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It has been suggested that the homogeneous black hole interior spacetime, when quantized following the
techniques of loop quantum cosmology, has a resolved singularity replaced by a black-to-white hole
transition. This result has however been derived so far only using effective classical evolution equations, and
depends on details of the so-called polymerization scheme for theHamiltonian constraint. Herewe propose to
use the unimodular formulation of general relativity to study the full quantum dynamics of this mini-
superspace model. When applied to such cosmological models, unimodular gravity has the advantage of
trivializing the problem of time by providing a true Hamiltonian which follows a Schrödinger evolution
equation.By choosing variables adapted to this setup,we showhow towrite semiclassical states agreeingwith
that of theWheeler–DeWitt theory at late times, and how in loop quantum cosmology they evolve through the
would-be singularity while remaining sharply peaked. This provides a very simple setup for the study of the
full quantum dynamics of these models, which can hopefully serve to tame regularization ambiguities.
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I. INTRODUCTION

Quantum gravity is expected to shed light on the fate of the
singularities which appear in classical general relativity. The
most notable occurrences of these are in cosmological
models, e.g., the big bang in Friedmann-Lemaitre-Robertson-
Walker (FLRW)-like spacetimes, and inside of black holes.
Understanding how this classical singular behavior is affected
by quantum theory is therefore fundamental in order to get a
complete description of the evolution of our Universe, and to
knowwhat becomes of black holes after they have evaporated.
With the advent of precision cosmology [1–5] and the recent
observational access to black hole physics [6,7], the prospect
of testing models of quantum gravity is also becoming more
realistic [8–16]. In particular,models inwhich the (big bang or
black hole) singularity is replaced by a bounce open a new
window into phenomenology.
Lots of work has been devoted to the study of bounces

driven by quantum effects within loop quantum gravity
[17,18] and inspired symmetry-reduced models of quantum
cosmology [19]. In loop quantum cosmology (LQC here-
after) [20,21], there is robust evidence that the big bang
singularity is replaced by a quantum bounce [22–24].
Attempts to extend these FLRW results to black hole
spacetimes have been numerous. In particular, one can
distinguish approaches which are based on symmetry-
reduced models [25–44], approaches within the full theory
[45–47], and other bouncing models with various phenom-
enological inputs (not necessarily coming from loop
quantum gravity) [48–55]. In all these models, the black
hole singularity is replaced by a nonsingular phase where

curvature remains finite, and beyond which one may find a
white hole or a de Sitter universe [45–47].
The difficulty with models applying the techniques of

LQC to the black hole interior is that they rely on classical
effective evolution equations. In this effective approach,
one is using a classical modification of the Hamiltonian
constraint, via the so-called polymerization of a preferred
choice of phase space variables, in order to derive effective
evolution equations. While in LQC applied to FLRW
models it has been shown that the effective equations
approximate well the numerical evolution of quantum
states which are semi-classical in the future [56], such
an analysis, and that of the quantum dynamics in general, is
still missing in the context of black holes.
Reliance on the effective equations poses another chal-

lenge, which is to define a consistent regularization of the
Hamiltonian constraint. In the absence of guidance from
the full theory, the heuristic regularization scheme which is
adopted in effective approaches is to replace a choice of
phase space variables (say) q by their “polymerized”
version sinðλqÞ=λ, where λ is an ultraviolet cutoff typically
related to the area gap of full LQG, and which is
furthermore allowed to be phase space dependent. This
compactification of variables is expected to capture the
effects of quantum geometry, imported in mini-superspace
from the full theory. Evidently, this procedure requires that
one decide on a choice of phase space variables to
polymerize, and on the functional form of the regulator
λ. In FLRW models, there exist solid arguments in favor of
a unique choice known as the μ̄ scheme (although addi-
tional ambiguities remain, see e.g., [57–60]). For the black
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hole interior however, there is no agreement on the choice
of variables and polymerization scheme, and this has
recently been the subject of many discussions [38–44].
The effective dynamics approach, in which one uses
heuristic deformations of the constraints, also raises the
important question of whether the models so constructed
possess spacetime covariance [61–66], which is another
important consistency check on the regularized con-
straints.1 While the homogeneous model does not allow
one to discuss a nontrivial algebra of constraints, it actually
has an isoð2; 1Þ Poincaré symmetry, as revealed and
studied in [67], which can be used as a guide towards a
symmetry-preserving regularization.
Once a regularization scheme has been adopted, one can

ask the question of the quantum dynamics, and then study if
the effective classical equations indeed emerge from this
quantum theory. Whether one is studying Wheeler–DeWitt
(WDW) mini-superspace quantization, or quantization on
the polymer Hilbert space inherited from LQG, the study of
the quantum dynamics requires one to deal with the usual
difficulties present in general relativity, namely the problem
of time and that of finding observables [68,69]. In the study
of LQC for FLRW models, analytical results are typically
derived by deparametrizing the theory with respect to a
scalar field clock, thereby interpreting the Hamiltonian
constraint as an evolution operator with respect to an
internal time. The positive and negative frequency solutions
to the (initially) quadratic evolution equation in scalar field
time then satisfy a Schrödinger evolution equation which is
formally the square root of the Klein-Gordon equation.
Evidently, this procedure may not be well defined for more
complicated gravitational Hamiltonians, or for arbitrary
matter fields (e.g., a scalar field with a potential).
A great simplification occurs however when considering

unimodular gravity [70,71]. This is a formulation of gravity
equivalent to usual general relativity, but which allows for
the cosmological constant to vary between different sol-
utions (it appears as a simple integration constant). In
canonical theory, the lapse is fixed to a particular value and
the theory possesses a true Hamiltonian which generates
evolution along a “cosmological clock” variable canoni-
cally conjugated to the cosmological constant. When
applied to mini-superspace models, unimodular gravity
completely trivializes the problem of time, and gives rise to
a Schrödinger evolution equation with respect to which
unitary can be unambiguously defined. This has motivated
recent studies of the information loss problem within
FLRW cosmological models, where the possibility of
transferring information to Planckian degrees of freedom
(such as those of LQG) has been proposed as a mechanism
behind the apparent nonunitarity observed by low energy
coarse grained observers [72,73].

Unimodular gravity was applied to the LQC quantization
of FLRW models in [74] (see also [75]). The unimodular
representation becomes however truly useful in more
complicated models, and for this reason we propose to
apply it to the homogeneous black hole interior spacetime.
The goal of this work is to advocate for the use of the
unimodular clock variable in the study of quantum cos-
mological models, both within traditional WDW and LQC
quantization. In the context of black hole interior models,
the motivation is, on the one hand, to eventually extend
scenarios such as the one proposed in [72,73] in order to
study the information loss problem. On the other hand, the
simple quantum theory resulting from the use of the
unimodular clock could be used in order to test the various
regularization schemes which have been proposed in the
literature (and their related choices of canonical variables).
Starting from a preferred choice which we will argue in
favor of, we provide a proof of principle construction which
can be extended to other proposals in order to test their
viability and the properties of the resulting quantum theory.
Note that [41] has given ingredients of the quantum theory
and in particular found the kernel of the Hamiltonian
constraint operator (with a given choice of variables and
polymerization). Here we aim at constructing instead the
actual quantum evolution of states by solving a deparame-
trized evolution equation.
This article is organized as follows. We first recall in

Sec. II the classical structure of the black hole interior with
cosmological constant. In Sec. III we review the effective
classical dynamics arising from various polymerization
schemes. We introduce a “mixed scheme” in Sec. III D,
based on the variables introduced in [41,42]. This allows us
to simplify the analysis of the quantum theory by finding
simple eigenfunctions for the WDW operator, which can
then be used to compute the evolution of LQC states across
the singularity. In both the classical and effective evolu-
tions, we discuss the role of the Dirac observables. Finally,
we present in Sec. IV the construction of the quantum
dynamics of the theory.

II. BLACK HOLE INTERIOR WITH
COSMOLOGICAL CONSTANT

Let us start by studying the classical setup underlying our
construction. We will present the metric for the black hole
interior with cosmological constant, the corresponding
LQG connection and triad variables, and the classical
Hamiltonian. We will then use this Hamiltonian to compute
and study the classical equations of motion in terms of the
cosmological time variable.

A. Variables and Hamiltonian

Because we plan on using the cosmological time variable
to construct the classical and quantum evolutions, we
cannot restrict ourselves to the study of the standard

1Although for this one needs to go beyond homogeneity in
order to have a nontrivial spacetime algebra of constraints.
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Schwarzschild black hole interior. Instead, we need to
consider the more general Schwarzschild–de Sitter (SdS)
spacetime. In static coordinates, the SdS line element takes
the form

ds2 ¼ −fðrÞdt̃2 þ fðrÞ−1dr2 þ r2dΩ2; ð2:1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the metric on the unit
2-spheres at constant r and t̃. The function fðrÞ is given by

fðrÞ ≔ 1 −
2M
r

−
Λ
3
r2; ð2:2Þ

where M is the mass of the black hole and Λ is the
cosmological constant (and we have setG ¼ 1 ¼ c). To get
a preliminary understanding of the geometry of this
spacetime, it is useful to analyze the positive real roots
of the cubic equation fðrÞ ¼ 0.

(i) For Λ > 0 and 9M2Λ < 1, there are three real roots
and two are positive, corresponding respectively to a
black hole horizon at

rh
M

¼ −
2

M
ffiffiffiffi
Λ

p cos

�
1

3
arccos ð3M

ffiffiffiffi
Λ

p
Þ − 2π

3

�
¼ 2þ 8

3
M2ΛþOðM

ffiffiffiffi
Λ

p
Þ4; ð2:3Þ

and a cosmological horizon at

rc
M

¼ −
2

M
ffiffiffiffi
Λ

p cos
�
1

3
arccos ð3M

ffiffiffiffi
Λ

p
Þ þ 2π

3

�
¼

ffiffiffi
3

p

M
ffiffiffiffi
Λ

p − 1þOðM
ffiffiffiffi
Λ

p
Þ: ð2:4Þ

(ii) For Λ > 0 and 9M2Λ ¼ 1, there are three real roots
and two are degenerate and positive, corresponding
to a single horizon at rh ¼ 3M.

(iii) For Λ > 0 and 9M2Λ > 1 there are two imaginary
roots and a negative real root, so no horizons.

(iv) For Λ < 0, there are two imaginary and a positive
real root, corresponding to a horizon at

rh
M

¼ −
2

M
ffiffiffiffiffiffiffi
−Λ

p sinh

�
1

3
arcsinhð3M

ffiffiffiffiffiffiffi
−Λ

p
Þ
�

¼ 2þ 8

3
M2ΛþOðM

ffiffiffiffiffiffiffi
−Λ

p
Þ4: ð2:5Þ

In the rest of this work we are going to consider the case
Λ > 0. Notice that, in principle, the condition 9M2Λ < 1
gives an upper limit on the mass of black holes, although
with the observed value of the cosmological constant this
bound is very loose. For example, for a SdS black hole of
solar mass, the radius of the cosmological horizon is of the
order of the Hubble radius.

Just like in the case Λ ¼ 0, the SdS metric (2.1) admits a
maximal analytic extension. More importantly for our
purposes, it is also possible to find homogeneous
Kantowski-Sachs coordinates covering the region located
inside of the black hole horizon, and with which the line
element becomes

ds2 ¼ fðtÞ−1dt2 − fðtÞdx2 þ t2dΩ2

¼ −
�
2M
t

þ Λ
3
t2 − 1

�
−1
dt2 þ

�
2M
t

þ Λ
3
t2 − 1

�
dx2

þ t2dΩ2: ð2:6Þ

In these homogeneous coordinates the spatial slices are
Σ ¼ R × S2 with x ∈ R, the singularity is located at t ¼ 0,
and the horizon is at t ¼ rh. Since this metric is homo-
geneous we can apply to it the quantization techniques
of LQC.
For this, we need to set up the Hamiltonian formulation

using canonically conjugated connection and triad
variables. The details of this construction are given in
the Appendix B. Following the abundant literature on
Kantowski-Sachs LQC, we consider the line elements of
the form

ds2 ¼ −N2dt2 þ p2
b

L2
0jpcj

dx2 þ jpcjdΩ2; ð2:7Þ

with NðtÞ, pbðtÞ, and pcðtÞ the three time-dependent
functions, and where L0 is a fiducial length parameter
used to regulate the noncompact spatial integrations in
the Hamiltonian and symplectic structure. This metric is
singular both for pb¼0 and pc ¼ 0. However, only pc ¼ 0
represents a true singularity (it is possible to show that
the Kretschmann scalar behaves as p−1

c ), while pb ¼ 0 is
simply a horizon singularity.
With the form (2.7) of the metric, one can show that the

densitized triad components Ea
i and the canonically con-

jugated connection components Ai
a take the form2

Ea
i τ

i∂a ¼ pc sin θτ1∂x þ
pb

L0

sin θτ2∂θ þ
pb

L0

τ3∂ϕ; ð2:8aÞ

Ai
aτidxa ¼

c
L0

τ1dxþ bτ2dθ þ b sin θτ3dϕ − cos θτ1dϕ:

ð2:8bÞ

The function N is analogous to the lapse of canonical
gravity, and as such is pure gauge. We are therefore
considering a symmetry-reduced phase space spanned by
the two canonical pairs ðb; pbÞ and ðc; pcÞ. One can see

2From this one can see that only the ratios L−1
0 pb and L−1

0 c
have an invariant meaning under the rescaling L0 → αL0 of the
fiducial length.
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that this classical parametrization of the line element has
the orientation reversal symmetry ðpb; pcÞ → −ðpb; pcÞ,
which we will fix by restricting ourselves to ðpb; pcÞ ≥ 0.
The classical dynamics of the theory is defined by the

Hamiltonian and the Poisson bracket relations between the
canonical phase space variables. This construction is
recalled in Appendix B. The Hamiltonian is

H ¼ −
N

2γ2
ffiffiffiffiffi
pc

p ð2bcpc þ ðb2 þ γ2ÞpbÞ þ
NΛ
2

pb
ffiffiffiffiffi
pc

p
≈ 0;

ð2:9Þ

where we have included a cosmological constant matter
term, as required in order to work with the unimodular time
variable canonically conjugated to Λ, and where γ is the
Barbero-Immirzi parameter.3 The weak equality denotes
the fact that the Hamiltonian is vanishing as a constraint.
The canonical Poisson brackets are

fb;pbg ¼ γ; fc;pcg ¼ 2γ; fT;Λg ¼ 8π: ð2:10Þ

The first two brackets concern the gravitational degrees of
freedom of the theory, while the last one encodes the fact
that in unimodular gravity, as recalled in Appendix A, the
cosmological constant Λ is canonically conjugated to the
cosmological time variable T.

B. Classical dynamics

With the classical Hamiltonian at our disposal, we can
compute and solve the equations of motion of the system.
Since the idea of the present work is to use the cosmo-
logical time variable and the corresponding choice of lapse
in order to deparametrize the time evolution in the quantum
theory, it is natural to also proceed to the same deparamet-
rization at the classical level. However, we defer this
calculation to Appendix C, and choose here instead the
usual lapse

N ¼ γ
ffiffiffiffiffi
pc

p
b

ð2:11Þ

in order to facilitate comparison with the existing literature.
With this choice of lapse the Hamiltonian is

H ¼ −
1

2γb
ð2bcpc þ ðb2 þ γ2ÞpbÞ þ

γΛ
2

pbpc

b
: ð2:12Þ

The time evolution of a phase space function g is denoted
by a dot and given by the Poisson bracket _g ¼ fg;Hg. For
the phase space variables of interest we find

_b ¼ 1

2b
ðγ2Λpc − ðb2 þ γ2ÞÞ; ð2:13aÞ

_c ¼ γ2Λ
pb

b
− 2c; ð2:13bÞ

_pb ¼
pb

2b2
ðγ2Λpc þ ðb2 − γ2ÞÞ; ð2:13cÞ

_pc ¼ 2pc; ð2:13dÞ

_T ¼ 4πγ
pbpc

b
; ð2:13eÞ

_Λ ¼ 0: ð2:13fÞ

In addition to these dynamical equations we have the
relation

c ≈
pb

2bpc
ðγ2Λpc − ðb2 þ γ2ÞÞ; ð2:14Þ

which follows from the vanishing of the Hamiltonian
constraint. The equation of motion on Λ simply states that
this variable is indeed constant. Fortunately, the presence of
Λ ≠ 0 still allow one to find the solutions to the equations
of motion in closed form. They are given by

bðτÞ ¼ �γ

�
e−ðτ−τ0Þ þ Λ

3
Be2ðτ−τ0Þ − 1

�
1=2

; ð2:15aÞ

cðτÞ ¼ γA

�
Λ
3
eðτ−τ0Þ −

1

2B
e−2ðτ−τ0Þ

�
; ð2:15bÞ

pbðτÞ ¼ �Aeðτ−τ0Þ
�
e−ðτ−τ0Þ þ Λ

3
Be2ðτ−τ0Þ − 1

�
1=2

;

ð2:15cÞ

pcðτÞ ¼ Be2ðτ−τ0Þ; ð2:15dÞ

TðτÞ ¼ � 4π

3
ABe3ðτ−τ0Þ − T0; ð2:15eÞ

where ðτ0; T0; A; BÞ are integration constants. The integra-
tion constants τ0 and T0 can be set to zero without loss of
generality, as they reflect the gauge freedoms in shifting
respectively the time coordinate τ and the cosmological
time T. The two other constants can be rewritten as
A ¼ 4D=3 and B ¼ CD2=9 in terms of first integrals of
the motion given by4

3In all numerical calculations we use the value γ ¼ 0.2375.

4We have chosen the constant numerical factors in the
definition of C and D in such a way that their expressions in
terms of the variables used for the quantization later on in Sec. IV
will be simpler.
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C ¼ 16

γ2
b2pc

p2
b

; D ¼ 1

2γ
ðbpb − cpcÞ þ

γ

2

pb

b
: ð2:16Þ

One can readily verify that fC;Hg ¼ 0 ¼ fD;Hg, so in
the terminology of constrained Hamiltonian systems these
are the two Dirac observables of the theory.
With the solutions to the classical equations of motion at

hand, one can go back to the parametrization (2.7), and
write this line element as

ds2 ¼−Be2τ
�
e−τþΛ

3
Be2τ −1

�
−1
dτ2

þ A2

L2
0B

�
e−τþΛ

3
Be2τ −1

�
dy2þBe2τdΩ2: ð2:17Þ

Introducing the new coordinates

t ¼
ffiffiffiffi
B

p
eτ; x ¼ A

L0

ffiffiffiffi
B

p y; ð2:18Þ

one of the integration constants gets reabsorbed, and we
find the homogeneous interior line element (2.6) with a
mass

M ¼
ffiffiffiffi
B

p

2
¼ D

ffiffiffiffi
C

p

6
: ð2:19Þ

Note that we can rewrite the Dirac observables as

2M ¼ D
ffiffiffiffi
C

p

3
≈

ffiffiffiffiffi
pc

p
γ2

ðb2 þ γ2Þ − Λ
3
p3=2
c ;

−2γD ≈ 3cpc − γ2Λ
pbpc

b
; ð2:20Þ

where for the weak equality we have used the constraint
(2.14). In the case Λ ¼ 0 these reduce to the Dirac
observables identified in [43], and 2M then corresponds
to the radius of the horizon as can be seen from (2.3).

III. EFFECTIVE DYNAMICS

We now turn to the study of the effective classical
dynamics. The idea behind this construction is to modify
the classical Hamiltonian using a so-called polymerization
scheme, supposed to encode semi-classical corrections to
the classical dynamics discussed in the previous section.
Inspired by the full theory, where the connection is not
available as an operator on the chosen Hilbert space and has
to be replaced by holonomies, this polymerization is
typically implemented by replacing the connection varia-
bles ðb; cÞ in the classical Hamiltonian by5

SðbÞ ≔ sinðbδbÞ
δb

; SðcÞ ≔ sinðcδcÞ
δc

: ð3:1Þ

The precise form and phase space dependency of the
regulators ðδb; δcÞ has been the subject of much debate
in the literature in recent years. A further freedom in this
construction is that of choosing the canonical variables
themselves, and of considering polymerization schemes for
variables which do not necessarily correspond to the
components of the connection.
In flat FLRW LQC, the so-called improved μ̄ scheme

provides a viable and much studied prescription for
choosing the regulator (of the unique homogeneous con-
nection variable). Since no such robust choice is available
in the case of the black hole interior, we would like to take
here a first step towards the construction of a deparame-
trized quantum theory, which one could then use as a test
bed for various proposals. This construction is however a
bit circular, as we need to base our quantum theory on a
choice of canonical variables and polymerization scheme.
We will do this by adapting the ðp; vÞ-type variables of
[41,42], on which we will implement a “mixed” polym-
erization scheme adapted to the study of the quantum
theory with unimodular clock variable. In order to under-
stand this construction, presented in Sec. III D, we will first
very briefly review the main choices of polymerization
existing in the literature. We refer the reader to [38,43] for
very detailed reviews of the various schemes, with in
particular an in-depth study of the role of the (classical
and effective) Dirac observables in [43].

A. μ̄ scheme

As done in [28], it is natural to start by trying to adapt to
the black hole interior case the improved μ̄ scheme initially
developed in FLRW LQC. In this scheme, the polymeri-
zation parameters δb and δc for the holonomies depend on
the triad variables pb and pc. To define the exact depend-
ency, the physical input is to constrain the physical area
enclosed by holonomy loops to be equal to the area gap of
LQG, namely Δ ¼ 2

ffiffiffi
3

p
πγl2

Pl. The classical physical area
of a loop in the ðx; θÞ plane is given by Arxθ ¼ δbδcpb. On
the other hand, the loop on the 2-sphere ðθ;ϕÞ is not closed.
However, as discussed in [28], because of homogeneity it is
possible to assign to it an effective area Arθϕ ¼ δ2bpc.
Imposing that these two areas be equal to Δ and solving for
the δ’s leads to

δb ¼
ffiffiffiffi
Δ

pffiffiffiffiffi
pc

p ; δc ¼
ffiffiffiffiffiffiffiffiffi
Δpc

p
pb

: ð3:2Þ

Note that this is compatible with the invariance under
choice of L0.

5The fact that only L−1
0 c has invariant meaning under rescaling

of the fiducial length L0 constrains the associated polymerization
parameter to be such that only L0δc has an invariant meaning.
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With the choice of lapse (2.11), replacing the connection
variables ðb; cÞ by their polymerized counterpart in (2.12)
leads to the effective Hamiltonian constraint

Heff ¼ −
1

2γSðbÞ ð2SðbÞSðcÞpc þ ðSðbÞ2 þ γ2ÞpbÞ

þ γΛ
2

pbpc

SðbÞ : ð3:3Þ

Taking into account the fact that the polymerization
parameters ðδb; δcÞ are phase space functions, the effective
equations of motion take the form

_b ¼ 1

2SðbÞ ðγ
2Λpc − ðSðbÞ2 þ γ2ÞÞ þ δc

δb
ðcCðcÞ − SðcÞÞ;

ð3:4aÞ

_c¼ γ2Λ
2

pb

SðbÞ
�
1þbCðbÞ

SðbÞ
�
−SðcÞ−cCðcÞ

þ δb
2δc

�
bCðbÞ

�
1−

γ2

SðbÞ2
�
þ γ2

SðbÞ−SðbÞ
�
; ð3:4bÞ

_pb ¼
pb

2SðbÞ2 ðγ
2Λpc þ ðSðbÞ2 − γ2ÞÞCðbÞ; ð3:4cÞ

_pc ¼ 2pcCðcÞ; ð3:4dÞ

where we have introduced CðbÞ ≔ cosðbδbÞ which is such
that CðbÞ → 1whenΔ → 0, and similarly for c. With this, it
is straightforward to see that the limit Δ → 0 leads back to
the classical equations of motion (2.13). Note that the
polymerized versions of the quantities (2.16) are not
conserved anymore, even in the case Λ ¼ 0, so we lose
the explicit expression for the Dirac observables.
Unfortunately, the nonlinearity of these effective equa-

tions prevents us from obtaining an exact solution, even in
the case Λ ¼ 0, and we have to proceed numerically.

In order to set the initial conditions for the numerical
evolution, we impose that the effective solution approaches
the classical solution in the regime of low curvature (i.e.,
near the horizon). Explicitly, we pick the initial conditions
for ðb; pb; pcÞ at the point where the true classical solution
(2.15c) for pb exhibits a maximum. As the effective
constraint must be satisfied at every point of the solution,
we then obtain cðτ0Þ from the vanishing of the effective
Hamiltonian constraint (3.3). Note that in this case we do
not have control over the effective integration constants (or
Dirac observables), and the effective solutions are con-
trolled by the choice of ðA; BÞ in (2.15), or equivalently a
chosen pair amongst ðM;C;DÞ.
Plotting the solutions requires one to choose a value for

the cosmological constant. In reduced Planck units, its
value is of order 10−122, which would effectively be treated
as zero in the numerical evaluation of the solution. In
unimodular gravity however, Λ is a dynamical variable
whose value can change between solutions, so it is not
unreasonable to consider an arbitrary value. Since we are
interested in the role of Λ as a variable conjugated to a
cosmological time to be used for the deparametrization of
the quantum theory, we will restrict our discussion to the
case 9M2Λ < 1. In this regime, the physics of both the
classical and effective solutions is qualitatively unchanged
with respect to the case Λ ¼ 0. This will facilitate the
comparison with the abundant results which exist in the
literature for Λ ¼ 0. It is only in the quantum theory that
Λ ≠ 0 will play a crucial role for us, since it will give us
access to the preferred deparametrization. Taking Λ ¼ 0,
the compared evolution of the true classical and effective
trajectories is represented in Fig. 1 below.
This plot puts in evidence the main issue with the μ̄

scheme applied to the black hole interior. One can see that
pc initially follows the true decreasing classical trajectory,
and then starts to oscillate in the Planck regime, undergoing
several bounces with a decreasing trend on average. This
however leads to an inconsistency, as pc, which represents

FIG. 1. Comparison of the classical (dashed) and effective (solid) evolution of pc in terms of pb (left) and time τ defined by the lapse
(2.11) (right). For this plot we have set the initial conditions A and B in (2.15) by choosing a mass M ¼ 104 and D ¼ 103, and
taken Λ ¼ 0.
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the radius of the 2-sphere, becomes at some point so small
that the area of this 2-sphere is smaller than the area gap Δ.
As a consequence the plaquette□θϕ can no longer fit on the
2-sphere. This violates the very construction of the μ̄
scheme, and therefore makes it inconsistent.

B. μ0 scheme

One possibility in order to cure the issue encountered in
the μ̄ scheme is to actually go back to constant δ’s, as in the
μ0 scheme [28,33]. In order to implement this, we require
that the areas of the loops measured with the fiducial metric
be equal to the area gap of LQG. This translates into the
conditions Arxθ ¼ L0δbδc and Arθϕ ¼ δ2b, where once
again the area of □θϕ is effective since the corresponding
loop is not closed. Solving for the δ’s then gives

δb ¼
ffiffiffiffi
Δ

p
; δc ¼

ffiffiffiffi
Δ

p

L0

: ð3:5Þ

Again, this is compatible with the invariance under choice
of L0 since it fixes the product L0δc to an invariant quantity.
With this choice the Hamiltonian is given again by (3.3).

The δ’s being constants, the effective equations of motion
now take the form

_b ¼ 1

2SðbÞ ðγ
2Λpc − ðSðbÞ2 þ γ2ÞÞ; ð3:6aÞ

_c ¼ γ2Λ
pb

SðbÞ − 2SðcÞ; ð3:6bÞ

_pb ¼
pb

2SðbÞ2 ðγ
2Λpc þ ðSðbÞ2 − γ2ÞÞCðbÞ; ð3:6cÞ

_pc ¼ 2pcCðcÞ; ð3:6dÞ

which can be compared to (2.13) and (3.4). Once again,
the polymerized versions of the quantities (2.16) are not
conserved anymore, so we lose the explicit expression for
the Dirac observables.
In the case Λ ¼ 0 these effective equations of motion

have an analytical solution since the equation for cðτÞ
decouples [28,33,38,43]. Then, the polymerized version
of D given by6 D̃ ≔ L−1

0 SðcÞpc is a Dirac observable7

[38,43], while the second one has a much more compli-
cated expression [43].
For Λ ≠ 0 we can solve these equations numerically by

fixing the initial conditions in the classical regime as in the
previous subsection. As mentioned above, one can check

that the physics is qualitatively unaffected by the presence
of the cosmological constant. At this point, it is interesting
to discuss the physical meaning of the Dirac observables C
and D in relation to the mass M of the black hole. When
using the classical solution (2.15) in order to fix the initial
conditions, there are two natural choices for expressing the
constants A and B in terms of the Dirac observables C and
D and the mass. Indeed, one can write

A ¼ 8Mffiffiffiffi
C

p ¼ 4D
3

; B ¼ 4M2; ð3:7Þ

which enables us to set initial conditions either on the pair
ðM;CÞ or instead on the pair ðM;DÞ. The figure below
shows the plots of the classical and effective evolutions
for initial conditions on ðM;DÞ, where we have taken
Λ ¼ 10−8. Once again, the results are actually qualitatively
insensitive to the choice of Λ as long as 9M2Λ < 1, which
is indeed the regime of interest for us since then there is
little to no departure from the well-studied case Λ ¼ 0.
One can see in Fig. 2 that for every trajectory the

singularity is avoided by a bounce in the 2-sphere radius
pc. The effective quantum dynamics merges together the
initial black hole with a white hole solution. The transition
surface is the 2-sphere where pc bounces. At this point, the
expansion of the future-pointing null vector normal to the
2-sphere changes sign, indicating that the transition surface
separates a trapped (black hole) from an antitrapped (white
hole) region. Since _pc has a single zero along each
trajectory, each solution has a single transition surface.
The horizons are located at the points where pb ¼ 0. The

white hole horizon is where the evolution parameter τ
reaches its lower bound τmin, while the black hole horizon is
at τmax. The radius of the white hole horizon is then given
by

ffiffiffiffiffi
pc

p ðτminÞ. When an explicit solution to the effective
equations is available, as in the case Λ ¼ 0, one can

FIG. 2. Comparison of the classical (dashed) and effective
(solid) evolution of pc in terms of pb, for D ¼ 1 and various
choices of initial black hole mass:M ¼ 103 (blue), 5 × 102 (red),
102 (orange). For the cosmological constant we have chosen
Λ ¼ 10−8.

6We use a tilde to denote the Dirac observables of the
polymerized theory.

7Note that we need to include a factor of L−1
0 in order to obtain

the invariant combination L0δc in the polymerized observable
L−1
0 SðcÞpc ¼ sinðcδcÞpc=ðL0δcÞ.
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explicitly reconstruct the effective line element and read off
the radii of the black and white hole horizons. By doing so
one relates these radii to the integration constants of the
effective solutions, and the radii can then be used as
independent boundary data that uniquely specify the
solutions [41,43]. As expected, the effective black hole
mass only agrees with the value M which we have used to
set the initial conditions up to small quantum corrections,
which when Λ ≠ 0 can easily be evaluated numerically by
comparing the classical and effective values of

ffiffiffiffiffi
pc

p ðτmaxÞ.
It is interesting to fixC orD and vary the black hole mass

[i.e., using (3.7) to set the initial conditions] in order to
study how the white hole mass depends on it. For each
trajectory labeled by M (at fixed C or D), one simply
compares the black hole radius

ffiffiffiffiffi
pc

p ðτmaxÞ (classical or
effective) with the while hole radius

ffiffiffiffiffi
pc

p ðτminÞ. This
reveals a simple linear relationship MWH ∝ M, which
can also be understood analytically with the thorough
analysis of [41].

C. Generalized μ0 scheme

In the so-called generalized μ0 schemes, the polymeri-
zation parameters are allowed to depend on the massM. As
such, these approaches sit somehow in between the proper
μ0 and μ̄ schemes since the mass is fixed for a given
solution but can vary between different ones.
In [33] for example, the authors have implicitly intro-

duced a mass dependency in one of the polymerization
parameters by taking

δb ¼
ffiffiffiffi
Δ

p

M
; δc ¼

ffiffiffiffi
Δ

p

L0

: ð3:8Þ

With this choice, one can show that the there is again a
bounce between a black hole and a white hole, but the mass
of the white hole then scales as MWH ∝ M3. This phe-
nomenon has been referred to as mass amplification.
In order to avoid this large mass amplification, the

authors of [38] have proposed an alternative criterion for
fixing the polymerization parameters. This criterion is to fix
the relationship between the physical area and the area gap
at the level of the transition surface T , i.e., to impose
2πδbδcpbjT ¼ Δ and 4πδ2bpcjT ¼ Δ. In the case Λ ¼ 0,
the effective solutions enable one to extract explicitly pcjT ,
and to approximate pbjT , and one finds [38]

δb ¼
� ffiffiffiffi

Δ
pffiffiffiffiffiffi
2π

p
γ2M

�1=3

; 2L0δc ¼
�

γΔ2

4π2M

�
1=3

: ð3:9Þ

When the explicit form of the effective solutions is not
available, as in the case Λ ≠ 0, it is still possible to adapt
this strategy. Indeed, now the solutions depend on the two
initial conditions and on the values of δb and δc. For a fixed
value of the initial conditions and δb, one can evaluate

δ2bpcjT for various values of δc. Constraining this to equal
Δ will then give a relationship between δc and δb, which
can then be inserted in δbδcpbjT ¼ Δ to find δb. One can
check that this reproduces accurately (3.9). With this
prescription, one finds that the issue of mass amplification
is cured, and the white hole mass scales as MWH ∝ M.

D. Mixed scheme

As we will see in the next section, in order to build the
quantum theory it will be convenient to work with a
different set of classical variables. Inspired by [41,42],
we consider the canonical variables

p1≔−
c
2γ

; v1≔pc; p2≔
4

γ

b
pb

; v2≔−
p2
b

8
; ð3:10Þ

which are such that

fv1; p1g ¼ 1 ¼ fv2; p2g; ð3:11Þ

with the other brackets vanishing. Note that this represents
only half the change of variables of [41,42], as the pair
ðp1; v1Þ is simply a rescaling of ðc; pcÞ, and only ðp2; v2Þ is
a new canonical pair. This is the reason for which we
keep lower case letters for ðp1; p2Þ, at the difference
with [41,42].

1. Effective evolution

With these new variables the classical Hamiltonian
(2.12) corresponding to the choice of lapse (2.11) becomes

H ¼ 2p1v1 þ p2v2 − 2ð1 − Λv1Þ
1

p2

: ð3:12Þ

The classical dynamics in terms of these variables is
given by

v1ðτÞ ¼ Be2ðτ−τ0Þ; ð3:13aÞ

v2ðτÞ ¼ −
A2

8

�
eðτ−τ0Þ − e2ðτ−τ0Þ þ Λ

3
Be4ðτ−τ0Þ

�
; ð3:13bÞ

p1ðτÞ ¼
A
2

�
1

2B
e−2ðτ−τ0Þ −

Λ
3
eðτ−τ0Þ

�
; ð3:13cÞ

p2ðτÞ ¼
4

A
e−ðτ−τ0Þ; ð3:13dÞ

and the Dirac observables become

C¼ 16B
A2

¼ v1p2
2; D¼ 3A

4
¼p1v1−p2v2þ

2

p2

: ð3:14Þ

In order to build the effective theory we are going to
polymerize the variables pi by replacing them with
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SðpiÞ ≔
sinðpiλiÞ

λi
; ð3:15Þ

with λi some polymerization parameters at Planck scale.
Recall that in order for the classical theory to be indepen-
dent of the fiducial length L0, under a rescaling L0 → αL0

the connection and triad variables must transform as c →
αc and pb → αpb. In terms of the new variables this gives

v1→ v1; v2 → α2v2; p1→ αp1; p2→
p2

α
; ð3:16Þ

which means that we have to pick the polymerization
parameters such that L0λ1 and L−1

0 λ2 are invariant under
rescaling. In terms of dimensions, we must also have
½λi� ¼ ½pi�−1. Since ½p1� ¼ ∅ and ½p2� ¼ length−2, impos-
ing a μ0 scheme leads to the prescription

λ1 ¼ β1

ffiffiffiffi
Δ

p

L0

; λ2 ¼ β2
ffiffiffiffi
Δ

p
L0; ð3:17Þ

where β1 and β2 are possible dimensionless constants
(which we will set to β1 ¼ 1 ¼ β2 for the numerical
analysis). In terms of the initial connection variables
ðb; cÞ, this choice is equivalent to choosing δb ∝ 1=pb
and δc ¼ constant, which justifies the name of “mixed”
scheme.
From the polymerized Hamiltonian in this mixed

scheme, we now get the following effective equations of
motion:

_v1 ¼ 2v1Cðp1Þ; ð3:18aÞ

_v2 ¼ v2Cðp2Þ þ 2ð1 − Λv1Þ
Cðp2Þ
Sðp2Þ2

; ð3:18bÞ

_p1 ¼ −2Sðp1Þ −
2Λ

Sðp2Þ
; ð3:18cÞ

_p2 ¼ −Sðp2Þ; ð3:18dÞ

_T ¼ 16πv1
Sðp2Þ

: ð3:18eÞ

Once again, these equations can unfortunately not be
solved analytically in the case Λ ≠ 0. A numerical study
reveals that the solutions are however qualitatively inde-
pendent from Λ in the regime of interest 9M2Λ < 1. The
numerical evolution for Λ ¼ 10−8 is represented in Fig. 3.
This shows once again a bounce in the two-sphere radius
(represented by v1) and a transition to a white hole.
One can also gather information about the effective

solutions by solving the effective equations of motion in the
case Λ ¼ 0. The analytic solutions in this case are given by

v1ðτÞ ¼ B̃e2τ þ Ã2λ21
64B̃

e−2τ; ð3:19aÞ

v2ðτÞ ¼ ðÃ2ðeτ − 1Þeτ þ 4λ22Þ
1

2

�
1

4
þ λ22
Ã2

e−2τ
�
; ð3:19bÞ

p1ðτÞ ¼
2

λ1
arctan

�
Ãλ1
8B̃

e−2τ
�
; ð3:19cÞ

p2ðτÞ ¼
2

λ2
arctan

�
2λ2
Ã

e−τ
�
; ð3:19dÞ

where we have set the origin of the time parameter at
τ0 ¼ 0, and used a tilde to distinguish the integration
constants of the effective solutions from that of the
classical solutions.8 Consistently, one can see that the limit
ðλ1; λ2Þ → 0 of these solutions leads to the classical
solutions (3.13) with Λ ¼ 0. One can compare the exact
effective solutions (3.19) with Eqs. (3.26)–(3.29) of [41] (or
equivalently (3.11)–(3.14) of [43]), which are the effective
solutions in variables ðv1; v2; P1; P2Þ.

2. Black and white hole radii and masses

With the exact effective solutions (3.19) in the case
Λ ¼ 0 at hand, we would like to discuss, following [41,43],
the relationship between the initial conditions ðÃ; B̃Þ and
the back and white hole masses. For this, we must first
reconstruct the effective interior line element.
Recalling that in the effective theory the variables pi are

polymerized according to (3.15), in terms of the variables

FIG. 3. Comparison of the classical (dashed) and effective
(solid) evolution of v1 in terms of pb ¼

ffiffiffiffiffiffiffiffiffiffiffi
−8v2

p
, for C ¼ 103 and

various choices of initial black hole mass: M ¼ 103 (blue),
5 × 102 (red), 102 (orange). For the cosmological constant we
have chosen Λ ¼ 10−8.

8One could think that this is useless as these are integration
constants, but we want to distinguish ðÃ; B̃Þ from ðA; BÞ, which
are related by A ¼ 4D=3 and B ¼ CD2=9 to the Dirac observ-
ables (3.14) of the classical theory.
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(3.10) and with the polymerized lapse corresponding to
(2.11), the effective interior line element takes the form

ds̃2 ¼ 2v1λ22
v2 sin2ðλ2p2Þ

dτ2 −
8v2
L2
0v1

dy2 þ v1dΩ2: ð3:20Þ

Redefining the coordinates as in the classical case, i.e.,
defining

t ≔
ffiffiffiffĩ
B

p
eτ; x ≔

Ã

L0

ffiffiffiffĩ
B

p y; ð3:21Þ

we find the effective metric

ds̃2 ¼ ðt2 þ tþt−Þðt4 þ a20Þ
ðt − tþÞðt − t−Þt4

dt2

−
ðt − tþÞðt − t−Þðt2 þ tþt−Þ

t4 þ a20
dx2

þ
�
t2 þ a20

t2

�
dΩ2; ð3:22Þ

where

t� ≔
ffiffiffiffĩ
B

p

2

0B@1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16λ22
Ã2

s 1CA; a0 ≔
Ãλ1
8

: ð3:23Þ

One can see that the quantum effects, manifested here by
the presence of the polymerization parameters ðλ1; λ2Þ,
have the effect of shifting the classical value Rclass

BH ¼
tclassþ ¼ ffiffiffiffi

B
p

of the black hole horizon radius, and of giving
rise to a nonvanishing value of t−. Recalling that the
squared radius appears in front of the angular component of
the metric and is given here by v1, we obtain the black and
white hole radii by evaluating

R2
BH ¼ v1ðtþÞ ¼ t2þ þ a20

t2þ
¼ B̃þ Ã2λ21

64B̃
þ ∘ðλ22Þ; ð3:24aÞ

R2
WH ¼ v1ðt−Þ ¼ t2− þ a20

t2−
¼ Ã6λ21

1024B̃λ42
þ ∘

�
λ21
λ22

�
: ð3:24bÞ

Using this, one can choose to fix either Ã or B̃ and obtain an
(involved) expression for RWH as a function of RBH.
Let us finally close this section by discussing, following

[41], the ADM masses defined in the asymptotic regions.
For this we consider the extension of the effective metric to
the regions outside the horizons, where the time coordinate
becomes spacelike. In the limits t → ∞ and t → 0 we find
two asymptotically flat regions where one can define an
ADM mass. In the first region the effective line element
becomes

ds̃2þ ≈ −
�
2MBH

t
− 1

�
−1
dt2 þ

�
2MBH

t
− 1

�
dx2 þ t2dΩ2;

MBH ¼
ffiffiffiffĩ
B

p

2
; ð3:25Þ

and the classical solution is therefore recovered (as
expected far from the singularity). For the limit t → 0
we first need to define a new set of variables as

t0 ≔
Ãλ1
8

1

t
; x0 ≔

32B̃λ22
L0Ã

3λ1
y: ð3:26Þ

With this we then find

ds̃2−≈−
�
2MWH

t0
−1

�
−1
dt02þ

�
2MWH

t0
−1

�
dx02þ t02dΩ2;

MWH¼
Ã3λ1

64
ffiffiffiffĩ
B

p
λ22
: ð3:27Þ

Once again, one can see that this second region exists
because of the quantum effects controlled by the poly-
merization parameters.
Now that the classical and effective dynamics in the

variables ðv1; v2; p1; p2Þ has been studied, we can finally
turn to the study of the quantization.

IV. QUANTUM DYNAMICS

Wenow turn to the study of the quantumdynamics. Recall
that our goal is to deparametrize the evolutionwith respect to
the unimodular clock in order to obtain a true Schrödinger
evolution equation. For this, we need to choose the lapse
(C1), for which the classical Hamiltonian in ðp; vÞ variables
becomes

H ¼ p1p2 þ
1

v1

�
1

2
p2
2v2 − 1

�
þ Λ: ð4:1Þ

Our task is now to regularize and represent the action of this
Hamiltonian. We will see that the choice of ðp; vÞ variables
enables to find analytical expressions for the eigenfunctions
in the Wheeler-DeWitt quantum theory. These can then be
used to build the LQC quantum theory, following the
construction of [23,24].
Note that the symmetry representing the orientation

reversal of the triad must be considered. This means that
the wave functions and the operators must be symmetric
under v1 → −v1 (since v1 ¼ pc and v2 ¼ −p2

b=8).

A. Regularized Hamiltonian

The first step in the construction of the quantum
dynamics is to specify the Hilbert space and its basis
states, and then to give the action of the Hamiltonian
operator on these states.
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Following the standard LQC construction, we choose the
Hilbert space to be

Htotal ¼ H1 ⊗ H2; Hi ≔ L2ðRBohr; dviBohrÞ; ð4:2Þ

where RBohr is the Bohr compactification of the real line
[20], and then pick a basis of volume eigenstates jv1; v2i
such that

v̂1jv1;v2i¼ v1jv1;v2i; v̂2jv1;v2i¼ v2jv1;v2i: ð4:3Þ

The conjugated operators ðp̂1; p̂2Þ are not represented on
the Hilbert space Htotal, and only their exponentiated
version exists. This fact is of course what has motivated
the heuristic polymerization scheme discussed in the
previous section. In the quantum theory we must therefore
consider the regularized Hamiltonian constraint operator
written in terms of the operators ˆSðpiÞ acting like9

dSðp1Þjv1;v2i¼
1

2iλ1
ðjv1−λ1;v2i− jv1þλ1;v2iÞ; ð4:4aÞ

dSðp2Þjv1;v2i¼
1

2iλ2
ðjv1;v2−λ2i− jv1;v2þ λ2iÞ; ð4:4bÞ

or in terms of wave functions

dSðp1ÞΨðv1; v2Þ ¼
1

2iλ1
ðΨðv1 þ λ1; v2Þ − Ψðv1 − λ1; v2ÞÞ;

ð4:5aÞ

dSðp2ÞΨðv1; v2Þ ¼
1

2iλ2
ðΨðv1; v2 þ λ2Þ − Ψðv1; v2 − λ2ÞÞ:

ð4:5bÞ

Now, we need to regularize the inverse power of v1
appearing in the Hamiltonian, since the action of the
corresponding naive operator on the v1 ¼ 0 eigenstates
is ill defined. For this we use the standard “Thiemann
trick,” which is based on the classical phase space identity

Uðp1Þ−1fjv1jn;Uðp1Þg ¼ inλ1sgnðv1Þjv1jn−1; ð4:6Þ

where Uðp1Þ ≔ eiλ1p1 and similarly for p2. Once quantized,
this identity enables us to define the regularized inverse
volume operator in terms of the commutator involving a
positive power of the volume. More precisely, taking
n ¼ 1=2, transforming the classical identity into a quantum
operator relation, and taking its square, we get the regu-
larized operator10

b1
v1

¼ 1

λ21
ð dUðp1Þ−1½

ffiffiffiffiffiffiffiffi
jv̂1j

p
; dUðp1Þ�− dUðp1Þ½

ffiffiffiffiffiffiffiffi
jv̂1j

p
; dUðp1Þ−1�Þ2:

ð4:7Þ

Its action on states is

b1
v1
jv1; v2i ¼

1

λ21
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv1 − λ1j

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv1 þ λ1j

p
Þ2jv1; v2i

≕Bðv1Þjv1; v2i; ð4:8Þ

where we have defined the operator Bðv1Þ for later
convenience.
We now have all of the ingredients to write the action on

eigenfunctions of the quantum Hamiltonian constraint
operator

Ĥ¼ dSðp1Þ dSðp2Þþ
b1
v1

�
1

2
dSðp2Þv̂2 dSðp2Þ−1

�
þ Λ̂: ð4:9Þ

Crucially, because we are considering unimodular
gravity, the cosmological constant becomes the operator
−8πi∂=∂T, and the action of the full Hamiltonian con-
straint becomes a Schrödinger equation of the form

−i
∂Ψðv1; v2Þ

∂T ¼ ΘΨðv1; v2Þ; ð4:10Þ

where we have defined the gravitational operator acting as

sgnðv1Þ
32πλ1λ2

ðΨðv1þ λ1;v2þ λ2Þ−Ψðv1 − λ1;v2þ λ2Þ

−Ψðv1þ λ1;v2− λ2ÞþΨðv1− λ1; v2− λ2ÞÞ

þBðv1Þ
16π

�
1

4λ22
½ðv2þ λ2ÞΨðv1; v2þ 2λ2Þ− 2v2Ψðv1; v2Þ

þ ðv2− λ2ÞΨðv1; v2− 2λ2Þ�þ 2Ψðv1; v2Þ
�

≕ΘΨðv1; v2Þ: ð4:11Þ

Because of its structure, the Hamiltonian only relates
the values of the wave function at some lattice points
vi ¼ εi þ niλi, with ni ∈ Z and εi ∈ ½0; λiÞ. This means
that although the Hilbert spaces Hi in (4.2) are non-
separable, for each εi there exists a separable Hilbert
subspace Hε

i ⊂ Hi which is superselected and preserved
under the evolution. In particular, we can fix a ε ¼ 0
for simplicity, and focus on wave functions defined only
on the corresponding lattice. The inner product is then
given by

hΨjΨ0i ¼ λ1λ2
π2

X
vi¼niλi

Ψ̄ðv1; v2ÞΨ0ðv1; v2Þ: ð4:12Þ
9This follows simply from the action of exponentials of pi as

translation operators.
10Note that we set ℏ ¼ 1 ¼ G. And we symmetrize the

operator in order to keep the parity in v1.
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For the following discussion it will turn out to be more
convenient to work in the p2 representation, where the
wave function is given by

Ψðv1; p2Þ ≔ hv1; p2jΨi ¼
X
v2

hp2jv2iΨðv1; v2Þ

¼
X
v2

eip2v2Ψðv1; v2Þ: ð4:13Þ

As the Fourrier series of Ψðv1; v2Þ, this wave function is
periodic with period 2π=λ2. This is why only periodic
functions of p2 can be defined as multiplicative operators in
this representation, while p̂2 is ill defined. The functions
Sðp2Þ and Cðp2Þ being well defined, the Hamiltonian is
acting in this representation as

ΘΨðv1; p2Þ

¼ i
sgnðv1Þ
16πλ1

Sðp2ÞðΨðv1 þ λ1; p2Þ −Ψðv1 − λ1; p2ÞÞ

−
Bðv1Þ
16π

�
iSðp2Þ

�
Cðp2ÞΨðv1; p2Þ þ Sðp2Þ

∂Ψðv1; p2Þ
∂p2

�
− 2Ψðv1; p2Þ

�
: ð4:14Þ

We can now study the WDW limit of this Hamiltonian and
the associated quantum theory.

B. Wheeler-DeWitt limit

The WDW limit of the gravitational operator (4.14) is
obtained in the limit λi → 0 for the polymerization param-
eters. In this case we obtain

Θ̃Ψðv1; p2Þ ¼ i
sgnðv1Þ

8π
p2

∂Ψðv1; p2Þ
∂v1

−
1

16πjv1j
�
ip2

�
Ψðv1; p2Þ þ p2

∂Ψðv1; p2Þ
∂p2

�
− 2Ψðv1; p2Þ

�
: ð4:15Þ

As expected, this is the operator we would have obtained
from the Hamiltonian (4.1) by promoting the classical
phase space variables to operators acting as

v̂1Ψ ¼ v1Ψ; v̂2Ψ ¼ i
∂Ψ
∂p2

;

p̂1Ψ ¼ −i
∂Ψ
∂v1 ; p̂2Ψ ¼ p2Ψ; ð4:16Þ

on the wave functions Ψðv1; p2Þ in the Hilbert space
L2ðR; dv1Þ ⊗ L2ðR; dp2Þ.

1. Dirac observables

Our task is now to solve the Schrödinger equation
−i∂TΨðv1; p2Þ ¼ Θ̃Ψðv1; p2Þ. For this, we look for eigen-
functions of the gravitational operator such that

Θ̃ẽkðv1; p2Þ ¼ kẽkðv1; p2Þ; ð4:17Þ

with Λ ¼ 8πk. The general solution is then

Ψðv1; p2; TÞ ¼
Z

dkẽkðv1; p2ÞΨðkÞeikT: ð4:18Þ

Because we are dealing with two variables, these
eigenfunctions will be degenerate. A possible way to lift
this degeneracy is to find an operator commuting with the
Hamiltonian, which can therefore be used to label the
eigenstates. With our choice of variables, we can naturally
define two quantum operators corresponding to the
classical integrals of motion

C ¼ jv1jp2
2;

D ¼ 1

2
ðp1v1 þ v1p1 − p2v2 − v2p2Þ þ

2

p2

: ð4:19Þ

The action of the corresponding operators on the wave
functions is given by

ĈΨðv1; p2Þ ¼ jv1jp2
2Ψðv1; p2Þ; ð4:20aÞ

D̂Ψðv1; p2Þ ¼ −
�
i −

2

p2

þ iv1
∂
∂v1 þ ip2

∂
∂p2

�
Ψðv1; p2Þ;

ð4:20bÞ

and one can easily check that these operators commute with
the gravitational part of the Hamiltonian, i.e.,

½Θ̃; Ĉ� ¼ 0 ¼ ½Θ̃; D̂�: ð4:21Þ

On the other hand, the two observables do not commute
with each other, but satisfy ½Ĉ; D̂� ¼ iĈ, which leads to an
uncertainty relation that does not allow one to specify both
first integrals with arbitrary precision in the quantum
theory.
We can now look for the eigenfunctions in the ðv1; p2Þ

representation.

2. Eigenfunctions

Using D to label the energy eigenvalues, we can lift the
degeneracy and we find that

FRANCESCO SARTINI and MARC GEILLER PHYS. REV. D 103, 066014 (2021)

066014-12



ẽk;Dðv1; p2Þ ¼
ffiffiffiffiffiffi
2

9π

r
1

p2

exp

�
2i
3p2

ð3 − 8πkjv1jÞ
�

× exp

�
iD
3
logðjv1jp2

2Þ
�

ð4:22Þ

is the solution to

Θ̃ẽk;Dðv1; p2Þ ¼ kẽk;Dðv1; p2Þ;
D̂ẽk;Dðv1; p2Þ ¼ Dẽk;Dðv1; p2Þ; ð4:23Þ

with

hẽk;Djẽk0;D0 i ¼
Z

dv1dp2
¯̃ek;Dðv1; p2Þẽk0;D0 ðv1; p2Þ

¼ δðk − k0ÞδðD −D0Þ: ð4:24Þ

Remark that in order to perform this integral it is useful to
change the variables to z ≔ jv1j=p2 and w ≔ logðjv1jp2

2Þ.
In fact, the WDW theory is most easily formulated in terms
of these variables, but this has the disadvantage that the
polymerization procedure is then cumbersome. Finally,
note that an analytic expression for the eigenfunctions also
exists with the ðv1; v2; P1; P2Þ variables defined in [41,42],
and that the reason for which we have chosen to work
instead with ðp1; p2Þ is that these variables are adapted to
the unimodular clock.
With the above eigenfunctions, the general solution to

the Schrödinger evolution equation is given by

Ψðv1; p2; TÞ ¼
Z

dkdDẽk;Dðv1; p2ÞΨðk;DÞeikT: ð4:25Þ

We can now create a semiclassical state peaked around a
classical solution with cosmological constant Λ� ¼ 8πk�
and first integral of motion D�. For this, we take

Ψðk;DÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
πσkσD

p exp

�
−
ðk−k�Þ2

2σ2k

�
exp

�
−
ðD−D�Þ2

2σ2D

�
;

ð4:26Þ

which gives

Ψðv1;p2;TÞ¼
N
p2

exp

�
−
�
T
8π

−
2

3
z

�
2σ2k
2
−
σ2D
2
w2

�
×exp

�
ik�

�
T
8π

−
2

3
z

�
þ 2i
p2

þ iD�

2
w

�
; ð4:27Þ

where z ≔ jv1j=p2 and w ≔ logðjv1jp2
2Þ. It turns out that

this solution is also peaked on a particular value of the other
first integral of motion, as we have

hĈiΨ ¼ hjv1jp2
2iΨ ¼ 1: ð4:28Þ

It is possible to change this value to any C� by simply
rescaling the function as

Ψðk;DÞ → Ψðk;DÞ exp
�
−
iD
3
logC�

�
: ð4:29Þ

Finally, at a given cosmological time we have�
2

3

jv1j
p2

�
Ψ
¼ T

8π
¼ 2

3

jv1j
p2

				
class

: ð4:30Þ

This shows that we have constructed semiclassical states of
the WDW quantum theory peaked around a classical
solution. These states can now be used to investigate the
loop quantization of the model.

C. Loop quantization

We now come back to the study of the LQC quantum
dynamics. There, the eigenfunctions will be found by
using the knowledge of the WDW theory at late times,
and evolved with the Schrödinger evolution through the
(avoided) singularity.

1. Eigenfunctions

Let us now consider the LQC gravitational operator Θ
acting in the ðv1; p2Þ representation as (4.14). We look for
eigenfunctions such that

Θekðv1; p2Þ ¼ kekðv1; p2Þ: ð4:31Þ

As in the WDW case treated above, the presence of two
variables leads to an infinite degeneracy of the eigenfunc-
tions for a given energy eigenvalue. Here unfortunately, as
discussed in the section about the effective solutions, we do
not have access to a polymerized Dirac observable which
can be used to label the eigenstates, as we did usingD in the
WDW case. Nevertheless, it is reasonable to expect that in
the WDW limit jv1j → ∞ and p2 → 0 (or λ2 → 0) the
eigenfunctions we are looking for satisfy

ekðv1; p2Þ⟶jv1 j→∞
p2→0

Z
dD0fðD0Þẽk;D0 ðv1; p2Þ ð4:32Þ

for some functional fðDÞ. It is therefore natural to define
the eigenfunctions ek;Dðv1; p2Þ with the choice fðD0Þ ¼
δðD −D0Þ.
Following the construction of [23,24], we can now try to

match the values of ek;Dðv1; p2Þ with that of the WDW
eigenfunctions at early times (i.e., in the low curvature
regime), and then use the time-independent Schrödinger
equation to evaluate the wave function. However, a com-
plication in doing so is that the operatorΘ acting in (4.31) is
discrete in the variable v1 while continuous in p2, meaning
that we could only approximate the result numerically.
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Fortunately, it is possible to use an alternative approxima-
tion,which is to take only the limit v1 → ∞ in the action ofΘ
on the left-hand side of (4.31). Doing so, it is still possible to
find an analytical solution for the eigenfunctions. First, let us
use the limit of large v1 to define the gravitational operator

ΘΨðv1;p2Þ≔ i
sgnðv1Þ

8π
Sðp2Þ

∂Ψðv1;p2Þ
∂v1

−
1

16πjv1j
�
iSðp2Þ

�
Cðp2ÞΨðv1;p2Þ

þSðp2Þ
∂Ψðv1;p2Þ

∂p2

�
−2Ψðv1;p2Þ

�
: ð4:33Þ

One can see that this is the polymerized (inp2) version of the
WDWoperator (4.15). The eigenfunctions are then given by

ek;Dðv1;p2Þ

¼
ffiffiffiffiffiffi
2

9π

r
1

Sðp2Þ
exp

�
2i

3Sðp2Þ
ð3Cðp2Þ−8πkjv1j½2−Cðp2Þ�Þ

�
×exp

�
iD
3
log

�
4jv1jSðp2Þ2
ðCðp2Þþ1Þ2

��
; ð4:34Þ

and one can check that they indeed satisfy the properties

Θek;Dðv1; p2Þ ¼ kek;Dðv1; p2Þ;
ek;Dðv1; p2Þ ⟶

p2→0
ẽk;Dðv1; p2Þ: ð4:35Þ

We can now match the values of ek;D and ek;D at some point
v�1 ≫ λ1 for all the values ofp2, and use Eq. (4.31) to find its
values on the v1 lattice. The eigenfunctions obey the
following limits:

ek;Dðv1; p2Þ ⟶
jv1j→∞

ek;Dðv1; p2Þ ⟶
p2→0

ẽk;Dðv1; p2Þ: ð4:36Þ

Note that we still find ek;Dðv1; p2Þ with a numerical
approximation since the derivative term ∂Ψ=∂p2 is evalu-
ated numerically (with the exception of the first step when
v1 ¼ v�1, wherewe have its analytical expression). Finally let
us remark that because of the parity symmetry these
eigenfunctions must be symmetrized. The plots of the
eigenfunctions are given below on Figs. 4 and 5.
We see that the eigenstates obtained here for the black

hole interior in the loop quantization scheme exhibit the
same features as that of the FLRW LQC eigenstates
[23,24]. More precisely, they are very well approximated
by the WDWeigenstates in the classical regime away from
the singularity, and they oscillate for v1 → �∞. This
behavior can be separated as a “superposition” of two
waves with support on even and odd lattices.
We note that a particular case is given by the eigen-

functions corresponding to a zero eigenvalue of the energy
(i.e., without cosmological constant). In this case, follow-
ing the procedure described in the previous section, it is
possible to get rid of the derivative term ∂Ψ=∂p2, and thus
find a recurrence series in v1 independent of p2. Indeed, if
Λ ¼ 0 in (4.34) we see that the eigenfunction can be written
as the product of two functions which depend on only one
of the two variables, i.e.,

e0;Dðv1; p2Þ ¼
ffiffiffiffiffiffi
2

9π

r
1

Sðp2Þ

× exp

�
2iCðp2Þ
Sðp2Þ

þ iD
3
log

�
4Sðp2Þ2

ð1þ Cðp2ÞÞ2
��

× exp

�
iD
3
log jv1j

�
: ð4:37Þ

This, combined with (4.31) and the fact that at some point
e0;Dðv�1; p2Þ ¼ e0;Dðv�1; p2Þ, gives the recursion relation

FIG. 4. Plot of (the real part of) an eigenfunction ek;Dðv1; p2Þ (before symmetrization) as a function of v1 at fixed p2. Here we take
p2 ¼ π=ð10λ2Þ. On the left the amplified zone is shown for v1 → −∞, and on the right we see that it is well approximated for v1 → þ∞
by the solid blue line representing the WDW eigenfunctions ek;Dðv1; p2Þ. The numerical values used for these plots are D ¼ 100

and Λ ¼ 10−8.
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ek;Dðv1 − λ1; p2Þ ¼ ek;Dðv1 þ λ1; p2Þ

− 2sgnðv1ÞBðv1Þλ1
iD
3
ek;Dðv1; p2Þ:

ð4:38Þ

This would still require to be evaluated numerically
however.

2. Quantum evolution

We can now consider the time-dependent Schrödinger
equation (4.10) and use it to let evolve a wave packet
Ψðv1; v2Þ with respect to the cosmological time. This is to
be contrasted with what is usually done in e.g., FLRW LQC
[23,24], where one uses a massless scalar field as internal
time and obtains in the deparametrized theory a Klein-
Gordon evolution equation. With the unimodular clock the
evolution can unambiguously be computed. For this, as
initial conditionΨjT0

we take a Gaussian semiclassical state
peaked around a classical solution in a low-curvature
regime for a given mass. More precisely, we take the same
initial condition as for the effective evolution (i.e., when v2
has a minimum) and write

ΨjT0
ðv1;v2Þ¼N exp

�
−
ðjv1j−v�1Þ2

4σ21

�
exp

�
−
ðjv2j−v�2Þ2

4σ22

�
×expðip�

1ðjv1j−v�1Þþ ip�
2ðjv2j−v�2ÞÞ;

ð4:39Þ

where v�i ¼ jviðT0Þjjclass and p�
i ¼ piðT0Þjclass, for the

solution of mass M and integration constant C ¼ 1. The
data is then evolved with the Schrödinger equation using a
fourth order Runge-Kutta method (RK4). At each time step
we calculate the expectation values of the vi to compare
them with the effective classical evolution of Sec. III D. We
need to restrict the domain of integration to a set jvij < Niλi
with Ni ≫ 1. The boundary of the domain is chosen to be
sufficiently far form the peak of the initial state by
demanding that, at the boundary, the value of the wave
function is less than 10−10 times the value at the peak.
Moreover, we approximate the difference terms in
Eq. (4.10) only at the boundary by

Ψðvi þ λiÞ −Ψðvi − λiÞ ≃
1

2
ðΨðviÞ −Ψðvi − sgnðviÞλiÞÞ:

ð4:40Þ

FIG. 5. Separation of the two outgoing waves, with supports on the lattices v�1 − 2nλ1 on the left, and v�1 − ð2nþ 1Þλ1 on the right, for
n → þ∞.

FIG. 6. Expectation values (and dispersions at �σ) of the wave function throughout the quantum evolution, compared to the effective
evolution in red. The numerical values are M ¼ 500 and C ¼ 103. The plot on the right is a closeup around the bounce in v1.
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We see on Fig. 6 that the state remains sharply peaked
throughout the evolution, and undergoes a quantum
bounce. The expectation values of the wave function are
very well approximated by the effective trajectory.
Provided one has decided on a choice of variables, a
regularization scheme, and found late time WDW eigen-
functions to evolve, this illustrates how the use of the
unimodular clock enables one to simply obtain the full
quantum evolution.
With this first illustration of the usefulness of the

unimodular representation for quantum cosmological mod-
els beyond flat FLRW, one can now envision studying
other regularization schemes, evolving different quantum
states, and performing a detailed numerical analysis of the
quantum theory. This can hopefully serve as an inves-
tigation tool for polymerized models of the black hole
interior, and be used to ask other physical questions such as
that of unitarity of the evolution across the bounce [72,73].

V. PERSPECTIVES

In this paper we have presented the construction of the
quantum evolution of the black hole interior spacetime
using the framework of unimodular gravity. This is a simple
reformulation of general relativity which is equivalent to
Einstein’s theory at the classical level, but which has
the advantage of solving the problem of time in mini-
superspace quantum cosmology. This is done by promoting
the Hamiltonian constraint to a true Hamiltonian generating
evolution along a “cosmological time,” which as we have
recalled in Appendix A is just a measure of the elapsed
four-volume between hypersurfaces. In quantum cosmol-
ogy, this cosmological time reduces the study of the
quantum dynamics to that of a Schrödinger evolution of
Gaussian wave packets peaked on semiclassical states at
late times and labeled by Dirac observables. Following
[23,24], we have computed this evolution by matching the
wave functions to the WDW ones in the late time semi-
classical regime. When evolved with the regularized LQC
gravitational operator, these states remain sharply peaked
and go through the bounce while following closely the
effective classical trajectory.
These preliminary results show that the use of unim-

odular gravity for the study of the quantum dynamics of the
black hole interior reproduces the qualitative features of the
effective classical evolution. The use of the unimodular
clock provides two important improvements: (i) the pos-
sibility to apply the framework to other regularization
schemes for the Hamiltonian constraint, and to compare
the details of the quantum dynamics in order to discrimi-
nate between the various schemes proposed e.g., in [38,
41–43]; and (ii) the possibility of studying quantum
dynamics of other mini-superspace models without having
to define the square root of the (possibly negative definite)
gravitational Hamiltonian in order to obtain a Schrödinger
evolution equation for the states. This requires that we

extend the present construction to other regularization
schemes, and perform a detailed study of the numerics.
In addition, it would be interesting to extend the con-
struction of [72,73] in order to study the Hawking
information puzzle in the black hole interior spacetime.
We note that, even disregarding the issues of regularizations
of the Hamiltonian constraint arising in LQC, the unim-
odular representation can prove useful in order to inves-
tigate WDW mini-superspace quantum cosmology and
black holes.
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APPENDIX A: UNIMODULAR GRAVITY
AND COSMOLOGICAL TIME

Unimodular gravity was initially introduced by Einstein
in order to solve the “cosmological constant problem.” The
initial observation is that imposing the so-called unim-
odular condition detðgμνÞ ¼ −1 in the variation of the
action leads to the trace-free Einstein field equations, from
which one can obtain the full set of field equations provided
we introduce the cosmological constant as a simple
integration constant. We refer the interested reader to the
online resource [71], which lists formulations of unim-
odular gravity and applications in various contexts.
Here we will only focus on the generally covariant

formulation proposed in [76], which illustrates very
simply the interplay between the unimodular condition
and the presence of a cosmological time variable. In this
formulation, the cosmological constant is introduced as a
Lagrange multiplier enforcing the unimodular condition.
The gravitational action takes the form

S ¼ 1

16π

Z
M
d4xð ffiffiffiffiffiffi

−g
p ðR − 2ΛÞ þ 2Λ∂μτ

μÞ; ðA1Þ

where τμ ¼ ðτ0; τaÞ is a spacetime vector density.
Performing a variation with respect to the multiplier Λ
gives the unimodular conditionffiffiffiffiffiffi

−g
p ¼ ∂μτ

μ; ðA2Þ

while varying τμ leads to ∂μΛ ¼ 0, which indicates thatΛ is
a spacetime constant that can be identified with the
cosmological constant.
In order to interpret the vector density τμ, suppose that

the manifold M is diffeomorphic to Σ ×R, with Σ a
compact slice. Integrating (A2) over the spacetime region
R ⊂ M enclosed between two hypersurfaces Σðt1Þ and
Σðt2Þ then gives
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Z
R
d4x∂μτ

μ¼
Z
R
d4x

ffiffiffiffiffiffi
−g

p

¼ four volumeenclosedbetweenΣðt1Þ andΣðt2Þ:
ðA3Þ

Clearly, the canonical structure of the action (A1) reveals
that the cosmological constant Λ is conjugated to the
dynamical variable

TðtÞ ≔
Z
ΣðtÞ

d3xτ0: ðA4Þ

This is a function which increases continuously along any
future directed timelike curve, and which satisfies

Tðt2Þ − Tðt1Þ ¼ four volume enclosed between Σðt1Þ
and Σðt2Þ: ðA5Þ

The evolution of the vector density τμ is therefore pure
gauge, apart from the component τ0, which gives rise to the
unimodular time variable.

APPENDIX B: DENSITIZED TRIAD,
ASHTEKAR-BARBERO CONNECTION

AND HAMILTONIAN

Following the literature on Kantowski-Sachs spacetimes
in LQC, we focus here on line elements of the form

ds2 ¼ −N2dt2 þ p2
b

L2
0jpcj

dx2 þ jpcjdΩ2: ðB1Þ

We will furthermore consider pc ≥ 0. With this metric the
Einstein-Hilbert action becomes

1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

¼ 1

16πL0

Z
M
d4x sin θ

�
2Npbffiffiffiffiffi

pc
p þ p0

cðpbp0
c − 4p0

bpcÞ
2Np3=2

c

− 2NΛpb
ffiffiffiffiffi
pc

p �
: ðB2Þ

In LQG we work instead with densitized triads and the
canonically conjugated Ashtekar-Barbero connection, in
terms of which the action takes the formZ

M
d4x

�
1

8πγ
Ea
i ðAi

aÞ0 − NH − NaHa − λiGi

�
; ðB3Þ

where ðH;Ha;GiÞ are the scalar, vector, and Gauss con-
straints. Only the former is nontrivial with our choice of
homogeneous metric. Its smeared form is the Hamiltonian

H ≔
Z
Σ
d3xNH

¼ 1

16π

Z
Σ
d3x

�
Nffiffiffi
q

p Ea
i E

b
j ðεijkFk

ab

− 2ð1þ γ2ÞKi
½aK

j
b�Þ þ 2NΛ

ffiffiffi
q

p �
: ðB4Þ

Here q is the determinant of the spatial metric qab, anti-
symmetrization of indices is defined with a factor 1=2, γ is
the Barbero-Immirzi parameter, and the curvature of the
connection is given by Fi

ab ¼ ∂aAi
b − ∂bAi

a þ εijkA
j
aAk

b.
Let us now construct the various quantities entering the

definition of the Hamiltonian and symplectic structure.
The metric (B1) has nonvanishing Christoffel coefficients
given by

Γt
tt ¼

N0

N
; Γt

xx ¼
pbð2p0

bpc − pbp0
cÞ

2L2
0N

2p2
c

; Γt
θθ ¼

p0
c

2N2
;

ðB5aÞ

Γt
ϕϕ ¼ p0

c

2N2
sin2θ; Γx

xt ¼
2p0

bpc −pbp0
c

2pbpc
; Γθ

tθ ¼
p0
c

2pc
;

ðB5bÞ

Γθ
ϕϕ ¼−cosθ sinθ; Γϕ

ϕt ¼
p0
c

2pc
; Γϕ

ϕθ ¼ cotθ; ðB5cÞ

where the prime denotes derivative with respect to t.
The tetrad coefficients eIμ are related to the metric by
gμν ¼ eIμeJνηIJ, where the internal Lorentz metric is ηIJ ¼
diagð−1; 1; 1; 1Þ. A possible choice (up to internal Lorentz
gauge transformations) of tetrad coefficients for the metric
(B1) is

e0μ ¼ N∂μt; e1μ ¼
pb

L0

ffiffiffiffiffi
pc

p ∂μx;

e2μ ¼ ffiffiffiffiffi
pc

p ∂μθ; e3μ ¼ ffiffiffiffiffi
pc

p
sin θ∂μϕ: ðB6Þ

From these coefficients, we can then compute the coef-
ficients Ea

i ≔ εabcεijke
j
be

k
c=2 of the densitized triad E ¼

Ea
i τ

i∂a. The nonvanishing components are

Ex
1 ¼ e2θe

3
ϕ − e2ϕe

3
θ ¼ pc sin θ; ðB7aÞ

Eθ
2 ¼ e3ϕe

1
x − e3xe1ϕ ¼ pb

L0

sin θ; ðB7bÞ

Eϕ
3 ¼ e1xe2θ − e1θe

2
x ¼

pb

L0

; ðB7cÞ

which implies that we have
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E ¼ Ea
i τ

i∂a

¼ pc sin θτ1∂x þ
pb

L0

sin θτ2∂θ þ
pb

L0

τ3∂ϕ: ðB8Þ

We can now solve the torsion equation

∂μeIν − Γσ
μνeIσ þ ωI

μJe
J
ν ¼ 0 ðB9Þ

in order to find the Lorentz connection coefficients com-
patible with the tetrad (B6). This gives

ω01
μ ¼ 2p0

bpc − pbp0
c

2L0Np3=2
c

∂μx; ω12
μ ¼ 0; ðB10aÞ

ω02
μ ¼ p0

c

2N
ffiffiffiffiffi
pc

p ∂μθ; ω13
μ ¼ 0; ðB10bÞ

ω03
μ ¼ p0

c

2N
ffiffiffiffiffi
pc

p sin θ∂μϕ; ω23
μ ¼ − cos θ∂μϕ: ðB10cÞ

With these connection coefficients we can then introduce
the Ashtekar-Barbero connection with components

Ai
μ ≔ Γi

μ þ γω0i
μ ¼ −

1

2
εijkω

jk
μ þ γω0i

μ : ðB11Þ

We find

A1
μ ¼ −ω23

μ þ γω01
μ ¼ cos θ∂μϕþ γ

2p0
bpc − pbp0

c

2L0Np3=2
c

∂μx;

ðB12aÞ

A2
μ ¼ −ω31

μ þ γω02
μ ¼ γ

p0
c

2N
ffiffiffiffiffi
pc

p ∂μθ; ðB12bÞ

A3
μ ¼ −ω12

μ þ γω03
μ ¼ γ

p0
c

2N
ffiffiffiffiffi
pc

p sin θ∂μϕ: ðB12cÞ

Since A and E are canonically conjugated, denoting the
momenta of the triad variables byb and c, we can finallywrite

A ¼ Ai
aτidxa

¼ c
L0

τ1dxþ bτ2dθ þ b sin θτ3dϕþ cos θτ1dϕ; ðB13Þ

where

b ≔ γ
p0
c

2N
ffiffiffiffiffi
pc

p ; c ≔ γ
2p0

bpc − pbp0
c

2Np3=2
c

: ðB14Þ

With these identifications we can indeed verify that the
canonical terms in the two actions (B2) and (B3) coincide. In
the Hamiltonian formulation we are going of course to treat
ðb; cÞ and ðpb; pcÞ as independent variables.
We can now use the expressions (B8) and (B13) to

evaluate the Hamiltonian and the symplectic structure in
connection-triad variables. For the Hamiltonian we can first
compute the pieces

Ea
i E

b
j ε

ij
kFk

ab ¼ Ea
i E

b
j ð2εijk∂aAk

b þ Ai
aA

j
b − Aj

aAi
bÞ

¼ 2Eθ
2E

ϕ
3∂θA1

ϕ þ 2ðEx
1E

θ
2A

1
xA2

θ þ Ex
1E

ϕ
3A

1
xA3

ϕ þ Eθ
2E

ϕ
3A

2
θA

3
ϕÞ

¼ 2 sin2 θp2
b þ 2ðEx

1E
θ
2A

1
xA2

θ þ Ex
1E

ϕ
3A

1
xA3

ϕ þ Eθ
2E

ϕ
3A

2
θA

3
ϕÞ

¼ 2

L2
0

sin2 θpbð2bcpc þ ðb2 − 1ÞpbÞ; ðB15Þ

and

2Ea
i E

b
jK

i
½aK

j
b� ¼ Ea

i E
b
j ðKi

aK
j
b − Kj

aKi
bÞ

¼ 2ðEx
1E

θ
2K

1
xK2

θ þ Ex
1E

ϕ
3K

1
xK3

ϕ þ Eθ
2E

ϕ
3K

2
θK

3
ϕÞ

¼ 2

γ2
ðEx

1E
θ
2A

1
xA2

θ þ Ex
1E

ϕ
3A

1
xA3

ϕ þ Eθ
2E

ϕ
3A

2
θA

3
ϕÞ

¼ 2

γ2L2
0

sin2 θpbð2bcpc þ b2pbÞ; ðB16Þ

where we have used the fact that γKi
a ¼ Ai

a − Γi
a and only Γ1

ϕ ≠ 0. We then have to compute the integrals over Σ in the
Hamiltonian and the symplectic structure. However, the integrals of the homogeneous fields on Σ are over x ∈ R, θ ∈ ½0; π�,
and ϕ ∈ ½0; 2π�, and therefore divergent. This can be dealt with by restricting the integration to a fiducial finite interval
x ∈ ½0; L0�. With this, and using that
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ffiffiffi
q

p ¼ pb
ffiffiffiffiffi
pc

p
L0

sin θ; ðB17Þ

one can finally show that the Hamiltonian reduces to
expression (2.9) given in the main text (where the factors
of L0 have dropped out), and that the symplectic structure
becomes

1

8πγ

Z
Σ
d3xEa

i ðAi
aÞ0 ¼

b0pb

γ
þ c0pc

2γ
; ðB18Þ

which implies the Poisson brackets (2.10).
Note that it is only the ratios L−1

0 pb and L−1
0 cwhich have

an invariant meaning under the rescaling L0 → αL0 of the
fiducial interval introduced for the regularization of the
spatial integrals.

APPENDIX C: CLASSICAL DYNAMICS
WITH UNIMODULAR CLOCK

Here we study the classical dynamics with respect to the
unimodular time variable. This is achieved by choosing
the lapse

N ¼ 2

pb
ffiffiffiffiffi
pc

p : ðC1Þ

With this choice the Hamiltonian (2.9) becomes

H ¼ −
1

γ2pbpc
ð2bcpc þ ðb2 þ γ2ÞpbÞ þ Λ; ðC2Þ

and as expected the gravitational part is proportional to the
cosmological constant. The equations of motion are then
found to be

_b ¼ 2

γ

bc
p2
b

; ðC3aÞ

_c ¼ 2

γ

b2 þ γ2

p2
c

; ðC3bÞ

_pb ¼
2

γ

�
c
pb

þ b
pc

�
; ðC3cÞ

_pc ¼
4

γ

b
pb

; ðC3dÞ

_T ¼ 8π; ðC3eÞ

_Λ ¼ 0; ðC3fÞ

while the vanishing of the Hamiltonian gives again the
(lapse-independent) relation (2.14). The solution to the
equations of motion is

bðτÞ ¼ �γðgðτ − τ0ÞÞ1=2; ðC4aÞ

cðτÞ ¼ 4γ

3

�
Λffiffiffiffi
C

p
�
3

ffiffiffiffi
C

p

2
ðτ − τ0Þ

�
1=3

−Dð3
ffiffiffiffiffiffi
2C

p
ðτ − τ0ÞÞ−2=3

�
; ðC4bÞ

pbðτÞ ¼ �2

�
12

C
ðτ − τ0Þ

�
1=3

ðgðτ − τ0ÞÞ1=2; ðC4cÞ

pcðτÞ ¼
�
3

ffiffiffiffi
C

p

2
ðτ − τ0Þ

�2=3

; ðC4dÞ

TðτÞ ¼ 8πðτ − τ0Þ − T0; ðC4eÞ

where we have introduced

gðτÞ ≔ D
ffiffiffiffi
C

p

3

�
3

ffiffiffiffi
C

p

2
τ

�−1=3
þ Λ

3

�
3

ffiffiffiffi
C

p

2
τ

�2=3

− 1: ðC5Þ

Equation (C4e) confirms the fact that T is indeed a time
variable since it evolves linearly in the coordinate time τ.
Here we have parametrized the solutions with C and D
given in (2.16), which remain Dirac observables even with
the choice of lapse11 (C1).
With the solutions to the classical equations of motion at

hand, one can go back to the parametrization (2.7), and
write this line element as

ds2 ¼ −gðτÞ−1
� ffiffiffiffi

C
p

18

1

τ2

�2=3

dτ2 þ gðτÞ 16

L2
0C

dy2

þ
�
3

ffiffiffiffi
C

p

2
τ

�2=3

dΩ2: ðC6Þ

Redefining new coordinates via

τ ¼ 2

3
ffiffiffiffi
C

p t3; y ¼ L0

ffiffiffiffi
C

p

4
x; ðC7Þ

one gets that

gðτÞ ¼ −fðtÞ ¼ −
�
1 −

2M
t

−
Λ
3
t2
�
; ðC8Þ

and we find the homogeneous interior line element (2.6)
with a mass

M ¼ D
ffiffiffiffi
C

p

6
; ðC9Þ

in agreement with the result of Sec. II B.

11Recall that it is not guaranteed that Dirac observables with
respect to a given Hamiltonian, i.e., a choice of lapse, still remain
Dirac observables with respect to another choice of lapse. For this
the Dirac observables have to commute withH1=H2, which is the
“relative” lapse between the two Hamiltonians.
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