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We revisit the calculation of quantum-gravitational corrections to the power spectra of scalar and tensor
perturbations in the Born-Oppenheimer approach to quantum gravity. We focus on the issue of the
definition of the inner product of the theory and the unitarity of the corrections to the dynamics of the
cosmological perturbations. We argue that the correction terms are unitary, provided the inner product is
defined in a suitable way, which can be related to a notion of gauge fixing the time variable and the use of
conditional probabilities in quantum cosmology. We compare the corrections obtained within this
framework to earlier results in the literature and we conclude with some remarks on the physical
interpretation of the correction terms.
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I. INTRODUCTION

Any candidate theory of quantumgravitymust address the
issue of producing testable predictions. It is reasonable to
expect that the early Universe may be an adequate testing
ground for quantumgravity and, indeed, a lot of effort [1–18]
has been devoted to calculating primordial quantum-gravi-
tational effects. In particular, many lines of inquiry look for
quantum-gravitational corrections to the cosmic microwave
background (CMB) anisotropy spectrum. Within the infla-
tionary paradigm, this is justified by considering that
quantum fluctuations of the metric and the inflaton field
give rise to the CMB anisotropies and the conditions for
structure formation. Although effects of quantum gravity are
expected to become sizable at energies close to the Planck
scale, it is possible that some corrections are already relevant
at the high energies present during the inflationary phase.
In the present article, we revisit the calculation of

quantum-gravitational corrections to the dynamics in the
early Universe using the conservative approach based on
the canonical quantization of general relativity in metric
variables, which leads to the so-called Wheeler-DeWitt
(WDW) constraint [19–21]. This might not be the most
fundamental approach, but it has a straightforward classical
limit and it is expected to be valid at least within the energy
scales that we consider [22].Moreover, quantum field theory
(QFT) in curved spacetimes can be derived from the WDW
constraint if one uses a weak-coupling expansion [23–30]
that resembles the Born-Oppenheimer (BO) approximation
frequently used in nuclear and molecular physics [31–34].
Previous research has shown that corrections to the dynamics

of quantum fields on a given background can be derived
using this BO approach [35,36]. Nevertheless, some of these
corrections were thought to violate unitarity and were thus
neglected [1–4,7,9,36]. In Refs. [37–39], it was then argued
that unitarity is preserved if one includes the effect of
“backreaction” and “nonadiabatic” contributions in the
BO weak-coupling expansion. The issue was revisited in
Ref. [40], where it was emphasized that the backreaction
terms are a priori ambiguous and that the unitarity of the
theory rests on a choice of inner product related to the choice
of time variable in quantum gravity. The work of Ref. [40]
was, however, limited by the use of the Klein-Gordon inner
product, which is not positive definite.
Our goal in this article is to assess whether the quantum-

gravitational corrections to the dynamics in the BO
approach are, in fact, unitary and how the definition of a
positive-definite inner product is related to a notion of
gauge fixing the time variable in quantum cosmology. Our
work is a continuation of Ref. [40] and is inspired by recent
developments in relational approaches to quantum dynam-
ics [41–47]. For simplicity, we will examine the case of
cosmological perturbations on a de Sitter background. The
application of the BO approach to general slow-roll models
was considered in Ref. [4], and we will conclude with some
comments on the implications of our results on unitarity to
these more general cases.
The article is organized as follows. In Sec. II, we set up

the classical and quantum theories of cosmological per-
turbations on a (quantum) Friedmann-Lemaître-Robertson-
Walker (FLRW) background, specializing to the de Sitter
case. Based on a notion of gauge fixing the time variable,
we discuss the definition of a positive-definite inner
product for both the background and perturbation variables,*lcmr@thp.uni-koeln.de
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to which we refer as the gauge-fixed inner product. We also
argue that the physical predictions associated with this
inner product should be interpreted in terms of conditional
probabilities. In Sec. III, we define the BO weak-coupling
expansion and we argue that the two versions of the BO
approach used in Refs. [1–4,7–9,35,36] and Refs. [10–
13,37,38] are equivalent. Furthermore, we show that the
dynamics is unitary with respect to the gauge-fixed inner
product. In Sec. IV, we use the formalism here developed to
revisit the calculation of the corrections to primordial
power spectra in the BO approach. We include certain
terms which were previously neglected, as they were
considered to be unitarity violating in Refs. [1–4,7,9].
Consequently, our results differ to a certain extent from
those reported in those references. In particular, we com-
ment on the appearance of a late-time logarithmic term
which may jeopardize the validity of perturbation theory. In
Sec. V, we summarize our results and present our con-
clusions. Summation over repeated indices is implied and
we work in units in which c ¼ ℏ ¼ 1. Spacetime is
assumed to be four-dimensional and we use a mostly plus
metric signature.

II. COSMOLOGICAL PERTURBATIONS ON A
FLRW BACKGROUND

We consider a flat FLRW universe with compact spatial
topology as the background on which cosmological per-
turbations are defined. This is justified due to the fact that
the Universe is to a good approximation homogeneous and
isotropic at large scales and that, within the inflationary
paradigm, spatial curvature contributions are flattened by
inflation. Here, we will review only the basic aspects of the
classical theory needed for our analysis of the quantum
theory and, in particular, the BO approach. The reader is
referred to Ref. [48] for further details concerning the
theory of cosmological perturbations and to Refs. [49,50]
for an account of the Hamiltonian formalism for perturba-
tions in general relativity.

A. Classical FLRW background

We assume the background line element to be

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞdx2; ð1Þ

where NðtÞ is the lapse function associated with the choice
of time coordinate t and aðtÞ is the scale factor of the
universe. Under a time reparametrization, the lapse trans-
forms as a density,

t ↦ t0; N ↦ N0 dt
0

dt
: ð2Þ

In this way, the action for a flat FLRW universe with
vanishing cosmological constant and a minimally coupled
inflaton field ϕ reads [22]

S ¼
Z

t1

t0

dtL3N
�
−

1

2κ

a _a2

N2
þ a3 _ϕ2

2N2
− a3VðϕÞ

�
; ð3Þ

where ·≡ d=dt, κ ¼ 4πG=3, and L3 is the volume asso-
ciated with some arbitrary length scale L. For convenience,
we make the redefinitions [3,4,11]

a ↦
a
L
; N ↦

N
L
;

t ↦ Lt; x ↦ Lx; ð4Þ

such that the scale factor and the lapse function acquire
dimensions of length, while the spacetime coordinates are
now dimensionless. The action can then be written as

S ¼
Z

t1

t0

dt

�
−

1

2κ

a _a2

N
þ a3 _ϕ2

2N
− Na3VðϕÞ

�
; ð5Þ

or in Hamiltonian form

S ¼
Z

t1

t0

dtðpa _aþ pϕ
_ϕ − NCÞ; ð6Þ

where

C ¼ −
κ

2a
p2
a þ

1

2a3
p2
ϕ þ a3VðϕÞ: ð7Þ

From Eq. (7), we see that the configuration space is
endowed with the metric

G ≔ diag

�
−
a
κ
; a3

�
; ð8Þ

such that the kinetic term may be written as 1
2
Gijpipj

(i; j ¼ a;ϕ), where Gij are the coefficients of the inverse
of Eq. (8).
Due to the assumption of homogeneity and isotropy, the

action has been reduced to that of a mechanical theory.1

Such mechanical (toy) theories of cosmology are often
called minisuperspace models and they can be seen as
generalizations of the theory of a relativistic particle. The t-
manifold corresponds to the “worldline,” whereas the lapse
corresponds to the “einbein.” A “change of frame” for the
einbein is described by the redefinitions

1This is due to the fact that this model obeys the “symmetric
criticality principle,” i.e., the critical points of the action (6)
correspond to critical points of the full Einstein-Hilbert action.
This is an instance of the symmetry reduction procedure (for the
case of homogeneity and isotropy). The “reduction” consists in
the construction of invariant fields and their corresponding field
equations for a given symmetry group. In general, however,
symmetric criticality is not satisfied, i.e., the reduction of the
action does not yield the same results as the reduction of the field
equations. See Refs. [22,51] for further details.
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NðtÞ ¼ ÑðtÞΩðtÞ; C ¼ 1

ΩðtÞ C̃; ð9Þ

which leave the Hamiltonian NC invariant. The function
ΩðtÞ is arbitrary but nonvanishing. It may depend on the
configuration space variables. If ΩðtÞ > 0, the transforma-
tion (9) induces a conformal transformation in minisuper-
space,

Gij ¼ ΩðtÞG̃ij; a3VðϕÞ ¼ a3Ṽða;ϕÞ
ΩðtÞ ; ð10Þ

which will be of relevance later.
As the lapse function NðtÞ appears in Eq. (6) as a

Lagrange multiplier, we obtain the Hamiltonian initial-
value constraint C ¼ 0, which is a consequence of the time-
reparametrization invariance of the theory. Indeed, the time
evolution of a phase-space function fða;ϕ; pa; pϕÞ is
given by

_f ¼ ff;NCg ≈ Nff; Cg; ð11Þ

where “f·; ·g” is the Poisson bracket and “≈” is Dirac’s weak
equality sign [52], which denotes identities that hold on the
constraint surface defined byC ¼ 0 (i.e., on-shell identities).
Thus, due to Eqs. (2) and (9), the equations of motion have
the same form for any choice of time parameter t.
We refer to a choice of t [or a choice of NðtÞ] as a gauge

fixing of the time variable. Note that one can fix NðtÞ
regardless of the choice of einbein frame. In general, if we
use the level sets of a phase-space function χða;ϕ; pa; pϕÞ
to define the time variable, the lapse is determined via the
formula

1

N
≈ Δχ ≔ fχ; Cg; ð12Þ

such that _χ ≈ 1.2 The quantity Δχ is the Faddeev-Popov
“determinant”3 associated with the canonical “gauge con-
dition” χ [54]. The gauge fixing is admissible in regions of
phase space where Δχ ≠ 0. If the einbein frame is changed
according to Eq. (9) for a fixed gauge condition χ, the
function Δχ transforms accordingly to

Δ̃χ ≔ fχ; C̃g ≈ΩðtÞΔχ : ð13Þ

Certain gauge fixings of the time variable can be expressed
as functions in configuration space, provided one makes
use of a solution of the Hamilton-Jacobi equation, such as
the on-shell action. The Hamilton-Jacobi equation that
corresponds to Eq. (7) is

−
κ

2a

�∂S
∂a

�
2

þ 1

2a3

�∂S
∂ϕ

�
2

þ a3VðϕÞ ¼ 0: ð14Þ

By setting

pa ¼
∂S
∂a ; pϕ ¼ ∂S

∂ϕ ;

we can express the on-shell time evolution of a dynamical
quantity χ as

1

N
_χ ¼ −

κ

a
∂S
∂a

∂χ
∂aþ 1

a3
∂S
∂ϕ

∂χ
∂ϕ : ð15Þ

The quantity χða;ϕÞ is a configuration-space time function
if _χ ¼ 1 for a given choice of N. Thus, the configuration-
space time function must be a solution of [cf. Eq. (15)] (see
also Refs. [20,21])

−
κ

a
∂S
∂a

∂χ
∂aþ 1

a3
∂S
∂ϕ

∂χ
∂ϕ ¼ 1

N
: ð16Þ

For simplicity, let us now consider the de Sitter (“no-roll”)
limit of the theory. In this limit, the scalar field is constant.
When one inserts ϕ ¼ const into the equations of motion
for the inflaton,

_ϕ ≈
N
a3

pϕ; _pϕ ≈ −Na3
∂V
∂ϕ ; ð17Þ

one obtains the conditions

pϕ ¼ ∂V
∂ϕ ¼ 0: ð18Þ

In this way, the inflaton potential is independent of ϕ and
we define it to be [3]

VðϕÞ ¼ H2
0

2κ
; ð19Þ

where H0 is the Hubble parameter for a de Sitter universe.
The constraint (7) can then be solved for pa to yield

pa ¼ −
σH0

κ
a2; ðσ ¼ �1Þ: ð20Þ

The choice of σ ¼ 1 corresponds to an expanding universe,
whereas σ ¼ −1 corresponds to a contracting one. This
discrete multiplicity is analogous to the positive- and

2We can also write the gauge-fixing condition as an extra
constraint with an explicit time dependence, χ̃ ≔ χ − t. Then, the
lapse is determined by requiring that this constraint is preserved
by evolution, _̃χ ≈ 0 [53].

3More generally, one can work with a reparametrization-
invariant extension of Eq. (12), which can be defined by the
formula jΔχ j−1 ¼

R
dtδðχ − tÞg, where g is a function that

restricts the integration to a region where the gauge condition
is admissible [41,46,54]. Such an integral formula is frequently
used in the Faddeev-Popov gauge-fixing procedure for path
integrals. However, we shall not use it here because Eq. (12)
is sufficient for our purposes.
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negative-frequency sectors of a relativistic particle [41].
Using _ϕ ¼ 0 and Eq. (20) in Eq. (6), we find the on-shell
action

SC¼0 ¼
Z

a1

a0

pada ¼ −
σH0

3κ
ða31 − a30Þ; ð21Þ

which is a solution to the Hamilton-Jacobi equation (14).
According to the discussion preceding Eq. (16), a general
choice of time coordinate η can be expressed in terms of the
configuration space variables (in this case, the scale factor)
through the following equation:

−
κ

a1

∂SC¼0

∂a1
∂η
∂a1 ¼

1

N
: ð22Þ

We will be interested in conformal time, for which N ¼ a1.
This yields

ηðaÞ ¼ −
σ

H0a
ð23Þ

as a solution to Eq. (22) (we dropped the subscript from a1).
For consistency, let us verify that, instead of deriving
Eq. (23) from the choice N ¼ a, one can follow the
opposite path and calculate the on-shell lapse function
from the choice of time (23). The Faddeev-Popov deter-
minant reads [cf. Eq. (12)]

Δη ¼ fηðaÞ; Cg ¼ −
σκ

H0a3
pa: ð24Þ

Using Eq. (20), which holds when C ¼ 0, we can rewrite
Eq. (24) as

Δη ≈
1

a
¼ 1

N
: ð25Þ

Hence, N ¼ a, as it should be. Finally, for later reference,
we change the einbein frame such that N ¼ Ña, and
subsequently we use Eqs. (13) and (23) to rewrite
Eq. (24) in terms of conformal time,

Δ̃η ¼ −κH2
0η

4pη; ð26Þ

where pη is the canonical momentum conjugate to η. From
Eq. (25), we obtain Δ̃η ≈ 1, as it should be.

B. Quantum FLRW background

In the quantum theory, one must account for the
constraint (7) in some way. In most approaches to canonical
quantum gravity and, in particular, to quantum cosmologi-
cal toy models, the quantum analogue of Eq. (7) is the
quantum constraint equation [19]

Ĉ

�
a;ϕ;−i

∂
∂a ;−i

∂
∂ϕ

�
Ψða;ϕÞ ¼ 0; ð27Þ

which is also known as the WDW equation [22]. This is
also the approach we adopt here.4 More precisely, we
consider the equation Ω0ðα;ϕÞĈΨðα;ϕÞ ¼ 0, where Ω0 is
a positive configuration-space function. We take a choice of
Ω0 to be the quantum analogue of a choice of einbein frame
[cf. Eq. (9)]. We also choose the Laplace-Beltrami factor
ordering for the kinetic term in Eq. (7),

Ω0

�
κ

2a2
∂
∂a

�
a
∂
∂a

�
−

1

2a3
∂2

∂ϕ2
þ a3VðϕÞ

�
Ψða;ϕÞ ¼ 0;

ð28Þ

such that the quantum constraint is invariant under coor-
dinate transformations in configuration space. Moreover, it
is straightforward to verify that Eq. (28) has the same form
if one performs the transformationΩ0 ¼ Ω̃0Ω together with
Eq. (10).5 It is also convenient to adopt the variable [3]

α ¼ log
�
a
a0

�
; ð29Þ

where a0 is some reference scale factor, because α takes
values over the real line, whereas a > 0. In this way, the
background quantum constraint reads

Ω0

e−3α

a30

�
κ

2

∂2

∂α2 −
1

2

∂2

∂ϕ2
þ a60e

6αVðϕÞ
�
Ψðα;ϕÞ ¼ 0: ð30Þ

Although we are primarily interested in the quantum
theory of perturbations (cf. Secs. II C and II D), it is
worthwhile to comment on the interpretation of the
quantum theory of the solutions of Eq. (30), i.e., the
minisuperspace quantum mechanics. It is far from clear

4See, however, the approach of Stückelberg and its later
incarnations [55–57], in which the quantum constraint is not
imposed and one allows quantum states that are “off shell”
according to the terminology we adopt. The main reasoning
behind this approach is that the classical value of the constraint
should be identified with a constant of motion, the value of which
is determined by the initial conditions. This was first proposed for
the free relativistic particle [55], where the value of the particle’s
mass was taken to depend on its initial position and momentum.
In this way, instead of imposing the WDW equation in the
quantum theory, one works with the usual Schrödinger equation,
and a specific value for the constraint can be recovered in
correlation functions computed from certain peaked states (e.g.,
hĈi ¼ 0).

5The fact that the constraint (27) is invariant under such
conformal transformations is a consequence of the fact that the
background configuration space is two dimensional. For higher-
dimensional cases, one can adopt a more general conformal factor
ordering [58,59], in which the WDW equation (27) is confor-
mally covariant.
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whether the traditional Hilbert space structure should be
constructed for the on-shell states Ψðα;ϕÞ. As is well
known, there are two main reasons for this. 1) Whereas in
traditional quantum mechanics an external time parameter
is available (that roughly corresponds to “laboratory time”),
such a parameter is not present in Eq. (30), which is a
stationary Schrödinger equation. The challenge of under-
standing the quantum dynamics solely from such stationary
states is the so-called problem of time [20,21]. There are
various approaches and tentative solutions to this problem
[60]. One reasonable point of view is that the absence of an
external time is a consequence of time-reparametrization
invariance and signals that the evolution should be under-
stood in relational terms (e.g., based on “intrinsic times”).
2) The lack of an external (or preferred) time parameter in
Eq. (30) also calls into question the precise definition of the
inner product and the probabilistic interpretation. More
precisely, with respect to which time variables (if any) is the
(emergence of the) Born rule valid?6

Despite these conceptual problems, it is possible to
define tentative choices of the inner product and Hilbert
space for the on-shell states Ψðα;ϕÞ. Whether any of these
choices is realized in nature is, of course, an open problem.
In what follows, we are going to briefly examine two
possible definitions of the physical inner product.
We first note that the quantum constraint is symmetric

with respect to the auxiliary inner product

hΨð1ÞjΨð2Þi ≔
Z
R2

dαdϕμkinΨ�
ð1Þðα;ϕÞΨð2Þðα;ϕÞ; ð31Þ

where the auxiliary (kinematical) measure is

μkin ≔
a30e

3α

Ω0ðα;ϕÞ
≡

ffiffiffi
κ

p
Ω0ðα;ϕÞ

���� ∂a∂α
���� ffiffiffiffiffiffiffiffiffiffiffiffiffi

j detGj
p

; ð32Þ

and detG is the determinant of Eq. (8). Using Eq. (10) for
the choice of einbein frame Ω ¼ Ω0=

ffiffiffi
κ

p
, we find

μkin ¼
���� ∂a∂α

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det G̃j

q
; ð33Þ

which may be interpreted as the square root of the
determinant of the (conformally transformed) minisuper-
space metric with respect to the ðα;ϕÞ coordinates.
The auxiliary inner product (31) is often inadequate

because the states Ψð1;2Þ, which are solutions of Eq. (30),
are stationary states. This implies that the naive expectation
values of Heisenberg-picture operators are time indepen-
dent, which is another aspect of the problem of time.

Moreover, the inner product (31) diverges if zero is in the
continuous part of the spectrum of the constraint Ω0Ĉ.
One well-known and reasonable choice that regularizes

the inner product is the Rieffel-induced inner product [61–
63], which can be defined as follows. We assume that the
constraint is self-adjoint (or that it is possible to choose a
self-adjoint extension) with respect to the auxiliary product
(31), such that we may find a complete orthonormal system
of eigenstates ΨE;nðα;ϕÞ, which are solutions to the
eigenvalue equation

Ω0

e−3α

a30

�
κ

2

∂2

∂α2−
1

2

∂2

∂ϕ2
þa60e

6αVðϕÞ
�
ΨE;n¼EΨE;n: ð34Þ

The label n represents possible degeneracies.
Orthonormality is defined with respect to the auxiliary
inner product (31),

hΨE0;n0 jΨE;ni ¼ δðE0; EÞδðn0;nÞ: ð35Þ

The symbol δð·; ·Þ stands for a Kronecker or Dirac delta,
depending on whether the labels are discrete or continuous.
We now notice that we are only interested in on-shell states,
for which E ¼ 0. We can then define from Eq. (35) the
induced inner product for these states as [41,46,62]

ðΨE¼0;n0 jΨE¼0;nÞ ≔ δðn0;nÞ; ð36Þ

which, in contrast to Eq. (35), is well defined even if δðE0¼0;
E¼0Þ diverges. The physical (on-shell) Hilbert space is
defined as the vector space of superpositions ofΨE¼0;nðα;ϕÞ
that are square integrable with respect to the induced inner
product (36).
The inner product (36) is positive definite and manifestly

independent of any choice of gauge fixing of the time
variable. Although this is a desirable property, the con-
nection of Eq. (36) with a notion of quantum dynamics is
not immediately clear. Indeed, there has been a lot of effort
in the literature to describe the quantum dynamics in the
physical Hilbert space equipped with Eq. (36). Most
approaches focus on the definition of “relational Dirac
observables,” which can be defined as operators that act on
the physical Hilbert space (“on-shell operators”) and that
represent the values of dynamical quantities with respect to
a particular gauge fixing of the time variable.7 These
operators can then be seen as on-shell descriptions of
the dynamics in a particular “time reference frame” or as

6These difficulties may in principle be circumvented in the
approach of Stückelberg [55] because there the constraint is not
imposed and, therefore, one deals with a time-dependent Schrö-
dinger equation instead of a time-independent one [cf. Eq. (30)].

7More precisely, let us refer to dynamical quantities writtenwith
respect to a particular gauge fixing of the time variable simply as
“gauge-fixed” quantities. Then, classical relational observables are
gauge-invariant extensions of gauge-fixed quantities, i.e., they
remain invariant under a change of time coordinate, but encode the
dynamics with respect to a particular gauge choice. The precise
definition and interpretation of the quantum counterparts of rela-
tional observables is a topic of active research [41–47].
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(on-shell versions of) a “gauge-fixed Heisenberg picture”
[41–47].
The definition of quantum relational observables and

consequently of the dynamics in the physical Hilbert space
equipped with Eq. (36) is, however, often complicated. We
thus wish to consider another definition of the inner product
that is more convenient for our present purposes. In analogy
to more familiar gauge theories (understood as Hamiltonian
systems with first-class constraints [54]), we seek a
definition of transition amplitudes that takes into account
a particular choice of gauge (i.e., a time variable in the
present context). Usually, one performs the Faddeev-Popov
procedure to regularize the path-integral expression for
transition amplitudes or partition functions of gauge the-
ories [64,65]. This involves the insertion of a delta function
of the gauge condition together with the Faddeev-Popov
determinant in the path integral. Motivated by this well-
known procedure, we define the inner product

ðΨð1ÞjΨð2ÞÞ

≔
X
σ

Z
R2

dαdϕðμ̂1
2Ψσ

ð1ÞÞ�jJjδðχðα;ϕÞ − tÞμ̂1
2Ψσ

ð2Þ; ð37Þ

where χðα;ϕÞ is some configuration-space time function
[e.g., a solution of Eq. (16)] that can also be used as a
coordinate in configuration space. The factor of J is the

Jacobian determinant ∂ðχ;FÞ∂ðα;ϕÞ for the coordinate transformation

ðα;ϕÞ ↦ ðχ; FÞ. Here, Fðα;ϕÞ is a configuration-space
function, independent of χðα;ϕÞ, such that ðα;ϕÞ ↦
ðχ; FÞ is an invertible coordinate transformation. Thediscrete
label σ corresponds to the restriction of the physical states
such that sgnðp̂χÞ has a definite value. In the case of a
relativistic particle, this corresponds to the restriction to the
positive- or negative-frequency sector, whereas it corre-
sponds to the restriction to a classically expanding or
contracting sector in the de Sitter case [cf. Eq. (20)] (see
Refs. [41,46] for amore detailed discussion). Inwhat follows
(in particular, Sec. III),wewill restrict the states to a definiteσ
sector and we will omit the summation sign as well as the σ
superscript in Eq. (37) for brevity. Moreover, the delta
function in Eq. (37) fixes the gauge in which the time
variable is defined by the level sets of χðα;ϕÞ and the
operator μ̂ is to be determined by the following criteria: the
inner product (37) should 1) be positive definite, and 2) be
conserved with respect to t (unitarity).
In this way, the inner product (37) can be seen as an

operator analogue of the Faddeev-Popov gauge-fixing
procedure; in particular, μ̂ is analogous to the Faddeev-
Popov determinant8 (see Sec. III E for further comments on

this analogy). We consider that a certain choice of χðα;ϕÞ
corresponds to a well-defined gauge in the quantum theory
if Eq. (37) can be consistently defined from criteria 1)
and 2).
Similar procedures to gauge fix the inner product were

advocated in Refs. [53,54,66,67]. In particular, the issue of
unitarity and the connection to path integrals were carefully
considered in Ref. [53] up to one-loop order (i.e., up to
order ℏ). In the present article, rather than performing an
expansion in ℏ, we will use the weak-coupling expansion of
the BO approach [cf. Sec. III] and we will see how μ̂ can be
defined order by order in κ. The physical Hilbert space of
states is, as before, defined as the vector space of super-
positions of ΨE¼0;nðα;ϕÞ that are square integrable with
respect to Eq. (37).
The advantage of using Eq. (37) is that its connection to

the dynamics is straightforward: instants of time are defined
by the level sets of χðα;ϕÞ, provided the gauge is well
defined. Can we offer a physical interpretation of what
these level sets mean in the quantum theory? In other
words, what does t mean in the quantum theory? From
Eq. (37), we note that one can define the probabilities

pΨ ≔
1

ðΨjΨÞ ðμ̂
1
2ΨÞ�μ̂1

2Ψjχðα;ϕÞ¼t: ð38Þ

We suggest that Eq. (38) should be interpreted as condi-
tional probabilities, i.e., the probabilities of observing a
certain value of Fðα;ϕÞ given the condition that the
quantity χðα;ϕÞ is observed (via a measurement) to have
the value t. A similar remark was made in Ref. [53] and the
reader is also referred to more recent investigations [45–47]
that discussed the connection between conditional proba-
bilities, relational observables, and notions of quantum
reference frames. Thus, we take t to be the observed value
of a quantity χðα;ϕÞ, conditioned on which one makes
observations of other quantities.
In principle, one can understand the connection of

Eq. (37) and its associated notion of dynamics to a notion
of relational observables in the following way. Relational
observables correspond to linear transformations in the
physical Hilbert space (they are on-shell operators) and,
thus, they commute with the constraint operator Ĉ. The
kinematical operators α̂, ϕ̂, p̂α, p̂ϕ, on the other hand, do
not commute with Ĉ. Nevertheless, one can define the
matrix elements of relational observables by inserting
kinematical operators into Eq. (37), i.e., one defines

ðΨð1ÞjÔ½fjχ ¼ t�jΨð2ÞÞ

≔
Z
R2

dαdϕðμ̂1
2Ψð1ÞÞ�f̂jJjδðχðα;ϕÞ − tÞμ̂1

2Ψð2Þ; ð39Þ

where f̂ is a function of the kinematical operators. The
relational observable Ô½fjχ ¼ t� is interpreted as the

8In Refs. [41,46] an operator analogous to an invariant
extension of the Faddeev-Popov determinant was used. Here,
we do not require μ̂ to be an invariant, i.e., to commute with the
constraint operator.
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quantity f̂ described with respect to the time variable
defined by χðα;ϕÞ. A similar definition of relational
observables was analyzed in Refs. [41,46] (see also
Ref. [68] for an earlier discussion).
It is worthwhile to note that a definition of the inner

product such as Eq. (37) carries the assumption that it is, in
fact, possible to define a notion (or notions) of time in the
quantum theory of reparametrization-invariant systems.
This goes against the popular view that the absence of
an external or preferred time parameter in Eq. (30) implies
that the quantum theory is timeless and that time should
emerge only in an appropriate limit (such as the weak-
coupling limit used in the BO approach that will be
analyzed in Sec. III) [19,22]. Even though our usual
experience of time is undoubtedly associated with a
classical gravitational background (spacetime) and the
interpretation of readings of a fully quantum clock is
currently controversial or unclear, restricting the notion
of time to the (semi)classical level [i.e., to (semi)classical
gravitational fields] may be too restrictive.
Indeed, the definition of the dynamics via Eqs. (37) and

(39) is well motivated for the following reasons. 1) It is
analogous to the usual gauge-fixing procedure in quantum
Yang-Mills theories, which is justified due to the analogy
between a choice of gauge in canonical Yang-Mills theories
and a choice of coordinates in canonical general relativity.
2) It extends to the quantum realm one of the key aspects of
the classical theory, which is that physically interesting
reparametrization-invariant observables are relational quan-
tities, i.e., they represent values of physical fields in relation
to the level sets of other dynamical quantities. In the same
way, the dynamics defined via Eqs. (37) and (39) is
relational in the sense that it is conditioned on the value
of a time function χðα;ϕÞ. 3) The physical meaning of the
gauge-fixing procedure can be tentatively interpreted in
terms of conditional probabilities, following the discussion
after Eq. (38).
It is not an issue to use the adjective “timeless” to signal

the absence of an external or preferred time parameter.
Nevertheless, it may be too restrictive to consider that the
quantum theory is strictly timeless, i.e., that there is no
notion of a reparametrization-invariant quantum dynamics.
With a definition of the inner product such as Eq. (37) and
of relational observables such as Eq. (39) (see also
Refs. [41,45–47]), one endeavors to achieve a notion of
quantum dynamics that is not strictly timeless, but rather
relational, as is the classical dynamics. In other words, in
analogy to the classical theory, one assumes that it is in
principle possible to parametrize the quantum dynamics
with respect to a given choice of time coordinate.
This view supporting the concept of time beyond the

semiclassical level was also expressed in Ref. [40] in a
different way, where it was also argued that the results of
the BO approach coincide with a choice of gauge fixing of
the time variable both at classical and quantum levels. A

similar argument in favor of extending the concept of time
to the purely quantum level as well as a definition of the
inner product similar to Eq. (37) were given in
Refs. [53,66].

C. Classical perturbations

Let us now consider perturbations to the FLRW back-
ground metric. We summarize the main results needed for
the analysis of the quantum dynamics in Sec. III. The reader
is referred to Refs. [3,4] and to the usual treatments [25,48–
50] for further details.
We describe scalar perturbations with four spacetime

functions A, B, ψ , and E, and tensor perturbations with a
symmetric spatial tensor hij. The perturbed line element is

ds2 ¼ a2ðηÞf−ð1 − 2AÞdη2 þ 2ð∂iBÞdxidη
þ ½ð1 − 2ψÞδij þ 2∂i∂jEþ hij�dxidxjg; ð40Þ

where we have adopted the conformal time variable t ¼ η,
for which the lapse function NðηÞ ¼ aðηÞ. Moreover, we
have returned to a dimensionless scale factor and a
dimensionful η in Eq. (40). The redefinitions (4) will be
repeated below. In addition to the perturbations of the line
element, we also include the scalar perturbations φðη;xÞ of
the inflaton field ϕðη;xÞ.
At the lowest order in the perturbations, it is convenient to

work with variables that are invariant under the linearized
diffeomorphism symmetry. These variables are usually
referred to as “master gauge-invariant variables” [3]. One
well-known example is theMukhanov-Sasaki variable [3,48]

v ≔ a

�
φþ

_ϕ

H
½Aþ 2HðB − _EÞ þ d

dη
ðB − _EÞ�

	
; ð41Þ

where ·≡ d=dη and H ¼ _a=a. Furthermore, tensor pertur-
bations are already gauge invariant (i.e., invariant under the
linearized symmetry) and feature two independent physical
degrees of freedom, which are the two polarizationsþ;× of
gravitational waves.
The dynamics of v and hij may be derived by expanding

the action up to quadratic order in the perturbations,

S ¼ S0 þ δSþ δ2Sþ…; ð42Þ

where S0 is the background action and δS vanishes when
the background equations of motion are satisfied. Variation
of the last term in Eq. (42) with respect to the perturbative
variables yields the equations of motion for the perturba-
tions on a fixed FLRW background. To compute this term,
it is useful to consider the Fourier transform of the gauge-
invariant perturbations. This is acceptable because all the
modes evolve independently at this order of the perturba-
tions. For the Mukhanov-Sasaki variable, one obtains
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vðη;xÞ ¼
Z
R3

d3k

ð2πÞ32 vkðηÞe
ik·x; ð43Þ

where we impose the reality condition v�k ¼ v−k. For the
tensor perturbations, we define the rescaled Fourier coef-
ficient for each polarization

vðþ;×Þ
k ≔

affiffiffiffiffiffiffiffi
12κ

p hðþ;×Þ
k : ð44Þ

With the definitions (43) and (44), we find [3,48,69]

δ2S ¼
Z

dη
Z

d3k

�
_vk _v�k − ω2

k;Sjvkj2

þ
X
λ¼þ;×

½ _vðλÞk ð_vðλÞk Þ� − ω2
k;TjvðλÞk j2�

	
; ð45Þ

where the integral over k is restricted to half of the Fourier
space. In Eq. (45), we defined the frequencies

ω2
k;SðηÞ ≔ k2 −

̈z
z
; ω2

k;TðηÞ ≔ k2 −
ä
a
; ð46Þ

and k ¼ jkj, z ≔ a _ϕ=H. Furthermore, we define

vðρÞk ≔

8>><
>>:

vk for ρ ¼ S;

vðþÞ
k for ρ ¼ þ;

vð×Þk for ρ ¼ ×;

ð47Þ

and

ω2
k;ρ ≔

�
ω2
k;S for ρ ¼ S;

ω2
k;T for ρ ¼ þ;×;

ð48Þ

for convenience. The use of Eqs. (47) and (48) will allow us
to work with more compact formulas.
In the quantum theory, it will be advantageous to analyze

the dynamics of each Fourier mode separately. To this end,
we follow Refs. [3,4] and make the replacement

Z
d3k →

1

L3

X
k

; ð49Þ

where L is, as before, an arbitrary length. Equation (49) is
justified if one is working with a compact spatial topology.
With these assumptions, the wave modes are discretized.
Additionally, we make the redefinitions (4) and [3,4,11]

k ↦
1

L
k; vðρÞk ↦ L2vðρÞk ; ð50Þ

such that Eq. (45) becomes

δ2S ¼
Z

dη
X
k;ρ

½ _vðρÞk ð_vðρÞk Þ� − ω2
k;ρjvðρÞk j2�; ð51Þ

where ρ ¼ S;þ;× and we used Eqs. (47) and (48). Finally,
it will also be convenient to work with real variables. We
thus define [69]

vðρÞk ¼ 1ffiffiffi
2

p ½vðρÞk;R þ ivðρÞk;I�; ð52Þ

where vðρÞk;R and vðρÞk;I are real. From Eq. (51), we then find the
Hamiltonian for the perturbations

H ≔
1

2

X
k;ρ

X
j¼R;I

f½πðρÞk;j�2 þ ω2
k;ρ½vðρÞk;j�2g; ð53Þ

where πðρÞk;j ¼ _vðρÞk;j (j ¼ R; I). It will also be useful to adopt

the condensed notationq ≔ ðk; j; ρÞ, vq ≔ vðρÞk;j,ωq ≔ ωk;ρ.

D. Master Wheeler-DeWitt equation

The quantum theory of perturbations on a fixed, classical
FLRWbackground is obtained by the canonical quantization
of Eq. (53) and leads to a (Schrödinger-picture) QFT on a
curved background, governed by the Schrödinger equation

i
∂ψ̃
∂η ¼ Ĥ ψ̃ ; ð54Þ

where [cf. Eq. (53)]

Ĥ ≔
X
q

Ĥq; ð55Þ

Ĥq ≔
1

2

�
−

∂2

∂v2q þ ω2
qv2q

	
: ð56Þ

It is at this level that predictions for cosmological observables
and the CMB anisotropy spectrum are usually made.
However, we are interested in the case in which the back-
ground is not classical and is also subject to quantum
fluctuations [cf. Sec. II B]. To deal with this case, one could
consider that the wave function must solve the background
constraint [in this case, Eq. (30)] in addition to the
Schrödinger equation (54).9 In this way, the quantum

9Aswe are keeping terms up to second order in the perturbations,
one should in general also impose linearized constraints ˆδC on the
wave function, which are of first order in the perturbations [while
the background constraint (30) is of zeroth order and the Hamil-
tonian (53) is of second order]. These linearized constraints can be
derived from the δS term in Eq. (42) and were considered in
Ref. [25], for example. However, the linearized constraints are
trivialized for the gauge-invariant perturbations with which we are
working. Thus, upon quantization, it is not necessary to impose cδC
on thewave function. This corresponds to a “reduced phase-space”
quantization of the perturbations (but not of background variables).
The reader is referred toRef. [3] for further details and references on
this issue.
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dynamics of the background variables and of the perturba-
tions would be dictated by separate equations.
Another possibility is to consider that the background

and perturbations form a single reparametrization-invariant
system, governed by the master WDW equation

Ω0

�
e−3α

a30

�
κ

2

∂2

∂α2 −
1

2

∂2

∂ϕ2

þ a60e
6αVðϕÞ

�
þ e−α

a0
Ĥ

	
Ψðα;ϕ; vÞ ¼ 0; ð57Þ

where the v dependence of the wave function is a shorthand
for vq and Ĥ is given by Eqs. (55) and (56). The factor of
e−α=a0 that multiplies Ĥ in Eq. (57) corresponds to the
inverse lapse function for the conformal time variable (with
respect to which Ĥ was constructed) and it is included
because the constraint corresponds to the canonical
Hamiltonian divided by the lapse function [cf. Eq. (6)].
As in Eq. (30), we also include an overall factor of Ω0,
understood as a choice of einbein frame. This is relevant for
the definition of the auxiliary inner product as in Eq. (31)
and, furthermore, will be of importance in Sec. III.
The use of the single master WDWequation (57) has the

advantage that it directly leads to the usual QFT on a
curved, classical background in the weak-coupling limit
that will be analyzed in Sec. III. Moreover, the weak-
coupling expansion also leads to corrections to the
Schrödinger equation, the unitarity of which will also be
assessed in Sec. III. In this sense, the use of Eq. (57) not
only incorporates the interaction of the perturbations with a
quantum background, but it furthermore allows us to go
beyond QFT on a curved background in a systematic way,
via the weak-coupling expansion.
A master WDW equation has been previously used in

Refs. [3,4,10–12,25] and it is often analyzed in conjunction
with the weak-coupling expansion. What we believe is
currently lacking in the literature is a proper understanding
of the unitarity of the theory of the master WDW equation
beyond the limit of QFT on a classical background [which
is obtained in the lowest order of the expansion
(cf. Sec. III)] and the relation (if any) of this theory to a
notion of gauge fixing the time variable (as discussed in
Sec. II B). These issues are our main focus in this article
and we address them below.
We may define an inner product on the space of

solutions of the master WDW equation (57) in a manner
similar to the definition (37). Given a choice of time
function χðα;ϕ; vÞ≡ χ, we define

ðΨð1ÞjΨð2ÞÞ ≔
Z

dαdϕdvðμ̂1
2Ψð1ÞÞ�jJjδðχ − tÞμ̂1

2Ψð2Þ; ð58Þ

where J ¼ ∂ðχ;FÞ
∂ðα;ϕ;vÞ is the Jacobian for the coordinate

transformation α;ϕ; v ↦ χ;F, and we adopted the short-
hand notation

dv≡Y
q

dvq ≡
Y
k;ρ;j

dvðρÞk;j: ð59Þ

With the definition (58), we can define the probabilities as
in Eq. (38), i.e.,

pΨ ≔
1

ðΨjΨÞ ðμ̂
1
2ΨÞ�μ̂1

2Ψjχðα;ϕ;vÞ¼t: ð60Þ

As before, we interpret Eq. (60) as conditional proba-
bilities, i.e., probabilities of observing certain configura-
tions Fðα;ϕ; vÞ of the system ðα;ϕ; vÞ given the condition
that the quantity χðα;ϕ; vÞ is observed to have the value t.
Let us now specialize to the de Sitter case. As in the

classical theory, we consider the condition ϕ ¼ ϕ0 ¼ const,
which can be imposed by using probabilities that are
conditioned not only on the value of the time function χ,
but also on the constant value of the inflaton ϕ ¼ ϕ0. We
thus obtain [cf. Eq. (60)]

pΨ ≔
ðμ̂1

2ΨÞ�μ̂1
2Ψjχ¼t;ϕ¼ϕ0

ðΨjÔ½Pϕ0
jχ ¼ t�jΨÞ ; ð61Þ

where [cf. Eq. (39)]

ðΨð1ÞjÔ½Pϕ0
jχ ¼ t�jΨð2ÞÞ

≔
Z

dαdϕdvðμ̂1
2Ψð1ÞÞ�jJjδðϕ − ϕ0Þδðχ − tÞμ̂1

2Ψð2Þ ð62Þ

corresponds to the insertion of the observable associated
with the kinematical improper projector

hϕ0jP̂ϕ0
jϕi ≔ δðϕ0 − ϕÞδðϕ − ϕ0Þ: ð63Þ

Moreover, the quantum analogue of the classical condition
(18) is given by the supplementary condition on the wave
function

∂Ψ
∂ϕ ¼ 0; ð64Þ

whereas the potential VðϕÞ is still given by Eq. (19). In this
case, the master WDW equation (57) becomes�

e−2α

a20

�
κ

2

∂2

∂α2 þ a60e
6α H

2
0

2κ

�
þ Ĥ

	
Ψðα; vÞ ¼ 0: ð65Þ

A final comment about the use of Ĥ in Eqs. (57) and (65) is
in order. The frequenciesωq are complicated expressions of
the background variables and their derivatives [cf. Eqs. (46)
and (48)] and, therefore, their quantization in a master
WDW equation is a delicate matter. In principle, one could
define ωq as operators that depend on the background
variables and their conjugate momenta. This would involve
a factor-ordering ambiguity, which, nevertheless, could be a
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further source of departure from the limit of QFT in a
classical spacetime. However, if one defines conformal
time as a configuration-space time function [as in Eqs. (16)
and (23)], another option is to simply consider that the
frequencies are c-number functions of the background
variables and of conformal time (also understood as a
function of the background variables). This option is
available (and more convenient) in the weak-coupling
expansion of the BO approach and will be adopted in
the next section.10 Indeed, the frequencies in the case of a
de Sitter background simplify to [cf. Eqs. (46) and (48)]

ω2
q ≡ ω2

k ≔ k2 −
2

η2
; ð66Þ

where η≡ ηðaÞ according to Eq. (23) (for a fixed choice
of σ). Thus, in the BO approach of the next section, we take
ω2
q to be a (configuration-space) function of the scale factor.
In what follows, we will solve Eq. (65) using a weak-

coupling expansion in powers of κ and we will assess the
unitarity of the theory. The measure μ̂ that defines the
conditional probabilities (61) will be determined order by
order in perturbation theory and its connection to a choice
of Ω0 will be discussed in Sec. III E.

III. WEAK-COUPLING EXPANSION AND
UNITARITY

In the BO approach to quantum gravity and cosmology,
one assumes that the degrees of freedom of the time-
reparametrization-invariant system can be divided into a set
of “heavy” or background variables (e.g., the scale factor of
the universe and, possibly, the homogeneous mode of the
inflaton) associated with an energy scale M (e.g., the
Planck mass), and a set of “light” variables (e.g., cosmo-
logical perturbations) associated with energy scales
m ≪ M. In this case, it is possible to solve the quantum
constraint equation using a formal perturbative expansion
in powers of 1

M if the background potential is nonvanishing.
This is what we refer to as the weak-coupling expansion.
The reader is referred to Refs. [29,40] for reviews and to
Refs. [3,4,7,10–12] for phenomenological applications.
As we shall see below, a time function is automatically

singled out in the BO approach. It corresponds to a choice
of time variable for the classical trajectories of the back-
ground variables and it governs the evolution of the light
degrees of freedom. For this reason, the BO approach is
frequently regarded as a solution to the problem of time, in
which time emerges in regions of configuration space
where the background variables behave semiclassically.11

This is not, however, the most general solution to the
problem of time. Indeed, as we discussed in Secs. II B and
II D, it may be possible to extend the notion of time and
dynamics beyond the semiclassical level in a relational
way, by defining the inner product and the dynamics as in
Eqs. (37) and (58) (see also the recent articles [41,45–47]).
Although this extension of the reparametrization-invariant
dynamics to the purely quantum realm is of course still
provisional, it may be fruitful to investigate its phenom-
enological consequences.
On the other hand, even if the BO approach can be seen

as a particular case of a more general formalism, it is
nevertheless relevant for quantum gravity phenomenology.
This is because of the fact that the perturbative expansion in
powers of 1

M leads to corrections to QFT in curved
spacetime. Thus, the BO approach may be of direct interest
to the analysis of early-universe phenomena and, in
particular, to quantum-gravitational effects in inflationary
cosmology [3,4,7].
We now set out to solve Eq. (65) using the BO approach

and we analyze the unitarity of the theory. In Sec. IV, we
apply our results to the calculation of quantum-gravita-
tional corrections to the primordial power spectra of the
cosmological perturbations.

A. Minimal BO Ansatz

The system described by the master WDWequation (65)
is precisely of the kind assumed by the BO approach. The
heavy variable is α, whereas the cosmological perturbations
constitute the light degrees of freedom. The background
potential is nonvanishing and proportional to Eq. (19). The
expansion parameter is the inverse rescaled Planck mass
κ ¼ 1=M. Moreover, following the discussion on the
definition of the frequencies ωq in Sec. II D, we take the
Hamiltonian Ĥ to depend on α parametrically and to be of
order κ0.
In this way, to find solutions to Eq. (65), we make the

“Wentzel-Kramers-Brillouin-like” Ansatz

Ψðα; vÞ ¼ exp

�
i
κ
Sðα; vÞ

�
; ð67Þ

where Sðα; vÞ is a complex function. We perform a formal
expansion of Sðα; vÞ in powers of κ,

Sðα; vÞ ¼
X∞
n¼0

Snðα; vÞκn ≕ S0ðα; vÞ þ κδSðα; vÞ: ð68Þ

Likewise, the operator μ̂ in Eq. (61) is expanded as

μ̂≡X∞
n¼0

κnμ̂n

�
α; v;−i

∂
∂v

�
; ð69Þ

10This simplification was also adopted in Refs. [1–4,7].
11Nevertheless, it is important to mention that it is possible to

consider a certain departure from the purely semiclassical concept
of time in the BO approach. The reader is referred to Ref. [13] for
earlier work and further details.
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where each coefficient will be defined so as to guarantee
that the conditional probabilities depend parametrically on
α and are conserved in the time variable to be chosen.
Moreover, it is convenient to define

ψðα; vÞ ≔ exp½iδSðα; vÞ�; ð70Þ

such that Eq. (67) can be written as

Ψðα; vÞ ¼ exp

�
i
κ
S0ðα; vÞ

�
ψðα; vÞ: ð71Þ

We refer to Eq. (71), which is equivalent to Eq. (67), as the
minimal BO factorization or Ansatz.12 This Ansatz, in the
form of Eq. (67), was used in Refs. [1–5,7–9,29,35,36].
The minimal BO factorization is not the traditional BO

Ansatz that is frequently used in nuclear and molecular
physics [32–34] and, occasionally, in quantum cosmology
[10–12,26,30,37]. In the traditional Ansatz, one considers
separate factors of a general form for the heavy sector and for
the light degrees of freedom,Ψðα; vÞ ¼ ψ0ðαÞψBOðα; vÞ. In
Sec. III F, we will show the equivalence of the minimal and
traditional BO Ansätze, also with regard to the definition of
the time variable, unitarity, and their relation to the inclusion
of the so-called backreaction terms. However, we first
analyze the issue of unitarity in theminimal BO factorization
for clarity.

B. Background time function and conditional
probabilities

If we insert Eq. (67) or Eq. (71) into the left-hand side of
Eq. (65), we obtain a power series in κ [cf. Eq. (68)]. As the
right-hand side of Eq. (65) vanishes, we set the coefficients
of each power of κ on the left-hand side to be separately
equal to zero. Up to the lowest order (order 1=κ2), we find

1

2

X
q

�∂S0
∂vq

�
2

¼ 0: ð72Þ

This condition is fulfilled by assuming that S0ðα; vÞ is
independent of the perturbations, i.e., S0ðα; vÞ≡ S0ðαÞ.
Using this condition, we subsequently find the Hamilton-
Jacobi equation for the de Sitter background

−
1

2

�∂S0
∂α

�
2

þ a60
2
e6αH2

0 ¼ 0 ð73Þ

at the next order (order 1=κ). Thus, we may take S0 to be a
real solution to Eq. (73), such as

S0ðαÞ ¼ −
σa30H0

3
e3α þ const; ðσ ¼ �1Þ: ð74Þ

We note that S0=κ coincides with the on-shell action (21).
We will choose σ ¼ 1, which corresponds to a classically
expanding universe [cf. Eq. (20)]. As mentioned in
Sec. II B, the restriction of the quantum theory of
ψðα; vÞ to the σ ¼ 1 sector is analogous to the restriction
of a quantum relativistic particle to the positive-frequency
sector [41].
From Eq. (74), classical trajectories may be defined via

the equation [cf. Eq. (7)]

dα
dt

≔ −
NðτÞ
a30

e−3α
∂S0
∂α ≡ −

κNðτÞ
a30

e−3αpα; ð75Þ

where NðτÞ is an arbitrary but nonvanishing lapse function.
In the following orders (for higher powers of κ), it will be

convenient to describe the quantum dynamics of the
perturbations v with respect to the background time
variable t. This can be done if the values of t correspond
to level sets of a certain configuration-space time function
χ. We will choose the conformal time function given in
Eq. (23), which can also be obtained from Eq. (75) by
choosing N ¼ a0eα. With this choice, the conditional
probabilities (61) read

pΨ ≡ pΨðvjη ¼ tÞ ¼ ðμ̂1
2ΨÞ�μ̂1

2ΨR
dvðμ̂1

2ΨÞ�μ̂1
2Ψ

����
ηðaÞ¼t

: ð76Þ

Using Eqs. (69) and (71), we see that Eq. (76) depends only
on ψðα; vÞ, i.e.,

pΨðvjaÞ ¼
ðμ̂1

2ψÞ�μ̂1
2ψR

dvðμ̂1
2ψÞ�μ̂1

2ψ
: ð77Þ

For this reason, we interpret μ̂
1
2ψðα; vÞ as a conditional

wave function.

C. Time-dependent Schrödinger equation

The lowest orders of the weak-coupling expansion of
Eq. (65) lead to the conditions (72) (at order 1=κ2) and (73)
(at order 1=κ). The next orders (order κ0 and higher powers)
are governed by the following equation for ψðα; vÞ
[cf. Eq. (71)]:

−i
e−2α

a20

∂S0
∂α

∂ψ
∂α ¼ Ĥψ þ

�
ie−2α

2a20

∂2S0
∂α2

�
ψ

þ κe−2α

2a20

∂2ψ

∂α2 : ð78Þ
12The choice of a single factor of e

i
κS0ðα;vÞ instead of a

superposition such as e
i
κS0ðα;vÞ þ e−

i
κS0ðα;vÞ can be justified from

decoherence arguments [70].
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In terms of conformal time [cf. Eq. (23)], we can rewrite
Eq. (78) as

i
∂ψ
∂η ¼ Ĥψ þ 3i

2η
ψ þ κ

2
H2

0η
3
∂
∂η

�
η
∂ψ
∂η

�
: ð79Þ

Up to order κ0, this reduces to the time-dependent
Schrödinger equation

i
∂ψ
∂η ¼ Ĥψ þ 3i

2η
ψ þOðκÞ: ð80Þ

Rather than interpreting the imaginary term as a source of
unitarity violation, we can use it to define the lowest-order
measure μ̂0. Indeed, it is straightforward to verify that
Eq. (80) can be rewritten as

i
∂
∂η

�
1

H0

jηj−3
2ψ

�
¼ 1

H0

jηj−3
2Ĥψ þOðκÞ: ð81Þ

The factor of 1=H0 is included for later convenience. If we
define

μ̂
1
2

0 ≔
1

H0

jηðαÞj−3
2; ð82Þ

then the conditional probabilities (77) are conserved up to
order κ0 and reproduce the usual results of QFTon a curved
background (see also Sec. IV). Indeed, Eq. (81) is the usual
time-dependent Schrödinger equation that governs the
evolution of the quantum perturbations on a de Sitter
background, i.e., it coincides with Eq. (54). The quantum
state of the perturbations is given by the conditional wave

function ψ̃ðα; vÞ ≔ μ̂
1
2

0ψðα; vÞ, which is to be identified
with the wave function used in QFT in curved spacetime,
i.e., the solution of Eq. (54).

D. Corrected Schrödinger equation

We obtain corrections to the (lowest-order) Schrödinger
equation (81) by using Eq. (79) in an iterative fashion. In
what follows, we keep terms only up to order κ. First, we
note that Eq. (79) is equivalent to

i
∂
∂η

�jηj−3
2

H0

ψ

�
¼ Ĥ

jηj−3
2

H0

ψ − κ
H0

2
jηj32 ∂

∂η
�
η
∂ψ
∂η

�
: ð83Þ

We can rewrite the last term by using Eq. (80). We obtain

∂
∂η

�
η
∂ψ
∂η

�
¼ ∂

∂η ð−iηĤψÞ − 3i
2
Ĥψ þ 9

4η
ψ þOðκÞ; ð84Þ

which leads to

jηj32 ∂
∂η

�
η
∂ψ
∂η

�
¼ −i

∂
∂η ðηjηj

3
2ĤψÞ þ 9jηj32

4η
ψ þOðκÞ: ð85Þ

If we insert Eq. (85) into Eq. (83), we find

i
∂
∂η

�
μ̂

1
2ψ

�
¼

�
Ĥ þ κ

9H2
0η

2

8

� jηj−3
2

H0

ψ þOðκ2Þ; ð86Þ

where we defined

μ̂
1
2 ≔

jηj−3
2

H0

�
1þ κH2

0η
4

2
Ĥ
�
þOðκ2Þ: ð87Þ

It is more convenient to rewrite Eq. (86) solely in terms of
the conditional wave function ψ̃ ≔ μ̂

1
2ψ . To this end, we use

the perturbative inverse of Eq. (87),

μ̂−
1
2 ≔ H0jηj32

�
1 −

κH2
0η

4

2
Ĥ

�
þOðκ2Þ; ð88Þ

to obtain from Eq. (86) the corrected Schrödinger equation

i
∂ψ̃
∂η ¼ Ĥeff ψ̃ ; ð89Þ

where

Ĥeff ≔
�
Ĥ þ κ

9H2
0η

2

8

��
1 −

κH2
0η

4

2
Ĥ

�
þOðκ2Þ

¼ Ĥ − κ
H2

0η
4

2
Ĥ2 þ κ

9H2
0η

2

8
þOðκ2Þ ð90Þ

is the corrected or effective Hamiltonian for the cosmo-
logical perturbations up to order κ. The last term in Eq. (90)
only depends on η and may be neglected, since it does not
affect (conditional) expectation values of the cosmological
perturbations and it may be removed by an η-dependent
phase transformation of ψ̃ . Thus, we obtain

Ĥeff ¼ Ĥ − κ
H2

0η
4

2
Ĥ2 þOðκ2Þ: ð91Þ

Due to the definition of Ĥ given in Eqs. (55) and (56), we
see that Ĥeff is symmetric with respect to the measure dv
[cf. Eq. (59)] and, when suitable boundary conditions are
imposed for ψ̃, Ĥeff is formally self-adjoint. In this way, we
conclude that the evolution of the conditional wave
function ψ̃ given in Eq. (89) is unitary and the conditional
probabilities (77) are conserved up to order κ. The
phenomenology of Eq. (89) will be analyzed in Sec. IV.
Our result for the corrected Hamiltonian (91) differs

from that of Refs. [3,4,7] because no “unitarity-violating”
terms with imaginary c-number coefficients are present.
Such terms have been absorbed into the definition of the
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measure (87). The need to define a nontrivial measure was
previously pointed out by Lämmerzahl [71] in a different
context and by one of us in Ref. [40]. Here, we have
systematically shown how the definition of μ̂

1
2 arises from

the weak-coupling expansion. The relation of this measure
to the classical Faddeev-Popov determinant will be dis-
cussed next. In what follows, we keep terms only up to
order κ and we omit the Oðκ2Þ remainder for brevity.

E. Relation to a notion of gauge fixing the time variable

As we discussed in Secs. II B and II D, the quantum
dynamics of the time-reparametrization-invariant system
can be understood via a definition of the inner product and
observables [cf. Eqs. (37), (39) and (58)] that involves a
choice of time variable, i.e., the notion of time is defined by
the level sets of a certain function χðα;ϕ; vÞ. In the weak-
coupling expansion used in the BO approach, a particular
class of time functions is singled out: the background time
variables. We have chosen the conformal time (23) to
parametrize the dynamics. In this case, the definition of
probabilities reduces to Eq. (77).
As the definition of the inner product (58) resembles the

usual Faddeev-Popov gauge-fixing procedure for path
integrals, it is worthwhile to analyze how far this analogy
goes. In particular, it is interesting to note whether and how
the measure μ̂ can be related to the usual Faddeev-Popov
determinant defined in Eq. (12).
Let us examine this issue for the measure defined

perturbatively in Eq. (87) for the choice of conformal time
in the BO approach. The result presented here is, to the best
of our knowledge, new. In Ref. [53], Barvinsky presented a
construction of a gauge-fixed inner product and its relation
to the classical Faddeev-Popov factor using an expansion in
ℏ, but no connection to the BO approach was established.
Here, we use the BO expansion in κ rather than ℏ.
We begin by noting that the measure μ̂0 can be related to

the configuration space metric. Indeed, using Eq. (23), we
may rewrite Eq. (82) as

μ̂0 ¼
1

H2
0jηj3

¼
ffiffiffi
κ

p
a

���� ∂a∂η
���� ffiffiffiffiffiffiffiffiffiffiffiffiffi

j detGj
p

; ð92Þ

where detG is the determinant of Eq. (8). Similarly to what
was done in Eqs. (32) and (33) for the auxiliary (kinemati-
cal) measure, we perform a conformal transformation
[cf. Eq. (10)] with the choice of einbein frame
Ω ¼ a=

ffiffiffi
κ

p
, such that Eq. (92) becomes

μ̂0 ¼
���� ∂a∂η

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det G̃j

q
; ð93Þ

which can be interpreted as the square root of the
determinant of the (conformally transformed) background
minisuperspace metric with respect to the ðη;ϕÞ
coordinates.

Taking into account the order κ terms in Eq. (87), we
now rewrite the denominator of Eq. (77) asZ

dv ψ̃�
ð1Þψ̃ ð2Þ ¼

Z
dvψ�

ð1Þμ̂ψ ð2Þ; ð94Þ

where we have considered the overlap of two (possibly
different) conditional wave functions ψ̃ ð1;2Þ for generality,
and we have defined

μ̂ ¼ μ̂
1
2

0ð1þ κH2
0η

4ĤÞμ̂1
2

0: ð95Þ

Using Eqs. (23), (71), (74) and (81), we obtain

ψ�
ð1Þμ̂ψ ð2Þ ¼ ψ�

ð1Þμ̂
1
2

0

�
1þ iκH2

0η
4
∂
∂η

�
μ̂

1
2

0ψ ð2Þ

¼ Ψ�
ð1Þμ̂

1
2

0

�
iκH2

0η
4
∂
∂η

�
μ̂

1
2

0Ψð2Þ

¼ Ψ�
ð1Þμ̂0ð−κH2

0η
4p̂ηÞΨð2Þ; ð96Þ

where

p̂η ≔ −iμ̂−
1
2

0

∂
∂η μ̂

1
2

0 ð97Þ

is the operator for the momentum conjugate to η with
respect to the measure μ̂0 [72], which is related to the
background configuration space metric in the ðη;ϕÞ coor-
dinates [cf. Eq. (93)]. Thus, one sees that the last line of
Eq. (96) yields a quantization of the classical Faddeev-
Popov determinant Δ̃η given in Eq. (26), i.e.,Z

dv ψ̃�
ð1Þψ̃ ð2Þ ¼

Z
dvψ�

ð1Þμ̂ψ ð2Þ

≡
Z

dvΨ�
ð1Þμ̂0

ˆ̃ΔηΨð2Þ: ð98Þ

It is in this sense that the measure μ̂, the inner product (62),
and the conditional probabilities (76) and (77) recover the
usual Faddeev-Popov determinant and, in this sense, are
related to a notion of gauge fixing the time variable.
Moreover, because the de Sitter configuration space con-
sists solely of the scale factor and the action (6) leads to one
constraint, there are no physical degrees of freedom in the
de Sitter background, i.e., the background is “pure gauge.”
Once the proper time gauge (26) is fixed, the physical
variables are the relational observables that correspond to
the perturbations [cf. Eq. (39)].
We note that the operator μ̂0

ˆ̃Δη in Eq. (98) is in general
not symmetric with respect to the auxiliary (kinematical)
inner product (31). Nevertheless, this is not relevant
because we are interested in the gauge-fixed inner product
for conditional wave functions, which takes the simple,
positive-definite form

R
dv ψ̃�

ð1Þψ̃ ð2Þ. The role of the
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Faddeev-Popov operator μ̂0
ˆ̃Δη is precisely to connect a

solution Ψðα; vÞ of the master WDW equation (wave
function of the universe) to a conditional wave func-
tion ψ̃ðα; vÞ.13
Finally, we notice that the left-hand side of Eq. (98) is

positive definite and conserved due to the unitarity of the
dynamics given in Eq. (89). In this way, the inner product
(98) satisfies criteria 1) and 2) established in Sec. II B.

F. Traditional BO Ansatz

1. Basic equations

Instead of the minimal BO factorization (71), let us now
consider the traditional BO Ansatz, which was applied to
the wave function of the universe in Refs. [10–12,26,37].
The traditional factorization reads

Ψðα; vÞ ¼ ψ0ðαÞψBOðα; vÞ; ð99Þ

where ψ0ðαÞ is the background wave function that encodes
the dynamics of the heavy variables (in the present case, the
scale factor of the universe), whereas ψBOðα; vÞ is the wave
function that dictates the evolution of the light variables
(here, the cosmological perturbations). The main idea
behind Eq. (99) is that the light degrees of freedom should
follow adiabatically the semiclassical dynamics of the
heavy variables. We will see how this can be understood
in connection with the minimal BO factorization and the
issue of unitarity.
In the traditional BO approach, the dynamics of both

ψ0ðαÞ and ψBOðα; vÞ is determined from the master WDW
equation (65) in a self-consistent fashion. One first defines
the “backreaction term” [5,9,39,40,73]

JðαÞ ≔ −
e−2α

a20ψ0

�
κ

2

∂2ψ0

∂α2 þ a60e
6α H

2
0

2κ
ψ0

�
: ð100Þ

Wenote that Eq. (100) coincides with the backgroundWDW
equation with an additional potential termJðαÞ that encodes
the backreaction of the light variables onto the heavy sector.
Backreaction is absent in the particular case JðαÞ ¼ 0. We
will see that JðαÞ is related to the expectation value of the
Hamiltonian of cosmological perturbations. This also jus-
tifies referring to JðαÞ as the backreaction term.14

If we insert Eq. (99) into the master WDWequation (65)
and use Eq. (100), we obtain the equation for ψBOðα; vÞ

κ
e−2α

a20

∂ logψ0

∂α
∂ψBO

∂α þðĤ−JÞψBOþ
κ

2

e−2α

a20

∂2ψBO

∂α2 ¼ 0:

ð101Þ

Equations (99) and (101) are the basic equations of the
traditional BO factorization. The time variable is defined
from the phase of ψ0ðαÞ and it is usually argued that the
inclusion of the backreaction term JðαÞ leads to a unitary
theory [37–39]. We will critique this view and see how this
can be understood in relation to the results of the minimal
BO factorization.

2. Backreaction

Let us now define the BO average of an operator ÔBO as

hÔiBO ≔
R
dvψ�

BOμ̂BOÔBOψBOR
dvψ�

BOμ̂BOψBO
; ð102Þ

where the operator μ̂†BO ¼ μ̂BO is a measure to be deter-
mined. In the literature [10–12,26,37], it is usually assumed
that μ̂BO coincides with the identity, but we will argue that a
more general definition is needed. An operator ÔBO is

symmetric with respect to μ̂BO if it can be written as ÔBO ≔

μ̂
−1
2

BOÔμ̂
1
2

BO or ÔBO ≔ μ̂−1BOÔ and Ô† ¼ Ô.
The BO average of Eq. (101) then yields

JðαÞ ¼ κ
e−2α

a20

∂ logψ0

∂α

 ∂
∂α

�
BO

þ hĤiBO

þ κ

2

e−2α

a20


 ∂2

∂α2
�

BO
: ð103Þ

Thus,JðαÞ is related to the BO average of the Hamiltonian
of the cosmological perturbations. It is in this sense that
JðαÞ corresponds to a backreaction term. Moreover, if one
inserts Eq. (103) back into Eq. (101), one can show that the
BO averages h∂=∂αiBO and h∂2=∂α2iBO lead to “fluc-
tuation terms,” i.e., terms of the kind κðÔ − hÔiBOÞ
[37,40]. The inclusion of these terms leads to corrections
to the adiabatic approximation (the lowest order of the
traditional BO approach), in which one neglects such
fluctuations. From Eq. (103), one sees that the adiabatic
approximation coincides with the lowest order of the weak-
coupling expansion, whereas the inclusion of the fluc-
tuation terms associated with h∂=∂αiBO and h∂2=∂α2iBO
comprise terms of order κ and higher.

3. Equivalence to the minimal BO factorization

The traditional BO factorization is clearly ambiguous.
One may perform the redefinitions [39]

13In the BO approach, we restrict ourselves to a single choice
of S0ðαÞ from which the background time variable is defined.
This implies that the states ψ ð1;2Þ in Eq. (98) are related to the
physical states via the relation Ψð1;2Þ ¼ eiS0=κψ ð1;2Þ with a fixed
choice of S0ðαÞ. See also footnote 12.

14The reader is also referred to Refs. [74,75] for alternative
definitions of backreaction through the analysis of Wigner
functions and decoherence.
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ψ0ðαÞ ↦ ψ0ðαÞeγðαÞþiβðαÞ;

ψBOðα; vÞ ↦ ψBOðα; vÞe−γðαÞ−iβðαÞ ð104Þ

without altering the wave function of the universe Ψðα; vÞ.
In Eq. (104), γðαÞ and βðαÞ are real functions15 that can be
expanded in powers of κ, starting at order κ0. Thus, we may
write

ψ0ðαÞ ¼ exp

�
i
κ
S0ðαÞ

�
eγðαÞþiβðαÞ;

ψBOðα; vÞ ¼ ψðα; vÞe−γðαÞ−iβðαÞ ð105Þ

without loss of generality. If we insert Eq. (105) into
Eq. (99), we recover the minimal BO factorization (71).
Moreover, it is straightforward to verify that Eq. (101) is
equivalent to Eq. (78) if one inserts Eq. (105) into Eq. (101)
and eliminates J using Eq. (100). Thus, the results of both
factorizations are equivalent. Although this is expected, the
ensuing interesting questions are: how does the traditional
BO Ansatz lead to a unitary evolution? How is this
equivalent to the conclusions of Sec. III D? As the question
of the unitarity of the BO approach has been a controversial
topic in the literature [3,4,7,36], we believe it is worthwhile
to analyze the answers to these questions in the formalism
presented here.

4. Ambiguity of backreaction and unitarity

As the minimal BO Ansatz does not explicitly refer to
backreaction, and due to the equivalence between the
minimal and traditional BO factorizations, we conclude that
unitarity cannot be a consequence of the introduction of the
backreaction term alone. Due to the ambiguity (104) in
the definition of ψBOðα; vÞ, there is also an ambiguity in the
definition of the BO averages h∂=∂αiBO, h∂2=∂α2iBO and,
consequently, the backreaction term JðαÞ is ambiguous.
Indeed, at this stage, JðαÞ is arbitrary. A fixation of JðαÞ
corresponds to a fixation of γðαÞ and βðαÞ in Eq. (105).
In this way, how can one obtain a unitary evolution for

ψBOðα; vÞ? Given a pair ψBOð1Þ, ψBOð2Þ of solutions to
Eq. (101), the evolution is unitary if the following condition
holds:

∂
∂η

Z
dvψ�

BOð1Þðη; vÞμ̂BOψBOð2Þðη; vÞ ¼ 0: ð106Þ

This is equivalent to assuming that Eq. (101) can be
rewritten as

i
∂
∂η

�
μ̂

1
2

BOψBO

�
¼ ĤBOμ̂

1
2

BOψBO ð107Þ

for some choice of μ̂BO and an operator ĤBO that is
Hermitian with respect to the flat measure 1̂. Note that
this was exactly the procedure shown in Sec. III D for the
minimal BO Ansatz, where Eq. (89) was the equivalent of
Eq. (107). This is not, however, the standard procedure
considered for the traditional BO Ansatz.
In the literature [26,37,38], the standard procedure focuses

on a flat measure μ̂BO → 1̂ and considers Eq. (106) for a
single state. In this case, Eq. (106) becomes

0 ¼ Re


 ∂
∂η

�
BO

����
μ̂BO→1̂

¼ H0a0eαRe


 ∂
∂α

�
BO

����
μ̂BO→1̂

: ð108Þ

The task is then to prove that Eq. (108) is satisfied for
solutions of Eq. (101). In Sec. IV C, we give a concrete
example of this kind of calculation. It is straightforward to
show that (see Ref. [40] for details)

Re


 ∂
∂α

�
BO

����
μ̂BO→1̂

¼ 1

2

∂
∂α log

�Z
dvψ�

BOψBO

�
: ð109Þ

Hence, Eq. (108) is satisfied if and only if the norm of ψBO is
independent of α (unitarity). However, in the standard
procedure [26,37,38], one (sometimes tacitly) makes the
assumption that the BO averages


 ∂
∂α

�
BO

����
μ̂BO→1̂

¼ iAðαÞ ð110Þ

are purely imaginary, where AðαÞ is the Berry connection
related to the Berry phase [40]. But this is precisely what one
would need to show. Assuming that Eq. (110) is purely
imaginary corresponds to assuming that Eq. (108) is sat-
isfied. Thus, the proof that Eq. (101) leads to a unitary
dynamics becomes circular.
It is worthwhile to mention that in the usual treatment of

the BO approximation to nuclear and molecular physics
[31–34], this problem does not arise because an external
time parameter is available in these applications. Even if
one is dealing with a stationary Schrödinger equation, one
is not usually interested in adopting a relational point of
view, in which one of the degrees of freedom serves as an
internal or intrinsic clock. In contrast, the formalism
presented here is relational, and it is our task to determine
whether the dynamics is unitary with respect to the chosen
time variable.
It is also important to notice that, instead of trying to

prove that the dynamics described by Eq. (101) is unitary,
one could simply enforce the condition (108) by a suitable
choice of γðαÞ in Eq. (105). Indeed, one can choose γðαÞ in
such a way that the following relation holds:

15In particular, the arbitrary phase βðαÞ is related to the Berry
phase ambiguity [40].
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ψBOðα; vÞ ¼
ψðα; vÞe−iβðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

dvψ�ψ
p ; ð111Þ

which guarantees that ψBOðα; vÞ is normalized at all times
with respect to the flat measure. This is effectively what is
done when one assumes from the start that Eq. (110) is
purely imaginary. In this case, it is a specific choice of the
factorization of Ψðα; vÞ that guarantees the unitarity of the
evolution of ψBOðα; vÞ. This particular factorization, in
turn, corresponds to a (partial) fixation of the backreaction
term JðαÞ. A similar remark was made by one of us
in Ref. [40].
In Ref. [39], it was argued that unitarity-violating terms

could be neglected because they could be absorbed into
redefinitions of the minimal BO factorization according to
Eq. (105). However, as ψ0ðαÞ is independent of v, one
cannot absorb v-dependent terms present in Eq. (87) into a
redefinition of S0ðαÞ in Eq. (105). Nevertheless, in the
formalism of Ref. [39], one enforces unitarity at each order
of the weak-coupling expansion by a suitable choice of
γðαÞ and, thus, this procedure should correspond16 to the
choice (111). This option is, however, not preferred
because it is nonlinearly dependent on the state ψðα; vÞ.
As was remarked in Sec. III D, a more general procedure is
to the absorb the unitarity-violating terms into the measure
μ̂ defined in Eq. (87).
Due to the results of Secs. III D and III E and the

equivalence of the minimal and traditional BO Ansätze,
we have already established that the BO weak-coupling
expansion leads to a unitary evolution of conditional wave
functions. In what follows, we give the connection between
the measure μ̂BO to be used in the traditional BO approach
and the measure μ̂ given in Eq. (95).

5. Relation to the gauge-fixed measure and conditional
probabilities

As Eq. (101) is equivalent to Eq. (78), we can establish
the unitarity of the dynamics of Eq. (101), i.e., the validity
of Eq. (106), by choosing μ̂BO adequately. For a given
choice of γðαÞ, let us define

μ̂BO ≡ μ̂BO

�
α; v;−i

∂
∂v

�

≔ e2γðαÞμ̂
�
α; v;−i

∂
∂v

�
; ð112Þ

where μ̂ was given in Eq. (95). Using Eq. (105), we thus
obtain

Z
dvψ�

BOð1Þμ̂BOψBOð2Þ ¼
Z

dvψ�
ð1Þμ̂ψ ð2Þ; ð113Þ

which is equivalent to the conserved Eq. (98). Thus, we
find that the overlap with respect to μ̂BO of solutions to
Eq. (101) is conserved in conformal time and the dynamics
is unitary, provided the weak-coupling expansion is valid
and appropriate boundary conditions are imposed for the
conditional wave functions. Moreover, the BO averages of

operators of the form ÔBO ≔ μ̂
−1
2

BOÔðα; v;−i∂=∂vÞμ̂1
2

BO are
then equivalent to conditional expectation values,

hÔiBO ¼
R
dvψ�

BOμ̂BOÔBOψBOR
dvψ�

BOμ̂BOψBO

¼
R
dv ψ̃�Ô ψ̃R
dv ψ̃�ψ̃

≡ hÔi: ð114Þ

Finally, if we choose βðαÞ ¼ 0 in Eq. (105), which
corresponds to a choice of Berry phase, we obtain

μ̂
1
2

BOψBO ≡ ψ̃ . Thus, the solutions to Eq. (101) are also
related to conditional wave functions. This is in line with
the formalism proposed by Hunter long ago [76], although
the main difference is the presence of the nontrivial

measure μ̂
1
2

BO related to the insertion of the Faddeev-
Popov operator in the inner product for solutions of the
constraint equation [cf. Eq. (98)].
To summarize, we have argued that the traditional BO

Ansatz yields equations that are equivalent to the ones
obtained in the minimal BO factorization, also concerning
unitarity, provided an adequate choice of measure is made
[cf. Eq. (112)]. We now apply the formalism presented here
to the calculation of primordial power spectra.

IV. CORRECTIONS TO PRIMORDIAL POWER
SPECTRA

Up to order κ, the dynamics of cosmological perturbations
is governed by the corrected Schrödinger equation (89),
which defines a QFT on a de Sitter background with the
effective Hamiltonian (91). Let us now compute the corre-
sponding power spectra. At order κ0, this will coincide with
the usual primordial power spectra in a de Sitter spacetime,
whereas terms of order κ will yield corrections that originate
from the weak-coupling expansion of the master WDW
equation (65).

A. Single-mode equations

To compute the power spectra, we adopt a simplification
that is common in the literature [1–5,7,9,38,73]. Namely,
we restrict the corrected Schrödinger equation (89) to a
single Fourier mode. This is sometimes referred to as a
“random phase approximation” [5,9,73].

16More precisely, the authors of Ref. [39] seem to require that
ψBO is an eigenstate of Ĥ and that i∂ψBO=∂η is independent of v.
We do note make such requirements here.
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More precisely, we make the separation Ansatz

ψ̃ðα; vÞ ¼
Y
q

ψ̃qðα; vqÞ; ð115Þ

and, using Eq. (55), we write

Ĥ2ψ̃ ¼
X
q

Ĥ2
qψ̃ þ

X
q0≠q

ĤqĤq0 ψ̃

¼
X
q

Ĥ2
qψ̃ þ ψ̃

X
q0≠q

Ĥqψ̃q

ψ̃q

Ĥq0 ψ̃q0

ψ̃q0

¼
X
q

Ĥ2
qψ̃ − ψ̃

X
q0≠q

∂ηψ̃q

ψ̃q

∂ηψ̃q0

ψ̃q0
þOðκÞ: ð116Þ

The random phase approximation consists in the assumption
that the terms ∂ηψ̃k=ψ̃k add incoherently in such a way that
the second term on the right-hand side of Eq. (116) can be
neglected. It is important to mention that this approximation
is a formal procedure. The second termon the right-hand side
of Eq. (116) will in general exhibit field-theoretic divergen-
ces that need to be removed with a subtraction scheme
[25,77,78].17 To the best of our knowledge, a thorough
treatment of the random phase approximation for the master
WDW equation (65) is lacking in the literature. We hope to
address the details of this procedure in future work.
What is the physical content of this random phase

approximation? It corresponds to assuming that inter-
actions (contained in the Ĥ2 term) between the different
vq modes are negligible or that a single mode is present in
the classical theory and subsequently quantized. As was
remarked in Ref. [6], by neglecting the interactions
between the different vq modes, we are focusing on the
principal difference between the physics of the master
WDW equation (65) and the usual treatment of QFT on
curved backgrounds, which is the fact that the de Sitter
background is now also quantized.
Note that the neglected interactions include terms of

quartic order in the cosmological perturbations and, there-
fore, a consistent treatment of these terms would require the
inclusion of higher-order Oðv3Þ terms in the classical
theory. As the master WDW equation (65) was based on
a perturbative analysis of the classical theory, in which the
action was expanded up to quadratic order in the cosmo-
logical perturbations, we consider that Eq. (65) and the
associated corrected Schrödinger equation (89) are only
reliable in regions of configuration space where the Oðv3Þ

terms are small and where the random phase approximation
is also justified. In what follows, we assume that the formal
random phase approximation may be used, i.e., that it is
possible to adopt a certain regularization scheme and that
the necessary subtractions have been made.
With the random phase approximation applied to

Eq. (116), we obtain from Eq. (89) the single-mode
corrected Schrödinger equation

i
∂ψ̃q

∂η ¼ Ĥqψ̃q − κ
H2

0η
4

2
Ĥ2

qψ̃q; ð117Þ

where Ĥq was defined in Eq. (56).

B. Choice of state

The precise form of the corrections to the primordial
power spectra depends not only on the validity of the
assumptions (weak-coupling expansion, random phase
approximation) made in the derivation of Eq. (117), but
also on the choice of initial state. In the present article, we
take the position that the state of a reparametrization-
invariant system should be defined in a relational way.
Following our discussion in Secs. II D and III B, this may
be achieved with the use of the conditional wave functions
ψ̃ ¼ μ̂

1
2ψ , which yield predictions for the cosmological

perturbations conditioned on the value of the scale factor
[or of conformal time, understood as function of a,
cf. Eq. (23)]. Due to Eqs. (71) and (115), a choice of
conditional states ψ̃q corresponds to a choice of wave
function of the universe, via the formula

Ψðα; vÞ ¼ e
i
κS0ðαÞμ̂−1

2

Y
q

ψ̃qðα; vqÞ: ð118Þ

We choose the conditional states such that they correspond
to the usual Bunch-Davies vacuum at order κ0. It is also
possible to consider more general choices (such as the
excited states considered in Ref. [7]), but this will not be
done here. We thus make the Ansatz

ψ̃q ¼ N qðαÞ exp
�
−
1

2
ΩqðαÞv2q −

κ

4
ΓqðαÞv4q

	
; ð119Þ

where N qðαÞ is a normalization factor and ReΩqðαÞ,
ReΓqðαÞ > 0. We have included the quartic term in
Eq. (119) for completeness because Eq. (117) contains
terms of quartic order in vq. Moreover, we will see that the
function ΓqðαÞ contributes to the corrections for the power
spectra.
Nevertheless, as we remarked earlier, we consider that

Eq. (117) is only reliable in regions where Oðv3Þ terms are
small. Thus, the inclusion of quartic terms need not entail
observable non-Gaussianities in the CMB, since Eq. (65)
may be significantly modified in regions where such non-

17The reader is referred to Ref. [77] (see, in particular, Sec. IV
of Ref. [77]), where the adiabatic subtraction scheme was applied
to the WDW equation in the presence of higher-derivative terms
in the Born-Oppenheimer approach. The reader is also referred to
Ref. [78] for a discussion of the adiabatic subtraction scheme in
the functional Schrödinger picture for quantum fields on FLRW
backgrounds.
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Gaussian terms are sizable. A similar observation was made
in the semiclassical treatment of Ref. [79].
If we insert Eq. (119) into Eq. (117) and keep terms only

up to order κ, we obtain the equations

i
∂
∂η logN q ¼ Ωq

2
þ κH2

0η
4

4
ω2
q −

3κH2
0η

4

8
Ω2

q; ð120Þ

i
∂Ωq

∂η ¼ Ω2
q − ω2

q − 3κΓq −
3κH2

0η
4

2
ΩqðΩ2

q − ω2
qÞ; ð121Þ

i
∂Γq

∂η ¼ 4ΩqΓq þ
H2

0η
4

2
ðΩ2

q − ω2
qÞ2; ð122Þ

which we will solve in order to ascertain the unitarity of the
theory and to compute the corrections to the power spectra.

C. Unitarity

According to the discussion in Sec. III D, the dynamics
described by Eq. (117) is unitary. We can explicitly verify
this for the Ansatz (119) as follows. As in Sec. III F 4, we
note that the norm of Eq. (119) is conserved if

0 ¼ i
2

∂
∂η log

Z
∞

−∞
dvqjψ̃qj2 ¼ iIm



i
∂
∂η

�
: ð123Þ

Moreover, using Eq. (119), we obtain the identity



i
∂
∂η

�
¼



i
∂
∂η logN q −

i
2

∂Ωq

∂η v2q −
iκ
4

∂Γq

∂η v4q

�
: ð124Þ

From Eqs. (119)–(122), we find18

Im



i
∂
∂η logN q

�
¼ImΩq

2
−
3κH2

0η
4

4
ðReΩqÞImΩq;

Im



−
i
2

∂Ωq

∂η v2q

�
¼−

ImΩq

2
þ9κH2

0η
4

8
ðReΩqÞImΩq−

3κH2
0η

4ImΩqðω2
qþImΩ2

qÞ
8ReΩq

þ3κðReΓqÞImΩq

4ReΩ2
q

þ3κImΓq

4ReΩq
;

Im



−
i
4

∂Γq

∂η v4q

�
¼−

3κH2
0η

4

8
ðReΩqÞImΩqþ

3κH2
0η

4ImΩqðω2
qþImΩ2

qÞ
8ReΩq

−
3κðReΓqÞImΩq

4ReΩ2
q

−
3κImΓq

4ReΩq
; ð125Þ

where we kept terms only up to order κ. If we add all terms
from Eq. (125) and we use Eq. (124), we obtain the
expected result,

Im



i
∂
∂η

�
¼ 0: ð126Þ

D. Power spectra

We define the power spectrum associated with the
cosmological perturbations as

PvðqÞ ≔
k3

2π2
hv2qi; ð127Þ

where we recall that q ¼ ðk; j; ρÞ and

hv2qi ≔ EΨ½v2qjη;ϕ� ¼
ðΨjÔ½v2qPϕjη�jΨÞ
ðΨjÔ½Pϕjη�jΨÞ

ð128Þ

is the conditional correlation function for the qmodes. Due
to Eqs. (58) and (62), Eq. (128) can be simplified to the
familiar formula

hv2qi ¼
R
dv ψ̃�v2qψ̃R
dv ψ̃�ψ̃

: ð129Þ

Using Eqs. (115) and (119), we find

hv2qi ¼
1

2ReΩq
−

3κReΓq

4ðReΩqÞ3
: ð130Þ

Up to order κ, we may write Ωq ¼ Ωq;0 þ κΩq;1 to find

hv2qi ¼
1þ κδq
2ReΩq;0

; ð131Þ

where

δq ¼ −
ReΩq;1

ReΩq;0
−

3ReΓq

2ðReΩq;0Þ2
: ð132Þ

Furthermore, as we are interested in large scales, we will
evaluate hv2qi in the superhorizon limit kη → 0−. Finally,
we will see in what follows that ReΩq and ReΓq only
depend on k ¼ jkj. Thus, PvðqÞ≡ PvðkÞ.

1. Power spectra for scalar and tensor modes

Following the discussion in Refs. [3,4], we now define
the power spectra for the scalar and tensor perturbations. In
the scalar case, we define the variables

18All integrals are Gaussian because we assume that the quartic
term in Eq. (119) can be treated perturbatively.
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ζk ≔
ffiffiffiffiffi
3κ

ϵ

r
vðSÞk

a
; ð133Þ

where ϵ is the slow-roll parameter, ϵ ¼ 1 − _H=H2. The
variables ζk describe comoving curvature perturbations,
which are related to the CMB temperature anisotropies.
The ζk perturbations are well defined in quasi–de Sitter
space, where the slow-roll parameter is small but non-
vanishing. The power spectrum for ζk is found to be

PSðkÞ ≔
3κ

ϵa2
PvðkÞ ¼

3κ

ϵa2
k3

2π2
hv2qi: ð134Þ

In the tensorial case, we consider the power spectrum for

the variables
ffiffiffi
2

p
hðþ;×Þ
k , where hðþ;×Þ

k are the Fourier modes
given in Eq. (44). Summing over both polarizations, one
obtains

PTðkÞ ≔
X
λ¼þ;×

24κ

a2
PvðkÞ ¼

48κ

a2
k3

2π2
hv2qi: ð135Þ

In the quasi–de Sitter case in which we are working, the
power spectra for both the scalar and tensor perturbations
are corrected by the same factor δq given in Eq. (132). This
is a consequence of the equality of the frequencies (66) and
no longer holds for general slow-rolls models [4] (see also
the discussion in Sec. V). Indeed, due to Eq. (131), we may
rewrite Eqs. (134) and (135) as

PS;TðkÞ ¼ PS;T;0ðkÞð1þ κδqÞ: ð136Þ

Moreover, the tensor-to-scalar ratio is defined as

r ≔
PTðkÞ
PSðkÞ

≡ PT;0ðkÞ
PS;0ðkÞ

; ð137Þ

and it is not corrected in the quasi–de Sitter case due
to Eq. (136).

2. Uncorrected power spectra

As discussed in Sec. III C, we recover the limit of QFT
on a classical de Sitter background at order κ0. Thus, we
only reproduce known results at this order. Equation (121)
reads

i
∂Ωq;0

∂η ¼ Ω2
q;0 − ω2

q: ð138Þ

As is well known, this can be solved via the substitution

Ωq;0ðηÞ ¼ −i
_yqðηÞ
yqðηÞ

; ð139Þ

which yields

ÿq þ ω2
qyq ¼ 0: ð140Þ

Using Eq. (66), one is able to find the well-known solution,
yqðηÞ≡ ykðηÞ,

ykðηÞ ¼
Affiffiffiffiffi
2k

p e−ikη
�
1 −

i
kη

�
þ Bffiffiffiffiffi

2k
p eikη

�
1þ i

kη

�
: ð141Þ

Due to Eq. (139), the normalization of ykðηÞ is irrelevant to
the computation of Ωq;0ðηÞ. Only the ratio of the constants
A, B is important. The requirement ReΩq;0ðηÞ > 0 trans-
lates into the Wronskian condition

B2 − A2 ¼ −i½_yky�k − _y�kyk� > 0: ð142Þ

This is fulfilled if B ∝ coshϑ and A ∝ sinhϑ. The (real)
value of ϑ can be determined by imposing that Eq. (119)
reproduces the Minkowski vacuum at order κ0 in the
infinite past. Indeed, we find from Eq. (139)

Ωk;0ðηÞ ≃
η→−∞ coshϑeikη − sinhϑe−ikη

coshϑeikη þ sinhϑe−ikη
k: ð143Þ

We therefore require ϑ ¼ 0 to obtain the Minkowski
vacuum. In this way, we recover the Bunch-Davies mode
functions19

ykðηÞ ∝
1ffiffiffiffiffi
2k

p eikη
�
1þ i

kη

�
; ð144Þ

from which we find [3]

Ωq;0ðηÞ≡Ωk;0ðηÞ ¼
k3η2

1þ k2η2
þ i
ηð1þ k2η2Þ ; ð145Þ

and, up to order κ0,

hv2qi ¼
1þ k2η2

2k3η2
≃

kη→0− 1

2k3η2
: ð146Þ

The corresponding power spectra have the well-known
form [cf. Eqs. (134) and (135)]

PS;0ðkÞ ¼
3κ

ϵa2
1

4π2η2
¼ GH2

0

πϵ

����
k¼aH0

; ð147Þ

PT;0ðkÞ ¼
24κ

a2
1

4π2η2
¼ 16GH2

0

π
; ð148Þ

r ¼ 16ϵ: ð149Þ

19In fact, the functions that appear in Eqs. (139) and (144) are
the complex conjugates of the usual Heisenberg-picture mode
functions [3].
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In Eqs. (147) and (148), we used κ ¼ 4πG=3 and Eq. (23).
Moreover, due to the presence of ϵ in Eq. (147), we evaluate
the scalar power spectrum at the instant k ¼ aH0, which is
justified since at order κ0 the curvature perturbations freeze
at horizon crossing.

3. Corrected power spectra

As discussed in Sec. III, viz., Sec. III D, we obtain
corrections to the usual quantum-field-theoretical results on
a de Sitter background at order κ in the weak-coupling
expansion. The corresponding effects on the power spectra
can be found as follows.
First, we replace Ωq by its lowest-order value given in

Eq. (145) in Eq. (122) and solve this equation for Γq. A
boundary condition must be chosen and we choose to
require that Γq vanishes in the infinite past. In this way, we
find the solution

ΓqðηÞ ¼
H2

0ηð4ik2η2 þ 4kηþ iÞe4i arctanðkηÞ
6ðk2η2 þ 1Þ2

−
8H2

0η
4k3Γð0;−4ikηÞe−4i½kη−arctanðkηÞ�

3ðk2η2 þ 1Þ2 ; ð150Þ

where Γð0; zÞ is the upper incomplete gamma function.20

Using

Γð0; zÞ ≃z→−∞ e−z

z
; ð151Þ

we find that the solution (150) obeys the chosen boundary
condition

lim
η→−∞

ΓqðηÞ ¼ 0: ð152Þ

Moreover, using

Γð0; zÞ ¼ −γE − log zþ zþOðz2Þ; ð153Þ

where γE is the Euler-Mascheroni constant, we find the
late-time behavior of ReΓq,

ReΓqðηÞ ≃
η→0− k3H2

0η
4

3
½−18þ 8γE þ 8 logð4kjηjÞ�: ð154Þ

The second step is to solve Eq. (121) by using the
expansion Ωq ¼ Ωq;0 þ κΩq;1. Up to order κ, we obtain

i
∂Ωq;1

∂η ¼ 2Ωq;0Ωq;1 − 3Γq −
3H2

0η
4

2
Ωq;0ðΩ2

q;0 − ω2
qÞ:

Using Eqs. (145) and (150), we find the solution

Ωq;1ðηÞ ¼
e2i arctanðkηÞH2

0η
2

kηþ i

×

�
10iþ 6kη − 3ik2η2

2ðkη − iÞðkηþ iÞ −
4Γð0;−4ikηÞ
ðkηþ iÞ e−4ikη

−
2Γð0;−2ikηÞ

ðkη − iÞ e−2ikη
�
; ð155Þ

where we have chosen the integration constant such that
ReΩq;1 has a well-defined limit in the infinite past, i.e.,
such that it does not exhibit oscillatory behavior in the limit
η → −∞. A similar prescription was adopted in Ref. [3].
Indeed, using Eq. (151), we obtain

lim
η→−∞

ReΩq;1ðηÞ ¼
3H2

0

2k2
: ð156Þ

We take Eqs. (152) and (156) to be the order-κ boundary
conditions that are analogous to the usual order-κ0 Bunch-
Davies choice.21 Using Eq. (153), we also obtain the late-
time behavior

ReΩq;1ðηÞ ≃
η→0−

H2
0η

2½5 − 2γE þ 2 logð2kjηjÞ
− 4 logð4kjηjÞ�: ð157Þ

From Eqs. (146), (154), and (157), the correction (132)
reads

δq ≡ δkðηÞ ¼ H2
0

�
k⋆
k

�
3

½4 − 2γE − 2 logð−2kηÞ�; ð158Þ

where we have inverted the redefinition of k given in
Eq. (50), i.e., we have rescaled k → Lk and we have set
L ¼ 1=k⋆. In this way, the variable k is again dimensionful
and can be compared to observations, whereas k⋆ corre-
sponds to a reference scale that can be identified with the
pivot scale used in the CMB data analysis. Inserting the
result (158) into the expression for the corrected variance
(131) and subsequently into the definition of the power
spectra (134) and (135), we obtain the following result for
the corrected scalar and tensor power spectra:

Pcorr
S;T ðkÞ ¼ PS;T;0ðkÞ½1þ κδq�

≃PS;T;0ðkÞ
�
1þ κH2

0

�
k⋆
k

�
3

½2.85− 2 logð−2kηÞ�
�
:

ð159Þ
20As in Ref. [3], we have used the upper incomplete gamma

function Γð0; zÞ instead of the exponential integral function that
may be presented in the solution to Eq. (122) by some computer
algebra programs.

21There is a large early-time contribution from ImΩq;1 to the
phase of the wave function (119). However, this does not affect
the conditional correlation functions of the vq variables.
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This result differs from the one found in Ref. [3],22 most
notably due to the presence of the logarithmic term. Let us
now discuss the source and physical interpretation of the
differences between Eq. (158) and the result of Ref. [3].

4. Discussion

Although the formalism presented here may be seen as a
justification of why the would-be unitarity-violating terms
may be neglected [they are absorbed into the measure μ̂
given in Eq. (95)], our result (158) differs from the one
presented earlier in Ref. [3] because other terms were
neglected in that reference. Indeed, in addition to the terms
that have been canceled by the definition of μ̂, the
imaginary part of the order-κ terms in Eq. (121) was also
ignored in Ref. [3] (as well as in Refs. [4,7,9]). The reason
for this was that these terms were also considered to violate
unitarity in these works. Here, however, we see that this is
not the case. The effective Hamiltonian (91) is self-adjoint
provided suitable boundary conditions in field space are
adopted, and we have explicitly verified that the norm of
the conditional wave function is conserved [cf. Eq. (126)].
Thus, by taking into account these additional terms, we
have obtained a different result, mainly due to the appear-
ance of the logarithmic term.
What is the significance of the logarithmic term in

Eq. (158)? We note that similar terms that grow logarithmi-
cally in conformal time often appear in perturbative QFT in
de Sitter space, when one calculates perturbative correc-
tions to correlators as well as the late-time Bunch-Davies
wave function [80–84]. The growing logarithms are an
example of secular terms, which were first found in
correlators for a massless scalar field in de Sitter space
in Ref. [80]. That such growing logarithms should also
appear in the present context is perhaps plausible for the
following reason. The correction terms that stem from the
weak-coupling expansion described here are analogous to
loop corrections [85] in the sense that the master WDW
equation (65) takes into account the quantum nature of the
background and, thus, corrects the usual quantum-field-
theoretic description in which the background spacetime is
classical. Hence, our late-time logarithmic growth origi-
nates from quantum-gravitational corrections, whereas the
logarithms discussed in the literature [80–84,86,87] arise
from quantum corrections of perturbative QFT. It is also
worthwhile to mention that a similar logarithmic term was
found in the approach to the master WDW equation based
on quantum moments that was presented in Ref. [6].
As this logarithm appears in the late-time superhorizon

limit, it yields a potentially large contribution to the power
spectra (it diverges as η → 0−) which jeopardizes the validity
of perturbation theory. While we have formally established
the unitarity of the dynamics, this evidently rests on the

assumption that the weak-coupling expansion is well
defined. Can we then ensure that this is the case? Let us
consider two broad possibilities to be pursued in futurework.
First, one may speculate that going beyond the de Sitter

approximation would cure the weak-coupling corrections
from the large logarithm. This is justified by considering
the fact that the correction (158) is valid for a quasi–de
Sitter background and, in fact, slow-roll corrections need to
be taken into account in realistic scenarios [4,7], in which
the structure of Eq. (158) could be altered. Alternatively,
one could engineer an Ansatz for the conditional wave
functions that is more involved than Eq. (119) with the goal
of avoiding such logarithms.
Second, one could find inspiration in the several ways in

which large time-dependent logarithms have been addressed
in the context ofQFTin de Sitter space [83]. In particular, it is
conceivable that certain resummation techniques available in
the literature [88], such as the one based on the stochastic
approach of Ref. [89], could also be employed in the present
context to remove the secular divergences. An appealing
approach is the use of the dynamical renormalization group
(DRG) [82,83,86,87,90]. In analogy to the conventional
renormalization group, we define a subtraction procedure in
the DRG framework by introducing an arbitrary time scale
and by removing the late-time divergences with the inclusion
of appropriate counterterms [90]. TheDRG techniques allow
us to, in principle, resum the leading time-dependent
logarithms and improve perturbation theory. Whether this
DRG improvement can be applied to the weak-coupling
expansion of the BO approach is an interesting topic that
could be examined in the future. It is also worth mentioning
that in the recent article [91] a technique of resummation of
secular terms inspired by the renormalization group was
applied, with results similar to those of the stochastic
approach [88,89].
We note, however, that a rough physical interpretation

and estimates can be given to Eq. (158). If one invokes the
conservation of the comoving curvature perturbation on
superhorizon scales, one could evaluate Eq. (158) near
horizon crossing [when logð−kηÞ ≃ 0]. In that case, one
finds scale dependence and an enhancement of power on
the largest scales,

κδk ≃ 1.5κH2
0

�
k⋆
k

�
3

; ð160Þ

which is similar to the result of Ref. [3], where the
numerical factor in this term was determined to be
approximately 0.988. More generally, one notices that
logð−kηÞ is proportional to the number of e-folds elapsed
between the time at which the mode k crosses the horizon
(given by aH0 ¼ k) and the time η at which the correction
term is computed [82,83]. Thus, one could evaluate
Eq. (158) at a certain number of e-folds for which
perturbation theory would still be valid, i.e., for which
κδkðηÞwould be small, taking into account the upper bound

22The rescaled Planck mass m2
P used in Ref. [3] corresponds to

κ ¼ m−2
P .
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κH2
0 ≲ 1.7 × 10−10 computed in Ref. [3]. For example, one

could consider that the logarithm is of the order of 60 e-
folds [j logð−kηÞj ≲ 60]. To determine whether such esti-
mates are reasonable, one needs a better physical under-
standing of the weak-coupling expansion of the master
WDW equation for more realistic (slow-roll) models.

V. CONCLUSIONS

The weak-coupling expansion of the BO approach to
quantum gravity has been frequently used [23–30,35–40]
to recover QFT in curved spacetimes as a limit of quantum
gravity as well as to obtain corrections to the dynamics of
quantum fields on curved backgrounds. One of the main
applications of this approach has been the calculation of
corrections to primordial power spectra in inflation [1–
4,7,9]. Although the corrections to the power spectra are
typically found to be small and are currently unobserv-
able [3,4], it is an exciting prospect that these corrections
may lead to indirect effects in galaxy-galaxy correlation
functions and other phenomena related to structure for-
mation, which might be observable in future measurements.
However, to ascertain whether this hope is grounded, one
must first verify if the weak-coupling expansion is well
defined and the ensuing theory is consistent.
A major source of controversy has been the issue of

the unitarity of the BO approach. Whereas some works
[1–4,7,9,36] argued for the existence of unitarity-violating
terms, others [37–39] argued that the inclusion of back-
reaction terms would ensure that the norm of the states was
preserved. Following Ref. [40], we have argued that both
approaches are equivalent and that the backreaction terms
are a priori ambiguous. We have noted that one may secure
unitarity by redefining the wave function in such a way that
it is normalized at all times and that this corresponds to a
fixation of the backreaction terms. However, this is not a
preferred procedure, since it depends nonlinearly on the
state at hand [cf. discussion in Sec. III F 4, in particular,
Eq. (111)]. In contrast, we have shown that perturbative
unitarity is obtained, provided one reinterprets the would-
be unitarity-violating terms as precisely those that define
the inner product measure [cf. Eq. (87)]. This measure is a
linear operator and its definition is not ad hoc, as it arises
naturally in the weak-coupling expansion.
Furthermore, one of the principal features of the BO

approach is the definition of a background time variable,
conditioned on which the dynamics of cosmological pertur-
bations unfolds. As the system of background degrees of
freedom and cosmological perturbations is assumed to be
time-reparametrization invariant, the definition of the back-
ground time variable should correspond in some sense to a
“gauge choice” with an associated Faddeev-Popov determi-
nant. Indeed, we have shown in Sec. III E that the perturba-
tivemeasure is related to a specific notion of gauge fixing the
time variable in quantum cosmology. The positive-definite,
perturbative inner product can be rewritten as a matrix

element of an operator, the classical limit of which is the
Faddeev-Popov determinant [cf. Eq. (98)]. The perturbative
inner product thus coincides with a gauge-fixed inner
product.
In this way, the present article can be seen as a step in the

direction of unifying the BO approach with recent develop-
ments in relational approaches to quantum dynamics [41–
47]. The main idea is that the time-reparametrization-
invariant dynamics can be expressed in terms of relational
quantities, which are defined in the quantum theory through
the gauge-fixed inner product and its associated conditional
probabilities [cf. Sec. II B]. Our results indicate that the BO
approach may be seen as a particular case of a more general
relational formalism. Although it is at present unclear
whether such a relational theory describes nature at the
fundamental level, we believe it is worthwhile to explore the
possible phenomenological consequences of this paradigm.
There are several possible continuations of the present

article. First, one can generalize our results regarding
unitarity and the calculation of corrections to the primordial
power spectra to general slow-roll models [4]. Indeed, we
have restricted ourselves to the de Sitter background for
simplicity and to illustrate the issue of unitarity in the
simplest possible case, without the need to complicate the
analysis with the inclusion of the slow-roll parameters.
Nevertheless, the analysis of the more realistic slow-roll
models may clarify the physical interpretation of the cor-
rection terms, in particular of the logarithmic term found in
Eq. (158). Second, as was discussed in Sec. IVD 4, there
may be interesting ways to improve the validity of perturba-
tion theory, e.g., by resumming the large logarithmic con-
tributions using the DRG. It may also be that a proper
treatment of the large logarithm leads to an enhancement of
the size of the correction terms and their observability. Third,
a crucial element of the calculation of the correction terms is
the random phase approximation [cf. Sec. IVA]. It would be
interesting to verify the conditions under which this approxi-
mation holds by adopting a certain regularization scheme.
These stimulating sequels would put the BO approach on
firmer ground and pave the way towell-defined and possibly
observable quantum-gravitational effects from the early
Universe.
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