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We analyze the singularities of the two-point function in a conformal field theory at finite temperature.
In a free theory, the only singularity is along the boundary light cone. In the holographic limit, a new class
of singularities emerges since two boundary points can be connected by a nontrivial null geodesic in the
bulk, encircling the photon sphere of the black hole. We show that these new singularities are resolved by
tidal effects due to the black hole curvature, by solving the string world sheet theory in the Penrose limit.
Singularities in the asymptotically flat black hole geometry are also discussed.
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I. INTRODUCTION

Singularities of scattering amplitudes play a fundamental
role in quantum field theory. Simple poles in the kinematic
invariants signify the presence of an on-shell state, and
therefore contain valuable information about the theory.
A less well-understood question is the role of singularities
of correlation functions in conformal field theory (CFT) in
Lorentzian position space. There are some known results.
For instance, there is the bulk-point limit z ¼ z̄, where z
and z̄ are the conformal cross ratios [1]. In two-dimensional
CFT, the four-point function cannot have a singularity at
z ¼ z̄, and the bulk-point singularity has to be resolved [2].
However, this has not been generalized to CFTs in higher
dimensions or nonconformal theories. Another known
result is that the perturbative singularities are classified
in terms of Landau diagrams, but this analysis does not
apply to potential singularities arising from nonperturbative
effects.
In this paper we will turn our attention to singularities at

finite temperature. There, there are interesting questions
even for the two-point function. We consider a conformal
theory on S1β × Sd−1 in the holographic limit, so that the
theory can be analyzed via an AdSdþ1-Schwarzschild black
hole [3]. Through the AdS=CFT duality, any null geodesic
connecting two boundary points leads to a singularity in the

two-point function at those points [5]. This allows us to
classify the singularities of the correlation function for a
local bulk theory, as we will see in Secs. II and III.
Although bulk locality is a good approximation in most

kinematic regimes of the correlator, there is no guarantee
that stringy corrections to the propagator are small when
two-points are almost null separated. Some useful intuition
comes from recalling the situation near the bulk point
singularity, where the legs of the bulk Landau diagram
become almost lightlike. As the bulk point limit is
approached, stringy corrections become more and more
important, and in fact resolve the bulk point singularity. We
will see that a similar effect occurs for the thermal two-
point function, so that the local bulk approximation breaks
down near the light cone. Whereas the bulk point singu-
larity is resolved by the Gross-Mende effect [6] as shown in
[2,7], we will find that the singularities in the thermal
two-point function are resolved by world sheet particle
production.
The task of computing the α0 corrections to the propa-

gator is greatly simplified by the fact that the two points are
almost null separated. In this regime we may take the
Penrose limit, where the theory becomes solvable, as
reviewed in Sec. IV. The Penrose limit captures the effects
of tidal forces on strings, and the corrections to the
propagator can be interpreted in terms of particle produc-
tion on the world sheet. In Secs. Vand VI, we study effects
of the tidal forces on the bulk-to-bulk propagator, which
can be defined in string theory as in [8]. In Sec. V we show
how tidal effects resolve the light-cone singularity in the
bulk-to-bulk propagator at early times, when the bulk
geodesic is far away from the black hole. Then in
Sec. VI we do a similar calculation at late times, when
the geodesic wraps the photon sphere many times.
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Once we have shown that the singularity is resolved in
the bulk-to-bulk propagator, we must then argue that the
same is true for the boundary two-point function. As
discussed in Sec. VI, this introduces an additional layer
of complication, and requires analytic continuation of the
correlation function to complex position space. Finally,
in Sec. VIII we discuss generalizations to asymptotically
flat holes.

II. THE LIGHT CONE OF THE
ADS BLACK HOLE

In this section we will review the kinematics of null
geodesics in the AdS black hole. Since we are interested in
geodesics connecting two points on the boundary, they can
never go inside the photon sphere. Using these geodesics
we are able to find the location of the new singularities on
the boundary. Some of these singularities were noted in [5]
(see also [9–11] for the two-sided case). We will generalize
them here and show in later sections how they are resolved
by stringy effects.
The AdSdþ1-Schwarzschild metric is

ds2 ¼ −
�
r2 þ 1 −

wdM
rd−2

�
dt2 þ dr2

r2 þ 1 − wdM
rd−2

þ r2dΩ2
d−1; ð1Þ

where

wd ¼
8GNΓðd=2Þ
ðd − 1Þπd=2−1 : ð2Þ

From now on we choose the normalization of GN such
that wd ¼ 1.
We consider a geodesic on the equatorial plane. The

energy and angular momentum are

E ¼
�
r2 þ 1 −

M
rd−2

�
_t; L ¼ r2 _ϕ: ð3Þ

Using this we find

1

2
E2 ¼ 1

2
_r2 þ VðrÞ; ð4Þ

where the effective potential is

VðrÞ ¼ L2

2

�
1þ 1

r2
−
M
rd

�
: ð5Þ

Clearly for d ¼ 2 there is no minimum of V. This implies
that the only boundary singularity in d ¼ 2 is on the
ordinary light cone. Solving V 0 ¼ 0 for d > 2 gives a
photon sphere at

rγ ¼
�
dM
2

�
1=ðd−2Þ

: ð6Þ

So for any d > 2 there are null geodesics that come in from
the boundary and escape back to infinity.
Now let us solve for the geodesic equations. Converting

τ derivatives into r derivatives gives

dϕ
dr

¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððE=LÞ2−1Þr4−r2þMr4−d

p
dt
dr

¼� E

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððE=LÞ2−1Þr4− r2þMr4−d

p
ð1þ 1

r2−
M
rdÞ

: ð7Þ

We are interested in the total elapsed Δϕ and Δt. We can
solve for this by first finding the turning point outside the
photon sphere, and then doubling the contribution from this
turning point to infinity. The turning points are at E2 ¼ 2V.
From now on we work in d ¼ 4. Then we get a simple
quartic equation. The roots are at �rþ;�r−, where

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4MððE=LÞ2 − 1Þ

p
2ððE=LÞ2 − 1Þ

s
: ð8Þ

Note that

ðrþr−Þ2 ¼
M

ðE=LÞ2 − 1
: ð9Þ

Also recall that the horizon radius is

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M

p
− 1

2

s
: ð10Þ

For small black holes this is rs ¼ rγ=
ffiffiffi
2

p
. For large black

holes the horizon is at a much smaller radius than the

photon sphere, rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rγ=

ffiffiffi
2

pq
.

The total Δϕ can be evaluated in terms of elliptic
integrals. We will take L > 0 (the L < 0 case can be
treated in the same way). Defining r ¼ rþ=x,

Δϕ ¼ 2r−ffiffiffiffiffi
M

p
Z

1

0

dx
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − x2Þð1 − ðr−=rþÞ2x2Þ
p

¼ 2r−ffiffiffiffiffi
M

p K

�
r2−
r2þ

�
: ð11Þ

Let us check some limits.When ðE=LÞ2 − 1 is much smaller
than 1=M, r− ∼

ffiffiffiffiffi
M

p
and rþ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ððE=LÞ2 − 1Þ

p
. So

Δϕ ¼ π þ 3πM
2

ðE=L − 1Þ þOððE=L − 1Þ2Þ: ð12Þ

This is almost equal to π, which is the answer for geodesics in
pure AdS. This was to be expected since in this limit the
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geodesic is far away from the black hole. In the opposite
limit, when we approach E=L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=ð4MÞp
, r− and rþ

both approach thephoton sphere. Expanding theK functions,
we get

Δϕ ¼ −
ffiffiffi
2

p
log ðrþ=r− − 1Þ: ð13Þ

Now let us compute Δt. Defining r ¼ rþ=x,

Δt ¼ 2Er−
L
ffiffiffiffiffi
M

p
Z

1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− x2Þð1− ðr−=rþÞ2x2Þ

p �
1þ x2

r2þ
− Mx4

r4þ

�

¼ 2Er−
L
ffiffiffiffiffi
M

p
r2sΠ
�
r2s
r2þ
; r

2
−
r2þ

�
þ ð1þ r2sÞΠ

�
− 1þr2s

r2þ
; r

2
−
r2þ

�
1þ 2r2s

: ð14Þ

In the limit of an infinitely large black hole, we get
Δϕ ¼ �Δt. For a black hole with finite mass, the resulting
boundary singularities are shown in blue curves in Fig. 1.
Note that the blue curve first appears at Δϕ ¼ �π since this
is where the nontrivial bulk null geodesics start deviating
from the boundary light cone as in (12). Figure 2 takes into
account the 2π periodicity in ϕ.
The lowest blue curve in Fig. 1 was noted in [5]. There

are other blue curves since null geodesics can hit the

boundary, bounce back into the bulk, and escape back to
the boundary again, and this can be repeated many times.
This leads to more singularities in the correlation function,
at ðϕ; tÞ ¼ ðnΔϕ; nΔtÞ for any integer n > 0. The full light
cone is depicted in Fig. 1. Note that the singularity curves
can intersect each other, leading to caustics where more
than one null geodesic connects two boundary points.
These singularity curves become increasingly dense as t
increases. This is shown in Fig. 2.
At late times, the blue curves approach a straight line,

with slope

vγ ≡ lim
Δt→∞

jΔϕj
Δt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4M

r
: ð15Þ

We can understand this as follows. At late times the
geodesic spends most of its time near the photon sphere.
So the effective velocity is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt=gϕϕ

p
evaluated at the

photon sphere, which indeed gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ð4MÞp

.

FIG. 1. The locations of the singularities on the boundary. The
top figure is for small masses, 4M ∼ 0.2, and the bottom figure is
for larger masses, 4M ∼ 2. The angle ϕ has period 2π, and the
dashed lines are identified with each other. The standard light
cone is in red, and the new singularities are in blue.

FIG. 2. The intersection pattern of the singularity curves. We
see that the number of curves intersecting a given time slice grows
linearly with time. Whenever two curves intersect, there is a
caustic.
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III. COMPUTING THE CORRELATOR NEAR
THE SINGULARITY

In the last section we found the location of the singu-
larity. Now we want to compute the behavior of the
correlation function as we approach the singularity. We
will work in the geodesic approximation, which relies on
the dimension of the external operators being very large.
The correlation function is then determined by the renor-
malized length of the geodesic connecting the two boun-
dary points. We will compute this renormalized length as a
function of Δt and Δϕ, thereby displaying an explicit
formula for the correlation function near the singularity in
terms of boundary variables.

A. The geodesic approximation

For large masses, we need to consider geodesics that
are slightly spacelike, and then take the limit as they
become lightlike. The geodesic approximation to the
propagator is then given by e−ml, where l is the proper
length of the geodesic. For spacelike geodesics the potential
is modified to

VðrÞ ¼ 1

2
ðL2 − r2Þ

�
1þ 1

r2
−
M
r4

�
: ð16Þ

There are now new turning points at large imaginary r.
The imaginary turning points can be found by expanding
around large r. They are at

r2im ≈ −ðE2 − L2Þ: ð17Þ

So therefore we can write

E2 − 2V ¼ ðr2 − r2imÞð1 − r2þ=r2Þð1 − r2−=r2Þ: ð18Þ

Now we can compute the proper length l. Putting in a
cutoff at rmax,

l ¼ 2

Z
rmax

rþ

dr
_r

¼ 2

Z
rmax

rþ

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ jrimj2Þð1 − r2þ=r2Þð1 − r2−=r2Þ

p : ð19Þ

This is clearly log divergent at large r. To do the integral, let
us separate it into two parts. The first part is from rþ to r0
with jrimj ≫ r0 ≫ rþ, and the second part is from r0 to
rmax. In the first part of the integral, the integrand is
suppressed by 1=jrimj, so we can ignore it near the light
cone. The second part of the integral is

2

Z
rmax

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ jrimj2

p ≈ 2 log

�
rmax

jrimj
�
: ð20Þ

The boundary correlator is obtained by exponentiating the
renormalized length,

e−mlren ¼ ðE2 − L2Þm: ð21Þ

B. Converting E and L to boundary variables

We now need to trade E and L for boundary variables
Δϕ, Δt. To do this we have integrals of the form

Δϕ¼ 2L
Z

∞

rþ

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þjrimj2Þðr2−r2þÞðr2− r2−Þ

p
Δt¼ 2E

Z
∞

rþ

dr

ð1þ 1
r2−

M
r4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þjrimj2Þðr2−r2þÞðr2− r2−Þ

p :

ð22Þ

Let us start with Δϕ. Since r > r� in the integration region,
we can Taylor expand in r�=r. This gives integrals of the
form

fðrþ; r−ÞL
Z

∞

rþ

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ jrimj2

p
r2n

; n ≥ 1: ð23Þ

We want to keep terms up to order 1=r2im. The contribution
of the lower end point to the integral contains terms of order
1=rim for all n. This is just the answer for null geodesics.
The only term of order 1=r2im comes from the upper end
point for n ¼ 1. So we get (again taking L > 0)

Δϕ ¼ ΔϕnullðE=LÞ −
2L

E2 − L2
; ð24Þ

where Δϕnull is defined by (11). Similarly

Δt ¼ ΔtnullðE=LÞ −
2E

E2 − L2
: ð25Þ

We now need to solve for E and L. This is in general
complicated, but simplifies in several limits. For example
let us consider the late time limit rþ → r−. In this limit we
have to solve

Δϕ ¼ −
1ffiffiffi
2

p log

�
E
L
− vγ

�
−

2L
E2 − L2

Δt ¼ −
1ffiffiffi
2

p
vγ

log

�
E
L
− vγ

�
−

2E
E2 − L2

: ð26Þ

Solving for E and L, we get

E ¼ 2vγ
Δϕ − vγΔt

; L ¼ 2

Δϕ − vγΔt
: ð27Þ

Finally we plug into the correlation function to get
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ððvγΔt − ΔϕÞ2Þ−m: ð28Þ

This gives a singularity at Δϕ ¼ vγΔt with the same
strength as that at the boundary light cone Δϕ ¼ Δt.
The same calculation can be done for negative Δϕ with
similar results.

IV. REVIEW OF STRING THEORY
IN THE PENROSE LIMIT

In the previous section we presented some evidence that
a new singularity is present at infinite ’t Hooft coupling. In
Appendix A 2 we show that this singularity is in fact absent
at zero coupling. This suggests the possibility that the
singularity is only present at infinite coupling, and is
resolved at any finite coupling. Now we would like to
understand what happens at large but finite coupling. To do
so we need to analyze stringy corrections to the propagator.
The world sheet sigma model in the full black hole
geometry is intractable, but fortunately we are only
interested in the behavior of the propagator in the near
vicinity of the light cone. There is a well-known procedure
for studying the geometry close to a given null geodesic,
which is to take the Penrose limit. The Penrose limit
includes information about the tidal force near the null
geodesic. In this limit string theory becomes solvable, so
we can compute the propagator exactly. In this section we
will briefly review the features of string theory in the
Penrose limit. More details can be found in the review
article [12]. In this paper, we will discuss the case of closed
strings. Generalization to the open string case should be
straightforward.
In Brinkmann coordinates, the general plane wave

metric is

ds2 ¼ 2du dvþ AabðuÞxaxbdu2 þ dx⃗2: ð29Þ

Here Aab is a ðd − 1Þ × ðd − 1Þ dimensional matrix, where
as usual dþ 1 is the dimension of spacetime. The vacuum
Einstein equations require that Aab is traceless, which
means that there is necessarily at least one negative
eigenvalue and one positive eigenvalue, unless Aab is
identically equal to zero. The world sheet theory in this
background is solved by going to light-cone gauge,
u ¼ pvτ. In this gauge the equation of motion for the
transverse modes is [12,13]

Ẍa
n ¼ ðp2

vAabðpvτÞ − n2δabÞXb
n: ð30Þ

Therefore we just have a collection of coupled harmonic
oscillators with a time-dependent frequency matrix. It
follows that the theory can be analyzed using the standard
techniques of time-dependent quantum mechanics.
Let us recall the simplest examples. First, the Penrose

limit of AdS or flat space for any null geodesic is flat space,
Aab ¼ 0. The interpretation of this statement is that the tidal

force is equal to zero. A more nontrivial example is
AdS5 × S5, where the null geodesic is a great circle on
the S5. This corresponds to the plane wave limit of
AdS=CFT [14]. In this case the matrix Aab is constant.
Now let us turn to the case of interest. For AdS5

Schwarzschild, the plane wave matrix is [12]

A11 ¼
4L2M
r6

¼ −2A22 ¼ −2A33: ð31Þ

In particular, the equations of motion are diagonal,

Ẍa
n ¼ −ðωa

nÞ2Xa
n: ð32Þ

Here the frequencies ωa
n are defined by

ðω1
nÞ2 ¼ n2 −

4p2
vL2M

rðpvτÞ6

ðω2;3
n Þ2 ¼ n2 þ 2p2

vL2M
rðpvτÞ6

: ð33Þ

Our goal is to compute the bulk-to-bulk propagator in the
Penrose limit, and to show that it is nonsingular on the light
cone. Unfortunately, the equations of motion for Ẍa

n are
analytically intractable, so we will need to resort to several
approximation schemes to solve them. The three relevant
approximations are the Born approximation, the shock
wave approximation, and the WKB approximation. When
the geodesic is far away from the black hole, the Born
approximation and the shock wave approximation can be
combined to compute the propagator. The WKB approxi-
mation is valid in the opposite limit, when the geodesic
passes very close to the photon sphere. We will analyze
these limits in the next two sections.
Before turning to the calculation, let us state our strategy

for computing the propagator. The quantity of interest is a
simple generalization of the flat space propagator [8,15]
and can be interpreted as an annulus amplitude on a pair of
D−1 branes placed at two bulk points. Expanding the string
modes into the classical piece plus fluctuations, we find
(disregarding an overall normalization factor)

hpv; xaf; ufjpv; xai ; uii

¼
Z

Xaðτf;σÞ¼xaf

Xaðτi;σÞ¼xai

DXaeiS½Xa�

¼ G0ðpv; uf; ui; xaf; x
a
i ÞQ

3
a¼1

Q∞
n¼1 det ð−∂2

τ − n2 þ p2
vAaaðpvτÞÞ

; ð34Þ

where G0 is the zero mode propagator. Here the determi-
nants are evaluated subject to the boundary conditions on the
path integral. Also, at the end of the calculation we project
onto the final and initial vacuum states. This involves taking
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τf → τfð1 − iϵÞ and τi → τið1 − iϵÞ, and then taking
τf → ∞ and τi → −∞.
Once we compute the propagator in pv space, we can

Fourier transform to position space,

Gðuf; ui; vf − vi; xaf; x
a
i Þ

¼
Z

∞

−∞
dpveipvðvf−viÞhpv; xaf; ufjpv; xai ; uii: ð35Þ

However, if we are only interested in showing that the
singularity is resolved, we can take a shortcut. The
magnitude of the propagator on the light cone is bounded
by the triangle inequality,

jGðuf;ui; vf − vi ¼ xai ¼ xaf ¼ 0Þj

≤
Z

∞

−∞
dpvjhpv;xaf; ufjpv; xai ; uiij

¼
Z

∞

−∞
dpvjG0ðpv;uf; ui; xaf ¼ xai ¼ 0Þhout;pvjin;pvij:

ð36Þ

Here G0 is the zero mode propagator, and jin; pvi and
jout; pvi are the vacuum states for world sheet oscillators in
the far past and far future respectively. If we can show that
the integral on the right-hand side converges, then it follows
that the left-hand side is finite. Therefore in order to bound
the propagator on the light cone, we only need to compute
the particle production of stringy modes in the vacuum.

V. BULK SINGULARITY RESOLUTION
AT EARLY TIMES

In this section we will demonstrate how the light cone
singularity in the bulk to bulk propagator is resolved at
early times. We are specifically interested in the propagator
between two points far outside the black hole,

hΦðrf; t;ϕÞΦðri; 0; 0Þi; ð37Þ

where rf, ri ≫ rγ . In the next two subsections we will
compute this function using two different approximation
schemes, the Born approximation and the shock wave
approximation, which are applicable in the regimes of
small pv and large pv respectively. We will see that these
approximation schemes in fact have overlapping ranges of
validity, so that we are able to compute the propagator for
any value of pv. Fourier transforming then leads to a finite
propagator on the light cone, so that the light cone
singularity is resolved.

A. Small pv
For small pv the tidal forces are small and can be treated

in perturbation theory. The tidal forces generate particle
production on the world sheet. In this case, the overlap

between the in and out state can be computed using the
normalization of the squeezed vacuum as

jhout; pvjin; pvij ¼
Y3
a¼1

Y∞
n¼1

ð1þ hNa
niÞ−1=2; ð38Þ

where hNa
ni is the expectation value of the number operator

in the nth excitation in the ath direction. In this expression
we have included the contribution of both left and right
movers. The expectation value is given by [13]

hNa
ni ¼

p2
v

4n2

����Ãaa

�
2n
pv

�����2; ð39Þ

where Ãaa is the Fourier transform of Aaa. We can do this
Fourier transform as follows. Since r− ≪ rþ, we can
approximate the radial coordinate as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðE2 − L2Þ2u2

E2 − L2

r
: ð40Þ

Taking the x1 direction as an example, we need to do the
integral

Ã11ðkÞ ¼ 4L2M
Z

∞

−∞

du
rðuÞ6 e

iku

¼ πM
2Lr4þ

e−jkjr2þ=Lð3L2 þ 3Ljkjr2þ þ k2r4þÞ: ð41Þ

Therefore

hN1
ni¼

�
πM

4npvLr4þ

�
2

×e−4nr
2
þ=ðpvLÞð3p2

vL2þ6pvLnr2þþ4n2r4þÞ2: ð42Þ

From the exponential factor, we see that particle production
is exponentially suppressed except in the small n regime,

n ≪
pvL
r2þ

; ð43Þ

where we have assumed that pvL ≫ r2þ. In this limit we
have

hN1
ni ¼ 4hN2;3

n i ¼
�
3πpvLM
4nr4þ

�
2

; ð44Þ

which is small for pvL ≪ r4þ=M.
Since the hNa

ni’s are small, we can approximate (38) as

jhout; pvjin; pvij ≈ 1 −
1

2

X3
a¼1

X∞
n¼1

hNa
ni: ð45Þ
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For pvL ≪ r2þ the sum is exponentially small. For r2þ ≪
pvL ≪ r4þ=M the sum can be performed using the approxi-
mation (44), which gives

1 − 3

�
3πpvLM

8r4þ

�
2X∞
n¼1

1

n2
¼ 1 − 2

�
3π2pvLM
16r4þ

�
2

: ð46Þ

We see that to first order in pvL, the overlap is slightly
smaller than one. However this is not enough to resolve the
singularity, which arises from a divergence in the Fourier
transform of the propagator at large pvL. We turn to this
limit next.

B. Large pv
For pvL ≫ r2þ, the interaction only occurs over a small

range of τ. To see this, we write

p2
vAaaðpvτÞ∝� M

ðϵrþÞ2
�

ϵ2

τ2þϵ2

�
3

; ϵ¼ r2þ
pvL

≪1: ð47Þ

From this equation it is evident that at large pvL the
potential is localized at τ ¼ 0, so it is as if the string hits a
shock wave at time τ ¼ 0, and propagates freely elsewhere.
This approximation is valid if the modes vary slowly on the
scale of ϵ, so that n ≪ 1=ϵ. On the other hand the Born
approximation of Sec. VA is valid when n ≫ M=ðϵr2þÞ. It
follows that the Born approximation and the shock wave
approximation have an overlapping regime of validity. This
is fortunate, since it implies that the calculation is under
control for all values of n.
We now proceed similarly to the analysis of strings

propagating in a shock wave [16] (see also [17] for a similar
computation in a different context). We will do the
calculation for X1

n; the other two modes are treated in
the same manner. Integrating the equation of motion (32)
gives a discontinuity in the first derivative of X1

n,

lim
δ→0

ð _X1
nðδÞ − _X1

nð−δÞÞ

¼ 4M
ðϵrþÞ2

X1
nð0Þlim

ϵ→0

Z
∞

−∞
dτ

�
ϵ2

τ2 þ ϵ2

�
3

¼ 3πpvLM
2r4þ

X1
nð0Þ: ð48Þ

We make the ansatz

X1
n ¼

�
a†1ne

inτ þ a1ne−inτ for τ < 0

b†1ne
inτ þ b1ne−inτ for τ > 0:

ð49Þ

Assuming that X1
n is continuous at τ ¼ 0, the solution to the

differential equation is

b1n ¼
�
1þ 3πiMpvL

4nr4þ

�
a1n þ

3πiMpvL
4nr4þ

a†1n: ð50Þ

The magnitude of the Bogoliubov coefficient β1n is therefore

jβ1nj ¼
3πMpvL
4nr4þ

; ð51Þ

and the number of produced particles is the square of jβ1nj.
This gives the same result as in the Born approximation (44),
but extrapolated to large pv. Therefore at large pv there is a
large range ofmode numbersnwith a large expectationvalue
of the number operator.
In the shock wave approximation the magnitude of the

overlap becomes

jhout; pvjin; pvij

¼
Y∞
n¼1

�
1þ

�
3πpvLM
4nr4þ

�
2
�

−1=2
�
1þ

�
3πpvLM
8nr4þ

�
2
�

−1

¼
�
3π2pvLM

4r4þ

�
3=2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�
3π2pvLM

4r4þ

�r
sinh

�
3π2pvLM

8r4þ

� : ð52Þ

At small pv this approaches unity, and at large pv it is
exponentially suppressed.
Now that we have computed the overlap of the initial and

final vacua, we may bound the propagator using (36).
Recall that the zero mode propagator near the light cone is
equal to [18]

G0ðuf; ui; vf − vi; xaf ¼ xai ¼ 0Þ

¼ Δ1=2ðrf; riÞ
ððuf − uiÞðvf − viÞ þ iϵÞ3=2 : ð53Þ

Here the Van-Vleck determinant Δ is independent of
vf − vi, and we will not bother computing it. Fourier
transforming gives

G0ðpv;uf;ui;xaf¼xai ¼0Þ¼Δ1=2ðrf;riÞ
ðuf−uiÞ3=2

ffiffiffiffiffi
pv

p
ΘðpvÞ: ð54Þ

The propagator on the light cone is therefore bounded as

jGðuf;ui; vf − vi ¼ xai ¼ xaf ¼ 0Þj

≤
Δ1=2ðrf; riÞ
ðuf − uiÞ3=2

Z
∞

0

dpv

ffiffiffiffiffi
pv

p �
3π2pvLM

4r4þ

�
3=2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�
3π2pvLM

4r4þ

�r
sinh

�
3π2pvLM

8r4þ

�

∼Δ1=2ðrf; riÞ
�

r3þ
Mðrf þ riÞα0

�
3=2

: ð55Þ
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In deriving this equation we used the relation r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − L2

p
juj at large r, and also restored a factor of the

string length. The integrand is exponentially suppressed at
large pv, so the integral is finite and the light cone
singularity is resolved. This is analogous to the resolution
of the bulk point singularity in Mellin space [7], where the
divergence at large Mellin energy is cut off by stringy
corrections.

VI. BULK SINGULARITY RESOLUTION
AT LATE TIMES

We now turn to the late time limit, in which the geodesic
wraps the photon sphere many times [19]. The geodesic
stays close to the photon sphere for a long time, and is
approximately circular in this region. Therefore the
WKB approximation is appropriate. To show this, note
that the system is adiabatic when the frequencies satisfy
∂τðωa

nÞ−1 ≪ 1. For n ¼ 0 this becomes

r2∂ur

L
ffiffiffiffiffi
M

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððr=rþÞ2 − 1Þððr=r−Þ2 − 1Þ

q
≪ 1: ð56Þ

In the late time limit rþ; r− ≈ rγ, this is valid near the
photon sphere,

r − rγ
rγ

≪ 1: ð57Þ

The same is true for the modes with n ≠ 0.
In fact, the frequencies are not just adiabatically evolv-

ing, they are constant throughout the region near the photon
sphere. Evaluating the frequencies (33) at the photon
sphere, we find that the frequency for the x1 direction is

ðω1
nÞ2 ¼ n2 −

p2
vL2

2M2
: ð58Þ

A mode is unstable if the frequency is imaginary. At large
pv, this is true for

n < nmax ¼
pvLffiffiffi
2

p
M

: ð59Þ

Therefore the number of unstable modes grows linearly
with pv. The x2;3 directions are stable and we will not need
to consider them here.
Now let us consider the behavior of the solutions of the

equation of motion. At large rwe just have a free string. As
the mode propagates in time, eventually it enters the region
near the photon sphere. The solution is then

X1
nðuÞ ¼ exp

�jω1
nj

pv

Z
u
du0
�
: ð60Þ

The integral in the exponent can be done by changing
variables,

Z
u
du0 ¼ −

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − L2

p
Z

rðuÞ dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − rþ=r0Þð1 − r−=r0Þ
p

¼ −
2
ffiffiffi
2

p
M

L
ArcSinh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðuÞ=r− − 1

rþ=r− − 1

s !
: ð61Þ

Here we have assumed that _r < 0, and also used r−rγ≪rγ .
When _r > 0 the answer flips signs. Therefore the outgoing
mode at radius r with r=r− − 1 ≪ rþ=r− − 1 satisfies (up
to an overall constant)

X1
nðr; outÞ ¼

�
r=r− − 1

rþ=r− − 1

�2
ffiffi
2

p
Mjω1n j
pvL

X1
nðr; inÞ: ð62Þ

The adiabatic approximation breaks down at the end of the
region near the photon sphere. At this radius we have

X1
nðr; outÞ ∝

X1
nðr; inÞ

ðrþ=r− − 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2=n2max

p : ð63Þ

We have left out an order one constant on the right-hand
side, which cannot be unambiguously computed in the
adiabatic approximation.
We see that the net effect of the propagation through

the adiabatic region is a large amplification factor.
Assuming that we can neglect particle production in the
nonadiabatic region, the Bogoliubov coefficient is equal to
this factor [13],

jβ1nj ∝ ðrþ=r− − 1Þ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2=n2max

p
: ð64Þ

The expectation value of the number operator is the square
of this,

hN1
ni ∝ ðrþ=r− − 1Þ−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2=n2max

p
≫ 1: ð65Þ

Note that we have not solved the equations of motion in the
nonadiabatic region, so we must assume that the main
contribution to the particle production comes from the
adiabatic region. Since the geodesic spends a long time near
the photon sphere, we expect this to be this case, but we
have not shown it explicitly.
Finally, since hN1

ni is large, we may compute the overlap
between the in and the out state by multiplying hNni−1=4
over all the modes,

jhout;pvjin;pvij∝ exp

 
2
Xnmax

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

n2

n2max

s
logðrþ=r− −1Þ

!
:

ð66Þ
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At large values of nmax, we can approximate the sum by an
integral. We get

exp

�
πpvL

2
ffiffiffi
2

p
M

logðrþ=r− − 1Þ
�
: ð67Þ

This is exponentially suppressed at large pv, so the
singularity is resolved by the same argument as at early
times.

VII. SINGULARITY RESOLUTION
IN BOUNDARY CORRELATORS

In the previous two sections we analyzed the bulk-to-
bulk propagator. Naively this is sufficient for computing
boundary correlators, since by the AdS=CFT dictionary we
have

hOðt;ϕÞOð0; 0Þi ¼ lim
r→∞

r2ΔhΦðt; r;ϕÞΦð0; r; 0Þi: ð68Þ

However, we have only computed the bulk-to-bulk propa-
gator on the light cone, and the limits of going to the light
cone and taking r → ∞ do not commute. Therefore we
must treat the boundary correlator separately. In this work
we will only discuss the early time case.
For boundary correlators at fixed t and ϕ, the proper

distance between the two boundary points grows with the
cutoff radius r. Therefore instead of expanding around a
null geodesic, we must expand the metric around a space-
like geodesic. This is done in Appendix C. Once we have
the metric, we can compute the propagator using the
Euclidean Polyakov path integral in covariant gauge.
Proceeding as in [8], we find

Z
∞

0

dl
l1=2

exp ð− Δτ
2
ð1l þ lm2ÞÞQ

3
a¼0

Q∞
n¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð−l−2ð∂2

τ −Φa
aÞ þ n2Þ

p ;

ð69Þ

where l is the world sheet modulus. Here we have
neglected an overall L-independent factor.
Actually, this is not quite correct, since we have made the

implicit assumption that the path integral is convergent.
This assumption is not guaranteed since there could be a
negative or zero eigenvalue, corresponding to a fluctuation
mode which can leave the near-geodesic region without
giving a suppressed contribution to the path integral.
We can understand this quantitatively by solving for a
negative eigenvalue. The eigenvalue equation (say for the
x2 direction) is

ð−l−2ð∂2
τ −Φ2

2Þ þ n2 − λÞfλ ¼ 0: ð70Þ

The solution that vanishes at τ ¼ τi is

fλðτÞ ¼ sinh
�
l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − λ

p
ðτ − τiÞ

�
þ 3πLM

4l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − λ

p
r4þ

sinh
�
l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − λ

p
τ
�

× sinh
�
l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − λ

p
τi
�
ΘðτÞ: ð71Þ

Here we have assumed that l ≫ 1 so that we can neglect
the constant term in the tidal tensor. Setting τ ¼ τf and
taking τf;−τi → ∞, we find

fλðτfÞ ¼
expðl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − λ

p
ΔτÞ

2

�
1 −

3πML

8l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − λ

p
r4þ

�
: ð72Þ

Solving for λ then gives

λ ¼ n2 −
�
3πML
8lr4þ

�
2

: ð73Þ

Therefore a negative eigenvalue exists for all L >
8nr4þl=ð3πMÞ.
Evidently for large enough L the path integral does not

converge in the Euclidean regime of real l, and the near-
geodesic approximation breaks down. This means that we
cannot actually compute the correlation function for real
values of t;ϕ close to the singularity. Instead, we can
approach the singularity along the imaginary t axis,

lim
ϵ→0

hOðΔtnullðrþÞ − iϵ;ΔϕnullðrþÞÞOð0; 0Þi: ð74Þ

Solving (25) for L at large rþ, we find

L ¼ 2r2þ
ΔtnullðrþÞ − t

: ð75Þ

Therefore we are interested in the correlator in the limit

L ¼ −
2ir2þ
ϵ

→ −i∞: ð76Þ

In this regime there is no negative eigenvalue, as is clear
from (73). Therefore we can use the near-geodesic
approximation.
We can now evaluate the determinants at early times as in

Appendix B. Note that there is a constant term in the tidal
tensor (C13) proportional to 1=l2

AdS. If we assume that the
integral over l is dominated by l ≫ 1=lAdS, then for
nonzero mode number n we can neglect the constant term
in the tidal tensor. Then the integral becomes
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Z
∞

0

dl
l1=2

exp ð− Δτ
2
ð1l þ lm2ÞÞQ

3
a¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð−l−2ð∂2

τ −Φa
aÞÞ

p
× Γ
�
1 −

3πML
8lr4þ

�
2

Γ
�
1þ 3πML

4lr4þ

�
: ð77Þ

Note that the exponential factor has a saddle at l ¼ 1=m.
We assume that the dimension of the operator does not
scale with the string length, so that m ≪ lAdS in string
units. Then l ≫ 1=lAdS, consistent with our assumption
above. Plugging in the saddle and renormalizing as in
Sec. III gives

hOðt;ϕÞOð0; 0Þi

¼
�
L
rþ

�
2m
Γ
�
1 −

3πmML
8r4þ

�
2

Γ
�
1þ 3πmML

4r4þ

�
: ð78Þ

We have omitted the zero mode determinant in (77) because
it gives a subleading power law in L at large m. The zero
mode was discussed in the pure AdS case in [21].
Finally, we may take the limit as L → −i∞ in (78). We

find that the gamma functions are exponentially sup-
pressed, and the singularity is resolved. In fact, (78)
vanishes in the limit. Note that this does not mean that
the full correlator vanishes on the light cone, since there are
other spacelike geodesics connecting the two boundary
points. These other geodesics, which wind around the
photon sphere, give the dominant (and finite) contribution
to the correlation function on the light cone. Though this
addresses the question raised in the Introduction, it would
be more illuminating if we were able to compute the
correlator near the singularity in physical kinematics as
well as at the singularity. This would require analyzing the
fate of the negative eigenvalue mode in the full black hole
geometry away from the Penrose region, and new tools are
likely needed for this purpose.

VIII. ASYMPTOTICALLY FLAT BLACK HOLES

We can easily generalize the singularity to asymptoti-
cally flat black holes (see also [22]). Here we compute the
two-point function at some large radius rmax, and the light
cone will depend on rmax. The differential equations are
now

dϕ
dr

¼ � rþr−
rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p
dt
dr

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ðrþ=rÞ2Þð1 − ðr−=rÞ2Þ

p 1

1 − ðrs=rÞ2
; ð79Þ

where the turning points are

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðrsE=LÞ2

p
2ðE=LÞ2

s
: ð80Þ

Integrating from r to rmax gives

Δϕ ¼ −
2r−
rs

F

�
ArcSin

�
rþ
r

�
;
r2−
r2þ

�����rmax

rþ

Δt ¼ −2rþ
�
r2s
r2þ

Π
�
r2s
r2þ

;ArcSin

�
rþ
r

�
;
r2−
r2þ

�

þ F

�
ArcSin

�
rþ
r

�
;
r2−
r2þ

�
− E

�
ArcSin

�
rþ
r

�
;
r2−
r2þ

��

þ 2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

r2−
r2

��
1 −

r2þ
r2

�s ����rmax

rþ

: ð81Þ

In the limit where rmax goes to infinity, we get the late time
behavior

Δϕ¼ 2r−
rs

K

�
r2−
r2þ

�

Δt¼ 2rmaxþ2rþ

�
r2s
r2þ

Π
�
r2s
r2þ

;
r2−
r2þ

�
þK

�
r2−
r2þ

�
−E

�
r2−
r2þ

��
:

ð82Þ

We see that the dependence on rmax at late times is
simple. It reflects the fact that for geodesics that get
reasonably close to the black hole, the time it takes to
get back out to infinity is of order 2rmax for large rmax.
There is no analog of the geodesic hitting the boundary and
bouncing back into the bulk. So the picture is a bit simpler,
as shown in Fig. 3.

IX. FUTURE DIRECTIONS

In this paper we have shown how singularities that are
present in the thermal two-point function at infinite λ are
resolved by bulk strings at finite λ. There are various
possible extensions of this result. First, one could analyze
the singularity structure of higher point functions. When
the number of points is greater than 3, there can be a bulk
Landau diagram which leads to a boundary singularity. It
would be interesting to understand the conditions for such
singularities to be resolved.

FIG. 3. The light cone in the asymptotically flat case is a single
smooth curve. Here we set rs=rmax ¼ 1=10.

MATTHEW DODELSON and HIROSI OOGURI PHYS. REV. D 103, 066018 (2021)

066018-10



In this paper, we focused on gravity theories whose
UV completion contains fundamental strings. This is not
always the case; for example, M theory on AdS7 × S4 and
AdS4 × S7 have no fundamental string degrees of freedom
[23]. In these cases, we expect that a membrane traveling
along a null geodesic would expand, from what we know
about the Penrose limits of these M theory backgrounds
[14]. It would be interesting to test this expectation
explicitly. More generally, it has been argued in [24] based
on the distance conjectures [25] that any consistent quan-
tum gravity theory must contain extended objects as its
degrees of freedom. The resolution of the extra null
singularities by expansion of extended objects may be a
generic feature of a consistent quantum gravity.
Another interesting direction, which we are currently

investigating [26], is to understand the generalization of the
results here to Kerr black holes, corresponding to a CFT at
finite temperature and rotation. In this case there is no
longer a rotational symmetry on the boundary sphere, so
the singularities become more complicated. In particular,
for equatorial geodesics there are two photon radii, one for
prograde and one for retrograde orbits. The prograde
photon orbit approaches the horizon radius in the extremal
limit, leading to the possibility of probing horizon-scale
physics.
Finally, we have only discussed the bulk point of view in

this work, but one could also try to understand these
singularities from the CFT perspective. In particular, can
the singularity be seen in the conformal bootstrap [27] or in
a prototypical CFT like maximally supersymmetric Yang-
Mills theory? If so, it would be interesting to understand if
1=λ corrections can be resummed to resolve the singularity
directly in CFT.

ACKNOWLEDGMENTS

We thank P. Di Vecchia, V. Hubeny, T. Jacobson,
E. Martinec, D. Meltzer, M. Mirbabayi, M. Rangamani,
G. Sarosi, S. Shenker, D. Stanford, E. Silverstein, and
N. Warner for discussion. The work of H. O. is supported
in part by U.S. Department of Energy Grant No. DE-
SC0011632, by the World Premier International Research
Center Initiative, MEXT, Japan, by JSPS Grant-in-Aid for
Scientific Research 17K05407 and 20K03965, and by JSPS
Grant-in-Aid for Scientific Research on Innovative Areas
15H05895. H. O. thanks the Aspen Center for Theoretical
Physics, which is supported by the National Science
Foundation Grant No. PHY-1607611, where part of this
work was done. The work of M. D. is supported by JSPS
KAKENHI Grant No. 20K14465.

APPENDIX A: SINGULARITIES IN SOME
LIMITING CASES

In this Appendix we will explore several limits of
parameter space where the singularity structure of the

two-point function can be analyzed exactly. In all three
cases the only singularity will be on the ordinary light cone.

1. Infinite volume in 1 + 1 dimensions

We are interested in a CFT on S1 at finite temperature, in
the limit where the radius of the circle becomes infinite. In
this limit we have a CFT on a cylinder R × S1, so the two-
point function is completely determined by conformal
invariance. It is

hOðt; xÞOð0; 0Þi ∼ 1

ðsinh2ðπðtþxÞ
β Þsinh2ðπðt−xÞβ ÞÞΔ

: ðA1Þ

The only singularities of this function are at t ¼ �x, which
is the ordinary light cone. Therefore if there is a nontrivial
singularity in the two-point function in 1þ 1 dimensions,
then it must disappear at infinite volume.

2. Free field theory

We consider a scalar field on Sd−1 at finite temperature,
introducing a mass to deal with infrared divergences. For
simplicity we take d ¼ 3. The mode expansion is

Φðτ; θ;ϕÞ ¼
X
l;m;k

e2πikτ=βYm
l ðθ;ϕÞΦk;l;m: ðA2Þ

The Euclidean action is

1

2

X
k;l;m

��
2πk
β

�
2

þlðlþ1ÞþM2

�
Φk;l;mΦ−k;l;−m: ðA3Þ

The two-point function on the equator is

hΦðτ;π=2;ϕÞΦð0;π=2;0Þi

¼
X
l;m;k

e2πikτ=β

ð2πkβ Þ2 þ lðlþ 1Þ þM2
Ym
l ðπ=2;ϕÞY−m

l ðπ=2;0Þ:

ðA4Þ

We can do the sum over k using Matsubara techniques.
We get

X
l

ð2lþ 1ÞPlðcosϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1ÞþM2

p
×

�
e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1ÞþM2

p
τ

1− expð−β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1ÞþM2

p
Þ− ðτ;βÞ→ ð−τ;−βÞ

�
:

ðA5Þ

The divergences come from large l in the sum. Expanding
the Legendre polynomials at large l, we get singularities at
τ ¼ �iϕ, which is just the ordinary light cone.
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3. Rational CFT in two dimensions

Finally, we consider the finite-temperature two-point
function of a rational CFT in two dimensions,

Zðτ; z; τ̄; z̄Þ ¼ TrðqL0− c
24q̄L̄0− c

24Oðz; z̄ÞOð0; 0ÞÞ; ðA6Þ

with q ¼ e2πiτ and the periodicities z ∼ zþ 1 ∼ zþ τ. If the
CFT is rational, we can express Z as a finite sum over
conformal blocks,

Zðτ; z; τ̄; z̄Þ ¼
X
i

Fiðτ; zÞF̄iðτ̄; z̄Þ: ðA7Þ

We keep ðτ; τ̄Þ in the Euclidean domain (namely, τ̄ is the
complex conjugate of τ) and analytically continue in ðz; z̄Þ
to the Lorentzian domain. Thus, we are interested in
studying properties of Zðτ; z; τ̄; z̄Þ as a function of two
independent complex variables z and z̄ with fixed ðτ; τ̄Þ.
Since each Fiðτ; zÞ is holomorphic in z, it can only have
singularities at points in the complex z plane and not along
a curve. Since the sum in (A7) is finite, any singularities of
Zðτ; z; τ̄; z̄Þ should also be of this type, namely either at a
point in the z plane or a point in the z̄ plane. The red curves
in Fig. 1 are of this type, since they correspond to either
z ¼ 0 or z̄ ¼ 0. On the other hand, the blue curves are not of
this type since they are expressed in terms of an equation
involving both z and z̄. For example, their asymptotic form
for large t is

zþ z̄ ¼ �vγðz − z̄Þ; ðA8Þ

with vγ defined in (15). Singularities along such curves
cannot arise from the finite sum over the conformal blocks
in (A7). Though singularities along the blue curves are also
absent in a semiclassical gravity in AdS3, as we noted in
Sec. II, this argument gives yet another indication that the
only singularity in a generic CFT is on the ordinary
light cone.

APPENDIX B: THE PHASE OF THE
DETERMINANTS AT EARLY TIMES

In this Appendix we will evaluate the determinants at
early times using the Gelfand-Yaglom theorem [28]. Recall
that this theorem first requires us to find a function y
satisfying

ð−∂2
τ þVðτÞÞyðτÞ ¼ 0; yðτiÞ ¼ 0; y0ðτiÞ ¼ 1: ðB1Þ

Once we find such a y, we can evaluate the determinant as

detð−∂2
τ þ VðτÞÞ ¼ yðτfÞ: ðB2Þ

We will compute the determinant using the shock wave
approximation. For example consider the x1 direction. The
function y is then given by (49), with

a1 ¼ −
einτi

2in
; a†1 ¼

e−inτi

2in
: ðB3Þ

The determinant is then equal to

yðτfÞ¼
sinðnðτf− τiÞÞ

n
−
3πpvLM
2n2r4þ

sinðnτfÞsinðnτiÞ: ðB4Þ

We now take this answer and project it onto the vacuum.
We get

det ð−∂2
τ − n2 þp2

vA11ðpvτÞÞ ¼
einðτf−τiÞ

2in

�
1−

3πipvLM
4nr4þ

�
:

ðB5Þ

The first factor would be there in flat space, and is treated in
[15,29]. Therefore the factor we are interested in is the
second factor. Including the two attractive modes, the
product of the determinants over n is

Y∞
n¼1

�
1 −

3πipvLM
4nr4þ

��
1þ 3πipvLM

8nr4þ

�
2

¼ 1

Γ
�
1 − 3πipvLM

4r4þ

�
Γ
�
1þ 3πipvLM

8r4þ

�
2
: ðB6Þ

Note that the magnitude of (B6) reproduces (52), as
promised.

APPENDIX C: THE TIDAL TENSOR FOR
SPACELIKE GEODESICS

We consider a spacelike geodesic that is almost lightlike.
We want to expand the metric around this geodesic so that
we can analyze the world sheet theory. We closely follow
the analysis of [30], although that reference analyzes
timelike and not spacelike geodesics.
The first step is to find an orthonormal tetrad λμa that is

parallel transported along the geodesic. Once we get this
tetrad we may define the tidal tensor as

Φab ¼ λμ4λ
ν
aλ

ρ
bλ

σ
4Rμνρσ; ðC1Þ

where λμ4 ¼ _xμ is the tangent vector to the geodesic. The
metric near the geodesic then takes the form

ds2 ¼ ηabdxadxb þ ð1þΦabxaxbÞðdx4Þ2: ðC2Þ

The transverse indices a, b now run from 0 to 3. There are
other terms in the expansion of the metric, for instance
terms proportional to xaxbdxcdxd. However these terms
can be neglected. The reason is that the classical solution to
the worldline equations of motion has _x4 ≠ 0. Therefore
when we expand around this solution in the action, the
term proportional to Φab is quadratic in the xa fields.
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However _xa ¼ 0, so xaxb _xc _xd is actually quartic in the
fields, not quadratic. Therefore it can be neglected.
Now let us compute λμa for a ≠ 1. There are two obvious

ones,

λ2 ¼
1

r
∂θ

λ3 ¼
1

r
∂ψ ; ðC3Þ

where the coordinates on the S3 are defined by

dψ2 þ sin2 ψðdθ2 þ sin2 θdϕ2Þ: ðC4Þ

The geodesic is at ψ ¼ θ ¼ π=2, so these basis vectors are
normalized correctly.
What about the other two? The strategy of [30] is to first

complete the orthonormal basis with particularly simple
vectors λ̃0 and λ̃1 that are not parallel transported, and then
solve the parallel transport equations by applying a time
dependent rotation (or a boost in our case) on λ̃0 and λ̃1. So
we make the ansatz

λ̃0 ¼ λ̃t0∂t þ λ̃r0∂r: ðC5Þ

The normalization condition and the dot product with λ4
determine

λ̃t0 ¼
_rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − L2=r2
p

ðr2 þ 1 −M=r2Þ
λ̃r0 ¼

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2=r2

p : ðC6Þ

Clearly this only works for r > L, so let us assume that for
now. Similarly, we make the ansatz

λ̃1 ¼ λ̃t2∂t þ λ̃r2∂r þ λ̃ϕ2∂ϕ: ðC7Þ

This completes the orthonormal basis if

λ̃t1 ¼
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2=L2 − 1
p

ðr2 þ 1 −M=r2Þ
λ̃r1 ¼

_rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=L2 − 1

p
λ̃ϕ1 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2=r2

p
r

: ðC8Þ

As mentioned above, λ̃0 and λ̃1 are not yet parallel
transported. Therefore we make the ansatz

λ0 ¼ λ̃0 cosh ηþ λ̃1 sinh η

λ1 ¼ λ̃0 sinh ηþ λ̃1 cosh η; ðC9Þ

where η is time dependent. Now we need to solve the
equations λμ4∇μλ0 ¼ λμ4∇μλ1 ¼ 0. The covariant derivatives
are best computed in Mathematica. We get

_η ¼ EL
r2 − L2

: ðC10Þ

Finally we can compute the tidal tensor. We get

Φ00 ¼ −
�
1þM

r4
þ 4MðL2 − r2Þcosh2η

r6

�
:

Φ01 ¼ Φ10 ¼ −
2MðL2 − r2Þ sinhð2ηÞ

r6

Φ11 ¼ 1þM
r4

−
4MðL2 − r2Þsinh2η

r6

Φ22 ¼ Φ33 ¼ 1 −
Mð2L2 − r2Þ

r6
: ðC11Þ

For r < L, we can do the same thing. We get

Φ00 ¼ −
�
1þM

r4
−
4MðL2 − r2Þsinh2η

r6

�
:

Φ01 ¼ Φ10 ¼
2MðL2 − r2Þ sinhð2ηÞ

r6

Φ11 ¼ 1þM
r4

þ 4MðL2 − r2Þcosh2η
r6

Φ22 ¼ Φ33 ¼ 1 −
Mð2L2 − r2Þ

r6
: ðC12Þ

We are interested in almost null geodesics, so it is not
hard to see that we can take η ¼ 0. The only terms that
survive after taking large L and E for r < L are

Φ00 ¼ −1

Φ11 ¼ 1þ 4ML2

r6

Φ22 ¼ Φ33 ¼ 1 −
2ML2

r6
: ðC13Þ

The constant terms come from the AdS curvature.
Neglecting the constant terms at large L, we see that this
matrix approaches the Penrose plane wave matrix, as
expected.
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