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We define and study kinematical observables involving fermion spin, such as the total spin of a
collection of particles, in loop quantum gravity. Due to the requirement of gauge invariance, the relevant
quantum states contain strong entanglement between gravity and fermionic degrees of freedom.
Interestingly we find that properties and spectra of the observables are nevertheless similar to their
counterparts from quantum mechanics. However, there are also new effects. Due to the entanglement
between gravity and fermionic degrees of freedom, alignment of quantum spins has consequences for
quantized geometry. We sketch a particular effect of this kind that may in principle be observable.
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I. INTRODUCTION

Spin is a quintessential quantum property but at the same
time a bit of geometric information—a direction. Indeed,
spins were at the heart of Penrose’s spin networks [1,2],
invented as hypothetical quantum states of spatial geom-
etry. This was indeed prophetic, as in loop quantum gravity
(for reviews see [3,4]), spin networks turn out to describe a
basis of eigenstates of spatial geometry [5]. With the
present work, we will, in a sense, close a circle, as we
will investigate the quantum theory of particle spins in loop
quantum gravity. It will turn out that one can regard spin
networks as flows of physical spin with some justification.
The quantum theory of spinor fields coupled to loop

quantum gravity is by now fairly well understood [6–13]. In
particular, we will follow Thiemann [12] in adopting a
discretization of the classical symplectic structure that is
extremely natural in the context of loop quantum gravity. As
a consequence, the space of fermion states can be described
as a fermionic Fock space of particlelike excitations.
Loop quantum gravity uses a formulation of general

relativity as a constrained gauge theory, with a Gauß
constraint encoding SU(2) gauge invariance (invariance
under spatial frame rotations). It was realized early on
[6,10,11] that, to solve the Gauß constraint, gravity and
fermionic excitations have to be coupled. A very compel-
ling solution was first suggested in [10,11] and later
expanded on in [6]: the fermions sit at the open ends of
gravitational spin networks. More recently, the coupling of
fermion states to gravity has been investigated also from the
perspective of spin foam models for loop quantum gravity
[14,15]. The coupled gravity-fermion states we are

considering here are precisely the boundary states in the
spinfoam formalism.
In the present work, we set out to define and investigate

observables that measure the total fermion spin contained
in spatial regions. Depending on the quantum state, this can
be the spin of a single fermion, or the total spin of
multifermion configurations. Specifically, we define oper-
ators measuring the squared total spin, and components of
the total spin in the direction of another spin, or the
component normal to a surface.
To add spins, we need to transport them through space.

We use the Ashtekar-Barbero connection for this.
Consequently the spin operators modify fermion and gravi-
tational states in tandem. Somewhat surprisingly, algebra
and spectra have much in common with the situation in
quantum mechanics. However, there are also new effects.
For examplewe show that alignment of spins in a region can
lead to a change of its surface area, which could in principle
be observable. It also shows that one can regard spin
networks as flows of physical spin with some justification.
When we speak of spin observables, we have to be

careful, however. In the present work we will not be con-
cerned with implementing diffeomorphism and Hamilton
constraint which encode general covariance. In particular the
spin observable that we consider are not observables in the
sense of Dirac, and it is in fact not clear what ultimate
significance they have. In this way, they are similar to the
geometric operators for area, volume and length. It should be
fairly straightforward to generalize some of the results of the
present work to the spatially diffeomorphism invariant level.
Moreover, if one considers material reference systems as
described in [16,17], we expect that the operators we
describe correspond to physical quantities.
An observation that is crucial for the construction of the

spin observables is that the spatial frame provides an
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isomorphism between tangent spaces and the internal
space. This means that in principle we can freely move
between spins as tangent vectors and spins as internal
vectors, and scalar products can be evaluated in tangent
space using the metric or internally. In practice, the latter
picture is the only practical one in loop quantum gravity, as
no operator for the spatial metric is known, and neither are
any other operators for tensorial quantities.
Throughout the paper, we will follow a number

of conventions. Spacetime is described by a smooth
manifold M foliated into three-dimensional hypersurfaces
M ¼ R × Σ. For the metric signature we use the “mostly
plus” convention η ¼ diagð−;þ;þ;þÞ. We use capital
latin letters I; J;… ¼ 0, 1, 2, 3 for indices of tensor fields
in the four-dimensional internal Minkowski space and
lower case latin letters i; j;… ¼ 1, 2, 3 for indices of
tensor fields in the spatial internal space, which are pulled
with the Euclidean metric δ. Tensor fields on M carry
indices described by lower case greek letters μ; ν;… ¼ 0,
1, 2, 3, tensor fields on Σ carry indices described by lower
case latin letters a; b;… ¼ 1, 2, 3. Finally, Weyl spinors
and spin 1

2
representations of SU(2) carry indices described

by capital latin letters A; B;… ¼ 1, 2. We define holon-
omies he such that they transform under gauge trans-
formations as

he ↦ gðsðeÞÞheg−1ðtðeÞÞ; ð1:1Þ

where tðeÞ is the endpoint and sðeÞ the starting point of the
edge e.

II. A QUICK REVIEW ON LOOP QUANTUM
GRAVITY WITH FERMIONS

On classical level, a theory of spin 1
2
fermions coupled to

gravity is described by the Einsten-Cartan-Holst action
[7,9,13] together with the covariant version of the Dirac
action,

S½e;ω;Ψ� ¼ 1

16πG

Z
M
dx4j det ejeμI eνJPIJ

KLFIJ
μνðωÞ

þ i
2

Z
M
dx4j det ej½Ψ̄γIeμI∇μΨ − c:c:�: ð2:1Þ

A foliation into three-dimensional hypersurfaces M ¼
R × Σ is performed, and the canonical analysis yields
the canonical gravitational variables [7,13],

Ai
aðxÞ ¼ Γi

a þ βKi
k þ 2πGβϵiklekaJl ð2:2Þ

Ea
i ðxÞ ¼

1

2
ϵijkϵ

abceiae
j
bðxÞ; ð2:3Þ

which is the analogue of the Ashtekar connection and its
conjugate momentum. In (2.2), Γ is the torsion free spin

connection, K the torsion free extrinsic curvature and Jl are
the spatial components of the fermion current,

Jl ¼ Ψ̄γlΨ: ð2:4Þ

Note that, in contrast to matter-free loop quantum gravity,
the Ashtekar connection carries nonzero torsion. In the
chiral basis, we can split the Dirac fermion Ψ and its
conjugate momentum into its chiral components and define
the half-densities [13],

θAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
det q4

p
ΨRðxÞ; πθðxÞ ¼ −iθ†ðxÞ ð2:5Þ

νAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
det q4

p
ΨLðxÞ; πνðxÞ ¼ −iν†ðxÞ: ð2:6Þ

The nonvanishing anti-Poisson relations for the Weyl
spinors are then induced by the anti-Poisson relations of
Ψ. They read

fθAðxÞ; πθBðyÞgþ ¼ δABδ
ð3Þðx; yÞ; ð2:7Þ

and similar for ν. In the following, we will focus on
one Weyl component and its momentum ðθ; πθÞ only.
However, everything works analogously for the other chiral
component.
The action (2.1) yields contributions to Gauss, diffeo-

morphism and Hamilton constraint [7,13]. For our
purposes, only the Gauss constraint,

GiðxÞ¼DðAÞ
a Ea

i ðxÞþðθ†ðxÞσiθðxÞþν†ðxÞσiνðxÞÞ; ð2:8Þ

will be relevant. The first term of (2.8) is the SU(2) Gauss
constraint known from matter-free loop quantum gravity.
The second term is the SU(2) current of the half-density
Weyl spinors, which generates SU(2) transformations.
The Hilbert space of gravitational degrees of freedom is

constructed the same way as in the matter-free theory. The
gravitational observables hence act on cylindrical functions
which form the Ashtekar-Lewandowski Hilbert space,

HAL ¼ L2ðΣ; dμALÞ; ð2:9Þ

via multiplication of holonomies and the interior product
with the derivation XS, respectively [18]

πjðhÞeΨ½A� ¼ πjðhÞe½A�Ψ½A�; ð2:10Þ
Z
S
EiΨ½A� ¼ iðXi

SΨÞ½A�: ð2:11Þ

The Weyl fields on the other hand are quantized as
fermionic creation and annihilation operators,

θAðxÞ ¼ c†AðxÞ; −iπθBðyÞ ¼ cAðyÞ; ð2:12Þ
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which satisfy canonical anticommutation relations,

½cAðxÞ; c†BðyÞ�þ ¼ δx;yδ
A
B; ð2:13Þ

½c†AðxÞ; c†BðyÞ�þ ¼ 0; ½cAðxÞ; cBðyÞ�þ ¼ 0: ð2:14Þ

The action of this operator spans the fermionic Fock space
over a one particle space given by

h ¼ ff∶Σ → C2∶fðxÞ ≠ 0 only for finitely many xg
hfjf0i ¼

X
x∈Σ

fðxÞ f0ðxÞ: ð2:15Þ

We note the change between (2.7) and

½θðxÞA; πθBðyÞ�þ ¼ iδABδx;y; ð2:16Þ

in that a Dirac delta has become a Kronecker delta. This
means that, following [12], and in contrast to [5] we
quantize a modified symplectic structure.
The combined system of matter fields and gravitational

degrees of freedom is given by the tensor product of the
Ashtekar-Lewandowski Hilbert space and the fermionic
Fock space over h,

H ¼ HAL ⊗ F−ðhÞ; ð2:17Þ

so we extend (2.10), (2.12) in the obvious way.
On the way towards a physical Hilbert space, we need to

implement the Gauss constraint. For this, we only regard
quantum states lying in the kernel of the quantum Gauss
constraint operator or equivalently states that are invariant
with respect to the unitary action Ug of gauge trans-
formations generated by the Gauss constraint operator.
The action of Ug reads1

UgπjðheÞU−1
g ¼ gðsðeÞÞ · πjðheÞ · g−1ðtðeÞÞ; ð2:18Þ

UgθðxÞU−1
g ¼ gðxÞ · θðxÞ; ð2:19Þ

UgπθðxÞU−1
g ¼ πθðxÞ · g−1ðxÞ: ð2:20Þ

We finally arrive at the Hilbert space of SU(2) invariant
states. One suitable basis is given by a generalization of
spin network states, which also admit Weyl spinors at the
vertices of the underlying spin network graph.

III. FERMION SPIN OBSERVABLES

We want to define observables based on the spin of
fermions. To this end, we first have to clarify the definition
of angular momentum and spin for fermion fields in curved
spacetime. In flat space, angular momentum is described by
the covariant angular momentum bivector Jμν. For a point
particle with position xμ and momentum pμ this is given by

Jμν ¼ xμpν − pμxν; ð3:1Þ

where here and in the following few equations we are
pulling indices with the Minkowski metric. In quantum
theory, the corresponding operators are nothing but the
generators of Lorentz transformations. In quantum field
theory, these generators are given as spacetime integrals of
angular momentum densities, and for nonscalar fields, a
contribution from the intrinsic spin appears. For a Dirac
field Ψðt; xÞ,

Jμν ¼
Z

d3xΨ̄ðt; xÞð−iÞγ0
�
½xμ; pν� þ i

4
½γμ; γν�

�
Ψðt; xÞ:

ð3:2Þ

The two terms correspond to orbital angular momentum
and spin, respectively. Fixing a reference system by
specifying a timelike normal n, one can recover spatial
angular momentum as

Jμ ¼ ð�JÞμνnν ≡ 1

2
ϵμ0ν0

μνJμ
0ν0nν: ð3:3Þ

This is a spatial vector, Jμnμ ¼ 0, so in adapted coordinates
Ja; a ¼ 1, 2, 3 is the angular momentum vector. In
particular, for the spin component,

Sμν ¼
Z

d3x
1

4
Ψ̄ðt; xÞγ0½γμ; γν�Ψðt; xÞ; ð3:4Þ

Sa ¼
Z

d3x
1

8
Ψ̄ðt; xÞγ0ϵabc½γa; γb�Ψðt; xÞ; ð3:5Þ

Sμνj0i ¼ 0: ð3:6Þ

In the chiral representation, the spin operator works out to

Sa ¼
Z

d3xΨ̄ðt; xÞ 1
2

�
σa 0

0 −σa

�
Ψðt; xÞ; ð3:7Þ

which is nothing but the generator, on spinor space, of
rotations as defined by n ¼ ð1; 0; 0; 0Þ.
In curved spacetime there are generically no isometries,

and so no action of global Lorentz transformations. Thus
there is no obvious definition of total angular momentum or
spin. However, there is a close analogue to spin densities

1Note that we are using the convention that the first index
of he transforms at sðeÞ and the second one at tðeÞ. At the same
time, we are using Thiemann’s convention for e∘f [4] such that
he · hf ¼ he∘f holds.
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in (3.2), (3.7): There are generators for local Lorentz
transformations (i.e., local frame rotations), and those
can provide a spin bivector density.
To obtain Ashtekar variables, a partial gauge fixing is

employed. A timelike unit vector nIðxÞ is introduced to fix
three components of the frame eμI . nIðxÞ introduces a
decomposition of the local Lorentz transformations into
rotations and boosts, and only local rotations survive as
gauge transformations. Their generator is the Gauss con-
straint (2.8), and so a natural candidate for the local spin
density contribution from the Weyl field θ is given by

SiðxÞ ¼ 1

2
θðxÞσiθ†ðxÞ: ð3:8Þ

It immediately follows that

½SiðxÞ; c†AðyÞ� ¼ 1

2
δx;yσ

iA
Bc†BðyÞ; ð3:9Þ

SiðxÞj0i ¼ 0; ð3:10Þ

and

½SiðxÞ; SjðyÞ� ¼ iδx;yϵijkSkðxÞ: ð3:11Þ

Note that while SiðxÞ is an internal vector field, we can
change freely between internal and tangent space using the
3d frame e,

SaðxÞðxÞ ≔ eai ðxÞSiðxÞ; ð3:12Þ

and scalar products can be taken in either space,

SaðxÞSbðxÞqabðxÞ ¼ SiðxÞSjðxÞδij: ð3:13Þ

For the quantum theory, working in the internal space has
advantages, as there are no states known that transform like
tensors in tangent space, whereas states that transform
nontrivially under gauge transformations are well studied.
We will also need to transport spins from one point to the

other to compare them. This raises the question how to
translate between transport in tangent and internal space,
and which connection to use for the transport. The first
question is easy to answer. If B is a connection in tangent
space and C is a connection in internal space, then the
condition,

Daeib ≡ ∂aeib − Ba
c
beic þ Ca

i
je

j
b ¼ 0; ð3:14Þ

is equivalent to

hðBÞae bebi ðtðeÞÞ ¼ ebj ðsðeÞÞhðCÞe
j
i: ð3:15Þ

Thus, fixing a connection on one bundle will yield a
compatible connection on the other. The second question is

more subtle. The spin connection of e (or equivalently the
3D Levi-Civita connection Γ) or the Ashtekar-Barbero
connection A immediately come to mind, but there are
undoubtedly others. Ultimately, the connection used is part
of the choice of observables that we will define below. We
will make use of the Ashtekar-Barbero connection A, as it is
a well-defined operator in loop quantum gravity. Then we
can define the parallel transport of spin operator as

Sie ¼ π1ðh−1e ÞijSjðsðeÞÞ; ð3:16Þ

where sðeÞ is the initial point (source) of e. Interestingly,
the parallel transported spin is again a quantum theoretical
spin,

½Sie; Sje� ¼ iϵijkSke: ð3:17Þ

Under a gauge transformation g it transforms as

UgSieU−1
g ¼ π1ðgÞðtðeÞÞijSje; ð3:18Þ

where tðeÞ is the final point (target) of e.

A. Total spin

In analogy to the theory of angular momentum in flat
standard quantum theory, we start by defining the total spin
of the fermion field evaluated at a number of points. To add
the spins, they all have to be transported to the same point.
To do so, one has to chose a set of edges E with common
end point and disjoint initial points.
Definition III.1. Given a set of edges E with common

endpoint and disjoint initial points, tðeÞ ¼ tðe0Þ and sðeÞ ≠
tðe0Þ for all e; e0 ∈ E, define the total spin,

SE ¼
X
e∈E

Se: ð3:19Þ

For a graphical representation of the total spin see Fig. 1.
The total spin SE is again a quantum mechanical spin,

t(E)

FIG. 1. Graphical representation of the total spin operator SE.
Note that edges can intersect and also run on top of each other, as
long as the corresponding intertwiners are trivial. This is
indicated by the virtual networks drawn next to the intersections
in the figure.
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½SiE; SjE� ¼ iϵijkSkE: ð3:20Þ

Under a gauge transformation g it transforms at the joint
final point tðEÞ of the e ∈ E,

UgSEU−1
g ¼ π1ðgÞðtðEÞÞ · SjE: ð3:21Þ

The total spin is not gauge invariant, but it can be used to
construct a large class of gauge invariant observables.
Invariant subspaces for the action of SE are constructed

as follows. Denote by E0 ⊆ E any subset of E and the edges
in E0 as E0 ¼ fe1; e2;…ejE0jg. Define states,

ΨE0A1 � � �AjE0 j ¼
YjE0j

k¼1

π1
2
ðhekÞAk

Bk
⊗ θðsðekÞÞBk j0i: ð3:22Þ

They span the Hilbert space,

HE≔ spanfΨA1…AjE0 j
E0 jA1;…;AjE0j∈f1;2g;E0⊆Eg: ð3:23Þ

The space HE is invariant under the action of gauge
transformations. Since its states transform only at tðEÞ,
the irreducible subspaces of HE are effectively labeled by
irreps of SU(2),

HE ¼ ⨁
j
HðjÞ

E ; HðjÞ
E ¼ ⨁

nj

k
HðjÞðkÞ

E

HðjÞðkÞ
E ≃ πj; ð3:24Þ

with nj denoting possible multiplicity (including nj ¼ 0).
Note that we can also easily add two total spin operators
and arrive at

SiE∪E0 ¼ SiE þ SiE0 ð3:25Þ

which is again a spin operator, if and only if the set of
starting points of E and E0 are disjoint. Also, we have to
impose tðEÞ ¼ tðE0Þ in order to get a gauge covariant
object.
Let us consider the action of ðSEÞ2 on HE. We have

ðSEÞ2 ¼
X
e∈E

S2ðsðeÞÞ

þ
X

ðe;e0Þ∈E×E
SðsðeÞÞ · he∘e0−1 · Sðsðe0ÞÞ: ð3:26Þ

In order to understand the mixed terms, we make use of the
binor calculus, a graphical notation suggested by Penrose
[1,19–21]. Using this toolbox we can rewrite the mixed
terms in the following way:

ð3:27Þ

where we denoted e ≔ e−11 ∘e2 for the sake of clarity. For
technical details and a proof of this identity, see
Appendix A. Now, given an arbitrary spin network state
ψ with n fermions sitting on distinct vertices of the spin
network, we can calculate the action of (3.26) by writing ψ
using the binor formalism and applying (3.27). In general,
however, the spin network states are not eigenstates of
(3.26). Instead, we find a subset of its eigenstates with
eigenvalues, which are very reminiscent of flat quantum
theory,

ð3:28Þ

Here, the empty circle represents an arbitrary combination
of fermions adding or respectively subtracting the spin of
the neighboring holonomy,

ð3:29Þ

Depending on the split of the number n ¼ nþ þ n− of
fermions into increasing and decreasing spins, the corre-
sponding spin of the eigenstates can take values j ∈
f1
2
;…; n

2
g for odd n and j ∈ f0;…; n

2
g for even n. The

eigenstates (3.28) can be found by induction over n, but in
this case a more direct route is possible.
Proposition III.2. The total spin SE acts on HðjÞðkÞ

E like
a spin in the j-representation. In particular,

ðSEÞ2jHðjÞðkÞ
E

¼ jðjþ 1Þ1 ð3:30Þ
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Proof.—The operator Sie is just a grasping operation, it
acts on the state π1

2
ðheÞAB ⊗ θðsðeÞÞBj0i as

ð3:31Þ

Then using the fact that we can move the intertwiner along
edges,

ð3:32Þ

one sees that Sie acts as the generator of gauge trans-
formations at tðEÞ on HE, i.e., as an angular momentum
operator on

⨁
E0
ððπ1

2
Þ⊗jE0jÞ: ð3:33Þ

Decomposing into irreps completes the proof. ▪
Note that the action on any state Ψ in H that has no

fermionic excitations at the positions sðeÞ; e ∈ E is trivial,
more precisely,

SEΨ ¼ 0: ð3:34Þ

More generally, for fx1;…; xmg ∩ fsðeÞje ∈ Eg ¼ ∅,
consider a gauge invariant operator F built from
arbitrary holonomies and the fermion creation operators
θðx1Þ…θðxmÞ, i.e.,

F ¼ FB1���Bm
½A� ⊗ θB1ðx1Þ � � � θBmðxmÞ: ð3:35Þ

Then evidently,

½SE; F� ¼ 0: ð3:36Þ

Therefore,
Corollary III.3. The total spin SE acts on FHðjÞðkÞ

E like a
spin in the j-representation, where F is any operator
constructed as above. In particular,

ðSEÞ2jFHðjÞðkÞ
E

¼ jðjþ 1Þ1: ð3:37Þ

Corollary III.3 provides for a large number of irreps for
SE and consequently a large number of eigenstates for S2E.
We note however, that there are more eigenstates than those
listed already. The states of corollary III.3 have one point in
which spin flows out. The idea to construct more general
eigenstates is to consider multiple such points of outflow.
Let us consider an example.
Example III.4. For two fermions and two points of

outflowing spin, there is the eigenstate,

ð3:38Þ

which has spin 1. We notice that the first term corresponds
to the new type of states while the second term is a special
case of (3.28) with spin j ¼ 0. The second term arises from
the first by connecting each, the two fermions and the two
points of outflowing spin, by the same holonomy he. In
order to get an eigenstate, taking this linear combination is
necessary, as the mixed terms (3.27) couple the discon-
nected fermions.
We have to be aware of the difference between the

spin network and the binor representation. Even if it is
sometimes tempting to read a binor term as a spin network
state or vice versa, there is a nontrivial basis change
in general. The state (3.38), for instance, is a nontrivial
linear combination of spin network states and particularly
not proportional to the spin network state depicted in
Fig. 2.
In fact, we can follow the same procedure also with an

arbitrary number of fermions n and two points of outflow.
For suitable coefficients λab;…; λab…cd we can show that
the generalised eigenstates of the squared total spin ðSEÞ2 to
the spin jþ k have the following form:

FIG. 2. Sketch of a spin network state (blue) consisting of two
fermions and a holonomy in between. Moreover, the two fermion
system admits two points of outflow. The spin operator SE (black)
measures the parallel transported spinof the fermions at the joint end
point, which coincides with one of the points of outflow in this case.
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ð3:39Þ

where we numbered the fermions by the labels
a; b;…; c; d. Because of (3.36) we can even act on it with
suitable operators F to create further eigenvectors to the
same eigenvalue. In (3.39), we assumed that there are no
pure holonomies between the points of outflowing spin.
From (3.39) it becomes apparent that the last term is always
of the form (3.28), and the sequence terminates. By acting
on that state with S2E we can read off the coefficients if we
require that it is an eigenstate to the eigenvalue jþ k.
Proposition III.5. The states of the form (3.39) are

eigenstates of S2E to the eigenvalue jþ k if the coefficients
are defined by the following recursion relation:

λ−1a1b1…ambm
¼ λ−1m ≔ mð2jþ 2k −mþ 1Þλ−1m−1

λ0 ¼ 1; ð3:40Þ

where m denotes the number of reductions made.
In addition λa1b1…ambm ¼ 0 if at least one pair ðai; biÞ of
fermions is of the same type (both increasing or reducing
the spin from top to bottom).
Proof.—See Appendix B. ▪
The eigenstates (3.39) can be interpreted as terms

contributing to a spin network state of the form depicted
in Fig. 3. Note again that switching from the binor to the
spin network representation or vice versa in general

requires a nontrivial basis change. Proposoition III.5 gives
rise to a more general set of eigenstates. In principle, we can
continue adding points of outflow. However, we would
only increase the combinatorial complexity of the eigen-
states as we can now reduce the outflowing spin by
connecting any two of the endpoints and two fermions
to another using suitable holonomies. Although the number

FIG. 3. Sketch of a generic spin network state (blue) with four
fermions and two points of outflow. The spin operator SE (black)
measures the transported spin of the fermions at the joint end
point tðEÞ, which represents one of the two points of outflow.
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of coefficients grows exponentially, the procedure will be
exactly the same as in the case of two points of outflow.
In fact, it should be possible to write any spin network

state as a linear combination of states with n fermions and
up to n points of outflow multiplied by a spin network state
with only purely gravitational degrees of freedom. This
becomes apparent when writing any spin network state in
the binor formalism and resolving the symmetrizations.
This way, we have sketched the process of how to
characterise the full spectrum of the squared total spin
operators S2E.

B. Projection onto a surface normal

Another observable inspired by flat standard quantum
theory is the projection of the total spin onto some
direction, for example SzE. The obvious problem is that
this operator is not gauge invariant and hence not a good
observable. Instead, we might project the total spin onto a
reference field (cf. magnetic field in a Stern-Gerlach
experiment). One such reference field may be given by
the normal vector field of a surface S,

ni ≔ Ea
i ϵabct

b
1t

c
2; ð3:41Þ

where t1, t2 are tangent vectors to a surface S. To get rid of
the density weight, we define the smeared operator,

ÊiðSÞ ¼
Z
S
dSaÊ

a
i ¼

Z
S
dxb ∧ dxcϵabcÊ

a
i

≔
Z
S
ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðð2ÞqÞ

q
; ð3:42Þ

where Ê is the smeared canonical momentum operator of
the Ashtekar connection Â and ð2Þq is the pullback of the
spatial metric q to the two-dimensional surface S. The
vector ni is related to the spatial surface normal by
na ¼ eiani ⊥ S. The operator (3.42) is a measure of the
area of the surface S. This motivates the definition of a new
observable.
Definition III.6. Let E be a set of edges with a joint end

point and S a surface that intersects the spin network graph
defined by E exactly once in tðEÞ. We define the projection
of the total spin onto the surface normal by

SS ¼ SiEÊiðSÞ: ð3:43Þ

From the fact that Êi couples also on pure gravitational
spin network functions, one can see that it will not have
the same eigenbasis as S2E. This can be also proven by
explicitly calculating the commutator. Already for n ¼ 2
fermion spins, we get a nontrivial contribution of the
commutator of ĥe and Êi,

½S2E; SS� ¼ ðSlðe1ð0ÞÞðh−1e1 ÞmlSjðe1ð0ÞÞSkðe2ð0ÞÞ
þ Slðe2ð0ÞÞðh−1e2 ÞmlSjðe1ð0ÞÞSkðe2ð0ÞÞÞ

×

�
he1

τm
2
h−1e2

�
j

k
≠ 0: ð3:44Þ

On the other hand, the two operators in (3.43) do
commute.

½SiE; ÊiðSÞ� ¼
X
e∈E

τi
i
jπ1ðh−1e ÞjkSðsðeÞÞk ¼ 0; ð3:45Þ

which is a result of the total antisymmetry of τ. As a
consequence, the self-adjointness of (3.43) is ensured,
and we do not have to think about the order of the two
operators.
Although there is no hope to get a spin component with

exactly the same properties as Sz with (3.43), we are able to
understand some special cases of spin coupling. As Êi acts
with the insertion of a Pauli matrix τi, we find that every
addend of (3.43) acts very similar to (3.27). In particular,
the binor representation is, up to a multiplicative factor,
identical with the operator being inserted at the intersection
point of S with e and at the point where the respective
fermion is located. The factor is given by the defining
relation, which is known from the area operator in loop
quantum gravity [22],

ÊiÊ
ihe ¼ −ð8πl2pγÞ2he1τiτihe2

¼ ð8πl2pγÞ2jðjþ 1Þhe; ð3:46Þ

with e ¼ e1∘e2 being split at the intersection point with S.
Note that we assume now and for the following discussion
that the edge e intersects the surface S exactly once and
transversely; i.e., it punctures the surface nontangentially.
Furthermore, the intersection point equals neither eð0Þ,
nor eð1Þ.
In order for (3.46) to hold, we have to multiply the binor

representation (3.27) with the spin j of the holonomy he,
which intersects S and a constant factor ð8πl2pγÞ.
Consider now two fermions of the form (3.28) with the

spin j ¼ 0. This kind of state involving two fermions was
first considered in [11]. If we admit an intersection of S
with an arbitrary point on the edge, we can calculate the
action of the spin projection,

ð3:47Þ
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whereweagain omitted the “e” label in the calculation. (3.47)
is straightforwardly calculated using the basic techniques of
binor calculus. This result would be expected for a compo-
nent of a vanishing spin projection. More generally, we can

also consider the product of the singlet (3.47) with a purely
gravitational spin network. Here, we will use the Leibnitz
rule of Êi and the termwhere SS acts on the singlet vanishes.
The latter is vanishes by (3.47), and the first term reads

ð3:48Þ

This can be calculated by dissolving the symmetriza-
tions, pulling two holonomies across each other and
consequently using the binor identity. Note that we
assumed the edge f to intersect the surface S at the same
point as e. Apart from that, f is arbitrary. If we allow f to
intersect S at any arbitrary point, the projection operator SS
will also map the state to zero, and the calculation is similar
to (3.47). The freedom to multiply any edge f here is a
result of the symmetry of the state. In the following
however, we have to stick to f ¼ e. Analogously, one
can show that also the spin 1 states are eigenstates of (3.43).

ð3:49Þ

ð3:50Þ

Since it is always the same techniques used in the
calculations, we refrain from writing out all the steps. The
structure of the eigenvalues is reminiscent of the projection
of the “up-up” and “down-down” triplet states from flat
quantum theory, but now the quantization axis is defined by
the orthonormal of the surface S. Indeed, if we flip the sign
of the surface normal, also the signs of (3.49) and (3.50)
flip, because the operator Ê includes the sign of the inner
product of the surface normal and tangent vector of e at the
intersection point.

Obviously, the operator Êi influences the actual eigen-
value, as it measures the spin jþ 1

2
of the holonomies he,

whose edges intersect the surface S. If we were to
normalize the surface normal in the definition of the
projection operator (3.43) such that

trðÊ�
i Ê

iÞ ¼ 1; ð3:51Þ

we will gather an additional factor 2ffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ

p for Êi ∝ 1
2
τi in

the spin j representation.2 Since in (3.47)–(3.50), we are
acting on a spin jþ 1

2
holonomy, the eigenvalues would

take the form � jþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ1

2
Þðjþ3

2
Þ

p . If we take the limit j → ∞,

these reproduce the spin projection �1, which we would
expect for the triplet state in flat quantum theory. Indeed, in
the literature [23,24] the limit of large spin is often regarded
as a semiclassical limit of loop quantum gravity. The third
spin 1 state (3.38) completes the discussion of the spin
projection operator (3.43) on a system of two fermions.
One can show in an analogous manner that

ð3:52Þ

holds. With (3.47) and (3.49) we now understand both
terms in (3.38) in the context of the spin projection. Hence,
we find that the third triplet state besides (3.49) and (3.50)
is represented by (3.38), which vanishes under the action of
SS. Moreover, we have found one singlet state (3.47) in
complete analogy to flat quantum theory.
Note that it is possible to generalize the above statement

to the coupling of n fermions in principle. However, we

2We would arrive at the same result, if we would define the
normalized operator by dividing SS by the surface area AS .
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cannot change the purely gravitational spin network state to
be different from a sole holonomy he; otherwise it will not
be an eigenstate of (3.43). One counterexample is
Example III.7. Consider the two fermion state with an

intertwiner in between,

ð3:53Þ

where the right-hand side represents the spin network of the
state which is written in the binor formalism on the left. We
only inserted one nontrivial intertwiner. When applying the
same techniques as above, we end up with a different state,

ð3:54Þ

where we constructed the counter example such that the
intersection point of S with the spin network graph lies on
the edge f and e ¼ f∘g−1.
We showed that the projection (3.43) can in principle

mimic the observable SS in very special cases. In general,
however, there is a nontrivial interaction between Êi (and,
in consequence SS) and gravity. As a consequence, S2E and
SS do not have the same eigenbasis.

C. Projection onto the spin of a specific fermion

In this section, we want to go away from a manifestly
gravitational reference frame and draw attention to another
observable measuring the projection of SiE onto the spin of
one specific fermion of the fermion system.
Definition III.8. In the case of n fermions connected

by a set of edges E0 with a joint end point tðE0Þ and a
nþ 1st fermion forming E ¼ E0 ∪ fenþ1g, we define the
observable,

2SE0 · Sðenþ1ð0ÞÞ ¼ 2SiE0Sfenþ1gi: ð3:55Þ

Note that we exclude the self-projection S2fenþ1g in (3.55)

by projection onto the spin defined by E0 instead of E.
Again, the addends of the observable (3.55) have the same
action as (3.27) with being inserted at the points where the

respective fermions are located. Let us have a look at
the action of (3.55) on the eigenstates of S2E discussed
in (3.28).
Proposition III.9. The eigenstates (3.28) of S2E are also

eigenstates of 2SE0 · Sðenþ1ð0ÞÞ to the eigenvalue j, the spin
of the state corresponding to the eigenvalue jðjþ 1Þ of
S2E, i.e.,

ð3:56Þ

If the nþ 1st fermion is of the type which reduces the
total spin of the n fermion system, the eigenvalue reads
−ðjþ 1Þ, i.e.,

ð3:57Þ

Here, ψ stands for an arbitrary spin network state admitting
gravitational degrees of freedom only.
Theþ1 in the negative eigenvalue seems odd at first, but

is consistent with the fact that the mixed term of the total
spin operator for the singlet state (case j ¼ 1

2
) needs a

contribution of − 3
2
in order to yield the total spin 0. As a

result, we found a more general subclass of eigenstates of
a projection operator compared to Sec. III B.
While the squared total spin S2E is well understood, we

are having trouble finding a well behaving counterpart for
the spin projection Sz. Still, first attempts have brought
reminiscent structures in special cases.
Anyway, we draw an important conclusion from the

above analysis, namely that fermionic systems influence
the spin quantum numbers of the neighboring holonomies
in a way that should be principally measurable. In the
following section, we want to sketch a measurement which
makes this statement more specific.
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IV. THE INFLUENCE OF FERMION SPIN
ON THE GEOMETRY OF SPACETIME

So far, we learned that fermionic spin degrees of freedom
influence the spin quantum numbers of the neighboring
holonomies, which are in turn a measure of surface area
[22]. This interaction between geometry and matter should
in principle be observable by measuring the area of two
surfaces in the vicinity of the fermion.
As a quantum of area is of the order of l2p and hence small

compared to measurable scales of area, we want to sketch a
macroscopic version of this experiment. Therefore, con-
sider a cube B ⊂ Σwith a number of n fermions each being
attached to a single vertex of the spin network. We will
argue later, however, that the details of the arrangement of
the fermions are not so important for the effect we are
discussing.
If there were no fermions, the Gauss law would constrain

the spins flowing out of B to be able to couple to zero. With
fermions being placed inside B, the outflowing spins have
to be able to couple to the total spin of the n fermion
system, which we can now measure with S2E. The simplest
example of this scenario is described by two outflowing
spins shown in Fig. 4, which depicts the lateral cross
section of the cube.
In general, the quantum state corresponding to Fig. 4

can be described by a linear combination of binor
calculus states like (3.28). The value k can be tuned by
aligning neighboring spins antiparalelly for k minimal or
paralelly for k maximal, respectively. This scenario is a
simple approach to mimic antiferromagnetism (or
ferromagnetism respectively) in loop quantum gravity.3

Using the well understood action of the area operator on
holonomies [22],

ÂðSÞπjðheÞ ¼
ffiffiffiffiffiffiffiffiffi
ÊiÊ

i
q

πjðheÞ
¼ ð8πl2pγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
πjðheÞ; ð4:2Þ

we notice an increase of area between the areas of the
two surfaces on the left and on the right of Fig. 4. The
difference reads

ΔA ¼ ð8πl2pγÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjþ kÞðjþ kþ 1Þ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p �

≈ ð8πl2pγÞk for j ≫ 1: ð4:3Þ

Hence, the maximal difference is proportional to the
number of fermions n. Considering a cubic centimetre
with an electron density of around 1023 1

cm3 (average solid

state), a rough dimensional analysis yields an approximate
maximal area difference of

ΔA ≈ γ × 10−42 cm2; ð4:4Þ

being significantly larger than the Planck length squared l2p,
but still small compared to area scales of well-known
physics. If we assume a homogeneous growth of area, we
can trace it back to the error of length scale ϵ,

A0 þ ΔA ¼ ðlþ ϵÞ2 ¼ l2 þ 2lϵþOðϵ2Þ ð4:5Þ

⇒ ϵ ≈
ΔA
2l

; ð4:6Þ

where l is the length of the square at total spin 0 and
A0 ¼ l2. Only for l ¼ 10−9 cm, ϵ enters the regime of
Planck length and would be even smaller than lp for larger
l. Although the large number of fermions first appeared to
make the effect large, we end up with an effect in length of
the order of the Planck length. This comes from the fact that
it is apparently harder to measure a quantum of area ∼l2p
than a quantum of length ∼lp.
The area change (4.4) can be additionally increased by

increasing the electron density or starting with a longer bar
instead of a cube in the first place. Also a more efficient
method to measure area (without tracing it back to length)
might improve the problem of spatial resolution discussed
above. In this way it might in principle be possible to
experimentally measure an upper bound to the Barbero-
Immirzi parameter γ.
Indeed, this is consistent with the fact that the Barbero-

Immirzi parameter in loop quantum gravity is no more

(4.1)

FIG. 4. Sketch of the lateral cross section of a three-dimen-
sional cube B containing n fermions. Two edges are intersecting
the surface area of B. Dependent on the coupling of the fermion
spins, the spin quantum numbers of the holonomies intersecting
the surface of B may differ by k, which is bounded by 0 and n

2
.

This is reminiscent of the total spin of the Ising model in flat
spacetime.

3In principle, k can also take negative values. However, as the
problem is symmetric, negative k values can be equivalently
described by flipping the outflowing spins.
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arbitrary in the presence of fermions [25]. It might still be
difficult to make a statement about the order of magnitude
of γ. While the Immirzi parameter is estimated to be of
order of magnitude 1 in order to reproduce the Bekenstein-
Hawking formula in the theory of black hole entropy
[26,27], it is treated as a large quantity γ ≫ 1 in order to
justify the perturbative calculation of time evolution [28].
Note that the above analysis only represents a model

which would be more accurate if we would allow more than
only two points of outflow. This includes states of the form
(3.39), which are also eigenstates of the total spin squared.
Here, however, the area increase is not directed like in (4.1)
but might flow out of the cube in every direction. Still
the minimal and maximal increase are again limited by
0 and n

2
.

More generally, in order to predict the effect it is
sufficient to require B to be a connected and compact
subset of Σ not necessarily diffeomorphic to a cube. The
more general statement when embedding a spin network
state with n fermions into B is that the surface area of
B will sense the same area increase (4.3) when coupling
the fermion spins completely parallel compared to the
case of total spin 0. The most general setup is sketched
in Fig. 5.

V. SUMMARY AND OUTLOOK

We have introduced a total spin operator SE for a set of
points connected by a set of paths E to a reference point
tðEÞ. The parallel transport of each fermionic spin operator
to tðEÞ ensures that we can add all the different single
particle spin operators to a gauge covariant total spin
operator.

Building on SE we further introduced a number of
observables describing the squared total spin and various
projections of SE. We showed that, in general, spin network
states are not eigenstates of these operators. Instead, it
turned out to be convenient to work with the binor
formalism.Within this framework, wewere able to describe
the eigenstates of the squared total spin operator in some
detail and hence define a notion of fermionic spin coupling
in loop quantum gravity. ES is algebraically a spin, hence
the spectrum of this operator is the standard one.
Although we were not able to define a spin projection

that commutes with the squared total spin, we introduced
two possible observables which mimic the action of Ŝz
from quantum mechanics, using on the one hand a fixed
surface S and on the other hand the spin of one specific
fermion as a reference. A more accurate imitation of a
Stern-Gerlach type observable would be the coupling of the
spin operator with an electromagnetic field. The formu-
lation of loop quantum gravity with charged fermions is in
principle available [12], a detailed treatment is still work in
progress [29], however.
At last, we used the above results to sketch an exper-

imental setup describing an observable effect as a result of
the entanglement between fermion spin and geometry. In
the example considered, a closed surface B containing n
fermions would experience a change in area linear in n
when the spins of the fermions inside B were aligned. We
note again, that neither area nor spin are Dirac observables,
and thus the picture could change in a more complete
approach.
Indeed, it would be very interesting to take diffeo-

morphism and Hamiltonian constraint into account to
understand the dynamics of the kinematical states dis-
cussed in this paper. To do this, a reduced phase space
quantization could be carried out [16,17].
Also, to understand the connection between area and

total spin better, the eigenstates of S2E and the action of the
area operator on these are to be understood more precisely.
Since the two observables should be measured simulta-
neously, their commutator has to be investigated.
We finally note that we chose the Ashtekar-Barbero

connection to parallely transport spins. Other choices of
parallel transport are clearly possible in principle. How they
could be realized within loop quantum gravity, and how
this would change the picture could also be investigated in
the future.
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APPENDIX A: SPIN COUPLING
AND BINOR FORMALISM

It turns out that within the spectral analysis of the
spin operator (3.26), it is convenient to leave the spin
network basis of loop quantum gravity and describe the
states of H using the binor calculus [1,19–21]. In order
to fix the notation, we recall the main definitions of the
binor-formalism,

ðA1Þ

ðA2Þ

For the sake of clarity, we deviate from the standard
notation by denoting a spin 1

2
representation of the hol-

onomy he as a straight line with label “e.” Moreover, we
draw a spinor as a star. Higher spin j representations can be
constructed by the symmetrization of 2j many spin 1

2

holonomies. We denote the symmetrization by a box with
as many ingoing edges as outgoing ones,

ðA3Þ

The last element from our toolbox which enables us to
mimick spin network states in the binor formalism is the
notation of the intertwining operators,

ðA4Þ

where a; b; c ∈ N0

2
are determined by

a ¼ 1

2
ðiþ k − jÞ ðA5Þ

b ¼ 1

2
ðjþ k − iÞ ðA6Þ

c ¼ 1

2
ðiþ j − kÞ: ðA7Þ

As higher valent intertwiners can always be expanded into
a basis of three-valent intertwiners, (A4) completes the
toolbox of the binor formalism. At last, we want to recall
the binor identity,

ðA8Þ

which is used to dissolve crossings within the
binor calculus. We can use the binor identity, to
show the binor representation of (3.27). We start with
the identity,

ðA9Þ

On the other hand, using the intertwining property of the
Pauli matrices,

π1ðheÞij ¼
1

2
σiABπ1

2

B
C
σj

C
D

�
π−11

2

�
D

A
; ðA10Þ

and substituting π1ðheÞ in the definition (3.27), we finally
deduce
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ðA11Þ

which shows (3.27). The operator (A11) acts on the fermions
1 and 2 by inserting a Pauli matrix at the point where the
fermion is located. With this operator, we are able to
calculate the action of ðSEÞ2 on an arbitrary state in H.

APPENDIX B: PROOF OF PROPOSITION III.5

We proceed with a proof of induction.

1. Induction start

We will consider example III.4 for the start. Here, we
have j ¼ k ¼ 1

2
and two fermions of different types. Apart

from λ0, which can always be set to 1 without loss of
generality, there is only one nontrivial coefficient λ1 ¼ 1

2
, or

equivalently λ−11 ¼ 2, which is in agreement with (3.40).

2. Induction step

We assume that the proposition holds for a fixed number
of fermions n. If we now consider a state with nþ 1
fermions, there are four possible cases, we have to
distinguish. On the one hand, we can lower or raise the
total spin of the state, and on the other hand we can either
raise (or lower) j or k. However, the problem is highly
symmetric such that we can focus on the case where j is
raised by the nþ 1st fermion and refer to the other cases to
be treated in analogue manner.
Moreover, we will reduce the problem further by

dissolving all symmetrizations (except at the points of
outflow) and operating on a product of fermions and
holonomies only. Hence, we are left with the following
building blocks:

ðB1Þ

out of which the remaining terms are constructed. We
omitted the labels denoting the edges of the connecting
holonomies for the sake of clarity. In our case, the nþ 1st

fermion is of the form,

ðB2Þ

If we denote the graph connecting fermion 1 to fermion n
to a joint point by E0 and E ¼ E0 ∪ fenþ1g, then we

can split off the action of the squared total spin in the
following way:

S2E ¼ S2E0 þ S2ðenþ1ð0ÞÞ

þ 2

�Xn
l¼1

Siðelð0ÞÞδijπ1ðhe−1nþ1
∘elÞjK

�
Skðenþ1ð0ÞÞ:

ðB3Þ
If we act on the nþ 1 fermion state with the first operator, it
will give the eigenvalue jmðjm þ 1Þ by the induction
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hypothesis, where jm ¼ jþ k −m denotes the sum of
outflowing spin, which is dependent on the number m
of reductions made. The second operator is also well known
and gives the eigenvalue 1

2
ð1
2
þ 1Þ ¼ 3

4
. We are left with the

mixed terms, which connect the nþ 1st fermion with any of
the other fermions each in a separate addend. The binor
representation of this operator is shown in (3.27). One can
see that we get two terms for each of its action if we
dissolve the symmetrization in (3.27) together with using
the binor identity (A8). The first term in (3.27) acts as an
identity operator with a factor 1

2
. From this contribution, we

get, additionally to jmðjm þ 1Þ and 3
4
, also a factor n

2
. We

will now discuss the only nontrivial action of (B3) namely
the second term in (3.27). This term connects the nþ 1st

fermion with each of the building blocks as well as the end
points which are left over by a spin 1

2
holonomy.

Let us start with the building block (B2) which increases
j. As the nþ 1st fermion is of the same type, the resulting
state vanishes as the symmetrization and an antisymmet-
rization meet

ðB4Þ

This result is independent of which of the terms we regard.
As a next step, let us have a look at the building blocks
which are factors of singlet states,

ðB5Þ

The operator connects the nþ 1st fermion with each of the
two fermions 1 and 2 by a holonomy. This yields the state,

ðB6Þ

where we used basic manipulations of ϵ and δ and
the binor identity in the second step. The labels of the
edges are again omitted, since they are not relevant for
this calculation. In general, they have to be taken care of.
With (B6), we have another contribution to the eigenvalue,
which goes linear with the number of the building blocks of
the form (B5). Let us denote the number of fermions which
decrease the number of holonomies from top to bottom by
n−. Analogously, the number of fermions increasing the
number of holonomies, we denote by nþ such that they sum

up to the total number of fermions excluding the nþ 1st

fermion,4

n− þ nþ ¼ n: ðB7Þ
On the other hand, it holds nþ − n− ¼ 2j − 2k. The
contribution of (B6) hence will be −ðn− − 2kþmÞ, which
can be combined with n

2
to

4Whether we include it or not is a matter of convention.
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n
2
− n− þ 2k −m ¼ 1

2
ðnþ − n−Þ þ 2k −m

¼ jþ k −m ¼ j0 −m: ðB8Þ

The last building block will change the state nontrivially. If
we connect the nþ 1st fermion with a fermion of the type,

ðB9Þ

thenwe reduce theoutflowing spinby1.This reductionyields

ðB10Þ

which is equal to one of the other states corresponding to one
more reductionmþ 1. This contribution goeswith a factor 1.
Finally, we can collect all the pieces to find that the
coefficients in front of a state with m reductions reads

λm−1 þ λm

�
ðj0 −mÞðj0 −mþ 1Þ þ 3

4
þ j0 −m

�

¼ λm−1 þ λm

��
j0 þ

1

2

��
j0 þ

3

2

�
þm2 − 2m − 2mj0

�
;

ðB11Þ

which equals to ðj0 þ 1
2
Þðj0 þ 3

2
Þ if and only if

λm−1 ¼ λm ·m

�
2

�
j0 þ

1

2

�
−mþ 1

�
: ðB12Þ

This completes the proof. ▪
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