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We study the cobordism conjecture of McNamara and Vafa which asserts that the bordism group of
quantum gravity is trivial. In the context of type IIB string theory compactified on a circle, this predicts the
presence of D7-branes. On the other hand, the non-Abelian structure of the IIB duality group SLð2;ZÞ
implies the existence of additional ½p; q� 7-branes. We find that this additional information is instead
captured by the space of closed paths on the moduli space of elliptic curves parameterizing distinct values
of the type IIB axio-dilaton. This description allows to recover the full structure of non-Abelian braid
statistics for 7-branes. Combining the cobordism conjecture with an earlier Swampland conjecture by
Ooguri and Vafa, we argue that only certain congruence subgroups Γ ⊂ SLð2;ZÞ specifying genus zero
modular curves can appear in 8D F-theory vacua. This leads to a successful prediction for the allowed
Mordell–Weil torsion groups for 8D F-theory vacua.
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I. INTRODUCTION

The central question of high energy theory revolves
around understanding the unification of quantum mechan-
ics and gravity. From the standpoint of effective field
theory, coupling a quantum field theory to gravity appears
to impose seemingly mild conditions on the structure of
higher dimension operators. On the other hand, explicit
string constructions always appear to impose a far greater
amount of structure on the low energy effective field theory,
suggesting that present bottom up considerations provide
only a partial understanding of UV consistency.
In recent years these conditions have been systematized

into a set of interconnected “Swampland conjectures” [1,2]
(see also [3,4]). In fact, for supersymmetric theories in ten
dimensions, string theory is universal [5,6], and there is
some hope that this notion of string universality can be
extended to lower-dimensional systems (see, e.g., [6–10]).
Our starting assumption, as in [11] (see also [9,10]), is

that the underlying theory of quantum gravity is unique.
This should be understood as the statement that there
are finite energy defects that can interpolate between
all possible vacua after a full compactification of the
theory. Often this notion of connectedness demands the

introduction of new ingredients in the theory which can be
identified with physical objects. In particular, this is the
case in situations where the bordism group of a bundle is
nontrivial. The defects then trivialize this Abelian group
and thus eliminate the appearance of corresponding global
symmetries that would render the theory inconsistent.
In Ref. [11] this was formalized as the conjecture that

the bordism group of quantum gravity is trivial, namely
ΩQG ¼ 0. One can extend this to reference a quantum
theory of gravity with D macroscopic dimensions ΩQG;D,
as well as compactifications to D − k large dimensions by
taking k of them to be small. In this case, there is a standard
notion of a bordism group Ωk, with kþ 1 denoting the
dimension of the “bulk manifold” for a k dimensional
boundary. While arguments involving black objects and
global symmetries strictly only apply for k ≥ 3, it is still
believed that all the above groups have to vanish.1 That
being said, these considerations are in close accord with
what can be realized in explicit string compactifications,
and this lends significant credence to the overarching
physical principles in play.
Our operating assumption in this paper will be that

the cobordism conjecture is a well-motivated physical
principle which is satisfied in any putative theory of
quantum gravity. In other words, it imposes necessary
conditions on the structure of a quantum gravity theory.
Remarkably, this is enough to predict the existence of
specific objects which trivialize the bordism group of
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1Note also that there are general caveats for Swampland
criteria in theories with D ≤ 3 spacetime dimensions since in
these cases there are no local degrees of freedom for the graviton.
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quantum gravity. Turning the discussion around, a natural
question to ask is whether the full spectrum of branes can
be predicted from the triviality of the bordism group ΩQG.
An interesting test case is type IIB string theory since it

has a non-Abelian duality group and a rich spectrum of
codimension two defects known as ½p; q� 7-branes. The
appearance of both features leads to nontrivial additional
data beyond what one would expect to be captured by just a
bordism group since bordism groups are generalized
homology theories and as such are only sensitive to
Abelian structures. As one might expect, we find that
the bordism group of SLð2;ZÞ does indeed predict the
appearance of D7-branes.
This begs the question as to whether we can deduce the

full spectrum of ½p; q� 7-branes and their statistics using
some mild generalization of the cobordism conjecture. We
propose to accomplish this by tracking nontrivial duality
twists in circle compactifications of type IIB string theory.
These can be related to closed paths in the moduli space
of the axio-dilaton M. For the duality bundles on the
boundary circle to trivialize in the two-dimensional bulk
one needs to include physical objects of codimension two,
which induce general SLð2;ZÞ monodromies. These are
exactly the ½p; q� 7-branes of the type IIB setup. In terms of
M these physical defects are associated to a deformation of
the closed paths across distinguished points given by the
cusps and elliptic points of the modular curve (for SLð2;ZÞ
these are located at τ ¼ i∞, τ ¼ i, and τ ¼ e2πi=6).
Tracking the non-Abelian nature of the orbifold funda-
mental group we can recover the full spectrum and non-
Abelian statistics of the 7-branes. After the inclusion of
these codimension two objects the moduli space is com-
pactified to P1, for which all closed paths are contractible
and the SLð2;ZÞ bundles trivialize. We therefore define a
generalization of the cobordism conjecture for codimension
two objects predicted from the duality group acting on τ
and analyze it in the context of type IIB string theory with
duality group SLð2;ZÞ, and its nonperturbative formu-
lation in terms of F-theory [12–14] (see e.g., [15–18] for
recent reviews).
These concepts can equally well be applied to duality

groups Γ ⊂ SLð2;ZÞ. In this case, the analogous condition
makes reference to the moduli space specified by the
modular curve MΓ ¼ H=Γ and its compactification MΓ
after the inclusion of the available 7-branes, with H the
upper half plane. For Γ a congruence subgroup of SLð2;ZÞ
the corresponding compactified modular curves are
Riemann surfaces. One therefore concludes that all possible
Γ-bundles on the circle trivialize in the higher-dimensional
bulk only if the obtained modular curve is genus zero and
has no nontrivial one-cycles. This shows that the moduli
space needs to be simply connected after the inclusion of
the codimension two defects, in accord with the conjecture
of Ref. [2]. Moreover, we immediately deduce that there is
a finite number of allowed duality groups sinceMΓ is only

a genus zero curve for a certain choices of subgroups
Γ ⊂ SLð2;ZÞ.
Quite remarkably, these choices do appear in the setup of

F-theory compactifications in the presence of torsional
sections [19–21] (see, e.g., [22] for a recent review). This
data is captured by the so-called Mordell–Weil (MW)
group and has direct physical implications on the global
realization of the gauge group in the theory. In this sense,
the presence of nontrivial MW torsion can be understood as
the gauging of (part of) the center 1-form symmetries.2

In [8] it was shown that the number of consistent quantum
gravity theories in eight dimensions with nonsimply con-
nected gauge groups are severely restricted by a mixed
anomaly involving the dynamical higher-form fields of the
supergravity theory as well as the discrete center 1-form
symmetries, see also [10] for an alternative approach
leading to similar constraints. It was found that the
vanishing of the anomaly has a beautiful connection to
the geometry of elliptically-fibered K3 manifolds. In this
way bottom up field theory arguments allow one to exclude
most of the models that cannot be derived from F-theory
on an elliptic K3, or heterotic string theory on a T2,
see e.g., [28].
While some of the string theory analyses above strongly

rely on the full classification of MW lattices for extremal
elliptically-fibered K3 manifolds [29–33], our criterion
leads to a complementary viewpoint fully utilizing the
presence of the duality group. Specifically, employing the
refinement of the cobordism conjectures in the case of
circle compactifications of type IIB we can reconstruct the
full set of branes realized in the theory as well as their non-
Abelian statistics under monodromy processes. For the
congruence subgroups Γ ⊂ SLð2;ZÞ we further find con-
sistency constraints which restrict the presence of torsional
sections. This leads to a set of possibilities slightly larger
than the realized models in F-theory on elliptically-fibered
K3 manifolds. The mismatch is explained by further
constraints for a compact geometry and the preservation
of supersymmetry. Essentially, this boils down to the
further condition that we need precisely 24 7-branes to
avoid any deficit angle in the passage from 10D to 8D
vacua. So in the end we find a perfect match between the
realizations of MW torsion for elliptically-fibered K3
manifolds and restrictions imposed by our proposed gen-
eralization of the cobordism conjecture.
While we have presented some extremely nontrivial

checks of our proposal in the context of type IIB vacua,
we expect that these considerations apply for any quantum
theory of gravity with D macroscopic dimensions in which
we have a non-Abelian duality group which acts on a

2See [23,24] for a general discussion of higher-form sym-
metries and their gauging, as well as [8,25–27] for their explicit
realization in terms of F-theory compactifications to six and eight
dimensions.
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physical parameter space and predicts the existence of
codimension two defects. A particularly interesting case is
that of 4DUð1Þ gauge theory with stringlike defects. In this
case, we expect that in such theories, coupling to gravity
imposes strong constraints on admissible duality groups.
The rest of this paper is organized as follows. In Sec. II

we review the cobordism conjecture and discuss its
generalizations for circle reductions of type IIB string
theory. The non-Abelian structure of the defects originates
from the non-Abelian SLð2;ZÞ duality group. We then
point out the connection to closed paths on the modular
curve of the theory in Sec. III. In Sec. IV, we extend the
arguments to general congruence subgroups Γ of SLð2;ZÞ.
In these cases we find that the modular curve of consistent
models has to be of genus zero. For compact supersym-
metric configurations, we further find that the only allowed
setups are realized by elliptically-fibered K3 manifolds. We
conclude in Sec. V and present some potential avenues of
further investigation. Some technical details about the
derivation of the relevant bordism groups are presented
in Appendix A and we summarize other typical examples
of genus zero congruence subgroups in Appendix B.

II. BUNDLES, BRANES, AND BORDISMS

In this section we discuss the appearance of 7-branes in
the circle compactification of type IIB string theory and its
nonperturbative formulation in F-theory [12–14]. In our
discussion the SLð2;ZÞ duality of the type IIB string plays
a central role. The duality transformation identifies differ-
ent values of the fields to be physically equivalent and
therefore can be understood as a redundancy of the theory.
The spacetime dependent choice for the duality frame
together with the transition functions therefore define an
SLð2;ZÞ bundle. In the following we want to explore what
the presence of nontrivial duality bundles on the compac-
tification circle imply for the existence of codimension two
defects in the theory. Note that the actual duality group of
type IIB string theory is given by the Pinþ-cover of
GLð2;ZÞ, see [34]. This leads to a twisting of the tangent
bundle and the duality group accounting for the trans-
formation behavior of the fermions in the system. Here,
we focus on the subgroup SLð2;ZÞ, which is used to
demonstrate the necessity to include 7-branes due to the
cobordism conjecture.
Possible bundles for the group G are determined by its

classifying space BG. Since we are interested in bundles
of G ¼ SLð2;ZÞ on a circle the relevant information is
contained in the fundamental group of its classifying space

π1ðBSLð2;ZÞÞ ¼ π0ðSLð2;ZÞÞ: ð2:1Þ

Since SLð2;ZÞ is discrete, this can be identified with the
group itself. For a restriction of the duality group to a
congruence subgroup Γ ⊂ SLð2;ZÞ one analogously finds

π1ðBΓÞ ¼ π0ðΓÞ ≃ Γ: ð2:2Þ

An alternative way to understand the different bundles
follows from the observation that circle bundles of discrete
groups are determined by the transition function imposed
when going once around the circle, i.e., by a specific group
element.
For the uniqueness of the underlying quantum theory of

gravity we need to include objects that can absorb the
SLð2;ZÞ monodromy imposed by the nontrivial bundle.
Physically, this corresponds to introducing a pointlike
source in the two-dimensional geometry, or equivalently,
to specifying an asymptotic profile of the SLð2;ZÞ bundle
along a bordant circle, as in Fig. 1. In type IIB string theory
we know that general ½p; q� 7-branes will have exactly this
effect. Their induced monodromy is given by

γ½p;q� ¼
�
1þ pq p2

−q2 1 − pq

�
: ð2:3Þ

With the standard definition of A-, B-, and C-branes, see,
e.g., [18], with corresponding monodromies

A∶ γ½1;0� ¼
�
1 1

0 1

�
; B∶ γ½3;1� ¼

�
4 9

−1 −2

�
;

C∶ γ½1;1� ¼
�

2 1

−1 0

�
; ð2:4Þ

and the identities

γ½1;0� ¼ T ∈ SLð2;ZÞ; γ6½1;0�γ½3;1�γ
2
½1;1� ¼ S ∈ SLð2;ZÞ;

ð2:5Þ

we see that we can generate each element in SLð2;ZÞ by an
appropriate combination of 7-branes. We further know that
these objects are mutually nonlocal and exhibit non-
Abelian statistics for monodromy processes [35].

FIG. 1. Left: Duality twist in the circle compactification of type
IIB string theory in the F-theory description. Right: Trivialization
of the bordism group by the introduction of physical objects.
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The non-Abelian statistics can be seen as follows.
Starting with a general element γ ∈ SLð2;ZÞ we decom-
pose it in terms of the monodromies of the elementary
building blocks (2.4) above, e.g., γ ¼ γ1γ2γ3 in Fig. 2.
These building blocks can then be separated as individual
transition functions along the circle, each of which is
connected to the corresponding brane in the bulk via a
branch cut. The individual branes can then be moved
around the bulk freely as long as they do not cross another
branch cut. If they do cross, however, they will implement a
monodromy transformation on the associated elements γi
while leaving the overall γ unchanged. In this way one can
reconstruct the non-Abelian statistics of the 7-branes in the
theory arising from the non-Abelian monodromies.
There is also an efficient geometrical interpretation of

the above discussion in F-theory as a nonperturbative
description of type IIB vacua. In F-theory models the
vacuum expectation value of the axio-dilaton τ is captured
by the complex structure parameter of an auxiliary torus.
Supersymmetry preserving F-theory vacua are then speci-
fied by genus-one-fibered Calabi-Yau manifolds. Since we
are interested in type IIB compactifications on a capped off
circle we focus on elliptically-fibered K3 manifolds in
the F-theory framework. An elliptic K3 can be understood
as a torus T2 fibered over a base manifold which is given by
a 2-sphere P1. Cutting two holes in P1, the base becomes
topologically a cylinder, i.e., S1 × I with finite interval I.
Extending the interval to infinity this type of background
can be understood as a nonperturbative circle compactifi-
cation of type IIB string theory with possible duality twists
as discussed above. Employing the F-theory picture, this
leads to an automorphism on the elliptic fiber when going
around the circle in the base, see Fig. 1. The closing of one
side of the cylinder then leads to a singular fiber at the
corresponding point if the SLð2;ZÞ monodromy is non-
trivial. This is a clear sign that a corresponding 7-brane has
to be localized there, with monodromy action determined
by the bundle.
We therefore see that the consideration of nontrivial

SLð2;ZÞ bundles in the circle compactification of type IIB
string theory demands the introduction of general ½p; q�

7-branes and also imposes a non-Abelian structure when
mutually nonlocal objects are interchanged.
We now want to compare this with the associated

bordism class that takes into account the SLð2;ZÞ duality
structure, which for the case at hand is given by3:

ΩSpin
1 ðBSLð2;ZÞÞ ¼ eðZ2;Z12Þ; ð2:6Þ

which is a group extension of Z12 by Z2, and necessarily
Abelian. For further details on this group we refer the
interested reader to Appendix A.
In more detail, the duality group SLð2;ZÞ is generated

by an element of order four given by S and an element
of order six given by R ¼ TS. Note that we have
T ¼ RS−1 ¼ RS3. With this we can write the group
SLð2;ZÞ as

SLð2;ZÞ ¼ hR; S∶R6 ¼ S4 ¼ 1; R3 ¼ S2i: ð2:7Þ
This corresponds to the structure of an amalgamated free
product

SLð2;ZÞ ¼ Z4 �Z2
Z6; ð2:8Þ

with the nontrivial Z2 element embedded as R3 and S2 into
the individual factors. Utilizing this structure one can
further argue that the extension in (2.6) is trivial, see
Appendix A.
From this representation we can also see that S and R

respectively map to order four and six elements in the
Abelianization AbðSLð2;ZÞÞ ¼ Z12. We denote these
elements as φðSÞ and φðRÞ and find

φðTÞ ¼ φðRÞφðSÞ3 ⇒ φðTÞ6 ¼ φðRÞ6φðSÞ18 ¼ φðSÞ2;
ð2:9Þ

i.e., T maps to an element of order twelve and thus
necessarily generates Z12. One therefore concludes that in
terms of the bordism group ΩSpin

1 ðBSLð2;ZÞÞ the presence
of the D7-brane is enough to trivialize the Z12 factor.
From the discussion above, it should be clear that the

bordism group loses information about the non-Abelian
properties of the involved objects. In fact, we show in
Appendix A that for all congruence subgroups Γ ⊂
SLð2;ZÞ one has

ΩSpin
1 ðBΓÞ ¼ eðZ2;AbðΓÞÞ; ð2:10Þ

with AbðΓÞ the Abelianization of Γ. The existence of an
associated description in terms of a free product again
suggests that the extension is trivial.

FIG. 2. Decomposition of elements γ ∈ SLð2;ZÞ into factors
γ ¼ γ1γ2γ3 and the corresponding brane picture.

3MD is grateful to M. Montero for enlightening discussions
concerning bordism groups. See also [36] for a great introduction
and technical toolkit for physicists.
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To illustrate the difference in the two approaches,
let us discuss a circle compactification with duality twist
given by γ ¼ S. Since S is an element of order 4 it can be
represented as eπi=2 in the multiplicative description of Z12.
Consequently, from the bordism perspective a stack of four
D7-branes would suffice in order to absorb the mono-
dromy. However, we clearly see that T4 ≠ S in terms of the
full SLð2;ZÞ duality group. In the alternative approach we
instead see that the S-generator is associated to the
combination of six A-branes, one B-brane, and two
C-branes, which capture the full non-Abelian structure
of the associated transition functions.

III. BRANES AND MODULAR CURVES

In the previous sectionwe observed that the bordism group
for SLð2;ZÞ does not appear to detect some of the intrinsi-
cally non-Abelian data associated with the non-Abelian
duality group. In this section we present a proposal for
how to supplement this information. In the spirit of F-theory,
our main idea will be to track the profile of the supergravity
field τ, namely the axio-dilaton. Our conclusions are as
follows. The nontrivial Γ bundles are translated to closed
paths in the moduli space regarded as an orbifold. The
inclusion of the codimension two objects, i.e., the 7-branes
compactify this space to a Riemann surface. Moreover,
the closed paths as elements of the orbifold fundamental
group fully capture the non-Abelian statistics of the present
7-branes. If the resulting Riemann surface is of genus zero, all
paths can be contracted after the inclusion of the defects and
the corresponding bundles can be trivialized. If the Riemann
surface is of higher genus this is not possible and not all
duality bundles can be trivialized. Such duality groups can
consequently notbe realized in consistent theories ofquantum
gravity.
To frame the discussion to follow, recall that the axio-

dilaton τ in F-theory compactifications takes values in the
upper halfplane H. The SLð2;ZÞ duality transformation
acts on it via

τ ↦
aτ þ b
cτ þ d

; with

�
a b

c d

�
∈ SLð2;ZÞ: ð3:1Þ

In this way the physically distinct values are given by
values in the so-called modular curve

M ¼ H=SLð2;ZÞ: ð3:2Þ

Note that only PSLð2;ZÞ acts on τ. However, there are other
fields in type IIB string theory, such as the 2-formsB2 andC2

that also transform nontrivially under diagð−1;−1Þ ∈
SLð2;ZÞ and the full duality group is physicallymeaningful.4

We shall also be interested in the more general situation
where the duality group may be a subgroup Γ ⊂ SLð2;ZÞ.
In this case, the same construction can be applied to duality
groups which are congruence subgroups Γ ⊂ SLð2;ZÞ, for
which one obtains the corresponding modular curves:

MΓ ¼ H=Γ: ð3:3Þ

Including possible cusps at i∞ ∪ Q ⊂ C into the upper
halfplane H̄ one obtains the compactification

MΓ ¼ H̄=Γ; ð3:4Þ

which for Γ a congruence subgroup is topologically a
compact Riemann surface [38]. If there are additional
elliptic points they result in orbifold points on the modular
curve.
We see that when going around the circle of our

compactification, the axio-dilaton is identified with an
SLð2;ZÞ equivalent value. The corresponding map from
the compactification circle to H therefore projects to a
closed path in M (see Fig. 3), which is nontrivial for a
nontrivial duality twist around the circle. Again, the same
logic can be applied for more general duality groups
Γ ⊂ SLð2;ZÞ. In this way we can identify the closed paths
on MΓ with elements in Γ. This is supported by the
observation that the fundamental group of H is trivial and
therefore the orbifold fundamental group of the modular
curve is given by

π1ðMΓÞ ¼ Γ; ð3:5Þ

which also takes into account the presence of possible
elliptic points. Again, note that on the level of τ one is only
sensitive to the projectivization PΓ, but the inclusion of all
fields in the bosonic action extends this to the full group Γ.
We therefore find the important identification

π1ðBΓÞ ≃ π1ðMΓÞ; ð3:6Þ

FIG. 3. Two paths connecting SLð2;ZÞ equivalent values of τ,
related by S and T, are projected to closed paths around the cusp
or one of the elliptic points in the fundamental domain.

4In fact, by including the duality transformations on the
gravitinos one expects that this should be extended to the
metaplectic cover of SLð2;ZÞ, as argued in Ref. [37].
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which relates Γ-bundles on the compactification circle with
an equivalence classes of closed paths on the corresponding
modular curve MΓ.
In the remainder of this section we want to shed light on

the appearance of branes from the modular curve perspec-
tive. Let us first discuss the case of SLð2;ZÞ for which the
modular curve has three distinguished points. First, we
have the cusp at τ ¼ i∞which is a marked point filled in by
the compactification to MΓ. This point is the stabilizer
of the infinite order element T∶τ ↦ τ þ 1. Additionally,
we have the distinguished orbifold points τ ¼ i and
τ ¼ expð2πi=6Þ, which are fixed by finite order elements
of the duality group:

τ ¼ i∞∶ T ¼
�
1 1

0 1

�
; τ ¼ i∶ S ¼

�
0 −1
1 0

�
;

τ ¼ e2πi=6∶ ST ¼
�
0 −1
1 1

�
; ð3:7Þ

A general closed path onM associated to γ ∈ SLð2;ZÞ can
then be composed of a concatenation of the elementary
paths around two of the three distinguished points.5 The
extension of the bundle from the compactification circle to
the bulk, as depicted in Fig. 2, can then be understood as a
deformation of the closed path within the modular curve.
Dragging the closed path over any of the designated points
imposes the presence of an object implementing the
SLð2;ZÞ transformation given in (3.7), which could also
be decomposed in terms of A-, B-, and C-branes. In this
sense the elliptic points and cusps of the modular curve as
an orbifold are directly related to the set of branes necessary
to trivialize the configuration after the extension to the bulk.
Moreover, while the fiber in the F-theory geometry
becomes singular at the position of the brane, the axio-
dilaton is still well defined. Therefore, branes have to be
associated to paths in the modular curve that can be
contracted to one of the special points. From (3.7) we
see that the branes associated to the three special points are
sufficient to generate the full SLð2;ZÞ.
Turning the logic around, starting with the orbifold

modular curve we see that the inclusion of the 7-branes
compactifies the curve to the topological space given by
M. Since topologically

M̄ ≃ P1; ð3:8Þ

one has π1ðM̄Þ ¼ 0 and every closed path is trivial. This
means that every duality twist around the circle can be
compensated by the inclusion of the corresponding branes
in the bulk geometry.

For congruence subgroups one can use an equivalent
approach. One starts with the orbifold modular curve with
π1ðMΓÞ ¼ Γ. This may contain several orbifold fixed
points associated to the elliptic points of the modular
curve as well as excised points that correspond to the
cusps. The inclusion of the allowed 7-branes, i.e., the ones
whose monodromy is generated by closed paths around the
designated points on MΓ, compactifies the curve to M̄Γ.
The resulting space is topologically a Riemann surface.
However, we know that π1ðM̄ΓÞ ¼ 0 only if M̄Γ is of
genus zero. This means that for congruence subgroups of
higher genus the physically allowed 7-branes are not
enough to allow for a trivialization of all closed paths
and the associated Γ-bundles on the compactification circle.
This is the case since there are closed paths that cannot be
contracted to a point with a well-defined τ.
At this point we make direct contact with the Swampland

conjecture of Ref. [2] which proposes that in quantum
gravity, all moduli spaces are in fact simply connected. Note,
however, that to apply this criterion one has to consider the
compactified modular curve, that is, one has to include the
physical defects that compactify the moduli space. In our
context, this means we must limit our discussion to genus
zero modular curves. In particular, this imposes strong
constraints on the possible spectra of ½p; q� 7-branes
compatible with a given duality group Γ ⊂ SLð2;ZÞ.
To test this relation we can proceed as follows. We argued

that each elliptic point and cusp corresponds to a brane with
a monodromy given by an element in Γ. We also noted that
for genus zero congruence subgroups, these are enough to
generate the full congruence subgroup, whereas for higher
genus modular curves there are elements in Γ that cannot be
generated in this way. These correspond to nontrivial closed
paths on M̄Γ. This suggests a correlation between the
number of generators of Γ and the number of special points
depending on the genus of the modular curve.
There are of course many choices for possible subgroups

of Γ ⊂ SLð2;ZÞ, including those with well-appreciated
connections to the theory of modular forms such as
Γ0ðkÞ;Γ1ðkÞ;ΓðkÞ:

ΓðkÞ¼
��

a b

c d

�
∈SLð2;ZÞ∶

�
a b

c d

�
¼
�
1 0

0 1

�
modk

�
;

Γ1ðkÞ¼
��

a b

c d

�
∈SLð2;ZÞ∶

�
a b

c d

�
¼
�
1 �
0 1

�
modk

�
;

Γ0ðkÞ¼
��

a b

c d

�
∈SLð2;ZÞ∶

�
a b

c d

�
¼
�� �
0 �

�
modk

�
:

ð3:9Þ

In what follows, we shall primarily focus on the cases of
ΓðkÞ and Γ1ðkÞ since these are the ones which can lead to
nontrivial Mordell-Weil torsion of the associated elliptic

5Choosing τ ¼ i and τ ¼ e2πi=6 the composition of closed paths
directly reflects the amalgam structure SLð2;ZÞ≃Z4 �Z2

Z6.
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curve, see, however, Appendix B for a discussion of other
genus zero subgroups.
As illustrative examples, we consider:

Γ genus Ng Np Ng − Np

SLð2;ZÞ 0 2 3 −1
Γ1ð2Þ 0 2 3 −1
Γð3Þ 0 3 4 −1
Γ1ð9Þ 0 7 8 −1
Γð6Þ 1 13 12 1

Γ1ð11Þ 1 11 10 1

Γ1ð13Þ 2 15 12 3

Γð7Þ 3 29 24 5

Γð9Þ 10 55 36 19

ð3:10Þ

where Ng denotes the number of generators and Np the
number of elliptic points and cusps. Accounting for the
overcounting by one due to the existence of a relation
between the elements, we find exactly what one would
expect6

Ng − Np þ 1 ¼ 2g; ð3:11Þ

associated to the nontrivial closed paths on M̄Γ.
7

IV. BOTTOM UP BOUND ON MORDELL–WEIL
TORSION

In the previous sections we argued that Swampland
considerations lead to strong constraints on the spectrum of
codimension two defects in theories with a non-Abelian
duality group Γ ⊂ SLð2;ZÞ. In particular, we argued that
the associated modular curve MΓ (as well as its compac-
tification) must have genus zero. In this section we
demonstrate that the very delicate features of Mordell–
Weil torsion of an elliptically fibered K3 surface can be
predicted from Swampland considerations alone.
To frame the discussion to follow, we briefly summarize

how the restriction of the duality group appears naturally in
the context of F-theory with nontrivial torsional sections
captured by the Mordell–Weil group, see also [19–21]. We
then show that Swampland considerations correctly predict
this structure. For this we start with type IIB string theory

with duality group restricted to Γ and follow the same
arguments as for SLð2;ZÞ above. This corresponds exactly
to the setup of F-theory with nontrivial Mordell–Weil
torsion. In turn this restricts some of the allowed deforma-
tions that would destroy the torsional sections and restore
the full SLð2;ZÞ duality structure.8

Elliptic curves are naturally equipped with a summation
law, which for the description in terms of C=Λ with two-
dimensional lattice Λ is given by the addition of complex
numbers mod Λ. Applying this summation law fiber-wise
this extends to a group law for sections of an elliptic
fibration. The identity element is given by the zero section.
Relevant for the analysis in F-theory is the set of rational
sections. This property is preserved under the Abelian
group law and therefore these form a group, the Mordell–
Weil (MW) group. The finitely generated MW group in
general takes the form:

MW ¼ Zr × T ; ð4:1Þ

with torsional part T .
Now, for elliptically fibered K3 manifolds [29–33] as

well as elliptic surfaces [39] the full set of Mordell–Weil
lattices is known. In the following we will focus on the
torsional part T for elliptically-fibered K3 manifolds. The
list of allowed torsion subgroups is then given by:

T Z2 Z3 Z4 Z5 Z6 Z7 Z8

Γ Γ1ð2Þ Γ1ð3Þ Γ1ð4Þ Γ1ð5Þ Γ1ð6Þ Γ1ð7Þ Γ1ð8Þ
T Z2×Z2 Z2×Z4 Z2×Z6 Z3×Z3 Z4×Z4

Γ Γð2Þ Γð2Þ∩Γ1ð4Þ Γð2Þ∩Γ1ð3Þ Γð3Þ Γð4Þ
ð4:2Þ

In the description of the fiber elliptic curve in terms ofC=Λ,
the torsional points take a particularly simple form. For the
lattice Λ spanned by the two complex numbers 1 and τ ∈ H
the k-torsion points EðkÞ are given by:

EðkÞ ¼
�
z∈C=Λ∶z¼ n

k
nþm

k
τ;n;m∈ f0;1;…; k− 1g

�
:

ð4:3Þ

For a fibration the torsional sections are associated to a
fixed torsional point in each fiber. The overall complex
structure τ of the fiber is free to vary. To guarantee the
existence of certain torsional section one has to restrict the6Note that for Γð2Þ one finds three generators and only three

special points. This is connected to the fact that one of the
generators is given by diagð−1;−1Þ, which is not the case for the
other subgroups.

7This is reminiscent of the standard genus formula of modular
curves gðMΓÞ ¼ 1þ 1

12
n − 1

4
N2 − 1

3
N3 − 1

2
N∞, with n the index

of Γ and N2, N3, and N∞ the number of elliptic points of order
two, three, and cusps, respectively, i.e., Np ¼ N2 þ N3 þ N∞.
We refer the interested reader to Ref. [38] for further details.

8We note that in the context of F-theory on an elliptically
fibered K3, there are of course many complex structure moduli,
and most of these are in turn specified by the “open string
moduli” associated with the positions of ½p; q� 7-branes. Tuning
the positions of the 7-branes corresponds to tuning the complex
structure moduli of the K3, and can produce additional structure
in the elliptic fibration.
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monodromies of the fiber along the base to leave a subset of
the torsional points invariant. This reduces the full SLð2;ZÞ
automorphism group of the elliptic fiber to a congruence
subgroup, see, e.g., [38]. The relevant congruence sub-
groups for the discussion of MW torsion are ΓðkÞ and Γ1ðkÞ
which are defined as in (3.9), for other possibilities see
Appendix B. Elements of SLð2;ZÞ not contained in the
corresponding congruence subgroup act on the torsional
sections and do not leave them invariant changing the
geometric setup. Therefore, the restriction to the invariance
of a particular subset of torsional sections enlarges the
moduli space of the theory of physically inequivalent
realizations to MΓ.

9

The congruence subgroup ΓðkÞ leaves the full set of k-
torsion points EðkÞ invariant, which leads to two torsional
sections of the same degree, i.e., a MW torsion given by
Zk × Zk. The group Γ1ðkÞ only preserves a single torsional
section and one finds the torsion part of the MW group T to
be Zk. Note, that in general one could also consider an
adjoint orbit of Γ1ðkÞ with respect to a coset element in
SLð2;ZÞ=Γ1ðkÞ. This changes the specific element in EðkÞ
which is preserved. Additionally, one has the option of two
torsional sections of different degree Zk × Zl. The two
factors necessarily have to be of the form l ¼ nk with
n ∈ Z, since otherwise there would be an enhancement
similar to Z2 × Z3 ¼ Z6. Thus, the corresponding con-
gruence subgroup is given by Γðk1Þ ∩ Γ1ðk2Þ, where one
can again change the k2-torsional section by conjugating
the Γ1ðk2Þ factor with a coset element. In the last case there
are two options, either one can have k2 ¼ nk1 in which case
the torsional sections span the group Zk1 × Znk1 or k1 and
k2 coprime leading to Zk1 × Zk1k2 torsion.
Summarizing, we see that the appearance of torsional

sections in elliptically-fibered manifolds is strongly corre-
lated with the reduction of the group of automorphism of
the fiber to a congruence subgroup of SLð2;ZÞ. Moreover,
the restriction of the duality group has consequences for the
moduli space of the theory given by M̄Γ. As discussed
above, the allowed compactified modular curves should be
of genus zero. For ΓðkÞ and Γ1ðkÞ one has [40,41]:

genus zero : ΓðkÞ with k ∈ f2; 3; 4; 5g;Γ1ðkÞ
with k ∈ f2; 3;…; 10; 12g: ð4:4Þ

For congruence subgroups of the form Γðk1Þ ∩ Γðk2Þ, the
ones with genus zero modular curve are given by

genus zero∶ Γð2Þ ∩ Γ1ð4Þ; Γð2Þ ∩ Γ1ð3Þ;
Γð2Þ ∩ Γ1ð8Þ; Γð3Þ ∩ Γ1ð2Þ; ð4:5Þ

which would lead to Z2 × Z4, Z2 × Z6, Z2 × Z8, and
Z3 × Z6 torsion, respectively. We have also included the
congruence subgroup for the realizations on K3 manifolds
in the table in (4.2). Indeed, we see that the list of genus
zero subgroups contains all the allowed MW torsion groups
for F-theory on K3. The torsion groups not realized for K3
surfaces are given by

Outliers∶ Zk with k ∈ f9; 10; 12g;
Z2 × Z8; Z3 × Z6; Z5 × Z5: ð4:6Þ

These six outlier theories are allowed from the perspective
of the modular curve but seem not to be realized in 8D
F-theory vacua. The reason for this is that K3 manifolds can
only accommodate a total of 24 zeros of the discriminant of
the elliptic fibration on the base P1. This is connected to the
fact that the total deficit angle of the defects in the theory
has to add up to 4π in order to lead to a consistent compact
geometry. However, as was shown in [21], K3 manifolds
with MW torsion define a map from the base P1 in the
modular curve M̄Γ, which is a multicover. Therefore, the
cusps appearing on the modular curve all appear as fiber
singularities in the corresponding K3. When checking the
outlier models above (see [41]), one finds that even for a
single covering one would oversaturate the bound of 24.
Therefore, these MW torsion groups cannot be realized for
elliptically fibered K3 manifolds and the resulting low-
energy effective 8D supergravity theories.
Summarizing, we find that the generalization of the

cobordism conjecture applied to a restricted monodromy
group for type IIB compactifications on a circle, leads to a
perfect match with the realized MW torsion for elliptically-
fibered K3 manifolds. For this conclusion it was important
to include the 7-brane stacks associated to the special points
of the noncompactified orbifold modular curve, which
trivialize the closed paths associated to nontrivial duality
twists for congruence subgroups of genus zero. For higher
genus modular curves the allowed 7-branes are not enough,
rendering the corresponding theories inconsistent.

V. CONCLUSIONS

In this work we employed the uniqueness of quantum
gravity theories in order to argue for the presence of
7-branes with non-Abelian statistics in the setup of circle
compactifications of type IIB string theory. This shows
that for codimension two objects the necessarily Abelian
bordism groups ΩSpin

1 appear to not contain the full
information accessible via the bundle structure. We used
this to constrain the allowed MW torsion groups for F-
theory compactifications to eight dimensions. This was
accomplished by a restriction of the duality group to a
congruence subgroup that preserves the torsional points.
We also found that all duality groups of genus zero are
compatible with the consistency constraints. However,

9Note, however, that there are complex structure deformations
that destroy the torsional sections and simultaneously enhance the
duality group back to SLð2;ZÞ.
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some of the models prohibit a compact base manifold when
preserving supersymmetry and therefore cannot be realized
as an elliptically-fibered K3. Theories with a higher genus
duality group are ruled out since the supersymmetric ½p; q�
7-branes cannot trivialize the duality twist. These conclu-
sions have a geometric interpretation in terms of the
topology of the compactified modular curves M̄Γ. In the
remainder of this section we discuss some future areas of
potential investigation.
It is natural to ask if there are other more exotic objects

that might “rescue” theories with higher genus duality
groups. From what we have deduced here, such objects
would need to also involve extending the field space of the
theory in a way that the noncontractible cycle on the
compactified modular curve becomes contractible. There is
no natural candidate of such a field extension in the setup of
type IIB vacua, however, one might encounter such effects
in other systems with higher genus duality groups. It would
be illuminating to study this possibility.
The exotic models that cannot be realized on a K3

manifold might have additional applications when consid-
ering time-dependent solutions. In fact, in [42], it was
demonstrated that one can avoid the bound on the order of
the discriminant when including time-dependent configu-
rations. This can be understood as absorbing the brane
induced deficit angles by a cosmological constant term.
These setups clearly break supersymmetry but may lead to
additional possibilities.
Further, there may be similar restrictions for duality

groups in other setups. A natural testing ground is 4D
N ¼ 2 supersymmetric theories, which often possess non-
trivial duality groups. We anticipate that coupling such
theories to gravity might be affected by constraints similar
as the ones discussed here (see also [43,44]). Additionally,
Abelian gauge theories often transform under duality
transformations and might be subject to nontrivial restric-
tions when coupled to gravity, see e.g., [45–47]. Moreover,
once multiple Abelian gauge factors are considered the
duality groups are enlarged to Spðn;ZÞ and one can
attempt an analogous classification of the necessary physi-
cal objects for these higher-rank groups.
Much of our discussion can be extended to more general

physical systems with a non-Abelian duality group and
codimension two defects. In particular, we note that our
considerations actually suggest a generalization to systems
with a parameter space of couplings rather than a strict
moduli space of vacua, as often happens in situations with
stabilized moduli. In this setting, we again anticipate that
there is a genus constraint on the associated modular curves.
It is also natural to consider other generalizations of

bordism groups. For example, in our analysis we assumed
that the interpolating manifold had a spin structure but one
might consider relaxing this to a pin structure. In the
context of 4D gauge theories, this case is of particular
significance, as discussed for example in Refs. [36,48].

Moreover, we have not considered the metaplectic cover of
SLð2;ZÞ, which appears in the fermionic sector of type IIB
string theory [37,46]. This also points toward an extension
of the current approach.
In this paper we have primarily focused on lower-

dimensional systems coupled to quantum gravity. On the
other hand, it is natural to ask about systems in which we
take a decoupling limit where a quantum field theory only
couples to a higher-dimensional theory of gravity. This is,
for example, the starting point for most discussions of
geometric engineering of quantum field theory in string
theory. There is also a Swampland conjecture that the only
consistent quantum field theories are those which can be
consistently coupled to a possibly higher-dimensional
theory of gravity [49]. Here we have seen some hints that
the cobordism conjecture may impose nontrivial restric-
tions on such systems. A further exploration of this
possibility would be instructive.
The close interplay between the Swampland conjectures

and arithmetic structures such as the Mordell-Weil group of
an elliptic curve hints at a more fundamental reformulation
of notions of quantum gravity in terms of such discretized
structures. It would be interesting to connect these dis-
cussions to observations on arithmetic and moduli observed
in [50–54], as well as the more ambitious proposal of
Ref. [55] which aims to recast some concepts from
quantum fields and strings in the framework of arithmetic
geometry. Such notions may provide a potential route for
moving the Swampland conjectures into the realm of
theorems.
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APPENDIX A: ATIYAH-HIRZEBRUCH
SPECTRAL SEQUENCE FOR Γ ⊂ SLð2;ZÞ

In this Appendix we derive the bordism groups
ΩSpin

1 ðBΓÞ from the Atiyah-Hirzebruch spectral sequence,
see [36] and references therein for a good introduction for
physicists. We first briefly recall the necessary tools to
evaluate the relevant bordism groups.
The spectral sequence utilizes a filtration, obtained

systematically form a Serre fibration F → X → B, of the
form

0 ¼ F−1Ω
Spin
n ðXÞ ⊂ F0Ω

Spin
n ðXÞ ⊂ … ⊂ FnΩ

Spin
n ðXÞ

¼ ΩSpin
n ðXÞ; ðA1Þ

SWAMPLAND COBORDISM CONJECTURE AND NON-ABELIAN … PHYS. REV. D 103, 066006 (2021)

066006-9



which defines the groups

E∞
k;n−k ¼

FkΩ
Spin
n ðXÞ

Fk−1Ω
Spin
n ðXÞ : ðA2Þ

Therefore, the bordism group can be obtained via the
solution of an extension problem involving the groups E∞

p;q.
For Ω1 two groups contribute and one has

Ω1 ¼ eðE∞
1;0; E

∞
0;1Þ; ðA3Þ

with the extensions defined by the short exact sequence

0 → E∞
1;0 → eðE∞

1;0; E
∞
0;1Þ → E∞

0;1 → 0: ðA4Þ

In order to obtain the groups E∞
p;q one starts from the entries

on the second sheet E2
p;q which are given by the homology

groups

E2
p;q ¼ HpðB;ΩSpin

q ðFÞÞ: ðA5Þ

In our case we will always use the Serre fibration with
F ¼ pt, from which we obtain

E2
p;q ¼ HpðX;ΩSpin

q ðptÞÞ; ðA6Þ

with ΩSpin
0 ðptÞ ¼ Z and ΩSpin

1 ðptÞ ¼ Z2. The third sheet is
then obtained by the cohomology of the differentials

d2∶ E2
p;q → E2

p−2;qþ1: ðA7Þ

However, since E∞
p;q vanishes for negative p, q, E2

1;0 is not
affected and one has

E2
1;0 ¼ E∞

1;0: ðA8Þ

Additionally, one has

E2
2;0 ¼ H2ðX;ZÞ; ðA9Þ

which is trivial for the spaces we consider. Consequently,
also E2

0;1 is unaffected by the differential and we conclude

ΩSpin
1 ðBΓÞ ¼ eðE2

1;0; E
2
0;1Þ:E ðA10Þ

The involved homology groups are given by

E2
1;0 ¼ H1ðBΓ;ΩSpin

0 ðptÞÞ ¼ H1ðBΓ;ZÞ;
E2
0;1 ¼ H0ðBΓ;ΩSpin

1 ðptÞÞ ¼ H0ðBΓ;Z2Þ: ðA11Þ

The first group is given by the Abelianization of
π1ðBΓÞ ≃ π0ðΓÞ ≃ Γ,

E∞
1;0 ¼ H1ðBΓ;ZÞ ¼ AbðΓÞ: ðA12Þ

For Γ ¼ SLð2;ZÞ this is identified to be Z12. For the
second involved group we note that ΩSpin

1 ðptÞ ¼ Z2, which
can be understood as the two choices of the spin structure
on the circle. Now, since BΓ is path-connected we see that
universally

H0ðBΓ;Z2Þ ¼ H0ðBΓ;ZÞ ⊗ Z2 ¼ Z2; ðA13Þ
via the universal coefficient theorem. We therefore find that
for a general congruence subgroup Γ ⊂ SLð2;ZÞ one has

ΩSpin
1 ðBΓÞ ¼ eðAbðΓÞ;Z2Þ; ðA14Þ

which in particular for SLð2;ZÞ leads to

ΩSpin
1 ðBSLð2;ZÞÞ ¼ eðZ12;Z2Þ: ðA15Þ

Next, we want to argue that the extension is actually trivial
using the structure of SLð2;ZÞ as an amalgamated free
product Z4 �Z2

Z6.
First, we note that the generator of Z2 is mapped into Z4

and Z6, by

Z4∶ x2 ↦ x24; Z6∶ x2 ↦ x36; ðA16Þ
where xi denotes the generator of Zi. Second, since
bordisms are a generalized homology we have a long exact
sequence of the form, see [45],

… → ΩSpin
d ðBZ2Þ → ΩSpin

d ðBZ4Þ ⊕ ΩSpin
d ðBZ6Þ

→ ΩSpin
d ðBSLð2;ZÞÞ → ΩSpin

d−1 ðBZ2Þ → … ðA17Þ
With d ¼ 1 one has

… → Z2 ⊕ Z2 → ðZ2 ⊕ Z4Þ ⊕ ðZ2 ⊕ Z6Þ
→ ΩSpin

1 ðBSLð2;ZÞÞ → Z → … ðA18Þ
In all the BZi cases one can relate the first Z2 factor to the
spin structure on the circle. The relevant bordisms groups
can be found in [36,56], where the groups for Z6 can be
derived from Z2 and Z3 along the lines of [45]. Since
ΩSpin

1 ðBSLð2;ZÞÞ is torsion the last map is trivial. The
identification of the first factors as the spin structure
together with the embedding of Z2 as discussed above
then specify the quotient action and suggest

ΩSpin
1 ðBSLð2;ZÞÞ≃ðZ2⊕Z4Þ⊕ ðZ2⊕Z6Þ

Z2⊕Z2

¼Z2⊕Z12:

ðA19Þ

Equivalently, this suggests that

ΩSpin
1 ðBΓÞ ≃ Z2 ⊕ AbðΓÞ: ðA20Þ
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leveraging the structure of Γ as finite free product of cyclic
groups.
In fact there is a simpler argument to show that the first

spin bordism group splits.10 For generalized cohomology
theories HnðXÞ one has the splitting

HnðXÞ ≃ H̃nðXÞ ⊕ HnðptÞ; ðA21Þ

with the reduced cohomology group H̃nðXÞ. In the case at
hand this means that E•

0;q stabilizes on the second page of
the AHSS and that the extension is indeed trivial. From this,
(A20) follows directly.

APPENDIX B: GENUS ZERO CONGRUENCE
SUBGROUPS

In this Appendix we discuss in greater detail congruence
subgroups Γ ⊂ SLð2;ZÞ associated with a modular curve

of genus zero. Including Γ0ðkÞ as defined in line (3.9), we
recall the genus zero realization in the three families of
congruence subgroups ΓðkÞ, Γ1ðkÞ, and Γ0ðkÞ

ΓðkÞ∶ k ∈ f2; 3; 4; 5g;
Γ1ðkÞ∶ k ∈ f2; 3;…; 10; 12g;
Γ0ðkÞ∶ k ∈ f2; 3;…; 10; 12; 13; 16; 18; 25g: ðB1Þ

There are additional possibilities for the intersection of the
groups above, e.g., Γ0ð25Þ ∩ Γ1ð5Þ, and groups that cannot
be described in terms of the standard congruence subgroups
above. See [41] for a full list and classification. These
duality groups do not leave torsional sections invariant in
the F-theory interpretation, but there might be other
physical consequences induced by the reduction of allowed
fiber automorphisms, which could be tested by explicitly
constructing corresponding elliptically-fibered K3 mani-
folds where possible.
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