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We study the leading α0 corrections to the entropy of certain black holes with AdS5 × S5 asymptotics. We
find that, in the supersymmetric limit, the entropy does not receive α0 corrections. This result strengthens
recent calculations that match the index of N ¼ 4 super-Yang-Mills with the corresponding partition
function in the supersymmetric limit. In the small temperature regime, we find that the entropy corrections
are concordant with the weak gravity conjecture.
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I. INTRODUCTION

Quantum gravity remains a largely unexplored frontier.
However, due to the seminal work in black hole thermo-
dynamics in the seventies [1–9], we know that, whatever
the ultimate unifying theory is, it should reproduce the
Hawking effect and give a microscopic derivation of the
Bekenstein-Hawking black hole entropy in the appropriate
semiclassical limit. To date, string theory appears to be the
only candidate for a quantum theory of gravity that explains
both of these effects in an ambiguity free manner at a
microscopic level [10–13]. In particular, the seminal work
of [10] provided a beautiful matching between the
Bekenstein-Hawking entropy of certain five-dimensional
supersymmetric black holes with asymptotically flat boun-
dary conditions and the counting of specific supersym-
metric states. Since then, a number of generalizations of
this work have been accomplished for black holes with
more complex topologies (see, e.g., [14]).
However, this matching has only been accomplished for

black holes with asymptotically flat boundary conditions.
One might wonder how to extend these results to asymp-
totically anti–de Sitter (AdS) spacetimes, for which we
have the so-called AdS=CFT correspondence [15–18]. In
its original form, the AdS=CFT correspondence relates
four-dimensional N ¼ 4 super-Yang-Mills (SYM) with
gauge group SUðNÞ and ’t Hooft coupling λ, to type IIB

superstring theory with string coupling gs, string length
ls ≡

ffiffiffiffi
α0

p
on AdS5 × S5 with radius L and N units of Fð5Þ

flux through the S5. The field theory is thought to live at the
conformal boundary of AdS5, and for this reason the
correspondence is said to be holographic in nature.
The string theory side is often referred to as the “bulk"
and the field theory side as the “boundary”.
The parameters on each side of the AdS=CFT corre-

spondence are related via

λ

N
¼ 2πgs and 2λ ¼ L4

l4
s
: ð1Þ

However, it remains a challenge to understand string theory
for generic values of gs, so one usually takes N → þ∞, at
fixed λ, so that gs → 0. Under these assumptions, the bulk
theory reduces to a classical theory of strings. To simplify
matters further, we can also take λ to be large, but not
necessarily infinite. On the field theory side, we are thus
looking at strong coupling effects, and on the gravity side
we have a supergravity theory. Corrections to the strict
λ → þ∞ limit appear in the bulk as higher derivative terms
which account for finite size string corrections.
The problem of reproducing the entropy of certain black

hole solutions in global AdS5 on the string theory side is
now mapped into a counting problem of certain states on
the field theory. Because we are interested in global AdS5,
the field theory is thought to live on Rt × S3. The holo-
graphic description of electrically charged supersymmetric
black holes with AdS × S5 asymptotics is in terms of states
of the dual N ¼ 4 SYM that preserve only one of the
available 16 supercharges. Such states should be counted
(with sign) by the superconformal index. However,
early attempts to compute this index gave an order one
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result [19], whereas the entropy of AdS5 black holes scales
with N2. It was not until recently that this long-standing
problem was partially solved. In particular, [20–36] have
argued that, upon using complex chemical potentials, the
cancellations between fermionic and bosonic degrees of
freedom observed in [19] can be avoided. This leads to an
index of order N2, whose associated entropy matches those
of known supersymmetric black holes [37–39]. This body of
work thus provides overwhelming evidence that whether we
compute the entropy via the index or via a more standard
calculation using the partition function ofN ¼ 4 SYM, the
results should agree with each other. It should be noted that
this latter quantity can only be computed via an indirect bulk
calculation using the Bekenstein-Hawking entropy.
The matching between the partition function calculation

and index leads to a number of fascinating predictions. In
particular, since the index cannot exhibit a dependence on
continuous parameters (except perhaps when wall crossing
is observed, see, e.g., [40,41]), we expect the counting on
the field theory side to not depend on the ’t Hooft coupling
λ. On the bulk side of the story, because we are computing
directly a partition function, this is not an obvious fact
given we know that the classical equations of motion of
type IIB supergravity do admit corrections in α0, due to
finite size stringy effects. These, in the small α0 limit,
appear as higher-derivative corrections to the equations of
motion of type IIB supergravity. The first nontrivial
corrections for supergravity configurations that only
involve the metric g and five-form Fð5Þ were worked out
in [42,43], following the seminal results of [44].

II. THE BLACK HOLES

We focus on black hole solutions of five-dimensional
minimal gauged supergravity, whose action comprises a five-
dimensional metric g and a field strength F ¼ dA and reads

S5D ¼ 1

16πG5

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

4
FabFab

þ 1

12
ffiffiffi
3

p εabcdeFabFcdAe

�
: ð2Þ

Known black hole solutions in this theory carry one electric
chargeQ and two angularmomenta J1, J2. For simplicity, we
focus on the case where J1 ¼ J2 ¼ J. The equations of
motion derived from Eq. (2) read

Rab −
gab
2

R −
6

L2
gab ¼

1

2

�
Fa

cFbc −
gab
4

FcdFcd

�
; ð3aÞ

∇aFab ¼ 1

4
ffiffiffi
3

p εbcdefFcdFef: ð3bÞ

We are interested in the α0 corrections to the entropy of
the black holes constructed in [45], which read

ds25D ¼ −
f
h
dt2 þ dr2

f
þ r2

4
ðσ21 þ σ22Þ þ

r2

4
hðσ3 −WdtÞ2;

ð4aÞ

A ¼
ffiffiffi
3

p
Q̃

r2

�
dt −

J̃
2
σ3

�
; ð4bÞ

where σ1, σ2, σ3 are the usual left-invariant one-forms of S3,

σ1 ¼ − sinψdθ þ cosψ sin θdϕ; ð5aÞ

σ2 ¼ cosψdθ þ sinψ sin θdϕ; ð5bÞ

σ3 ¼ dψ þ cos θdϕ; ð5cÞ

and

f ¼ r2

L2
þ 1 −

2M̃
r2

ð1 − χÞ þ Q̃2

r4

�
1 −

J̃2

L2
þ 2M̃L2χ

Q̃2

�
;

ð6aÞ

W ¼ 2J̃
r2h

�
2M̃ þ Q̃

r2
−
Q̃2

r4

�
; ð6bÞ

h ¼ 1 −
J̃2Q̃2

r6
þ 2J̃2ðM̃ þ Q̃Þ

r4
; ð6cÞ

where L2χ ≡ J̃2ð1þ Q̃=M̃Þ. The constants M̃, Q̃, and J̃
parametrize the energy M, electric charge Q, and angular
momentum Q as

M ¼ 3M̃π

4G5

�
1þ χ

3

�
; ð7aÞ

J ¼ J̃π
4G5

ð2M̃ þ Q̃Þ; ð7bÞ

Q ¼
ffiffiffi
3

p
LπQ̃

4G5

: ð7cÞ

The black hole event horizon is the null hypersurface
r ¼ rþ, with rþ being the largest real positive root of fðrÞ.
The associated Hawking temperature T, entropy S, chemi-
cal potential μ, and angular velocityΩ can be found in [45].
It is then a simple exercise to check that all thermodynamic
quantities satisfy the first law of black hole mechanics,

dE ¼ TdSþ μdQþ ΩdJ: ð8Þ

The Gibbs free energy is then constructed in the usual
manner via G ¼ E − TS − μQ −ΩJ. One can show that
G=T agrees with the Euclidean on-shell action (2) up to the
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usual Gibbons-Hawking-York [46,47] term and boundary
counterterms [48,49].
Finally, with our normalizations for F, the BPS condition

is given by [50]

Δ≡M −
2

L
J −

ffiffiffi
3

p

L
Q ≥ 0: ð9Þ

The saturation of the BPS condition occurs only for
supersymmetric solutions. Similar BPS bound has been
shown not to receive α0 corrections even for asymptotically
flat black holes [51]. The AdS BPS condition (9), together
with the first law, implies T ¼ 0, Ω ¼ 2=L and μ ¼ ffiffiffi

3
p

=L,
which in turn yield

Q̃ ¼ Q̃BPS ≡ r2þ

�
1þ r2þ

2L2

�
; ð10aÞ

J̃ ¼ J̃BPS ≡ Lr2þ
r2þ þ 2L2

: ð10bÞ

Note that even though the solutions (4) appear to depend on
three parameters (M̃, Q̃, J̃), the BPS condition reduces this
family to a one-parameter family, despite the fact that
extremal black holes form a two-parameter family of
solutions. We remark that [52,53] provided strong numeri-
cal evidence for the existence of a new two-parameter
family of supersymmetric black holes, whose role in this
story remains to be understood. One can also show that
demanding the absence of naked singularities in (4a)
implies that L > J̃ [54].
Since the α0 corrections are only known in type IIB

supergravity, we uplift the solutions (4) to ten dimensions.
Using the results of [55–57], one can show that Eq. (4)
oxidizes to the following solution of type IIB supergravity:

ds2 ¼ ds25D þ L2

��
dΨþ A −

Affiffiffi
3

p
L

�
2

þ dCP2

�
; ð11aÞ

Gð5Þ ¼
r3

2L
dt ∧ dr ∧ σ1 ∧ σ2 ∧ σ3 þ

L3

2
ffiffiffi
3

p J ∧ ⋆5F; ð11bÞ

Fð5Þ ¼ Gð5Þ þ⋆10Gð5Þ ð11cÞ

where ⋆5 is the five-dimensional Hodge dual obtained
using the line element (4a), ⋆10 is the Hodge dual obtained
using the ten-dimensional line element (11a), dCP2 is the
standard Fubini-Study metric on CP2 and J ¼ dA is its
associated Kähler form.

III. EVALUATING THE CORRECTIONS

The action [58] with the leading order α0 correction
is [42]

SIIB ¼ 1

16πG10

Z
M10

d10x
ffiffiffiffiffiffi
−g

p �
R −

1

4 × 5!
F2
ð5Þ þ γW

�
;

ð12Þ

where W is given by

W ≡ 1

86016

X20
i¼1

niMi; ð13Þ

with all 20 monomials given in Table I and [59]

T abcdef ¼ i∇aFbcdef þ
1

16
ðFabcmnFdef

mn − 3FabfmnFdec
mnÞ:
ð14Þ

Finally, we also have

γ ¼ α03

16

π3

8
ζð3Þ: ð15Þ

We notice that Table I corrects some typos in the final
table of [42].
Our objective is to use these results to compute the

leading correction to the entropy of the black hole solution

TABLE I. Table detailing the α03 corrections of any solution in
type IIB supergravity with nontrivial metric g and five-form Fð5Þ.
Following [42], all tensor monomials are written with all indices
lower.

ni Mi

−43008 CabcdCabefCceghCdgfh

86016 CabcdCaecfCbgehCdgfh

129024 CabcdCaefgCbfhiT cdeghi

30240 CabcdCabceT dfghijT efhgij

7392 CabcdCabefT cdghijT efghij

−4032 CabcdCaecfT beghijT dfghij

−4032 CabcdCaecfT bghdijT eghfij

−118272 CabcdCaefgT bcehijT dfhgij

−26880 CabcdCaefgT bcehijT dhifgj

112896 CabcdCaefgT bcfhijT dehgij

−96768 CabcdCaefgT bcheijT dfhgij

1344 CabcdT abefghT cdeijkT fghijk

−12096 CabcdT abefghT cdfijkT eghijk

−48384 CabcdT abefghT cdfijkT egihjk

24192 CabcdT abefghT cefijkT dghijk

2386 T abcdefT abcdghT egijklT fijhkl

−3669 T abcdefT abcdghT eijgklT fikhjl

−1296 T abcdefT abcghiT dejgklT fhkijl

10368 T abcdefT abcghiT dgjeklT fhkijl

2688 T abcdefT abdeghT cgijklT fjkhil
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detailed in (4). Naively, one might think that wewould need
to solve the equations of motion from the action (12) and
only then evaluate the correction to the entropy. However,
due to the work in [60] (whose results straightforwardly
generalize to the case at hand), one in fact only needs to
know the 0th order solution, and evaluate that on the
corrected action to get the leading corrections to the
entropy.
This is a major simplification and is one of the main

reasons this work is possible. However, it is still not a trivial
task to evaluate all the monomials from Table I without
accidentally inserting typos. Therefore, one of the key steps
we had to take was validating our calculations. We wrote
two pieces of code independently from one another, only
comparing them at the end to make sure they agreed. We
started by confirming the results of [42] to make sure there
were no mistakes when copying the monomials from
Table I.
Only after we had two matching codes that confirmed the

results in [42] did we insert the solution (4). And even then,
to be completely certain we had no typos or no convention
compatibility issues, not only did we include many con-
sistency checks throughout the code, e.g., confirming we
indeed solved the correct equations of motion, but we used
two different parametrizations. One of them using a CP2

fibration and another using a more direct method using the
coordinates as originally written in [56]. The CP2 fibration
is the more efficient method and therefore is the one
included in the Supplemental Material [61]. However,
the direct method is more amenable to generalization for
the case of different angular momenta [56,62], which we
leave for future work.
After the colossal amount of dust settles, all 20 terms in

Table I are nonvanishing on our solutions, and yet the final
result appears simple, which gives further confidence in our
answer. Using the relation between the Gibbs free energyG
and the Euclidean action obtained from (12), we find that
the stringy correction to the Gibbs free energy at fixed
chemical potential μ, angular velocityΩ, and temperature T
reads

ðδGÞμ;Ω;T ¼ −
12π3N2α03ðM̃ þ Q̃Þ2ζð3Þ

L12r15þ ð9L2 − J̃2Þ

× ðL2 − J̃2Þ3Δ
�
Δþ 4

L
J

�
≤ 0: ð16Þ

It is a simple matter to compute the variation in entropy,
ðδSÞQ;J;M, at fixed asymptotic charges Q, J, and M from
ðδGÞμ;Ω;T . In particular, we can follow the same steps as in
[60] to show that

ðδSÞQ;J;M ¼ −T−1ðδGÞμ;Ω;T : ð17Þ

Equations (16) and (17) are the main result of this paper,
whose physical significance we discuss next.

IV. INTERPRETATION OF RESULTS

The first thing we note is the fact that ðδSÞQ;J;M ¼ 0 on
the supersymmetric black hole solutions found in [37]. One
might wonder why that is the case, given that (17) has a
factor of T in the denominator, and for supersymmetric
solutions T ¼ 0. However, we note that if we take Q̃ ¼
Q̃BPS þ δQ and J̃ ¼ J̃BPS þ δJ, with δQ; δJ ≪ 1, we get
T ¼ OðδQ; δJÞ, whereas Δ ¼ OðδQ2; δQδJ; δJ2Þ. This
means ðδSÞQ;J;M ¼ OðδQ; δJÞ in Eq. (17), i.e., it vanishes
in the supersymmetric limit. Another way to see this result
is to note that one can read off the change in entropy due to
stringy corrections at constant chemical potential μ, tem-
perature T, and angular velocity Ω using the standard
thermodynamic relation S ¼ −ð∂G=∂TÞΩ;μ. In this limit,
we get that the correction to the entropy is finite at
extremality, being zero in the supersymmetric limit. To
our knowledge, there is no a priori reason, based on bulk
physics, for why the entropy in the supersymmetic limit is
not corrected via stringy effects. This lends support in favor
of the index picture advocated in [21–23,25–36].
Second, the sign of ðδSÞQ;J;M appears consistent with the

weak gravity conjecture [63], similarly to the analogous
calculations in flat space [64–68] and with AdS asymp-
totics [69]. In particular, one can show using the generali-
zation of the Goon-Penco relation to AdS [68,69] that the
leading correction to the extremality bound at fixed energy
M, charge Q, and angular momentum J necessarily
decreases with respect to the uncorrected solution. This
relation is in perfect agreement with the weak gravity
conjecture [64,66,68].
Third, we point out that our final expression (16) only

assumes equal angular momenta and equal charges.
Notably, it is nonvanishing for a generic nonsupersym-
metric extremal black hole and is even valid away from
extremality. It would be interesting to understand whether
the methods used in [70] could be extended to capture the
leading α0 corrections presented in this paper. Further, this
then offers a prediction for the quantum field theoretic
calculation. Even though the counting of the supersym-
metric states is not corrected at finite λ, the counting
including nonsupersymmetric states should be, and its form
should be given by (16). However, as of yet, there are no
techniques capable of computing a partition function at
strong coupling without the aid of supersymmetry. Though
we should mention that in [71] some progress has been
reported in going slightly beyond the supersymmetric limit.
Our results rely heavily on [60], since we solely use the

uncorrected solution to determine the thermodynamic
properties of the corrected solution. In principle, we could
use the equations of motion that follow from (12) together
with the modified self-duality condition of [42] to
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determine directly the stringy corrected black holes. Under
such circumstances, we could determine all thermodynamic
properties from the solutions per se instead of using the
arguments presented in [60]. Perhaps our current results
suggest that the uncorrected supersymmetric solution might
be a solution of the corrected equations of motion. This
phenomenon has been recently observed in [72] for a
number of corrections and black hole solutions. We leave
this avenue of research for the future.
Finally, an interesting avenue for future work is to

generalize this calculation to the case when all the angular
momenta and charges are distinct, using the results from
[62]. The complexity of this solution is quite daunting, and
computing these corrections would necessarily require
more computing power and a more efficient algorithm [73].
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