFT dualities in the context of string and
M theory.
In this paper, we are interested in supersymmetric

solutions of four-dimensional N ¼ 6 gauged supergravity
with the SOð6Þ gauge group; see [4] for all timelike
supersymmetric solutions in ungauged N ¼ 6 supergravity.

This has been constructed in Ref. [5] in the embedding
tensor formalism obtained from truncating the maximal
N ¼ 8 gauged supergravity [6]; see also [7–9]. The N ¼ 6
gauged supergravity has been shown to admit a unique
N ¼ 6 supersymmetric AdS4 vacuum, with the full SOð6Þ
symmetry unbroken, dual to anN ¼ 6 superconformal field
theory (SCFT) in three dimensions. The uniqueness of the
N ¼ 6 AdS4 vacua has also been shown in a recent result
on supersymmetric AdS vacua [10]. It has been pointed out
in Ref. [5] that this AdS4 fixed point describes a truncation
of type IIA theory on CP3, so the AdS4 vacuum can be
uplifted to AdS4 × CP3 geometry in type IIA theory. This
truncation has been studied long ago in Ref. [11], in which
the full mass spectrum has also been given; for more recent
studies, see, for example, [12–15].
The very first example of the dual N ¼ 6 SCFT from

type IIA theory has been given in Ref. [16]. In general,
SCFTs in three dimensions take the form of Chern-Simons-
matter (CSM) theories, since the usual gauge theories with
Yang-Mills gauge kinetic terms are not conformal. A
number of these SCFTs with different numbers of super-
symmetries have already been constructed; see [17–36] for
an incomplete list. These SCFTs arise as world-volume
theories of M2-branes on various transverse spaces and
play an important role in understanding the dynamics of
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M2-branes. Supersymmetric solutions of four-dimensional
gauged supergravities are expected to be very useful for
their holographic descriptions, at least in the large-N limit.
Various types of supersymmetric solutions from gauged

supergravities have been considered and given interpreta-
tions in terms of the corresponding dual field theories. We
will study these solutions in N ¼ 6 gauged supergravity
beginning with supersymmetric domain walls interpolating
between the N ¼ 6 supersymmetric AdS4 vacuum and
singular geometries. The solutions describe holographic
renormalization-group (RG) flows from the dual N ¼ 6
SCFT in the UV to nonconformal phases in the IR arising
from mass deformations of the UV N ¼ 6 SCFT. Similar
solutions have been extensively studied in N ¼ 8 and
N ¼ 2 gauged supergravities; see, for example, [37–45].
Solutions in gauged supergravities with N ¼ 3, 4, 5
supersymmetries have also been considered recently in
Refs. [46–51]. This work could hopefully fill the existing
gap by providing a number of supersymmetric solutions in
N ¼ 6 gauged supergravity.
We will also find Janus solutions in the form of AdS3-

sliced domain walls interpolating between asymptotically
AdS4 spaces. These are holographically dual to two-
dimensional conformal defects within the N ¼ 6 SCFT
and break the superconformal symmetry in the three-
dimensional bulk to a smaller one on the two-dimensional
surfaces. Solutions of this type in other four-dimensional
gauged supergravities have previously been studied in
Refs. [48,49,51–55]. Finally, we will look for AdS2 × Σ2

geometries with Σ2 being a Riemann surface together with
solutions interpolating between these backgrounds and the
supersymmetric AdS4 vacuum. The solutions describe
supersymmetric black holes in asymptotically AdS4 space,
and a number of these solutions have already been studied
in other gauged supergravities in Refs. [51,56–66]. In the
dual field theory, the solutions describe RG flows from the
N ¼ 6 SCFT to superconformal quantum mechanics in
the IR which play a prominent role in microscopic com-
putation of black hole entropy in asymptotically AdS4
spaces; see, for example, [67–69]. In this context, the
superconformal quantum mechanics, or one-dimensional
SCFT, is obtained from the N ¼ 6 SCFT via twisted
compactifications on Σ2.
Four-dimensional N ¼ 6 gauged supergravity has

SO�ð12Þ global symmetry with the maximal compact
subgroup Uð6Þ ∼ SUð6Þ × Uð1Þ. There are 30 scalars
encoded in the SO�ð12Þ=Uð6Þ coset manifold. The
SOð6Þ gauging of this supergravity can be obtained from
a consistent truncation of the maximal N ¼ 8 gauged
supergravity with the SOð8Þ gauge group. The latter is,
in turn, a consistent truncation of 11-dimensional super-
gravity on S7 [70–75]. The N ¼ 6 gauged supergravity
with the SOð6Þ gauge group can accordingly be uplifted to
11 dimensions via a series of consistent truncations. On the
other hand, the SOð6Þ, N ¼ 6 gauged supergravity is a

consistent truncation of type IIA theory on CP3. Therefore,
all the solutions given here have known higher-dimensional
origins and can be embedded in ten- or 11-dimensional
supergravities. The scalar potential of the N ¼ 6 gauged
supergravity has been analyzed for a long time in Ref. [76].
More recently, this gauged supergravity has been rewritten
in a more general setting of the embedding tensor formal-
ism in Ref. [5], in which the fermion-shift matrices and
the scalar potential have been given by truncating the
N ¼ 8 theory. In this paper, we first complete the task
by extending the truncation to all terms in the bosonic
Lagrangian and fermionic supersymmetry transformations.
Both of these are, of course, a relevant part in the present
analysis.
The paper is organized as follows. In Sec. II, we review

four-dimensional N ¼ 6 gauged supergravity with SOð6Þ
gauge group in the embedding tensor formalism. In Sec. III,
we study supersymmetric domain wall solutions describing
RG flows in the dual N ¼ 6 SCFT to nonconformal phases
in the IR. We then turn to supersymmetric Janus solutions
in Sec. IV and finally look for possible supersymmetric
AdS2 × Σ2 solutions together with flow solutions interpo-
lating between the AdS4 vacuum and these geometries in
Sec. V. Conclusions and comments are given in Sec. VI.

II. N = 6 GAUGED SUPERGRAVITY
WITH SOð6Þ GAUGE GROUP

We first give a review of N ¼ 6 gauged supergravity in
the embedding tensor formalism as described in Ref. [5].
We will follow most of the convention in Ref. [5] but with a
mostly plus signature for the space-time metric. The only
supermultiplet in N ¼ 6 supersymmetry is the gravity
multiplet with the field content

ðeμ̂μ;ψμA; AAB
μ ; A0

μ; χABC; χA;ϕABÞ: ð1Þ

The component fields correspond to the graviton eμ̂μ, six
gravitini ψμA, 16 vectors AAB

μ ¼ −ABA
μ and A0

μ, and 26 spin-
1
2
fields χABC ¼ χ½ABC� and χA together with 15 complex

scalars ϕAB ¼ −ϕBA. Real and imaginary parts of ϕAB are
usually called scalars and pseudoscalars, respectively.
In this work, space-time and tangent space indices are

denoted by μ; ν;… ¼ 0, 1, 2, 3 and μ̂; ν̂;… ¼ 0, 1, 2, 3,
respectively. Indices A; B;… ¼ 1; 2;…; 6 correspond to
the fundamental representation of SUð6Þ which is, in turn,
a subgroup of the R-symmetry Uð6Þ ∼ SUð6Þ ×Uð1Þ.
The 30 real scalars within ϕAB are coordinates of the
scalar manifold SO�ð12Þ=Uð6Þ and can be described by
the coset representative in representation 32 of SO�ð12Þ of
the form

VM
M ¼ A†eY ð2Þ

with the Cayley matrix
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A ¼ 1ffiffiffi
2

p
�
I16 iI16
I16 −iI16

�
ð3Þ

and

Y ¼

0
BBB@

0 01×15 0 ϕCD

015×1 015×15 ϕAB
1
2
ϵABCDEFϕ̄

EFϕCD

0 ϕ̄CD 0 01×15

ϕ̄AB 1
2
ϵABCDEFϕEF 015×1 015×15

1
CCCA:

ð4Þ

We also note that ϕ̄AB ¼ ðϕABÞ�.
In subsequent analysis, it is useful to define 16 × 16

submatrices of VM
M by the following identification:

VM
M ¼

 
h̄ΛΛ hΛΛ

f̄ΛΛ fΛΛ

!
ð5Þ

in which f, h, f̄, and h̄ satisfy the relations

ðff†ÞT ¼ ff†; ðhh†ÞT ¼hh†; fh†− f̄hT ¼ iI16;

f†h−h†f¼−iI16; fTh−hTf¼ 0: ð6Þ

The inverse of VM
M can accordingly bewritten in terms of f

and h as

VM
M ¼

�−ifΛΛ ihΛΛ

if̄ΛΛ −ih̄ΛΛ

�
: ð7Þ

The 16 electric gauge fields AAB and A0 combine into
AΛ ¼ ðA0; AABÞ. Together with the magnetic dual AΛ, the
gauge fields transform as the 32 representation of SO�ð12Þ:

AM ¼ ðAΛ; AΛÞ: ð8Þ

Gaugings are efficiently described by the embedding
tensor formalism in which the corresponding gauge gen-
erators are defined as

XM ¼ θM
ntn ð9Þ

with tn being the SO�ð12Þ generators. θMn is called the
embedding tensor in terms of which the covariant derivative
implementing the minimal coupling of various fields can be
written as

Dμ ¼ ∇μ − gAM
μ XM: ð10Þ

∇μ is the usual space-time covariant derivative including
(possibly) the local Uð6Þ composite connection. The
parameter g is the gauge coupling constant which can be
absorbed in the definition of θMm.

In 32 representation, with SO�ð12Þ generators ðtnÞMN ,
the embedding tensor can be described by the generalized
structure constants

XMN
P ¼ θM

nðtnÞNP: ð11Þ

To define a proper gauging and preserve the full
supersymmetry of the ungauged theory, the embedding
tensor needs to satisfy the so-called linear and quadratic
constraints given, respectively, by

XðMN
LΩPÞL ¼ 0 and θM

mθN
nfmn

p þ XMN
PθP

p ¼ 0

ð12Þ

with fmn
p being the SO�ð12Þ structure constants. The

former implies that the embedding tensor θM
m is in the

representation 351 of SO�ð12Þ, while the latter gives rise to

½XM; XN � ¼ −XMN
PXP: ð13Þ

The gauge generators then form a closed subalgebra for
which XMN

P act as the corresponding structure constants.
As usual in gauging a supergravity theory, super-

symmetry requires some modifications to the ungauged
Lagrangian and supersymmetry transformations. These
modifications are of first and second order in the gauge
coupling constant and can be written in terms of the so-
called T tensor:

TMN
P ¼ VM

MVN
NVP

PXMN
P: ð14Þ

The bosonic Lagrangian of the N ¼ 6 gauged supergravity
can be written as

e−1L ¼ 1

2
R −

1

24
PμABCDPμABCD

−
i
4
ðN ΛΣFþΛ

μν FþΣμν − N̄ ΛΣF−Λ
μν F−ΣμνÞ − V: ð15Þ

The scalar kinetic term is given in terms of the vielbein
PABCD
μ ¼ ðPμABCDÞ� on the SO�ð12Þ=Uð6Þ coset which is

defined by

PABCD
μ ¼ VABMDμVM

CD

¼ iðf̄ΛABDμh̄ΛCD − h̄ΛABDμf̄ΛCDÞ: ð16Þ

The scalar matrix appearing in the gauge kinetic terms is
given by

N ΛΣ ¼ −h̄ΛΛðf−1ÞΛΣ ð17Þ

with N̄ ΛΣ being its complex conjugate. The complex
self-dual and anti-self-dual gauge field strengths are
defined by
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F�Λ
μν ¼ 1

2

�
FΛ
μν �

i
2
ϵμνρσFΛρσ

�
ð18Þ

with FΛ
μν given by

FΛ
μν ¼ ∂μAΛ

ν − ∂νAΛ
μ þ XΓΣ

ΛAΓ
μAΣ

ν : ð19Þ

The scalar potential is obtained from the fermion-shift
matrices as follows:

V ¼ −2SABSAB þ 1

36
NA

BCDNA
BCD þ 1

6
NA

BNA
B: ð20Þ

We note that upper and lower SUð6Þ indices are related by
complex conjugation. In terms of the various components
of the T tensor with the splitting of indices Λ;Σ;… as
ð0; ½AB�Þ, we have

SAB ¼
ffiffiffi
2

p

5
TCðA;BÞECE; NAB ¼ −

8
ffiffiffi
2

p

3
TC½A;B�ECE;

NA
B ¼ −2

ffiffiffi
2

p
T0;BC

AC;

NA
BCD ¼ −2

ffiffiffi
2

p
T ½CD;B�EAE −

1

4
δA½BNCD�: ð21Þ

The fermionic supersymmetry transformations, with all
fermionic fields vanishing, are given by

δψμA ¼ DμϵA − SABγμϵB −
1

4
ffiffiffi
2

p F̂þ
ρσABγ

ρσγμϵ
B; ð22Þ

δχA ¼ −
1

4!
ϵABCDEFPBCDE

μ γμϵF þ NB
AϵB −

1

2
ffiffiffi
2

p F̂þ
μνγ

μνϵA;

ð23Þ

δχABC ¼ −PμABCDγ
μϵD þ ND

ABCϵD −
3

2
ffiffiffi
2

p F̂þ
μν½ABϵC�:

ð24Þ

We note here the chiralities of the fermionic fields

γ5ψμA¼−ψμA; γ5χABC¼−χABC; γ5χA¼−χA ð25Þ

with ψA
μ , χABC, and χA having opposite chiralities. The

tensors F̂þ
μνAB ¼ ðF̂−AB

μν Þ� can be obtained from

F̂−AB
μν ¼ VM

ABG−M
μν ð26Þ

with

GM
μν ¼

�
FΛ
μν

GΛμν

�
ð27Þ

and GΛμν ¼ iϵμνρσ ∂L
∂FΛ

ρσ
. Similarly, we have F̂þ

μν ¼
ðVM

0G−M
μν Þ�.

The covariant derivative of ϵA is defined by

DμϵA ¼ ∂μϵA þ 1

4
ωμ

abγabϵA þ 1

2
QμA

BϵB: ð28Þ

The connection QμA
B is given by

QμA
B ¼ 2i

3
ðhΛAC∂μf̄ΛAB − fΛAC∂μh̄ΛBCÞ − gAM

μ QMA
B

ð29Þ

with QMA
B obtained from

QMAB
CD ¼ VAB

PXMP
NVN

CD ð30Þ

by the relation QMAB
CD ¼ 4δ½C½AQMB�D�.

In general, both electric and magnetic gauge fields can
participate in the gaugings, leading to many possibilities
of viable gauge groups. However, in this work, we will
consider only the SOð6Þ gauge group embedded electri-
cally in Uð6Þ ⊂ SO�ð12Þ. This gauging involves only
electric gauge fields AAB. In this case, we have

XI1J1;I2J2
I3J3 ¼ 4gδ½I3½I1δI2�½J2δ

J3�
J2�

and XI1J1
I3J3

I2J2
¼ −XI1J1;I2J2

I3J3 ð31Þ

with all remaining components vanishing. In particular,
there are no XΛ

M
N components which couple to magnetic

gauge fields.
With the splitting of indices Λ;Σ;… ¼ ð0; ½IJ�Þ, we find

from the definition (14) that

TAB
CD ¼ −

1

2
fI1J0ðfJJ1ABh̄I1J1CD þ hI1J1;ABf̄

JJ1;CDÞ; ð32Þ

TEF;AB
CD ¼ −

1

2
fI1JEFðfJJ1ABh̄I1J1CD þ hI1J1;ABf̄

JJ1;CDÞ:
ð33Þ

From these, it is straightforward to obtain all the fermion-
shift matrices and the scalar potential.
In subsequent sections, we will look for various types of

supersymmetric solutions to this N ¼ 6 gauged super-
gravity with the SOð6Þ gauge group. It has been shown
in Ref. [5] that this gauged supergravity admits a super-
symmetric N ¼ 6 AdS4 vacuum with the cosmological
constant V0 ¼ −48g2 when all scalars vanish. According to
the AdS=CFT correspondence, this is dual to an N ¼ 6
SCFT in three dimensions. We will find solutions that are
asymptotic to this AdS4 geometry and can be interpreted as
different types of deformations of the dual N ¼ 6 SCFT.
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III. HOLOGRAPHIC RG FLOWS

We first consider holographic RG flow solutions in the
form of domain walls interpolating between the super-
symmetric AdS4 vacuum and another AdS4 vacuum (if it
exists) or a singular geometry. These solutions correspond,
respectively, to RG flows of the dual UV N ¼ 6 SCFT to
another conformal fixed point or to a nonconformal phase
in the IR.
The metric ansatz is taken to be

ds2 ¼ e2AðrÞdx21;2 þ dr2 ð34Þ

with dx21;2 being the flat metric on three-dimensional
Minkowski space. Scalar fields are allowed to depend
only on the radial coordinate r with all the other fields set
to zero.

A. Solutions with SOð2Þ × SOð4Þ symmetry

We first consider a simple case of solutions with
SOð2Þ × SOð4Þ symmetry. The embedding of SOð6Þ
implies that the scalars ϕAB transform as an adjoint
representation of SOð6Þ. There is one singlet scalar
under SOð2Þ × SOð4Þ ⊂ SOð6Þ given explicitly by

ϕAB ¼ ϕðδ1Aδ2B − δ1Bδ
2
AÞ: ð35Þ

We will also write

ϕ ¼ φeiζ ð36Þ

for real scalars φ and ζ depending only on r.
By a straightforward computation, we find the tensor SAB

of the form

SAB ¼ 2g coshφδAB ¼ 1

2
WδAB: ð37Þ

We have introduced the “superpotential” W for conven-
ience. In general, the function W is related to the
eigenvalue of SAB corresponding to the unbroken super-
symmetry. In the present case, SAB is proportional to
the identity matrix, indicating that the solutions will
preserve either N ¼ 6 supersymmetry with all ϵA non-
vanishing or no supersymmetry at all. Note also thatW has
a critical point at φ ¼ 0which is the supersymmetricN ¼ 6
AdS4 vacuum mentioned above.
To solve all the Bogomol’nyi-Prasad-Sommerfield

(BPS) conditions, we will, as in other previous works,
impose the following projector:

γr̂ϵA ¼ eiΛϵA ð38Þ

for a real function Λ. Throughout the paper, we will use
Majorana representation for gamma matrices in which
all γμ are real but γ5 is purely imaginary. This implies that

ϵA and ϵA are related by complex conjugation. Note also
that the projector (38) relates the two chiralities of ϵA, so the
full flow solutions will preserve only half of the original
supersymmetry or 12 supercharges.
Considering the conditions δψμA ¼ 0 for μ ¼ 0, 1, 2,

we find

eiΛA0 −W ¼ 0 ð39Þ

with the prime denoting r derivatives. This equation gives

A0 ¼ �jWj and eiΛ ¼ � W
jWj : ð40Þ

In what follows, we will write W ¼ jWj for convenience.
We will also choose the upper signs in order to make
the supersymmetric AdS4 critical point correspond to
r → ∞. Since, in this case, the superpotential is real, we
simply have

A0 ¼ 4g coshφ and eiΛ ¼ 1: ð41Þ

The condition δψ rA ¼ 0 gives the standard Killing spinors
of the domain walls

ϵA ¼ eA=2ϵAð0Þ ð42Þ

for spinors ϵAð0Þ satisfying Eq. (38).
Using the projection (38) in the variations δχABC and δχA

gives the following BPS equations:

φ0 ¼ −4g sinhφ and ζ0 ¼ 0: ð43Þ

We have now obtained the BPS equations that solve all
the supersymmetry conditions. It can also be readily
verified that these equations imply the second-order field
equations.
We can analytically solve the above BPS equations with

the following solution:

4gr ¼ lnð1þ eφÞ − lnð1 − eφÞ; ð44Þ

A ¼ φ − lnð1 − e2φÞ: ð45Þ

We have neglected the integration constants in these
equations, since they can be removed by shifting the radial
coordinate and scaling the x0;1;2 coordinates, respectively.
As r → ∞, we find that

φ ∼ e−4gr ∼ e−r=L and A ∼ 4gr ∼
r
L

ð46Þ

with L being the AdS4 radius related to the cosmological
constant by
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L ¼
ffiffiffiffiffiffiffiffiffiffi
−

3

V0

s
¼ 1

4g
: ð47Þ

We have also taken g > 0 for convenience.
The behavior of φ implies that φ is dual to a relevant

operator of dimensions Δ ¼ 1, 2 in the dual SCFT. In
addition, the solution is singular at r → 0 with

φ ∼� lnð4grÞ and A ∼ lnð4grÞ: ð48Þ

We then find that φ → �∞ near the singularity. From the
explicit form of the scalar potential, we have

V ∼ −8g2e�2φ → −∞: ð49Þ

By the criterion given in Ref. [77], we conclude that the
singularity is physical. Therefore, the solution describes an
RG flow from the UV N ¼ 6 SCFT to a nonconformal
phase in the IR. The flow is driven by an operator of
dimensions Δ ¼ 1, 2 corresponding to scalar or fermion
mass terms in three dimensions. The flow breaks super-
conformal symmetry but preserves the full N ¼ 6 Poincaré
supersymmetry. Moreover, the R symmetry SOð6Þ is
broken to SOð2Þ × SOð4Þ subgroup. This is precisely in
agreement with the field theory result given in Ref. [25].
We then expect the solution to describe mass deformations
of the three-dimensional N ¼ 6 SCFT.

B. Solutions with Uð3Þ symmetry

We now consider another residual symmetry, namely,
Uð3Þ ∼ SUð3Þ ×Uð1Þ ⊂ SOð6Þ. The Uð3Þ generators in
the fundamental representation of SOð6Þ can be written as

X ¼
�

A3×3 S3×3
−S3×3 A3×3

�
ð50Þ

in which A3×3 and S3×3 are antisymmetric and symmetric
3 × 3 matrices, respectively. The matrices A3×3 generate
an SOð3Þ ⊂ SUð3Þ which is a diagonal subgroup of
SOð3Þ × SOð3Þ ⊂ SOð6Þ. The Uð1Þ factor corresponds
to S3×3 ¼ I3. There is only oneUð3Þ singlet scalar given by

ϕAB ¼
�

03×3 ϕI3
−ϕI3 03×3

�
¼ ϕJAB: ð51Þ

The matrix JAB is identified with the Kähler form of CP3 on
which the ten-dimensional type IIA theory compactifies [5].
By writing ϕ ¼ φeiζ and repeating the same analysis as

in the previous case, we find the scalar potential

V ¼ −24g2e−2φð1þ e4φÞ; ð52Þ

which is exactly the same as that given in Ref. [5]. As in the
SOð2Þ × SOð4Þ case, this potential admits an N ¼ 6 AdS4

critical point at φ ¼ 0 dual to an N ¼ 6 SCFT in three
dimensions.
The matrix SAB is proportional to the identity

SAB ¼ 1

2
WδAB ð53Þ

with a complex superpotential

W¼ 1

2
e−3φ−iζ½ðe6φþ3e2φÞð1þeiζÞþð1þe4φÞðeiζ−1Þ�:

ð54Þ

The variations δχA and δχABC lead to

e−iΛð2φ0 � i sinhð2φÞζ0Þ
¼ −ge−3φðe4φ − 1Þ½1 − eiζ þ e2φð1þ eiζÞ�; ð55Þ

which implies ζ0 ¼ 0. It turns out that ζ0 ¼ 0 is also
required by the field equations. For constant ζ ¼ ζ0, we
have verified that all the resulting BPS equations are
compactible with the field equations. In the following
analysis, we will set ζ0 ¼ 0 and end up with the BPS
equations

φ0 ¼ −e−φðe4φ − 1Þ and A0 ¼ ge−φð3þ e4φÞ: ð56Þ

The solution can be readily obtained:

A ¼ 3φ − lnð1 − e4φÞ; ð57Þ

4gr ¼ 2 tan−1 eφ − lnð1 − eφÞ þ lnð1þ eφÞ: ð58Þ

As in the previous case, the solution is asymptotic to
the supersymmetric AdS4 with φ dual to an operator of
dimensionsΔ ¼ 1, 2, while at r ¼ 0 the solution is singular
with

φ ∼ lnðgrÞ and A ∼ 3φ ∼ 3 lnðgrÞ ð59Þ

and

φ ∼ − lnðgrÞ and A ∼ −φ ∼ lnðgrÞ: ð60Þ

Both of these give

V ∼ −24g2e�2φ → −∞; ð61Þ

so the two singularities are physical. We can accordingly
interpret the solution as a holographic dual of RG flows
from the N ¼ 6 SCFT to nonconformal phases in the IR.
The flow preservesN ¼ 6 Poincaré supersymmetry in three
dimensions as in the SOð2Þ × SOð4Þ case but breaks the
SOð6Þ R symmetry to Uð3Þ. It would be interesting to
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identify the corresponding mass deformations in the dual
N ¼ 6 SCFT similar to the SOð2Þ × SOð4Þ case.

C. Solutions with SOð2Þ × SOð2Þ × SOð2Þ symmetry

To obtain more interesting and more complicated sol-
utions, we consider solutions with a smaller symmetry,
namely, SOð2Þ×SOð2Þ×SOð2Þ⊂SOð6Þ symmetry. There
are three complex scalars which are singlets under this
SOð2Þ × SOð2Þ × SOð2Þ. The explicit parametrization of
these singlets can be written as

ϕAB ¼

0
B@

ϕ1iσ2 02×2 02×2

02×2 ϕ2iσ2 02×2

02×2 02×2 ϕ3iσ2

1
CA: ð62Þ

By setting

ϕα ¼ φαeiζα ; α ¼ 1; 2; 3; ð63Þ
we find the scalar potential

V ¼ −16g2½coshð2φ1Þ þ coshð2φ2Þ þ coshð2φ3Þ�: ð64Þ
It is clearly seen that this potential admits only one critical
point at φ1 ¼ φ2 ¼ φ3 ¼ 0 which is the aforementioned
N ¼ 6 AdS4 vacuum.
The matrix SAB is given by

SAB ¼ 1

2

0
B@

W1I2 02×2 02×2

02×2 W2I2 02×2

02×2 02×2 W3I2

1
CA ð65Þ

with

W1 ¼
1

2
ge−φ1−φ2−φ3

× ½eiðζ1−ζ2−ζ3Þðe2φ1 − 1Þðe2φ2 − 1Þðe2φ3 − 1Þ
− ð1þ e2φ1Þð1þ e2φ2Þð1þ e2φ3Þ�: ð66Þ

W2 and W3 take a similar form with the phase eiðζ1−ζ2−ζ3Þ

replaced by eiðζ2−ζ1−ζ3Þ and eiðζ3−ζ1−ζ2Þ, respectively.
It turns out that none of these Wα gives rise to the

superpotential in term of which the scalar potential (64) can
be written unless ζ1 ¼ ζ2 ¼ ζ3 ¼ 0. This is also implied by
the consistency between the resulting BPS equations and
the field equations. We now set ζ1 ¼ ζ2 ¼ ζ3 ¼ 0, resulting
in eiΛ ¼ �1, and obtain the following BPS equations:

φ0
1 ¼ −ge−φ1−φ2−φ3 ½e2ðφ1þφ2Þ þ e2ðφ1þφ3Þ − e2ðφ2þφ3Þ − 1�;

ð67Þ

φ0
2 ¼ −ge−φ1−φ2−φ3 ½e2ðφ1þφ2Þ þ e2ðφ2þφ3Þ − e2ðφ1þφ3Þ − 1�;

ð68Þ

φ0
3 ¼ −ge−φ1−φ2−φ3 ½e2ðφ1þφ3Þ þ e2ðφ2þφ3Þ − e2ðφ1þφ2Þ − 1�;

ð69Þ

A0 ¼ ge−φ1−φ2−φ3 ½e2ðφ1þφ2Þ þ e2ðφ1þφ3Þ þ e2ðφ3þφ3Þ þ 1�:
ð70Þ

To find the solution to these equations, we first take a
linear combination:

φ0
1 þ φ0

2 ¼ −2ge−φ1−φ2−φ3ðe2ðφ1þφ2Þ − 1Þ: ð71Þ

After changing to a new radial coordinate ρ defined by

dρ
dr

¼ e−φ1−φ2−φ3 ; ð72Þ

we find

φ2 ¼ 2gρ − φ1 −
1

2
lnðe4gρ þ C2Þ ð73Þ

for a constant C2.
Similarly, taking a linear combination φ0

1 þ φ0
3 gives rise

to

φ3 ¼ 2gρ − φ1 −
1

2
lnðe4gρ þ C3Þ: ð74Þ

Using these results in Eq. (67), we find

φ1 ¼
1

4
ln

�
e4gρðe4gρ þ C1Þ

ðe4gρ þ C2Þðe4gρ þ C3Þ
�
: ð75Þ

Finally, with all these results, the solution for A is given by

A ¼ gρþ 1

4
lnðe4gρ þ C1Þ þ

1

4
lnðe4gρ þ C2Þ

þ 1

4
lnðe4gρ þ C3Þ: ð76Þ

We now look at the behavior of the solution as φα ∼ 0
which gives ρ ∼ r and

φ1∼
1

4
ðC1−C2−C3Þe−4gρ; φ2;3∼−

1

4
ðC1−C3;2Þe−4gρ;

A∼4gρ: ð77Þ

This is the expected behavior of the solution asymptotic to
the supersymmetric AdS4 vacuum. As in the previous
cases, the solution is singular as 4gρ → lnð−CαÞ. For
C1 ≠ C2 ≠ C3, there are three possibilities.
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(i) C1 < C2;3.—In this case, the solution is singular
when 4gρ → lnð−C1Þ with

φ1 ∼
1

4
lnð4gρ − C̃1Þ; C̃1 ¼ lnð−C1Þ;

φ2;3 ∼ −φ1; A ∼ φ1: ð78Þ

(ii) C2 < C1;3 or C3 < C1;2.—In this case, we find

φ1 ∼ −
1

4
lnð4gρ − C̃2;3Þ; C̃2;3 ¼ lnð−C2;3Þ;

φ2;3 ∼ φ1; A ∼ −φ1: ð79Þ

In the first case, we have φ1 → −∞ and φ2;3 → ∞, while
in the second case, the solution gives φ1;2;3 → ∞. It can
be easily verified that all of these behaviors lead to
V → −∞, so the singularities are physically acceptable.
The solution then describes different types of mass defor-
mations within the dual N ¼ 6 SCFT to nonconformal
phases with SOð2Þ × SOð2Þ × SOð2Þ symmetry. The sol-
ution also preserves N ¼ 6 Poincaré supersymmetry as in
the previous cases.

D. Solutions with SOð3Þ symmetry

We further reduce the residual symmetry to SOð3Þ ⊂
SOð3Þ × SOð3Þ ⊂ SOð6Þ generated by the antisymmetric

matrices A3×3 in the upper-left block of Eq. (50). There are
three singlet scalars parametrized by

ϕAB ¼
�
03×3 03×3

03×3 Â3×3

�
ð80Þ

with

Â ¼

0
B@

0 ϕ̃1 ϕ̃2

−ϕ̃1 0 ϕ̃3

−ϕ̃2 −ϕ̃3 0

1
CA: ð81Þ

By writing ϕ̃α ¼ φαeiζα with

φ1 ¼Φcosθ; φ2 ¼Φ sinθ cosϑ; φ3 ¼Φ sinθ sinϑ

ð82Þ

and

ζ1 ¼ ζ; ζ2 ¼ ζ þ η; ζ3 ¼ ζ þ ξ; ð83Þ

we find the scalar potential

V ¼ −g2½16cos4θð2þ cosh 2ΦÞ þ 16cosh4θsin4θð2þ cosh 2ΦÞ þ 16sin4θsin4ϑð2þ cosh 2ΦÞ − cos2θsin2θcos2ϑ

× ðcosh 4Φ − 8 cos 2ηsinh4Φ − 36 cosh 2Φ − 61Þ þ sin2θsin2ϑ × ½8sinh4Φðcos2θ cos 2ξþ cos2ϑsin2θ cos½2ðη − ξÞ�Þ
þ ð61þ 36 cosh 2Φ − cosh 4ΦÞðcos2θ þ cos2ϑsin2θÞ��: ð84Þ

In this case, the scalar potential depends on phases of the complex scalars, and the analysis is more complicated. To make
the analysis more traceable, we will further truncate to two scalars by setting ϑ ¼ 0 and ξ ¼ −ζ. This is equivalent to setting
ϕ̃3 ¼ 0. We now begin with the eigenvalues of the matrix SAB. These are of the form, after diagonalization,

SdiagAB ¼ diag
�
−2g coshΦ×4;

1

2
Wþ;

1

2
W−

�
ð85Þ

with W� given by

W� ¼ 2gðcos 2ηþ 2 sin ηÞsinh4Φ
2
ðcos 4θ sin η� i sin 2θÞ − 1

4
gð3þ 12 coshΦþ cosh 2ΦÞ: ð86Þ

The corresponding eigenvectors are

ϵ̂� ¼ −
1

2
sec 2θ

�
2 cos η sin 2θ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ cos 2ηþ 2 cos 4θsin2η

q �
ϵ5 þ ϵ6: ð87Þ

The scalar kinetic term is given by

Lkin ¼ −
1

2
Gαβϕ

α0ϕβ 0

¼ −Φ02 − sinh2Φθ02 −
1

4
sinh22Φζ02 −

1

2
sin2θsinh22Φζ0η0 −

1

4
sin2θsinh2Φð3þ cosh 2Φ − 2 cos 2θsinh2ΦÞη02 ð88Þ
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with ϕα ¼ ðΦ; θ; ζ; ηÞ. It is useful to give an explicit form of the inverse of Gαβ here:

Gαβ ¼ −
1

2

0
BBB@

1 0 0 0

0 csch2Φ 0 0

0 0 −sech2Φþ csch2Φsec2θ −csch2Φsec2θ

0 0 −csch2Φsec2θ 4csc22θcschΦ

1
CCCA: ð89Þ

The scalar potential can be written in term of the real superpotential W ¼ jWþj ¼ jW−j as

V ¼ −2Gαβ ∂W
∂ϕα

∂W
∂ϕβ − 3W2

¼ g2½cos2θsin2θðcosh 4Φ − 8 cos 2ηsinh4Φ − 36 cosh 2Φ − 61Þ−4ð3þ cos 4θÞð2þ cosh 2ΦÞ�: ð90Þ

After setting ϵ1;2;3;4 ¼ 0 and imposing the projection conditions

γr̂ϵ� ¼ e�iΛϵ� with e�iΛ ¼ W�
W

; ð91Þ

we find the following BPS equations:

Φ0 ¼ 1

16W
g2½8 sinh3Φ coshΦðcos 2ηþ 2 cos 4θ sin3 ηÞ − 30 sin 2Φ − sinh 4Φ�; ð92Þ

θ0 ¼ −
1

W
g2 sin2 η sin 4θ sinh2Φ; ð93Þ

ζ0 ¼ 2

W
g2 sin 2η sin2 θ sinh2 Φ; ð94Þ

η0 ¼ −
2

W
g2 sin 2η sinh2Φ; ð95Þ

A0 ¼ W: ð96Þ

The flow equations for the scalars can be written in a
compact form as

ϕα0 ¼ 2Gαβ ∂W
∂ϕβ : ð97Þ

It can straightforwardly be verified that all these equations
satisfy the second-order field equations. We also see that,
from these equations, there is only one supersymmetric
critical point, with Φ0 ¼ θ0 ¼ ζ0 ¼ η0 ¼ 0, at ϕα ¼ 0.
We note that, although the superpotential and the scalar

potential do not depend on ζ, ζ0 is still nonvanishing due to
the mixed terms between ζ and η in the matrix Gαβ.
Moreover, further truncations such as η ¼ 0 or θ ¼ 0 will
lead to the BPS equations in the case of N ¼ 6 supersym-
metry with all six eigenvalues of SAB leading to

W ¼ 4g coshΦ: ð98Þ

This is very similar to the N ¼ 5 gauged supergravity
studied in Ref. [51] in which the differences in the phases of
the scalars are crucial for breaking the original supersym-
metry to a lower amount.
We now look at the solution to the above equations.

Combining η0 and θ0 equations gives

dθ
dη

¼ 1

4
sin 4θ tan η ð99Þ

with the solution given by

cot 2θ ¼ C1 cos η: ð100Þ

Similarly, taking the combination between ζ0 and η0
equations leads to

dζ
dη

¼ − sin2 θ: ð101Þ

After using the above solution for θ, we find the solution

ζ¼ ζ0−
η

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1þ sec2η

p
cosηtan1

ffiffi
2

p
C1 sinηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þC2
1
ð1þcos2ηÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ2C2

1ð1þ cos2ηÞ
p ð102Þ

for constant ζ0.
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Combining Φ0 and η0 equations by taking into account all the previous results together with a redefinition

Φ̃ ¼ sinhΦ; ð103Þ

we find

dΦ̃
dη

¼ csc 2ηð1þ Φ̃2Þ
�

Φ̃ tan2 η
C2
1 þ sec2 η

þ 2

Φ̃

�
; ð104Þ

whose solution is given by

Φ̃2

4
¼ −

1þ C2
1cos

2η − C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos 2ηÞð2þ C2

1ð1þ cos 2ηÞÞ
p

3þ 4C2
1cos

2ηþ cos 2η − 4C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos 2ηÞð2þ C2

1ð1þ cos 2ηÞÞ
p : ð105Þ

Using all these results in the η0 equation, we find the solution for ηðrÞ implicitly from

8gr ¼ sinh−1
"
2C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξ − 1

ð1þ C2
1Þ½2þ ðC2

1 − 4C2
2Þð1þ ΞÞ�

s #
− tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ C2

1 − 4C2
2Þð1þ ΞÞ

Ξ − 1

r
; ð106Þ

in which we have defined

Ξ ¼ cos 2η: ð107Þ

Finally, we can find the solution for AðΞÞ as

A¼ 1

4
ðtanh−1αþ − tanh−1α−Þ−

1

2
tanh−1

"
2C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξþ 1

2þC2
1ð1þΞÞ

s #

−
1

8
ln ½4C4

1ð1þΞÞ2 þ ð3þΞÞ2 − 4ð1þΞÞ½8C2
2 þC2

1ð4C2
2ð1þΞÞ− 3−ΞÞ�� þ 1

4
ln½2þ ð1þΞÞðC2

1 − 4C2
2Þ� ð108Þ

with α� defined by

α� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

2þ C2
1ð1þ ΞÞ

ð1þ ΞÞ½1þ C2
1 − 4C2ð2C2 þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2

2 − C2
1 − 1

p
Þ�

s
: ð109Þ

The solution preserves N ¼ 2 supersymmetry and breaks
the SOð6Þ R symmetry to SOð3Þ. The solution is singular
when

cos2 η ¼ −
1

1þ 2C2
1 − 8C2

2 � 4C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2

2 − C2
1 − 1

p : ð110Þ

This gives Φ̃ → �∞ or Φ → �∞, which, in turn, leads to

V → g2e4jΦj cos2 θ sin2 η sin2 θ: ð111Þ

We can see that the scalar potential is unbounded from
above, V → þ∞, unless θ ¼ 0 or η ¼ 0, both of which give
the N ¼ 6 solution as previously mentioned. Therefore, the

IR singularities of the N ¼ 2 solutions are unphysical by
the criterion of Ref. [77].

IV. SUPERSYMMETRIC JANUS SOLUTIONS

In this section, we consider supersymmetric Janus
solutions in the form of curved domain walls. The solutions
can be obtained from an AdS3-sliced domain wall ansatz

ds2 ¼ e2Aðe2ξ=ldx21;1 þ dξ2Þ þ dr2: ð112Þ

Since the analysis closely follows that given in Ref. [52]
(see also [53]), we will not repeat all the detail here but
mainly review relevant results for deriving the correspond-
ing BPS equations.
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Compared to the RG flow case, the BPS equations will
be modified by the curvature of the three-dimensional
slices. In addition, as pointed out in Ref. [52], the existence
of Janus solutions requires nonvanishing pseudoscalars,
resulting in a more complicated set of BPS equations in
contrast to the simple flat domain wall or RG flow case. We
begin with the conditions δψ i

μ̂ ¼ 0 for μ̂ ¼ 0, 1, which give

A0γr̂ϵA þ 1

l
e−Aγξ̂ϵA −WϵA ¼ 0: ð113Þ

This leads to the following BPS equation:

A02 ¼ W2 −
1

l2
e−2A ð114Þ

for W ¼ jWj. We still use the γr̂ projection given in
Eq. (38). Imposing the γξ̂ projection of the form

γξ̂ϵA ¼ iκeiΛϵA ð115Þ

with κ2 ¼ 1, we can solve the condition (113) for the γr̂
projector, leading to the phase factor

eiΛ ¼ A0

W
þ iκ

l
e−A

W
ð116Þ

for real W and

eiΛ ¼ W
A0 þ iκ

l e
−A ð117Þ

for complex W. We also note that the constant κ ¼ �1
corresponds to the chiralities of the Killing spinors on the
two-dimensional conformal defects described by the AdS3
slices. Finally, the conditions δψA

ξ̂
¼ 0 and δψA

r̂ ¼ 0 can

be solved to obtain the explicit form of the Killing spinors
(see details in [52]):

ϵA ¼ eðA=2Þþðξ=2lÞþiðΛ=2Þεð0ÞA ; ð118Þ

in which the constant spinors εð0ÞA could possibly have an
r-dependent phase and satisfy

γr̂ε
ð0Þ
A ¼ εð0ÞA and γξ̂ε

ð0Þ
A ¼ iκεð0ÞA: ð119Þ

It turns out that among the previously considered cases
only SOð2Þ × SOð4Þ and SOð3Þ symmetric scalars can
possibly possess supersymmetric Janus solutions. This is
mainly a consequence of the consistency in turning on
nonvanishing pseudoscalars. For the SOð3Þ case, the
analysis is highly complicated as already seen in the case
of RG flows considered in the previous section. Therefore,
we will give only the Janus solution with SOð2Þ × SOð4Þ

symmetry. This case is more traceable, and it turns out that
the solution can be analytically obtained.

A. Janus solutions with SOð2Þ × SOð4Þ symmetry

In this case, the superpotential is real, so we will use the
phase eiΛ from Eq. (116). In general, since ϵ1;2 and ϵA with
A ¼ 3, 4, 5, 6 transform differently under SOð2Þ × SOð4Þ,
namely, as ð2; 1Þ þ ð1; 4Þ, the two sets of Killing spinors
can satisfy different projectors. We find that, in order to
obtain a consistent set of BPS equations, we need to choose
opposite signs of κ for ϵ1;2 and ϵ3;…;6. Therefore, the surface
defect will preserve N ¼ ð2; 4Þ or N ¼ ð4; 2Þ superconfor-
mal symmetry.
With the superpotential

W ¼ 4g coshφ; ð120Þ

we find the following BPS equations:

φ0 ¼ −
8g2l2A0e2A sinhð2φÞ

1þ l2A02e2A
; ð121Þ

ζ0 ¼ −
16g2κleA

1þ l2A02e2A
; ð122Þ

A02 þ e−2A

l2
¼ 16g2l2 cosh2 φ: ð123Þ

It should be noted that, for l → ∞, these equations reduce
to those of the RG flow studied in the previous section.
Furthermore, these equations take a very similar form to the
SOð4Þ symmetric Janus solution in N ¼ 5 gauged super-
gravity studied in Ref. [51].
By taking φ as an independent variable, we can solve for

AðφÞ and ζðφÞ. The complete solution is given by

A ¼ C − ln sinhφ; ð124Þ

coshð2φÞ ¼ 32g2l2 tanh2½4gðr − r0Þ�
16g2l2 − 1

; ð125Þ

κ tan ζ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16g2l2

q
sinh½4gðr − r0Þ� ð126Þ

for constants C and r0. This solution takes the same form as
the solution given in Refs. [52,51,53], respectively, in
N ¼ 8, 5, and 3 gauged supergravities. We also note
the unbroken supersymmetries on the conformal defects
in these cases as follows: N ¼ ð4; 4Þ, N ¼ ð4; 1Þ, and
N ¼ ð2; 1Þ. All of these solutions should be related by
truncations of N ¼ 8 gauged supergravity to N ¼ 3 and
N ¼ 5, 6 theories. This indicates that the N ¼ ð4; 4Þ Janus
solution of Ref. [52] survives in the truncation to N ¼ 3, 5,
6 gauged supergravities. According to the AdS=CFT
correspondence, we then expect the dual N ¼ 3, 5, 6
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SCFTs to possess the same two-dimensional conformal
defect as in the N ¼ 8 SCFT.
We end this section by giving a brief comment on the

possible SOð3Þ symmetric Janus solution. A partial analy-
sis shows that there appears to be no obstruction in
obtaining the BPS equations for Janus solutions in this
case as in a similar analysis of N ¼ 5 theory in Ref. [51].
Therefore, we expect a supersymmetric N ¼ 2 Janus
solution with SOð3Þ symmetry to exist in N ¼ 6 gauged
supergravity as well. Since the analysis is far more
complicated than the SOð2Þ × SOð4Þ case, we refrain from
giving any definite result here.

V. SUPERSYMMETRIC AdS4 BLACK HOLES

In this section, we look for supersymmetric AdS4
black holes in the form of curved-domain wall solutions
interpolating between a locally asymptotically AdS4 and
AdS2 × Σ2 geometries. The AdS2 × Σ2 space describes the
near-horizon geometry of the black holes. In the following
analysis, we will consider only the cases of Σ2 being a two-
sphere ðS2Þ and a hyperbolic space ðH2Þ.
The metric ansatz is taken to be

ds2 ¼ −e2fðrÞdt2 þ dr2 þ e2hðrÞðdθ2 þ F2ðθÞdϕ2Þ ð127Þ

with the function FðθÞ defined by

FðθÞ ¼
	
sin θ; Σ2 ¼ S2;

sinh θ; Σ2 ¼ H2:
ð128Þ

It is straightforward to derive nonvanishing components of
the spin connection

ωt̂ r̂ ¼ f0et̂; ωθ̂ r̂ ¼ h0eθ̂;

ωϕ̂ r̂ ¼ h0eϕ̂; ωθ̂ ϕ̂ ¼ F0

F
e−heϕ̂ ð129Þ

with F0ðθÞ ¼ dF
dθ .

In general, the curvature of the Σ2 part on the world
volume of the domain wall will completely break super-
symmetry. However, it is well known that some amount of
supersymmetry can be preserved by performing a topo-
logical twist. This can be achieved by turning on some
gauge fields along Σ2 in such a way that the corresponding
spin connection, ωθ̂ ϕ̂ in the above metric, is canceled. This
turns the covariant derivative of ϵA along Σ2 into a partial
one. The resulting Killing spinors are accordingly given by
spinors that are independent of the Σ2 coordinates.

A. SOð2Þ × SOð2Þ × SOð2Þ symmetric solutions

We first consider the SOð2Þ × SOð2Þ × SOð2Þ twist with
the following ansatz for the gauge fields:

A12 ¼ A1ðrÞdt − p1F0ðθÞdϕ;
A34 ¼ A2ðrÞdt − p2F0ðθÞdϕ;
A56 ¼ A3ðrÞdt − p3F0ðθÞdϕ: ð130Þ

The constants pi, i ¼ 1, 2, 3, are identified with magnetic
charges. The corresponding field strengths are given by

F12 ¼ A0
1dr ∧ dtþ κp1FðθÞdθ ∧ dϕ;

F34 ¼ A0
2dr ∧ dtþ κp2FðθÞdθ ∧ dϕ;

F56 ¼ A0
3dr ∧ dtþ κp3FðθÞdθ ∧ dϕ: ð131Þ

We have introduced a parameter κ with κ ¼ 1, −1 for Σ2

being S2 or H2, respectively. We also note that F00ðθÞ ¼
−κFðθÞ.
With the SOð2Þ × SOð2Þ × SOð2Þ singlet scalars given

by Eq. (62), we find nonvanishing components of the
composite connection:

QA
B ¼ 2giσ2 ⊗

0
B@

A12

A34

A56

1
CA: ð132Þ

With the component Qϕ̂A
B, the spin connection ωθ̂ ϕ̂ can be

canceled by imposing the following projector:

γθ̂ ϕ̂ϵA ¼ ðiσ2 ⊗ I3ÞABϵB ð133Þ

and the twist conditions

2gp1 ¼ 2gp2 ¼ 2gp3 ¼ 1: ð134Þ

These conditions imply that p1 ¼ p2 ¼ p3. The twist is
then obtained from the diagonal subgroup SOð2Þdiag ⊂
SOð2Þ × SOð2Þ × SOð2Þ as in the pure N ¼ 4 and N ¼ 5
gauged supergravities studied in Refs. [78,51], respectively.
For consistency, we will also set A3 ¼ A2 ¼ A1.
For all pi nonvanishing, the twists allow all the super-

symmetries corresponding to ϵA, A ¼ 1; 2;…; 6, to be
unbroken subject to the projector (133). We also note
some useful relations for deriving the full set of BPS
equations. Using ϵ0̂ r̂ θ̂ ϕ̂ ¼ 1 and γ5ϵA ¼ −ϵA, we find

γ0̂ r̂ϵA ¼ −iγθ̂ ϕ̂ϵA ¼ ðσ2 ⊗ I3ÞABϵB: ð135Þ

It turns out that we need to turn on the SOð2Þ ∼ Uð1Þ gauge
field of Uð6Þ ∼ SUð6Þ × Uð1Þ in order to find a consistent
set of BPS equations. We similarly take the ansatz for this
Uð1Þ gauge field to be

A0 ¼ A0ðrÞdt − p0F0ðθÞdϕ and

F0 ¼ A0
0ðrÞdr ∧ dtþ κp0dθ ∧ dϕ: ð136Þ
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We also note that both A0 and AIJ can appear in the BPS
equations due to the off-diagonal element of the scalar coset
representative. In particular, we have the relations

F̂þ
AB ¼ hΛABFþΛ ¼ h0ABFþ0 þ 1

2
hIJ;ABFþIJ; ð137Þ

F̂þ ¼ hΛ0FþΛ ¼ h00Fþ0 þ 1

2
hIJ0FþIJ: ð138Þ

However, A0 does not participate in the twist, since ϵA are
not charged under the Uð1Þ factor outside SUð6Þ.
It is also useful to define the “central charge” matrix

ZAB ¼ −
1ffiffiffi
2

p ðF̂þ
θ̂ ϕ̂AC

− iF̂þ
0̂ r̂ AC

Þðiσ2 ⊗ I3ÞCB: ð139Þ

In the present case, it turns out that ZAB is proportional to
the identity matrix: ZAB ¼ ZδAB.
With all these and the projector (38), we find the

following BPS equation, from δψθ̂A and δψϕ̂A:

h0eiΛ −W − Z ¼ 0; ð140Þ

which leads to

h0 ¼ �jW þ Zj and eiΛ ¼ � W þ Z
jW þ Zj : ð141Þ

With the projectors (38) and (135), the condition δψ 0̂A ¼
0 gives

ðf0 þ 2igA1ÞeiΛ −W þ Z ¼ 0; ð142Þ

which implies

f0 ¼ Re½e−iΛðW − ZÞ� and 2gA1 ¼ Im½e−iΛðW − ZÞ�:
ð143Þ

The latter fixes the time component of the gauge fields.
Finally, as in the case of domain walls and Janus solutions,
the condition δψ r̂A ¼ 0 determines the r dependence of the
Killing spinors giving rise to ϵA ¼ ef=2ϵAð0Þ.
Similar to the RG flow case, it turns out that we need to

set ζ1 ¼ ζ2 ¼ ζ3 ¼ 0 for consistency. This gives real W
and Z resulting in eiΛ ¼ �1 and A1 ¼ 0. We will also set
A0ðrÞ ¼ 0 for simplicity, although it is not constrained by
the previously obtained conditions. In addition, the com-
patibility between the BPS equations coming from δχA and
δχABC requires

p0 ¼ κp1: ð144Þ

We also note that, in this case, the choice p0 ¼ 0 breaks all
supersymmetry. This implies that the SOð2Þ × SOð2Þ ×
SOð2Þ twist needs to be accompanied by the Uð1Þ gauge
field A0

μ.
With all these, we find a consistent set of BPS equations

given by

φ0
1 ¼ −

∂jW þ Zj
∂φ1

¼ 1

2
e−φ1−φ2−φ3 ½2gð1þ e2ðφ2þφ3Þ − e2ðφ1þφ2Þ − e2ðφ1þφ3ÞÞ−p1κe−2hþ2φ1þ2φ2þφ3 �; ð145Þ

φ0
2 ¼ −

∂jW þ Zj
∂φ2

¼ 1

2
e−φ1−φ2−φ3 ½2gð1 − e2ðφ2þφ3Þ − e2ðφ1þφ2Þ þ e2ðφ1þφ3ÞÞ−p1κe−2hþ2φ1þ2φ2þφ3 �; ð146Þ

φ0
3 ¼ −

∂jW þ Zj
∂φ3

¼ 1

2
e−φ1−φ2−φ3 ½2gð1 − e2ðφ2þφ3Þ þ e2ðφ1þφ2Þ − e2ðφ1þφ3ÞÞ−p1κe−2hþ2φ1þ2φ2þφ3 �; ð147Þ

h0 ¼ jW þ Zj

¼ 1

2
e−φ1−φ2−φ3 ½2gð1þ e2ðφ2þφ3Þ þ e2ðφ1þφ2Þ þ e2ðφ1þφ3ÞÞþp1κe−2hþ2φ1þ2φ2þφ3 �; ð148Þ
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f0 ¼ jW − Zj

¼ 1

2
e−φ1−φ2−φ3 ½2gð1þ e2ðφ2þφ3Þ þ e2ðφ1þφ2Þ þ e2ðφ1þφ3ÞÞ−p1κe−2hþ2φ1þ2φ2þφ3 �: ð149Þ

For an AdS2 × Σ2 fixed point to exist, we require that φ0
1 ¼

φ0
2 ¼ φ0

3 ¼ h0 ¼ 0 and f0 ∼ 1
LAdS2

. It can be easily verified

that the above equations do not admit any AdS2 × Σ2 fixed
points.
Although there is no supersymmetric AdS2 × Σ2 fixed

point, we are able to analytically obtain the complete
solution to these BPS equations. Since it might be useful for
some holographic studies, we will present the solution here.
By changing to a new radial coordinate ρ using the relation
dρ
dr ¼ eφ3 , we can form the following linear combinations:

d
dρ

ðφ1 − φ2Þ ¼ 2gðeφ2−φ1 − eφ1−φ2Þ ð150Þ

and

d
dρ

ðφ2 − φ3Þ ¼ 2gðeφ1−φ2 − eφ1þφ2−2φ3Þ: ð151Þ

The first equation can be solved by

φ1 ¼ ln

�
eφ2ðe4gρ þ e4gρ0Þ

e4gρ − e4gρ0

�
ð152Þ

with an integration constant ρ0. Using this result in the
second equation, we find the solution

φ2 ¼ ln

�
eφ3−2gρðe4gρ − e4gρ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4gρ þ e8gρ0 þ 8gC

p �
ð153Þ

with another integration constant C.

By treating f and h as functions of φ3, we find the following solutions for f and h:

f ¼ −
1

2
ln

�
e4gρ0

�
256g3CC̃ − 16gC̃e8gρ0 þ κp1 ln

�
1þ e8gðρ−ρ0Þ þ 8gCe4gρ−8gρ0

e8gðρ−ρ0Þ − 1

��

−8gCκp1tanh−1e4gðρ−ρ0Þ
�
þ h; ð154Þ

h ¼ 1

2
ln

�
e4gρ0

�
16gC̃ðe8gρ0 − 16g2C2Þ − κp1 ln

�
1þ e8gðρ−ρ0Þ þ 8gCe4gρ−8gρ0

e8gðρ−ρ0Þ − 1

��

þ8gCκp1tanh−1e4gðρ−ρ0Þ
�
þ 1

2
ln

�
e12gρ0ð1 − e8gðρ−ρ0ÞÞ2
8gðe8gρ0 − 16g2C2Þ

�
þ φ3 − 4gρ: ð155Þ

Finally, the solution φ3ðρÞ can be given implicitly in the following equation:

4C0e4gρðe8gρ0 þ e8gρ þ 8gCe4gρÞ ¼ β0 þ β1 ln

�
e4gðρ0−ρÞ þ 1

e4gðρ0−ρÞ − 1

�
þ β2 ln

�
e8gðρ−ρ0Þ − 1

1þ e8gðρ−ρ0Þ þ 8gCe4gρ

�
ð156Þ

in which C0 is a constant and the coefficients β0, β1, and β2 are defined, respectively, by

β0 ¼ −16gC̃e4ρ0ð16Cg2 − e8gρ0Þ½2e4φ3þ8gðρþρ0Þ þ 8gCe4gρðe8gρ þ e8gρ0Þþðe16gρ0 þ e16gρÞð1 − e4φ3Þ þ 2e8gðρþρ0Þ�; ð157Þ

β1 ¼
�

κp1

2ðe4gρ þ e4gð3ρ−2ρ0Þ þ 8Cge8gðρ−ρ0ÞÞ

�
½e12gρ þ e4gðρþ2ρ0Þ þ 4Cge8gρð3þ e4φ3Þ

þ16g2C2e4gρð1þ e8gðρ−ρ0ÞÞ − 2Cgðe4φ3 − 1Þðe8gρ0 þ e8gð2ρ−ρ0ÞÞ�; ð158Þ

β2 ¼
κp1½ðe8gρ0 þ e8gρ þ 8Cge4gρÞ2 − e4φ3ðe8gρ0 − e8gρÞ2�

4e4gðρ−ρ0Þðe8gρ0 þ e8gρ þ 8Cge4gρÞ : ð159Þ
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Since there is no AdS2 × Σ2 fixed point in the IR, the
solution describes a flow from the locally supersymmetric
AdS4 vacuum to a curved domain wall with world volume
R × Σ2. According to the AdS=CFT correspondence, the
solution is expected to describe an RG flow from theN ¼ 6
SCFT in three dimensions to a supersymmetric quantum
mechanics in the IR. The latter arises from the former by a
twisted compactification on Σ2.

B. SOð2Þ × SOð4Þ symmetric solutions

We now look at a truncation of the previous result by
setting p2 ¼ p3 ¼ 0 and φ2 ¼ φ3 ¼ 0. The resulting sol-
utions will preserve SOð2Þ × SOð4Þ symmetry with the
twist performed along the SOð2Þ factor. In this case, the
supersymmetry corresponding to ϵ3;4;5;6 will be broken,
since we cannot perform a twist along these directions.
With ϵ3;4;5;6 ¼ 0, we find the BPS equations

φ0 ¼ 1

4
e−2h−φ½8ge2h −p0 þ κp1 − e2φð8ge2h þp0 þ κp1Þ�;

ð160Þ

h0 ¼ 1

4
e−2h−φ½8ge2h −p0 þ κp1 þ e2φð8ge2h þp0 þ κp1Þ�;

ð161Þ

f0 ¼ 1

4
e−2h−φ½8ge2h þp0 − κp1 þ e2φð8ge2h −p0 − κp1Þ�;

ð162Þ

in which we have set φ1 ¼ φ. We also note that, with only
the SOð2Þ twist, it is not necessary to set p0 ¼ κp1.
However, the existence of an AdS2 × Σ2 fixed point
requires vanishing p0. For p0 ¼ 0, we find a fixed point

φ ¼ φ0; h ¼ 1

2
ln

�
−
κp1

8g

�
; LAdS2 ¼

1

8g cosh 2φ0

:

ð163Þ

for constant φ0. This is an AdS2 ×H2 fixed point, since the
reality of h implies κ ¼ −1.
The complete flow solution can be obtained by using the

same procedure as in the previous sections. The resulting
solution is given by

h ¼ φ − lnð1 − e2φÞ þ C; ð164Þ

f ¼ h − 2φþ ln½κp1ð1þ e4φÞ þ 2e2φð4g − κp1Þ�; ð165Þ

8gðρ − ρ0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g

κp1 − 2g

s
tan−1

�
4gþ κp1ðe2φ − 1Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðκp1 − 2gÞp �

þ ln

�
κp1ð1þ e4φÞ þ 2e2φð4g − κp1Þ

ð1 − e2φÞ2
�
;

ð166Þ

in which we have defined the new radial coordinate ρ by
dρ
dr ¼ eφ. We have neglected the integration constant of f by
absorbing it in the rescaling of the time coordinate t.
Near r ∼ ρ → ∞, we find

φ ∼ e−4gr; h ∼ f ∼ 4gr ð167Þ

which gives an asymptotically locally AdS4 critical point.

On the other hand, by choosing φ0 ¼ 1
2
ln
�
1 − 2

ffiffiffiffiffiffiffiffiffiffi
− 2g

κp1

q �
and C ¼ −φ0, we find that as φ → φ0

h ∼
1

2
ln

�
−
κp1

8g

�
and f ∼ 8gr

1 −
ffiffiffiffiffiffiffiffiffiffi
− 2g

κp1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

ffiffiffiffiffiffiffiffiffiffi
− 2g

κp1

qr ; ð168Þ

which is the AdS2 ×H2 fixed point identified above.
It should be noted that, in this case, the solution can

be regarded as a solution of a truncated N ¼ 2 gauged
supergravity. In particular, the solution with vanishing
scalar corresponds to a universal RG flow across dimension
of which the uplifts to M theory and massive type IIA
theory have been extensively studied in Refs. [67].

C. Uð3Þ symmetric solutions

As a final case, we consider Uð3Þ symmetric solutions
with a twist performed along the SOð2Þ ∼Uð1Þ factor. The
corresponding gauge generator of this Uð1Þ factor is given
by X14 þ X25 þ X36. We then turn on the following gauge
fields:

A ¼ A14 ¼ A25 ¼ A36 ¼ AðrÞdt − κpF0ðθÞdϕ: ð169Þ

With the Uð3Þ singlet scalar given in Eq. (51), we find the
composite connection

QA
B ¼ 2giAðI3 ⊗ σ2ÞAB: ð170Þ

The twist is implemented by imposing

γθ̂ ϕ̂ϵA ¼ ðI3 ⊗ iσ2ÞABϵB and 2gp ¼ 1: ð171Þ

We also note that, similar to the SOð2Þ × SOð2Þ × SOð2Þ
twist, all ϵA can be nonvanishing. In addition, we also need
nonvanishing A0, which we will again use the ansatz (136).
In this case, consistency requires p0 ¼ −κp.
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As in the RG flow case, we need to set ζ ¼ 0 for
consistency between the BPS equations and the field
equations. This again results in AðrÞ ¼ 0. Repeating the
same analysis as in the previous cases, we find the
following BPS equations:

φ0 ¼ gðe−φ − e3φÞ þ 1

2
κpe−2h−3φ; ð172Þ

h0 ¼ gð3e−φ þ e3φÞ þ 1

2
κpe−2h−3φ; ð173Þ

φ0 ¼ gð3e−φ þ e3φÞ − 1

2
κpe−2h−3φ: ð174Þ

It is easily verified that there is no AdS2 × Σ2 fixed point in
these equations. In this case, we are not able to obtain the
analytic flow solution.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied N ¼ 6 gauged super-
gravity in four dimensions with the SOð6Þ gauge group.
The gauged supergravity can be obtained from a truncation
of the maximal N ¼ 8 theory with the SOð8Þ gauge group.
There is a unique N ¼ 6 supersymmetric AdS4 vacuum
preserving the full SOð6Þ gauge symmetry. This can be
identified with AdS4 × CP3 geometry in type IIA theory
dual to anN ¼ 6 SCFT in three dimensions. We have found
a number of RG flow solutions with various symmetries
from this N ¼ 6 SCFT to possible nonconformal phases in
the IR. In particular, there is one solution, breaking the
SOð6Þ R symmetry to SOð2Þ × SOð4Þ, with unbroken
N ¼ 6 Poincaré supersymmetry. This is precisely in agree-
ment with the field theory result on mass deformations of
N ¼ 6 SCFTs given in Ref. [25]. Other solutions preserve
Uð3Þ, SOð3Þ, and SOð2Þ × SOð2Þ × SOð2Þ symmetries.
While most of the solutions preserve N ¼ 6 supersym-
metry, in the case of SOð3Þ symmetry, it is possible to find
N ¼ 2 supersymmetric solutions. We have analytically
given all of these solutions and also checked that, except
for the N ¼ 2 solution, the resulting IR singularities are
physical by the criterion given in Ref. [77].
We have also considered more complicated solutions by

generalizing the flat domain walls to the curved ones. In the
case of AdS3-sliced domain walls, we have found a
supersymmetric Janus solution, describing a two-dimen-
sional conformal defect within the N ¼ 6 SCFT, with
SOð2Þ × SOð4Þ symmetry and N ¼ ð2; 4Þ supersymmetry
on the defect. The resulting solution takes the same form as
those given in N ¼ 8, N ¼ 5, and N ¼ 3 gauged super-
gravities studied in Refs. [52,51,53], respectively. We
therefore argue that these solutions are related to the
N ¼ 8 solution by truncations. In order for Janus solutions
to exist, it is necessary that pseudoscalars are nonvanishing
as pointed out in Ref. [52]. It turns out that, among the

remaining cases studied in this work, only the SOð3Þ
invariant sector could possibly admit supersymmetric Janus
solutions.
Furthermore, we have studied supersymmetric solutions

of the form AdS2 × Σ2 and the interpolating solutions
between these geometries and theN ¼ 6AdS4 vacuum.We
have found one AdS2 ×H2 fixed point with SOð2Þ ×
SOð4Þ symmetry from SOð2Þ twist. The solution interpo-
lating between this fixed point and the AdS4 vacuum
preserves two supercharges, while the IR fixed point
AdS2 ×H2 has four supercharges. Holographically, this
solution corresponds to an RG flow from the N ¼ 6
SCFT to superconformal quantum mechanics which is
useful in computing black hole entropy along the lines of
Refs. [67–69].
For SOð2Þ × SOð2Þ × SOð2Þ twist, the BPS equations

are more complicated but admit no AdS2 × Σ2 fixed point.
However, in this case, we are able to obtain a complete flow
solution between the AdS4 critical point to a curved domain
wall with world volume R × Σ2 in the IR. The solution
preserves N ¼ 6 supersymmetry in three dimensions, or 12
supercharges, and SOð2Þ × SOð2Þ × SOð2Þ symmetry.
This should be dual to a twisted compactification on Σ2

of the UV N ¼ 6 SCFT to a supersymmetric quantum
mechanics in the IR. We have also looked for AdS2 × Σ2

geometries from an SOð2Þ ∼ Uð1Þ twist in the case ofUð3Þ
symmetric solutions, but there do not exist any AdS2 × Σ2

fixed points.
Since all the solutions presented here are fully analytic,

we hope they could be useful in the study of gauge and
gravity holography and other related aspects. We also note
that most of the structures of the solutions are very similar
to those of the N ¼ 5 gauged supergravity studied in
Ref. [51]. In particular, the N ¼ 6 Poincaré supersymmetry
in three dimensions is unbroken on the domain wall
solutions if there are no nonvanishing pseudoscalars.
Unlike in theN ¼ 5 theory, we are not able to find a definite
conclusion on whether this is true, in general, due to a more
complicated scalar coset manifold. However, many similar-
ities in the structures of various types of supersymmetric
solutions suggest that this should be the case.
There are a number of directions to extend the present

work, which is clearly only the first step in classifying
supersymmetric solutions of N ¼ 6 gauged supergravity.
First of all, it would be interesting to uplift the RG flow
solutions to M theory via the embedding in N ¼ 8 gauged
supergravity, which, in turn, can be obtained from a
truncation of M theory on S7. The time component g00
of the 11-dimensional metric can be used to determine
whether the four-dimensional singularities, in particular,
the N ¼ 2 case, are physically acceptable in M theory
using the criterion given in Ref. [79]. This would lead to a
complete holographic description of mass deformations
of N ¼ 6 CSM theory and possible related M-brane
configurations.
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We have considered only gauged supergravity with the
SOð6Þ gauge group electrically embedded in the global
SO�ð12Þ symmetry. It would be interesting to study mag-
netic and dyonic gaugings involving also magnetic gauge
fields. In particular, performing a similar study in the case of
N ¼ 6 gauged supergravitywith the electric-magnetic phase
ω (see [80–82]) could be of particular interest, since, in the
omega deformed N ¼ 8 theory, the structure of vacua and
domain walls are much richer than the electric counterpart;
see [43,83–85] for more detail. In addition, the study of
genuine N ¼ 6 gaugings which cannot be embedded in the
N ¼ 8 theory isworth considering. In this case, the gaugings

do not satisfy extra quadratic constraints coming from
the truncation of the N ¼ 8 theory (see the discussion in
Ref. [86]), so the corresponding solutions cannot be
embedded in the maximal theory.
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