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The ðF1; D2; D8Þ brane configuration with Lifð2Þ4 × S1 × S5 geometry is a known Lifshitz vacua
supported by massive Bμν field in type IIA theory. This system allows exact IR excitations which couple to
massless modes of the fundamental string. Due to these massless modes the solutions have a flow to a

dilatonic Lifð3Þ4 × S1 × S5 vacua in IR. We study the entanglement entropy on the boundary of this
spacetime for the strip and the disk subsystems. To our surprise net entropy density of the excitations at first
order is found to be independent of the typical size of subsystems. We interpret our results in light of the
first law of entanglement thermodynamics.
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I. INTRODUCTION

The gauge-gravity correspondence [1–3] has got a non-
relativistic versionwhere strongly coupled quantum theories
at critical points can be studied [4–23]. Some of these
quantum systems involve strongly coupled fermions at finite
density or it may simply be a gas of ultracold atoms [4,5].
In the studies involving “nonrelativistic” Schrödinger
spacetimes the four-dimensional spacetime geometry gen-
erally requires a supporting Higgs-like field such as a
massive vector field [4,6,10] or a tensor field. The space-
times possessing a Lifshitz symmetry provide a similar
holographic dual description of nonrelativistic quantum
theories living on their boundaries [11]; see [23] for
a review.
In this work we shall mainly study entanglement entropy

of the excitations in asymptotically Lifða¼2Þ
4 × S1 × S5

background. The latter is a Lifshitz vacua in massive type
IIA (mIIA) theory [20,21] with the dynamical exponent
of time being a ¼ 2. The massive type IIA theory [24] is
a ten-dimensional maximal supergravity where the anti-
symmetric tensor field is explicitly massive. The theory
also includes a positive cosmological constant related
to the mass parameter. Due to this structure the mIIA
theory provides a unique setup to study Lifshitz solutions.

Particularly the Lifð2Þ4 × S1 × S5 solution is a background
generated by the bound state of ðF1; D2; D8Þ branes [20]

ds2 ¼ L2

�
−
dt2

z4
þ dx21 þ dx22

z2
þ dz2

z2
þ dy2

q2
þ dΩ2

5

�
;

eϕ ¼ g0; Cð3Þ ¼ −
1

g0

L3

z4
dt ∧ dx1 ∧ dx2;

Bð2Þ ¼
L2

qz2
dt ∧ dy: ð1Þ

The metric and the form fields have explicit invariance
under constant scalings (dilatation); z → λz, t → λ2t,
xi → λxi, and y → y. The dynamical exponent of time is
2 here. The background describes a strongly coupled
nonrelativistic quantum theory at the UV critical point.1

It is worthwhile to study excitations of the Lifð2Þ4 × S1 ×

S5 vacua as it immediately provides us a prototype Lifð2Þ4

background in four dimensions which is holographic dual
to three-dimensional Lifshitz theory on its boundary. The
excitations would tell us how this Lifshitz theory behaves
near its critical point. Particularly we shall study a class of
stringlike excitations which themselves form solutions of
massive IIA supergravity and explicitly involve the B field
[21]. These also induce running of dilaton as well. It is
observed that the resulting renormalization group flow in
the deep IR can be described simply by ordinary type IIA
theory. The reason for this is due to the fact that the
contributions of massive stringy modes decouple from the

*sabyasachi.maulik@saha.ac.in
†h.singh@saha.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Analogous T-dual solutions do also exist in type IIB theory
with constant axion flux switched on [14].
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low-energy dynamics of the theory in the IR, far away from
the UV critical point [21].
In this report we aim to study holographic entanglement

entropy (HEE) [25] of the excited Lifshitz subsystems
which are either a disk or a strip in a perturbative
framework. A critical observation is that for small-sized
systems the entanglement entropy density remains constant
at first order. That is, the first-order contributions to the
entropy density remain independent of the size (l) of the
subsystem. This is a peculiarity and quite unlike relativistic
CFTs where usually the entropy density (of excitations) is
linearly proportional to the typical size of the subsystem
[26]. We discover that the resolution lies in the nature
of the chemical potential (μE) for the Lifshitz system. We
gather evidence that suggests that energy density (of
excitations) falls off with the size of system as ∝1=l2.
Furthermore the 1=l2 dependence is exactly same as the
entanglement temperature behavior in the Lifshitz theory.
Notwithstanding these peculiarities, the entropy of excita-
tions consistently follows the first law of entanglement
thermodynamics [26,27] up to first order.
In addition, we also carry out a calculation of entangle-

ment entropy at second order for both disk and strip
subsystems. Contributions arising at this order bestow an
explicit l dependence upon the entropy. We argue how
the first law can still be obeyed by modifying our chemical
potential ðμEÞ and entanglement temperature ðTEÞ. A similar
argument was put forward in [28] for asymptotically AdS
spacetime.
The unusual symmetry of Lifshitz spacetime makes it a

good background to study novel features of entanglement
in a nonrelativistic quantum theory at zero temperature
[4,5,11]. It is well known that for such systems, e.g., a
particle in a one-dimensional box, the momentum of the
particle scales with the length as p ∝ 1

l and the energy
E ∝ 1

l2; our calculations of entanglement entropy also
support this explicit size dependence of energy, as shown
in Eq. (16). We hope our work will help shed some light on
holographic treatment of nonrelativistic quantum systems
at strong coupling that are often interesting in e.g.,
condensed matter theory.
The rest of the paper is organized as follows: in Sec. II

we review salient features of Lifð2Þ4 × S1 × S5 vacua with
IR excitations in mIIA theory. The holographic entangle-
ment entropy for a disk subsystem is calculated in Sec. III.
In Sec. IV we carry out a similar analysis for strip
subsystem at first and second orders, and Sec. V contains
the conclusion.

II. Lif ð2Þ4 × S1 × S5 VACUA AND EXCITATIONS

The massive type IIA supergravity theory is the only
known maximal supergravity in ten dimensions which
allows a massive string Bμν field and a mass-dependent
cosmological constant [24]. The cosmological constant

generates a nontrivial potential term for the dilaton field.
The mIIA theory does not admit flat Minkowski solutions.
Nonetheless the theory gives rise to well-known Freund-
Rubin-type vacua AdS4 × S6 [24], the supersymmetric
domain- walls or D8-branes [29–33], ðD6; D8Þ,
ðD4; D6; D8Þ bound states [34,35] and Galilean-AdS
geometries [12,13]. In all of these massive tensor field
plays a key role. Under the “massive” T duality [30] the
D8-branes can be mapped over to the axionic D7-branes of
type IIB string theory and vice versa. The B field also plays
an important role in obtaining nonrelativistic Lifshitz
solutions [20,21]. The latter solutions are of no surprise
in mIIA theory, as an observed feature in four-dimensional
AdS gravity theories has been that in order to obtain
nonrelativistic solutions one needs to include massive
(Proca) gauge fields in the gravity theory [4]. Other
different situations where massless vector fields can give
rise to nonrelativistic vacua involve boosted black Dp-
branes compactified along the light cone direction [15,16].
These latter class of solutions are also called hyperscaling
(or conformally) Lifshitz vacua [17].
Particularly the a ¼ 2 Lifshitz vacua with IR excitations

in mIIA theory can be written as [21]

ds2 ¼ L2

�
−
dt2

z4h
þ dx21 þ dx22

z2
þ dz2

z2
þ dy2

q2h
þ dΩ2

5

�
;

eϕ ¼ g0h−1=2; Cð3Þ ¼ −
1

g0

L3

z4
dt ∧ dx1 ∧ dx2;

Bð2Þ ¼
L2

qz2
h−1dt ∧ dy; ð2Þ

where the harmonic function hðzÞ ¼ 1þ z2

z2I
. The para-

meter zI is related to the charge of the NS-NS strings.
The excitations involve gtt and gyy metric components,
leaving the x1, x2 plane (world volume directions of D2-
branes) unaffected.2 The excitations do also induce a
running of dilaton field. The Bty component of the string
field is also coupled to the excitations. Since h ∼ 1 as
z → 0, these excitations form normalizable modes (zI
would correspond to adding relevant operators in the
boundary Lifshitz theory). The solution (2) asymptotically
flows to a weakly coupled regime in the UV (note that the
string coupling g0 < 1). While in the deep IR region, with

2Here L¼ 2
g0mls

,m being the mass parameter in the mIIA action.
(We would set ls ¼ 1 and g0 ¼ 1.) The constant q is a free
(length) parameter and g0 is weak string coupling. Note L is a
dimensionless parameter; it determines overall radius of curva-
ture of the spacetime. Therefore Romans’ theory with m ≪ 2

g0ls
would be preferred here so that L ≫ 1 in the solutions (2); else
these classical vacua cannot be trusted. Also, from the D8-brane
and domain-wall correspondence in [30], one typically expects
m ≈ g0ND8

ls
, a value which is definitely well within 2

g0ls
for a finite

number of D8-branes, ND8, in these backgrounds.
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z ≫ zI where h ≈ z2

z2I
, the vacua is driven to another weakly

coupled Lifshitz regime. For z ≫ zI, the IR geometry

transforms to a dilatonic Lifð3Þ4 × S1 × S5 solution. This
solution enables us to study the effect of the excitations in
a ¼ 2 Lifshitz theory. Note the zI-dependent excitations at
zero temperature are mainly in the form of charge excita-
tions, along with nontrivial entanglement chemical poten-
tial, as we would see next.

III. ENTANGLEMENT OF A DISK SUBSYSTEM

For asymptotically AdS spacetime dual to a CFT, the
entanglement entropy can be calculated by the Ryu-
Takayanagi formula [25]. We assume the same is true
for an asymptotically Lifshitz spacetime, dual to a non-
relativistic field theory with Lifshitz scaling symmetry. We
consider a round disk of radius l at the center of the x1, x2
plane with its boundary identified with the corresponding
boundary of 2d Ryu-Takayanagi surface lying inside the
Lifshitz bulk geometry (2). We shall assume y is a
compactified direction:

y ∼ yþ 2πry: ð3Þ

In radial coordinates ðr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
Þ the Ryu-Takayanagi

area functional [25] for static bulk surface is given by

Aγ ¼ 2πL2

Z
z�

ϵ
dz

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p

z2
h1=2; ð4Þ

where r0 ¼ dr
dz ; hðzÞ ¼ ð1þ z2

z2I
Þ and ϵ ≪ l is UV cutoff of

the Lifshitz theory. We need to extremize the area integral
by solving the Euler-Lagrange equation for rðzÞ:

2zrr00hðzÞ − 4rr03hðzÞ − 4rr0hðzÞ − 2zr02hðzÞ − 2zhðzÞ
− zrr03h0ðzÞ − zrr0h0ðzÞ ¼ 0: ð5Þ

It is impossible to analytically calculate the full area
integral (4). To facilitate our job, therefore, we restrict
ourselves to small subsystems, with l ≪ zI . In this domain,
we can make a perturbative expansion and obtain solutions
order by order in the dimensionless ratio l

zI
, such that

rðzÞ ¼ rð0Þ þ rð1Þ þ � � �, and correspondingly we would
write

Aγ ¼ A0 þA1 þ � � � ;

for small l. Our immediate interest is in calculating terms
up to leading order and first order only in the l

zI
expansion.

The equation at zeroth order is

zrð0Þr00ð0Þ − 2rð0Þr03ð0Þ − 2rð0Þr0ð0Þ − zr02ð0Þ − z ¼ 0; ð6Þ

for which rð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − z2

p
defines the extremal surface

(half circle) [25,36] with the boundary conditions rð0Þð0Þ ¼
l and rð0Þðz�Þ ¼ 0, where z ¼ z� is the point of return that
lies at z� ¼ l. One then finds that the area

A0 ¼ 2πL2

Z
z�

ϵ
dz

rð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02ð0Þ

q
z2

¼ 2πL2

�
l
ϵ
− 1

�
: ð7Þ

A0 being a ground state contribution it obviously
remains independent of the parameter zI of the bulk
geometry. This only means that there is no effect of
excitations on the leading term. As explained in [36],
the first-order contribution can be evaluated using only the
tree-level embedding function and is given by

A1 ¼ 2πL2

Z
z�

ϵ
dzrð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02ð0Þ

q
2z2I

¼ πL2

�
l2

z2I

�
: ð8Þ

From here the complete expression of entanglement
entropy of a disk-shaped subsystem up to first order
becomes

SDiskE ½l; zI�≡ Aγ

4G4

¼ Sð0ÞE þ πL2

4G4

�
l2

z2I

�
; ð9Þ

where the Newton’s constant in 4D and 5D are related to

the ten-dimensional Newton’s constant by 1
G4

¼ L2πry
G5

and
1
G5

≡ L5VolðS5Þ
G10

. We shall be using G4 and G5 back and forth
in our calculation.
The ground state entropy contribution is

Sð0ÞE ¼ πL2

2G4

�
l
ϵ
− 1

�
: ð10Þ

Equation (9) is a meaningful expression for entanglement
entropy only if we maintain l ≪ zI. The first-order term
explicitly depends on zI, so small fluctuations of the bulk
quantities, like δzI , would result in a corresponding change
in entropy. For a fixed size l, one could express these
variations of the entropy density as

δsDiskE ¼ δSDiskE

πl2
¼ L2

4G4

δ

�
1

z2I

�
; ð11Þ

where πl2 is the disk area. Equation (11) provides a
complete expression up to first order. At second order
the entropy will receive new zI-dependent contributions.
Next, we note that the right-hand side of Eq. (11) is

actually independent of the disk size l. On first-hand
observation this appears very surprising because, according
to the first law of entanglement thermodynamics [26], we
expected that the entropy density of excitations would have
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had l2 dependence, namely in the form of inverse temper-
ature (usually entanglement temperature goes as T−1

E ∝ la;
and the dynamical exponent of time in our Lifshitz back-
ground is a ¼ 2). Especially this aspect of the first law has
been found to remain true in a variety of relativistic CFTs,
where entanglement temperature is given by TE ∝ 1

πl; see
for example [22,26–28,37–39]. What, then, is so different
for the Lifshitz system described by Eq. (11)? To under-
stand this phenomenon we first need to get an estimate of
the energy associated with the excitations in our system.

A. Energy, winding charge and chemical potential

We now turn to find the energy of excitations of the
massive strings due to which we have a configuration in
Eq. (2), where we can express Bty ≃ Bmassive

ty þ Bexcitation
ty .

Note that we are treating y as a compact direction. The
Scherk-Schwarz compactification [40,41] of the Lifshitz
background (2) on a circle along y gives rise to the
following 1-form potential:

Að1Þ ¼
L2

qz2

�
1þ z2

z2I

�−1
dt: ð12Þ

It represents a gauge field in the lower-dimensional super-
gravity whose only nonzero component is At. It can be
determined from here that due to string excitations the net
change in the U(1) charge (due to winding strings) is

△ρ ¼ N
V2

¼ △Q
2πryV2

¼ 2L
G5z2I

; ð13Þ

where V2 is the area element of the x1, x2 plane; see a
calculation in the Appendix. The entanglement chemical
potential, with the prescription in [28], can be obtained by
measuring the gauge field at the turning point, namely

μE ≡ Atjz¼z� ¼
L2ry
qz2�

þ � � � ; ð14Þ

where ellipses denote subleading terms which are not
required at first order. This is a logical guess inspired by
black hole thermodynamics, where the value of the 1-form
at the black hole horizon is known to give the chemical
potential conjugate to the U(1) charge. Even for back-
grounds with nonrelativistic conformal symmetry as con-
sidered in [9], the Kaluza-Klein gauge field measured at the
horizon produces the correct thermal chemical potential.
There is no horizon in our bulk spacetime; instead, we use
the critical point z� associated with the entanglement
wedge.
At leading order we have z� ≃ l; hence, essentially this

thermodynamic variable gets uniquely fixed by the Lifshitz
ground state (1). So for small lð>0Þ the chemical potential
remains quite important, and we obtain

μE ·△ρ ≃
L2

πG4

1

z2Il
2
: ð15Þ

There are no other excitations except the winding strings;
the energy density due to the excitations can be estimated
to be

△E ¼ E − E0 ≃
1

2
μE△ρ ¼ L3ry

qG5

1

z2Il
2
¼ L2

2πG4

1

z2Il
2
; ð16Þ

where E0 is the (normalized) energy of the ground state of
our Lifshitz theory.3 This is the only meaningful deduction
we can make from here, particularly in the absence of a
direct method to evaluate full stress-energy tensor of the
Lifshitz theory.4 Assuming that the entanglement temper-
ature of the three-dimensional a ¼ 2 Lifshitz system
faithfully behaves as [26]

TE ¼ 4

πl2
; ð17Þ

we determine that the ratio

μE
TE

¼ πL2ry
4q

is indeed independent of l. Essentially this ratio seems to
get uniquely fixed by the Lifshitz ground state (1) at the
leading order. Note that the excitations seem to have no
effect on it. The analysis also implies that the energy
density and the entanglement temperature both fall off with
the system size l at the same rate, and the ratio

△E
TE

¼ πL3ry
4qG5z2I

≡ 1

2

kEN
V2

ð18Þ

stays fixed for small disks. However this ratio does depend
on the excitations namely through zI. In the second equality

we have preferred to view dimensionless quantity kE ¼
πL2ry
8q as being analogous to the Boltzmann constant in usual
thermodynamics. (For example, we could have expressed
total energy of the disk as△E ¼ 1

2
NkETE without affecting

anything.)Hence it can be concluded that the entanglement
entropy per unit disk area is fixed for small disks of radii

3We do notice an explicit dependence of energy density on the
system size, which is unlike relativistic CFT but is a familiar
feature in nonrelativistic theories, the particle in a box being an
immediate example.

4There is an early work [42] but it does not include dilatonic
scalar field excitations like in our background. In contrast in
asymptotically AdS spacetimes one knows how to obtain the
stress-energy tensor by doing Fefferman-Graham expansion near
the AdS boundary [43]. Perhaps something similar could also be
done in the Lifshitz case involving a dilaton field.
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l ≪ zI. It is also confirmed that the entropy of excitations
(11) follows the first law relation [26–28,37–39,44–46]

δsE ¼ 1

TE

�
δΔE þ 1

2
μEδΔρ

�
; ð19Þ

under infinitesimal changes in the bulk quantity, δzI .
We summarize our main observations at first order:

TE ∝
1

l2
; △sE ¼ fixed; μE ∝ ryTE;

△E ∝ NTE; Δρ ¼ fixed; ð20Þ

at a given entanglement temperature.

B. Entanglement entropy of a disk at second order

Let us now consider corrections to holographic entan-
glement entropy at next higher order. It is somewhat easier
to calculate when one chooses zðrÞ parameterization, so let
us rewrite the integral as

Aγ ¼ 2πL2

Z
1

0

dr
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p

z2
h1=2; ð21Þ

where we rescaled r and z to the dimensionless variables r
l

and z
l. It suffices to obtain the embedding up to first order to

get the entanglement at second order [36,39]. So, we
expand zðrÞ as zðrÞ¼zð0Þþzð1Þþ���, where zð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1−r2

p

and zð1Þ satisfies the equation

z00ð1Þ þ
1 − 2r2

rð1 − r2Þ z
0
ð1Þ −

2

ð1 − r2Þ2 zð1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − r2
p ; ð22Þ

with the boundary conditions z0ð1Þð0Þ ¼ 0 and zð1ÞðlÞ ¼ 0.

One can check that a consistent solution to Eq. (22) is

zð1Þ ¼ −
1 − r2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
þ 2 ln ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p : ð23Þ

Therefore, the area integral now acquires a new contribu-
tion Aγ ¼ A0 þA1 þA2, where

A2 ¼ 2πL2
l4

z4I

�
5

8
− ln 2

�
; ð24Þ

which is negative as expected. The area difference from
pure AdS at both orders is plotted in Fig. 1. Total entropy of
the disk at this order will be

Sð2ÞE ¼ Sð0ÞE þ πL2

4G4

l2

z2I

�
1þ l2

z2I

�
5

4
− 2 ln 2

��
: ð25Þ

So the variation of entropy density, at second order,
becomes

δsð2ÞE ¼ L2

4G4

�
1þ l2

z2I

�
5

2
− 4 ln 2

��
δðz−2I Þ: ð26Þ

As previous, we wish to express (26) as a “first law”–like
relationship. We find that one way to achieve this is to
absorb all second-order corrections to a modified temper-
ature and chemical potential; this method was first used in
[28] although they worked with differences rather than
variation as we do. To this end, we first note that the turning
point z� should be corrected at Oðl2z2I Þ as

z� ≡ zð0Þ ¼ lþ l3

z2I

�
1

2
− ln 2

�
:

The chemical potential, defined in Eq. (14), can be
expressed including Oðl2z2I Þ corrections as

μð1ÞE ≃
L2ry
ql2

�
1þ l2

z2I

�
1

2
− ln 2

��−2�
1þ l2

z2I

�−1

¼ L2ry
ql2

�
1 −

l2

z2I
ð2 − 2 ln 2Þ

�
: ð27Þ

So we get

μð1ÞE δΔρ ¼ 2L3ry
qG5l2

�
1 −

l2

z2I
ð2 − 2 ln 2Þ

�
δðz−2I Þ

¼ L2

πG4l2

�
1 −

l2

z2I
ð2 − 2 ln 2Þ

�
δðz−2I Þ;

while the energy remains the same as defined in (16). From
Eq. (26), a bit of paperwork then leads to the following
result:

FIG. 1. Area difference from AdS ground state for spherical
subsystem; the second-order correction is negative. Plot drawn by
choosing z2I ¼ 2 and L ¼ ry ¼ q ¼ 1.
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δsð2ÞE ¼ 1

Tð2Þ
E

�
δΔE þ 1

2
μð1ÞE δΔρ

�
; ð28Þ

where Tð2Þ
E denotes the “entanglement temperature” at

second order, which is given by

Tð2Þ
E ¼ δΔE þ 1

2
μð1ÞE δΔρ

δΔsð2ÞE

¼
L2

πG4l2
½1 − l2

z2I
ð1 − ln 2Þ�

L2

4G4
½1 − l2

z2I
ð4 ln 2 − 5

2
Þ�

≃ Tð1Þ
E

�
1þ l2

z2I

�
5 ln 2 −

7

2

��
; ð29Þ

where Tð1Þ
E stands for the first-order temperature, defined in

Eq. (17). The term in parentheses is a negative number, so
second-order correction to entanglement temperature
results in its sharper fall. See Fig. 2 for an illustration of
this behavior.
Some comments are in order to justify Eq. (28). We have

seen that, for small enough subsystem size ðl ≪ zIÞ, the
change in entanglement entropy at first order in our
perturbative calculation follows a relationship akin to the
first law of thermodynamics. If one considers this relation-
ship an actual “law” for entanglement entropy, one must
find a consistent way to describe new contributions at
higher orders. Equation (29) proposes that at second order
the chemical potential as well as the entanglement temper-
ature should be corrected to keep the law intact. In fact, we
expect this procedure to work at all higher orders. It could
be thought that a more accurate measure of these quantities
is obtained as one climbs the perturbation ladder.

IV. ENTANGLEMENT ENTROPY
OF NARROW STRIP

We now consider a striplike subsystem with coordinate
width −l=2 ≤ x1 ≤ l=2 and the range of x2 ∈ ½0; l2�,
such that l2 ≫ l. The straight line boundary of the two-
dimensional strip is identified with the boundary of the RT
surface in the bulk at constant time. The area functional of
this static surface is

Aγ ¼ 2L2l2

Z
z�

ϵ
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x021

p
z2

h1=2: ð30Þ

For small width l ≪ zI, we make a perturbative expansion
of the integrand. The extremal surface satisfies the follow-
ing equation:

x01 ¼
z2

z2�

1ffiffiffiffiffiffiffiffiffiffiffiffi
h
h�
− z4

z4�

q ; ð31Þ

where h� ≡ hðz�Þ. We have specific boundary conditions
such that near the spacetime boundary x1jz¼0 ¼ l=2 and
the turning point is given by x1jz∼z� ¼ 0. This leads to the
first integral of the following type:

l ¼ 2

Z
z�

0

dz
z2

z2�

1ffiffiffiffiffiffiffiffiffiffiffiffi
h
h�
− z4

z4�

q ; ð32Þ

which gives rise to a perturbative expansion in z�
zI
:

l ¼ z�

�
b0 þ

z2�
2z2I

I1 þ � � �
�
; ð33Þ

where coefficients are expressible as Beta functions
b0¼1

4
Bð3

4
;1
2
Þ and I1¼1

4
ðBð3

4
;−1

2
Þ−Bð5

4
;−1

2
ÞÞ. Equation (33)

(a) (b)

FIG. 2. The unbroken and dashed curves display the behavior of the uncorrected and corrected quantities, respectively; both the
entanglement temperature and chemical potential decrease due to higher-order corrections. The plots were drawn by setting z2I ¼ 2 and
L ¼ ry ¼ q ¼ 1.
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can be inverted and expressed as a perturbative expansion
of the turning point

z� ¼ zð0Þ�

�
1 −

zð0Þ2�
z2I

I1
2b0

þ � � �
�
; ð34Þ

where zð0Þ� ≡ l
2b0

is the turning point in the absence of
excitations.
The leading area of strip can be evaluated using the tree-

level values

A0 ¼ 2L2l2

Z
zð0Þ�

ϵ
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

1ð0Þ
q

z2

¼ 2L2l2

zð0Þ�

Z
1

ϵ=zð0Þ�
dζ

1

ζ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ4

p

¼ 2L2l2

�
1

ϵ
−
2ðb0Þ2

l

�
; ð35Þ

while the first-order contribution is evaluated as

A1 ¼ 2L2l2

Z
z�

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

1ð0Þ
q

2z2I
¼ L2l2

�
a1z

ð0Þ
�

z2I

�
; ð36Þ

where the coefficient a1 ¼ 1
4
Bð1

4
; 1
2
Þ. The entanglement

entropy of a small strip up to first order is then given by

SstripE ¼ A0 þA1

4G5

¼ L2l2
2G4

�
1

ϵ
−
2b20
l

þ a1
4b0

l
z2I

�
: ð37Þ

Now any small change in the bulk parameter (δzI) will
necessarily affect the entanglement entropy at first order.
For a fixed width l, we find the change in entropy per unit
area of the strip as

δsstripE ≡ δSstripE

l2l
¼ L2

8G4

a1
b0

δðz−2I Þ; ð38Þ

which is a complete expression up to first order. Once again
we find that the right-hand side is independent of l, as it
was also in the case of a disk. Following from the disk case
in the previous section, the effective chemical potential for
the strip subregion is

μE ¼ L2ry
qz2�

≃
4b20L

2ry
ql2

: ð39Þ

From here and (13), let us define for the strip

△E ≡ 1

2
μE:△ρ ¼ 4L3ry

G5q
b20
z2Il

2
¼ 2L2

πG4

b20
z2Il

2
: ð40Þ

This is like the disk result in (16), i.e.,△E ∝ TE. Using (40)
we conclude that the entanglement entropy density (38)

of the strip subsystems also conforms to the first law
relation

δsE ¼ 1

TE

�
δΔE þ 1

2
μEδΔρ

�
; ð41Þ

where, for the strip, entanglement temperature is defined as

TE ¼ 8b3
0

a1
4

πl2 in three-dimensional Lifshitz theory.

A. Strip entropy at second order

It is instructive to find out the change in entanglement
entropy at higher orders in l2

z2I
and interpret its thermody-

namic property; here we include the results at Oðl4z4I Þ.
The turning point z�, as discussed before in (32) and

(33), could be related to the strip width l as

z� ¼
zð0Þ�

1þ zð0Þ2�
2z2I

I1
b0
− zð0Þ4�

8z4I
ðI2b0 þ

4I2
1

b2
0

Þ
; ð42Þ

where the new coefficient I2 can be expressed as
I2 ¼ 1

8
ð2Bð3

4
;− 3

2
Þ − 3Bð5

4
;− 3

2
ÞÞ. With the help of (42),

the area integral (30) now reads Aγ ¼ A0 þA1 þA2,
where A0 and A1 are as obtained before. The second-
order contribution is

A2 ¼ −
2L2l2

zð0Þ�

zð0Þ4�
8z4I

�
4a0I21
b20

þ 2I1J1
b0

�
: ð43Þ

The new coefficients introduced in above expression are
listed below:

a0 ¼ −
1

4
B

�
3

4
;
1

2

�
¼ −b0;

J1 ¼
1

4

�
B

�
3

4
;−

1

2

�
þ 3B

�
1

4
;−

1

2

��
:

After some simplification the contribution to the area of
the RT surface at second order turns out to be

A2 ¼ −
L2l2l
64

l2

z4I

1

b20

�
a21
b20

− 1

�
: ð44Þ

The coefficient a1 has already been defined in Eq. (36).
Hence, the total entanglement entropy density, at second
order in perturbation theory, becomes

sð2ÞE ¼ sð0ÞE þ L2

8G4

1

z2I

a1
b0

�
1 −

l2

z2I

1

32b20

�
a21
b20

− 1

��
: ð45Þ
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The area difference including second-order correction has
been shown in Fig. 3. To write down the “first law”we need

to rewrite the expression for sð2ÞE in terms of variation in E
and μEΔρ; recall that the chemical potential was defined as
the value of the gauge potential at the turning point. Here, it
is sufficient to compute μE up to first order:

μð1ÞE ≃
L2

z2�

�
1 −

z2�
z2I

�
¼ L2ry

qzð0Þ2�

�
1þ zð0Þ2�

z2I

�
I1
b20

− 1

��
:

So that

μð1ÞE δΔρ ¼ L3ry
qG5

8b20
l2

�
1þ l2

z2I

1

8b20

�
a1
b0

− 3

��
δðz−2I Þ

¼ L2

2πG4

8b20
l2

�
1þ l2

z2I

1

8b20

�
a1
b0

− 3

��
δðz−2I Þ:

A little effort, then, allows us to write

δsð2ÞE ¼ 1

Tð2Þ
E

�
δΔE þ 1

2
μð1ÞE δΔρ

�
: ð46Þ

Here, Tð2Þ
E stands for the modified entanglement temper-

ature at second order:

Tð2Þ
E ¼δΔEþ 1

2
μð1ÞE δΔρ

δΔsð2ÞE

¼ 4

πl2

8b30
a1

�
1þl2

z2I

1

16b20

��
a1
b0

−3

�
þ
�
a21
b20

−1

���

¼Tð1Þ
E

�
1þl2

z2I

1

16b20

��
a1
b0

−1

��
a1
b0

þ2

�
−2

��
; ð47Þ

where, by Tð1Þ
E , we refer to the temperature at first order

defined in Eq. (41), the numerical value of a1
b0
≈ 2.188, so

the correction at this order results in an increase of TE,
albeit by a tiny amount. The uncorrected and corrected
temperatures are plotted in Fig. 4.

B. Numerical results for strip subsystem

We end this section with a comparison of our perturba-
tive results with some numerical analysis. For the numeri-
cal computation we chose zI ¼ 4 and used (32) to obtain
corresponding lengths l of the subregion for different
choices of the turning point z�. We also obtain the area

FIG. 3. The area difference at first and second order of
perturbation analysis for the strip subsystem, plots drawn by
choosing z2I ¼ 2 and L ¼ ry ¼ q ¼ l2 ¼ 1.

(a) (b)

FIG. 4. The unbroken and dashed curves display the behavior of the uncorrected and corrected quantities, respectively; the
entanglement temperature is found to increase due to higher-order corrections while the chemical potential decreases. The plots were
drawn by setting zI ¼ 2 and L ¼ ry ¼ q ¼ G5 ¼ 1.
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difference ΔA from (30) for the same z� values and plot the
two sets against each other. The output is summarized in
Fig. 5. From the graph we conclude that a second-order
perturbation series analysis is trustworthy for small strip
width.

V. CONCLUSION

The Lifshitz background Lifð2Þ4 × S1 × S5 of the massive
type IIA theory allows exact excitations which couple to
massless modes of string in the IR. We calculated the
entanglement entropy of the theory at the boundary of these
spacetimes, both for strip as well as disk-shaped systems.
At leading order, we found that the entropy density of the
excitations remains fixed and does not grow with l, the
subsystem size, so long as l ≪ zI . We find that this
behavior is consistent with the fact that energy density
of the excitations itself behaves as △E ∝ 1=l2, which is in
agreement with △E ≃ 1

2
μE△ρ. Note that the entanglement

temperature itself goes as TE ∝ 1
l2.

But this entanglement behavior is quite different in
comparison to the relativistic CFTs, where the entropy
density of excitations grows linearly with the subsystem
size, while the energy density of excitations remains fixed.
Nevertheless we have found that the first law of entangle-
ment thermodynamics

δsE ¼ 1

TE

�
δΔE þ 1

2
μEδΔρ

�
ð48Þ

holds good if we accept the hypothesis that the energy of a
subsystem in the Lifshitz background (2) is given by

△E ≃ μEN ≃
1

2
NkETE:

Our results appear to indicate an equipartition nature of the
entanglement thermodynamics for a nonrelativistic Lifshitz
system. But this is perhaps true only for the high entangle-
ment temperature regime (i.e., small l ≪ zI).
Further, we studied what happens to the first law of

entanglement if we assume it to remain valid beyond the
leading order. There is lack of consensus on this aspect,
despite there being enough evidence for it to be a natural
feature at first order. We discussed how the first law could
be extended up to second order by making use of an
appropriately modified chemical potential and entangle-
ment temperature. We think this is necessary because,
otherwise, we need to look for a new quantity at each
higher order to account for the corrections; while the
entanglement entropy, like its thermal counterpart, should
depend only on the energy and conserved charges of the
theory. Such redefinition should work at all orders, thereby
allowing the first law of entanglement thermodynamics to
be obeyed quite generally, irrespective of the degree of
perturbation theory.
It would be interesting to obtain the HEE numerically for

ball subsystems and compare with our perturbative results.
This, however, involves solving the boundary value prob-
lem and proves to be nontrivial. Another interesting
problem is to consider shape dependence of holographic
entanglement entropy in a similar spirit to [47,48]. We hope
to return to these problems in the future.
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APPENDIX: THE WINDING STRING CHARGE
IN MASSIVE LIFSHITZ VACUA

Here we would like to know the winding number of the
string excitations. The circle compactification of the back-
ground (2) along the y direction gives rise to the following
nine-dimensional fields (we set g0 ¼ 1; α0 ¼ 1):

ds2D¼9 ¼ L2

�
−
dt2

z4h
þ dx21 þ dx22

z2
þ dz2

z2
þ dΩ2

5

�
;

e2ϕ̄ ¼ 1

h
ffiffiffiffiffiffiffiffi
Gyy

p ; At ¼
L2

qz2
h−1; ðA1Þ

where Gyy ¼ L2

q2h and hðzÞ ¼ 1þ z2

z2I
. The ϕ̄ is a nine-

dimensional dilaton field. The corresponding gauge field
strength Fð2Þ ¼ dA gives rise to the winding charge

Numerical result

Perturbative result

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.02

0.04

0.06

0.08

0.10

A

FIG. 5. Numerical plot of area difference from AdS ground
state for the strip subsystem and comparison with second-order
perturbation series analysis. The prefactor in (30) was ignored in
the plot.
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Q ¼ πry
G10

Z
e−4ϕ̄=7Gyyð�9Fð2ÞÞ

¼ πL6ω5ry
G10

Z
dx1dx2

�
2

z2
þ 4

z2I

�

¼ πLryV2

G5

�
2

z2
þ 4

z2I

�

≡Qgroundstate þ△Q; ðA2Þ

where ω5 is the size of unit 5-sphere. The total chargeQ, of
course, depends on scale z, because we are in asymptoti-
cally (nonflat) Lifshitz spacetime. However, the contribu-
tion purely due to string excitations is given by △Q.

The second term in (A2) is not affected by z and remains
constant. Therefore the net contribution of string excita-
tions is

△Q ¼ Q −Qgroundstate ¼
2πLryV2

G5

�
2

z2I

�
≃Qjz¼∞: ðA3Þ

Alternatively the charge due to string excitations can also
be measured near z ∼∞, where the massive mode gets
completely decoupled and only massless strings survive
which contribute to the charge. The net winding number of
these strings is quantized in the units N ¼ △Q

ry
, where N is

an integer.
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