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We show that the one-loop Euler-Heisenberg QED effective Lagrangian in a constant background field
acquires a very different nonperturbative trans-series structure at two-loop and higher-loop order in the fine
structure constant. Beyond one-loop, virtual particles interact, causing fluctuations about the instantons,
whereby the simple poles of the one-loop Borel transform become branch points. We illustrate this in detail
at two-loop order using Ritus’s seminal result for the renormalized two-loop effective Lagrangian as an
exact double-integral representation, and propose a possible new approach to computations at higher loop
order. Our methods yield remarkably accurate extrapolations from weak-field to strong-field, and from
magnetic to electric background field, at both one-loop and two-loop order, based on surprisingly little
perturbative input.
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I. INTRODUCTION

The exact renormalized one-loop QED effective
Lagrangian in a uniform background electromagnetic field
was computed long ago by Euler and Heisenberg [1–5].
This computation is made possible by the existence of a
simple exact integral representation of the electron propa-
gator in a constant background field [6,7]. When the
constant background field is purely magnetic, the one-loop
effective Lagrangian is real, but when the constant back-
ground field is electric, the one-loop effective Lagrangian
has both a real and imaginary part. The nonperturbative
imaginary part determines the rate of electron-positron pair-
production from vacuum [1,3]. The one-loop Euler-
Heisenberg expression in [1] is an explicit Borel-Laplace
integral representation, so the nonperturbative properties
can be extracted straightforwardly from the singularity
structure of the exact Borel transform function, which has
only pole singularities. This meromorphic property of the
Borel transform no longer holds at higher loop order. The
two-loop Euler-Heisenberg effective Lagrangian, which
includes the new effect of photon exchange between the
virtual particles in the fermion loop (see Fig. 1), was first
calculated by Ritus [8–11], also based on the exact proper-
time integral representation of the electron propagator. A
new feature at two-loop order is the necessity of mass
renormalization, and Ritus found an exact two-parameter
integral expression incorporating both charge and mass

renormalization. See also [12,13]. Ritus’s two-loop expres-
sion is not explicitly in the form of a Borel-Laplace integral,
so the extraction of nonperturbative properties is less direct
than at one-loop order. In this paper we discuss the
extraction of this nonperturbative information at two-loop,
extending the analysis of [8–11,14,15]. The Borel trans-
form is not meromorphic at two-loop, and the nonpertur-
bative structure is different in several interesting ways. This
distinction continues at all higher loop orders. Since the
constant background field fermion propagator is known
exactly, in principle one can express the l-loop Euler-
Heisenberg effective Lagrangian as a 2ðl − 1Þ-fold para-
metric integral. However, already at the three-loop level
only partial exact results are known for the fully renor-
malized effective Lagrangian [16–19]. In this paper we
propose a possible new approach to this problem, based on
ideas from resurgent Borel-Écalle asymptotic analysis,
which enables the decoding of nonperturbative information
directly from perturbative information, not only from an
exact integral representation.
We are motivated in part by the general goal of under-

standing more deeply the structure of the QED perturbative
expansion, but also by pragmatic questions concerning the

FIG. 1. The irreducible one-loop (left) and two-loop (right)
diagrams contributing to the Euler-Heisenberg effective Lagran-
gian, with the double solid lines representing the fully dressed
fermion propagator.
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behavior of QED in the ultraintense limit, which are
directly relevant for planned experiments at both DESY
[20] and SLAC [21,22] to probe nonlinear and non-
perturbative effects arising in interactions involving high-
intensity lepton beams and lasers. This new experimental
regime promises many surprises, and presents significant
theoretical challenges [23,24]. Deeper understanding of the
strong field limit of effective Lagrangians at higher order in
the fine structure constant α may shed light on scattering
amplitudes in strong background fields, in particular those
associated with high intensity lasers. For example, seminal
work by Ritus and Narozhnyi has made predictions for the
resulting structure at higher loop order for the special case
where the background laser field is represented as a
constant crossed field [25–27]. The physical impact of
these results is an active area of investigation [28–31],
seeking to build on the pioneering analysis of Ritus and
Narozhnyi. Reference [32] has already showed that Padé-
Borel summation achieves very accurate extrapolations of
the weak magnetic field series for the one-loop Euler-
Heisenberg effective Lagrangian. However, for the analysis
at two-loop we require even higher precision; hence the
new procedure described below. We also note that [33,34]
has applied related Borel resummation methods to the
study of high-energy QED processes such as nonlinear
trident and double Compton scattering, obtaining accurate
extrapolations between different parameter regimes.
The all-orders Euler-Heisenberg effective Lagrangian

can be written as a series in α, the fine structure constant1

L
�
α;
eF
m2

�
∼
X∞
l¼1

�
α

π

�
l
LðlÞ
�
eF
m2

�
ð1Þ

where F denotes the strength of the constant background
field, which we consider here to be either magnetic or
electric. At a fixed loop order l, corresponding to a given
order in α, the weak field expansion of the effective
Lagrangian LðlÞðeFm2Þ is an asymptotic series with perturba-

tive coefficients aðlÞn :

LðlÞ
�
eF
m2

�
∼
π2ðl−2ÞF2

ðl−1Þ!
�
eF
m2

�
2X∞
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aðlÞn

�
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�
2n
; eF≪m2
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Here we have chosen a particular normalization of the

expansion coefficients aðlÞn , the motivation for which is
explained below: see the discussion following (7).

Thus, the full expansion (1) is a double series, an
expansion both in α and in the field strength.2 We have
separated a factor of ðαπÞl from our definition of LðlÞðeFm2Þ,
to emphasize the fact that the loop expansion (1) is a
perturbative expansion, which is also expected to be
asymptotic [35]. If the background field is magnetic, of
magnitude B, at l-loop order LðlÞðeBm2Þ is expected to be
unambiguously Borel summable to a real expression. If the
background field is electric, of magnitude E, at l-loop order
LðlÞðeEm2Þ is expected to have both real and imaginary parts,
also expressible as a well-defined Borel representation.
Furthermore, it is expected that at each loop order the
electric background field result can be obtained by analytic
continuation B → iE from the real magnetic field result.3

Here we analyze these issues beyond the familiar one-loop
result, using ideas and methods from Borel-Écalle summa-
tion [36–43].
At one-loop order the nonperturbative imaginary part has

a well-known polylogarithm expression which can be
expanded as a convergent weak-field instanton expansion:

Im

�
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eE
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��
¼ E2

2π
Li2ðe−πm2=ðeEÞÞ ð3Þ

¼E2

2π
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22
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2=ðeEÞ þ…

�

ð4Þ

Note that the instanton terms are not multiplied by
fluctuation series, just numerical residue factors, so this
is a very simple example of a transseries. By contrast, at
two-loop order the weak-field instanton expansion of the
nonperturbative imaginary part is conjectured to be of the
form [8–11]

Im

�
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eE
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��

∼
πE2
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eE
m2

r
þ…

!9=
; ð5Þ

1We use natural units (ℏ ¼ c ¼ ε0 ¼ 1), with the fine-structure
constant α ¼ e2=4π. In keeping with the common convention
for perturbative QED expansions, e.g., for the anomalous
magnetic moment, we write the perturbative QED expansion
parameter as α=π, and rescale the QED beta function coefficients
correspondingly.

2In fact, in general it is a triple expansion since for each loop
order l the weak field expansion (2) is itself a double series
expansion in the two Lorentz invariant combinations of the
constant background field. Here, for simplicity, we concentrate
on a constant background field that is either magnetic or electric,
but not both.

3For a constant field of either magnetic or electric nature, the
relevant Lorentz invariant quantity is E2 − B2.
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where the numerical coefficient ck, for k ≥ 2, is

ck ¼
1

2
ffiffiffi
k

p
Xk−1
l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðk − lÞp ; k ≥ 2 ð6Þ

This conjectured two-loop structure is quite different from
one-loop: there are (unspecified) fluctuations about the
one-instanton term, and at higher instanton orders (k ≥ 2)

there is a stronger weak-field prefactor,
ffiffiffiffiffi
m2

eE

q
, followed also

by fluctuations (only partially specified). Our goal here is to
investigate these fluctuation terms in the nonperturbative
imaginary part for the two-loop effective Lagrangian in an
electric background field, by analytic continuation from the
weak field expansion for a magnetic background. We focus
on reconstructing nonperturbative information from finite-
order perturbative information, rather than the standard
method of seeking an exact closed-form (multi-)integral
representation, which currently appears prohibitively diffi-
cult even at three-loop order [17–19]. The motivation for
this different approach is as a proof-of-principle test for a
new approach to Euler-Heisenberg computations at higher
loop order.
Note that while eF is a renormalization group invariant,

both α andm2 are scale dependent. At one-loop order,m2 is
simply the bare mass and the charge renormalization is
conventionally done at the physical electron mass scale. At
two-loop order, a field-dependent mass renormalization is
required, and Lð2Þ is again conventionally renormalized at
the physical electron mass scale [8–10]. Being a doubly
perturbative expansion, it is not immediately obvious how
to extract strong-field or short-distance or nonperturbative
information from the full all-orders result (1). Different
expansions, for example at fixed order in α or in eF, are
possible, and correlated or uniform limits may also be
physically relevant in certain circumstances. For example,
if we sum the leading weak field contributions to the
imaginary part of LðlÞðeEm2Þ for an electric background, this
sum exponentiates to eαπ times the leading one-loop result
[10,18,44]:

Im

�
L
�
α;
eE
m2

��
∼
αE2

2π2
eαπe−πm

2=ðeEÞ þ…; eE≪m2 ð7Þ

This exponential factor can be computed from the world-
line representation of the effective Lagrangian [44], or can
be understood [10] as encoding the leading field-dependent
mass shift at two-loop order: m2 → m2 − α=ðeEÞ. By a
Borel dispersion relation, this exponentiation can be
translated into a conjecture for the leading large-order

growth of the perturbative expansion coefficients aðlÞn [15],
which motivates the choice of overall normalization of
these coefficients in (2).

Here we propose a different approach to the higher-loop
computations, based on expressing the perturbative weak
magnetic field expansion at a given loop order as an
approximate Borel integral, whose strong-field limit can
be extracted with surprisingly high precision, and whose
analytic continuation from a magnetic to an electric back-
ground can also be achieved with high precision, including
exponentially suppressed nonperturbative information.
Such an approach relies on efficient and near-optimal
methods to perform the necessary analytic continuations
[41–43]. In this paper we test the feasibility of such
methods applied to the Euler-Heisenberg effective
Lagrangian at one-loop and two-loop, and we conclude
with comments about the prospects for higher loop orders.

II. THE EXACT ONE-LOOP EULER-HEISENBERG
EFFECTIVE LAGRANGIAN

A. Exact results at one-loop order

We first review well-known properties of the one-loop
Euler-Heisenberg QED effective Lagrangian in a constant
background magnetic field, B, conventionally expressed as
a proper-time integral [1,5]

Lð1Þ
�
eB
m2

�
¼ −

B2

2

Z
∞

0

dt
t2

�
coth t −

1

t
−
t
3

�
e−m

2t=ðeBÞ ð8Þ

[Recall our notational convention that a factor of ðαπÞl is
extracted at l-loop order]. The weak field expansion of (8)
is a prototypical effective field theory expansion, express-
ing the physics of the light fields (photons) after integrating
out the heavy fields (electrons/positrons) at the electron
mass scale m:

Lð1Þ
�
eB
m2

�
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B2

π2

�
eB
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�
2X∞
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að1Þn

�
eB
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�
2n
; eB≪m2: ð9Þ

Here the factorially divergent one-loop expansion coeffi-
cients are known exactly:

að1Þn ¼ ð−1Þn Γð2nþ 2Þ
π2nþ2

ζð2nþ 4Þ ð10Þ

¼ ð−1Þn Γð2nþ 2Þ
π2nþ2

�
1þ 1

22
·

1

22nþ2
þ 1

32
·

1

32nþ2

þ 1

42
·

1

42nþ2
þ…

�
: ð11Þ

The corrections to the leading factorial growth in (11) are
exponential in n, which is directly related to the non-
appearance of power-law fluctuation corrections in the
instanton expansion (4) [5]. We have deliberately written
the Riemann zeta factor in the form in (11) to emphasize
the correspondence between the 1

k2 factors multiplying the
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k-instanton terms in (4), and the residues of the singularities
of the Borel transform. See also Fig. 7.
The exact integral representation (8) can also be

expanded in the strong field limit, yielding a convergent
strong field expansion whose leading behavior is:

Lð1Þ
�
eB
m2

�
∼
1

3
·
B2

2

�
ln

�
eB
πm2

�
−γþ 6

π2
ζ0ð2Þ

�
; eB≫m2

ð12Þ

where γ ≈ 0.5772… is the Euler-Mascheroni constant, and
ζ0ð2Þ ¼ 1

6
π2ð−12 logðAÞ þ γ þ lnð2πÞÞ ≈ −0.937548, with

A being the Glaisher-Kinkelin constant. The coefficient 1
3
of

the logarithmic term in (12) is the one-loop QED beta
function coefficient β1, associated with one-loop charge
renormalization [2,5]:

βQEDðαÞ¼ 2α
X∞
n¼1

βn

�
α

π

�
n
¼ 2α

�
1

3

�
α

π

�
þ1

4

�
α

π

�
2

þ…

�

ð13Þ

The weak field expansion (9) is an asymptotic series
[3,5,45–48], whose Borel sum is the one-loop Euler-
Heisenberg integral representation (8), with one-loop
Borel transform function:

Bð1ÞðtÞ ≔ −
1

π2t2

�
cothðπtÞ − 1

πt
−
πt
3

�

¼ 2

π3
X∞
n¼0

ð−1Þnζð2nþ 4Þt2nþ1 ð14Þ

¼ 2

π3
X∞
k¼1

t
k2ðt2 þ k2Þ : ð15Þ

Here we have chosen to make the convenient rescaling
of the Borel variable by a factor of π, to absorb the powers
of 1=π in (10)–(11), which has the effect of placing the
Borel poles at integer multiples of i, rather than at integer
multiples of πi. Then the exact one-loop effective
Lagrangian is recovered via the Borel-Laplace integral
(note the extra factor of π in the exponent):

Lð1Þ
�
eB
m2

�
¼ πB2

2

Z
∞

0

dte−m
2πt=ðeBÞBð1ÞðtÞ: ð16Þ

The small t expansion (14) of Bð1ÞðtÞ generates the
asymptotic weak magnetic field expansion (9), while
the partial-fraction expansion in (15) exhibits the mero-
morphic nature of the one-loop Borel transform function
Bð1ÞðtÞ, with an infinite line of integer-spaced simple pole
singularities along the imaginary Borel axis, at t ¼ �ik,
for k ¼ 1; 2; 3;…. Therefore, under analytic continuation,

B → iE, where E is a constant background electric field,
these poles lead to the nonperturbative imaginary part of the
effective Lagrangian in (3), with weak-field expansion
in (4). In the strong electric field limit the leading behavior
can be obtained by analytic continuation from the strong
magnetic field expansion in (12):

Im
�
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eE
m2

��
∼ β1

�
π

2

�
E2

2
; eE ≫ m2 ð17Þ

consistent with the strong field limit of the exact polylog
expression in (3). This also follows from the explicit
representation of the one-loop effective Lagrangian in
terms of the Barnes gamma function G [5]:

Lð1Þ
�
eB
m2

�
¼ 2B2

m4

�
−

1

12
þ ζ0ð−1Þ þ 1

16

�
m2

eB

�
2

þ
�
−

1

12
þ m2

4eB
−
1

8

�
m2

eB

�
2
�
ln

m2

2eB
:

−
�
1 −

m2
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lnΓ
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− lnG

�
m2

2eB

��
:

ð18Þ

This Barnes representation of the one-loop effective
Lagrangian is particularly convenient for analytic continu-
ation of B, since the analytic properties of the Barnes G
function are well known [49,50].

B. Borel analysis at one-loop order

In preparation for the two-loop analysis, where a simple
Borel representation of the form in (8) is not available, and
a closed-form expression such as (18) in terms of a special
function like the Barnes function is not known, we ask how
we can recover accurate approximations to the various
exact results listed in the previous sub-section. We do this
here at one-loop and then extend these methods to two-loop
order in Sec. III. Specifically, we begin with just a finite
number of terms of the one-loop perturbative weak mag-
netic field expansion in (9), and seek to recover:

1. the strong magnetic field limit in (12) [this is a weak-
field to strong-field extrapolation];

2. the nonperturbative imaginary part (4) of the effec-
tive Lagrangian in an electric field background [this
is analogous to a Euclidean to Minkowski analytic
continuation].

We develop a modified Padé-Borel approach that leads to
remarkable precision with surprisingly little input informa-
tion. As mentioned already, reference [32] has already
showed that Padé-Borel summation achieves very accurate
extrapolations of the weak magnetic field series for the one-
loop Euler-Heisenberg effective Lagrangian. However, for
the analysis at two-loop we require even higher precision;
hence the new procedure described below.
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Given only a finite number of terms of the weak
magnetic field expansion (9), or equivalently only a finite
number of terms in the small t expansion of the Borel
transform in (14)–(16), the key to an accurate extrapolation
to other regions of the complex B2 plane (recall that B2 < 0
corresponds to an electric field background) is to have an
accurate analytic continuation of the truncated Borel trans-
form function

Bð1Þ
N ðtÞ ≔ 2

π2
XN−1

n¼0

að1Þn

ð2nþ 1Þ! ðπtÞ
2nþ1: ð19Þ

Since the one-loop Borel transform is meromorphic, the
optimal approach [42,43] is to use a Padé approximation,4

which expresses Bð1Þ
N ðtÞ as a ratio of polynomials:

P½L;M�ðBð1Þ
N ðtÞÞ ¼ Pð1Þ

L ðtÞ
Qð1Þ

M ðtÞ
;

where
Pð1Þ
L ðtÞ

Qð1Þ
M ðtÞ

¼ Bð1Þ
N ðtÞ þOðtLþMþ1Þ ð20Þ

where LþM ¼ 2N þ 1. The zeros of the denominator
polynomial QMðtÞ approximate the true singularities (see
(15) of Bð1ÞðtÞ, which lie at t ¼ �ik for k ≠ 0 ∈ Z due to
our rescaling t → πt. See Fig. 2. Tables of the one-loop
Padé-Borel poles for N ¼ 10 input terms and for N ¼ 50

input terms are shown below in (21) and (22), in which we
see poles stabilizing along the imaginary Borel axis at
integer multiples of �i.
Padé poles from 10 input terms:

�f1.0000i; 2.0000i; 3.0057i; 4.2905i; 8.0671ig: ð21Þ

Padé poles from 50 input terms:

� f1.0000i; 2.0000i; 3.0000i; 4.0000i; 5.0000i; 6.0000i;
7.0000i; 8.0000i; 9.0000i; 10.000i; 11.000i; 12.000i;

13.000i; 14.000i; 15.005i; 16.062i; 17.326i;

18.990i; 21.239i; 24.345i; 28.798i; 35.592i; 47.048i;

70.145i; 139.79ig: ð22Þ

We dramatically improve the quality of the extrapolation
if we take advantage of known information about the
opposite (strong field) limit, which corresponds to including
information about the t → ∞ behavior of Bð1ÞðtÞ. Here we
appeal to the fundamental physical interpretation of the
logarithmic behavior of the strong field expansion (12) in
terms of charge renormalization and the conformal anomaly
[1,2,5,8,9], which translates into the requirement that

Bð1ÞðtÞ ∼ β1
πt

þ…; t → þ∞: ð23Þ

We therefore choose an off-diagonal Padé-Borel approx-
imant with M ¼ Lþ 1 ¼ N þ 1

PBð1Þ
N ðtÞ ≔ Pð1Þ

N ðtÞ
Qð1Þ

Nþ1ðtÞ
: ð24Þ

0.10 0.05 0.05 0.10

10

5

5

10

0.10 0.05 0.05 0.10

10

5

5

10

FIG. 2. Poles of the Padé approximation PBð1Þ
N ðtÞ in (24) for the truncated Borel transform, shown for both N ¼ 10 (left) and

N ¼ 50 (right). Note that all the poles lie on the imaginary axis and tend toward integer multiples of�i. This can be contrasted with two-
loop case in Fig. 8.

4While a Padé approximation could be applied directly to the
truncated asymptotic weak magnetic field expansion (9), a
significantly better extrapolation [42,43] is achieved by the
Padé-Borel method [51], making a Padé approximation in the
Borel t plane rather than a Padé approximation in the original
physical variable eB=m2.

HIGHER-LOOP EULER-HEISENBERG TRANSSERIES … PHYS. REV. D 103, 065015 (2021)

065015-5



Note that we do not impose that the overall coefficient of

πt · PBð1Þ
N ðtÞ in the limit t → þ∞ be equal to the physical

value, β1 ¼ 1
3
. We simply impose the functional form that

πt · PBð1Þ
N ðtÞ → constant, as t → þ∞. Remarkably, the

physical value, β1, emerges in the large N limit, already
at N ≈ 10. See Fig. 3.
With this procedure, our Padé analytic continuation (24)

of the truncated weak-field expansion (19) leads to an
approximate Borel-Laplace integral representation for the
one-loop effective Lagrangian as in (16):

Lð1Þ
N

�
eB
m2

�
¼ πB2

2

Z
∞

0

dte−m
2πt=ðeBÞPBð1Þ

N ðtÞ ð25Þ

Figure 4 shows the extrapolation of this expression from the
weak-field limit to the strong-field limit. Starting with just
ten input coefficients of the weak field expansion, the
modified Padé-Borel expression in (25) extrapolates accu-
rately over more than 8 orders of magnitude. This is a
significantly farther-reaching extrapolation than in [32],
due to our improved Padé-Borel transform in (24). This
modified Padé-Borel transform also explains why the pole
structure shown in Figure 2, and in Equations (21)–(22), is
much more accurate than that in [32], where the physical
form of the large t behavior (23) was not imposed on the
Padé-Borel transform.
Similarly we can use the approximate Borel representa-

tion in (25) to achieve our second goal: analytically
continuing from a magnetic background to an electric
background, to extract the exponentially small nonpertur-
bative imaginary part of Lð1Þ in (3). Since the Borel
singularities are all on the imaginary axis, we rotate the

Borel contour to generate the imaginary part of the one-
loop effective Lagrangian for a constant background
electric field. Figure 5 shows (as blue dots) the result of
this calculation, starting with 10 terms of the weak
magnetic field expansion. The red curve shows the exact
result in (3), summed over all instanton orders, while the

0.100 10 1000

10 10

10 5

1

105

FIG. 4. The blue curve is a log-log plot of the modified Padé-
Borel sum of the truncated weak field expansion in (25), Lð1Þ

N ,
plotted here using only N ¼ 10 perturbative input terms. This is
indistinguishable from the exact closed-form Barnes function
expression in (18), plotted here as the translucent blue band. The
gold curve shows the weak field expansion (9), truncated at
N ¼ 10. The red curve shows the leading strong field behavior of
Lð1Þ in (12). Note that the truncated weak-field expansion fails
even below the Schwinger limit eB ≈m2, while the modified
Padé-Borel sum accurately interpolates over many orders of
magnitude between the weak-field and strong-field behavior. This
plot was made using units in which e ¼ m2 ¼ 1.

0 10 20 30 40 50

0.31

0.32

0.33

0.34

FIG. 3. N dependence of the limiting value lim½πt·PBð1Þ
N ðtÞ�t→∞,

for N ranging from 1 to 50, for the near-diagonal Padé approx-
imant of the truncated one-loop Borel transform function in (24).
The blue dots indicate the original values obtained from ex-

panding πt · PBð1Þ
N ðtÞ about t → ∞, and which appear to be

tending toward 1=3. The red dots show a 4th order Richardson
extrapolation of this data. Observe that the physical value β1 ¼
1=3 is approached quite closely already for N ≈ 10.

0.1 0.5 1 5 10 50 100

10 16

10 11

10 6

0.1

104

FIG. 5. A log-log plot of the imaginary part of the electric field
effective Lagrangian at one-loop, calculated using N ¼ 10 (blue
dots). The gold curve shows the leading one-instanton contri-
bution, ∝ exp ð−πm2=ðeEÞÞ, which displays a small but notice-
able deviation in the strong field limit. The red curve is the exact
expression for the imaginary part in (3), including the sum over
all instantons. See also Fig. 6. This plot was made using units in
which e ¼ m2 ¼ 1.
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gold curve shows the leading one-instanton term. The
agreement is excellent in the weak-field limit, and also
extrapolates accurately to much stronger fields.
In Fig. 6 we show that the precision of our

extrapolation is sufficiently high that we can probe the
exponentially small higher-instanton corrections to
ImLð1ÞðeEm2Þ, by dividing out the one-instanton factor,
E2=ð2πÞ exp ð−πm2=ðeEÞÞ. Fitting this ratio with one-
term, two-term and three-term exponential fits, we obtain
the successively improving approximations:

ImLð1Þ
�
eE
m2

�
≈
E2

2π
ðe−πm2=ðeEÞ þ0.253303e−2πm

2=ðeEÞ þ � � �Þ

ImLð1Þ
�
eE
m2

�
≈
E2

2π
ðe−πm2=ðeEÞ þ0.249962e−2πm

2=ðeEÞ

þ0.114532e−3πm
2=ðeEÞ þ � � �Þ

ImLð1Þ
�
eE
m2

�
≈
E2

2π
ðe−πm2=ðeEÞ þ0.249998e−2πm

2=ðeEÞ

þ0.111227e−3πm
2=ðeEÞ

þ0.0629846e−4πm
2=ðeEÞ þ…Þ: ð26Þ

We see that the coefficients of this instanton expansion
approach the exact 1

k2 factors in (4). This demonstrates that
our extrapolation from magnetic to electric field is
exponentially accurate: it recovers several orders of the
exponentially suppressed corrections to the nonperturba-
tive imaginary part of the one-loop effective Lagrangian
for an electric background field, using as input only 10
terms of the perturbative weak magnetic field expansion.

Another way to see this is to plot our improved Padé-
Borel transform (24), shifted slightly from the imaginary
axis: Figure 7 shows the resulting poles at integer spacing
along the imaginary axis, with residues following the
exact 1=k2 behavior in (15).

III. THE TWO-LOOP EULER-HEISENBERG
EFFECTIVE LAGRANGIAN

A. Exact results at two-loop order

Whereas the one-loop Euler-Heisenberg effective
Lagrangian in a constant magnetic field has a simple Borel-
Laplace integral representation (8), and can be expressed
exactly in terms of the Barnes double gamma function (18),
no such closed-form expressions are known at two-loop for a
constant magnetic or electric field background.5 The most
explicit representation for a magnetic background field is
Ritus’s exact double-integral representation [8–11]

Lð2Þ
�
eB
m2

�
¼ B2

4

Z
∞

0

dt
t3
e−tm

2=ðeBÞðJ1 þ J2 þ J3Þ ð27Þ

where

J1 ¼
2tm2

eB

Z
1

0

ds
sð1 − sÞ

�
coshðtsÞ coshðtð1 − sÞÞ

a − b
ln
a
b

− t coth tþ 5t2

6
sð1 − sÞ

�
ð28Þ

0 1 2 3 4

0.5

1.0

1.5

2.0

FIG. 7. Singularity structure of the Borel transform PBð1Þ
N ðtÞ,

for N ¼ 10, just offset from the imaginary axis, t → itþ ϵ. The

plot shows the real part (blue solid curve) of PBð1Þ
N ðitþ 1=50Þ,

indicating integer-spaced poles at t ¼ ik along the imaginary
Borel axis, with residues falling off quadratically as 1=k2 (dashed
black curve).

0.1 0.5 1 5 10 50 100

1.0

1.2

1.4

1.6

1.8

FIG. 6. The ratio [blue dots] of the imaginary part of the electric
field effective Lagrangian ImLð1ÞðEÞ, divided by the leading
exponential term from (4), derived from our extrapolation using as
input just N ¼ 10 terms from the perturbative expression for a
magnetic field background. The gold, red, and purple curves show
a fit for this ratio, based on one, two, and three exponentially small
correction terms, respectively. The fit coefficients are given in (27),
from which it is clear that these sub-leading exponential correc-
tions tend to the known form (3) of the instanton sum.This plotwas
made using units in which e ¼ m2 ¼ 1.

5However, exact closed-form expressions and Borel represen-
tations are known at two-loop for a constant self-dual field,
corresponding to the generating function of amplitudes for low-
momentum external photons of fixed helicity [52–54].
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J2¼−
Z

1

0

ds
sð1− sÞ

�
c

ða−bÞ2 ln
a
b
−
1−bcoshðtð1−2sÞÞ

bða−bÞ

þbcosh tþ1

2b2
−
5t2

6
sð1− sÞ

�
ð29Þ

J3¼
�
1þ3

tm2

eB

�
ln

�
tm2

eB

�
þ γ−

5

6

���
tcotht−1−

t2

3

�

ð30Þ

and the functions a, b, and c are defined as

a ¼ sinhðtsÞ sinhðtð1 − sÞÞ
t2sð1 − sÞ ; b ¼ sinh t

t
;

c ¼ 1 − a coshðtð1 − 2sÞÞ: ð31Þ

Unlike the one-loop case (8), this two-loop expression
(27)–(31) is not directly in Borel form. However, we can
expand this as a perturbative weak-field series in eB

m2:

Lð2Þ
�
eB
m2

�
∼B2

�
eB
m2

�
2X∞
n¼0

að2Þn

�
eB
m2

�
2n
; eB≪m2: ð32Þ

There is no simple closed-form expression for the
coefficients að2Þn . However, the two-loop weak-field coef-

ficients að2Þn can be generated by a suitable expansion of the
integral representation (27). In [14], 15 terms of such a
weak magnetic field expansion were obtained, which was
enough perturbative data to argue that the leading large

order growth of the two-loop expansion coefficients að2Þn

has exactly the same form as the leading large order growth

(11) of the one-loop expansion coefficients að1Þn :

að2Þn ∼ ð−1Þn Γð2nþ 2Þ
π2nþ2

þ corrections; n → ∞: ð33Þ

In this paper we have pushed the perturbative expansion
(32) to much higher order, obtaining 50 terms of the two-
loop weak magnetic field expansion. This expansion must
be organized appropriately to respect the various subtrac-
tions, in order to keep the s integrals finite. Our expansion
strategy is described in Appendix A. This new weak-field
perturbative data confirms the leading result (33), and
furthermore allows analysis of the subleading corrections:

see Sec. III B below. The first 25 coefficients að2Þn are listed
in Appendix B, and the first 50 coefficients are listed in an
accompanying Supplementary Material [55]. This is the
perturbative input data on which our subsequent Borel
analyses are based.
The leading strong magnetic field behavior at two-loop

order is also known [8–10]

Lð2Þ
�
eB
m2

�
∼
1

4
·
B2

2

�
ln

�
eB
πm2

�
− γ −

5

6
þ 4ζð3Þ

�
;

eB ≫ m2 ð34Þ

where ζð3Þ ≈ 1.20206. As in the one-loop case (12), we
identify the two-loop QED beta function coefficient,
β2 ¼ 1=4, in the prefactor of the leading logarithmic factor
of the strong field limit (34).
Analytically continuing from a magnetic to an electric

background, B → iE, the results in (33) and (34) yield the
leading contributions to the nonperturbative imaginary part
of the two-loop effective Lagrangian Lð2ÞðeEm2Þ:

Im

�
Lð2Þ

�
eE
m2

��
∼

8>>><
>>>:

πE2

2
e−πm

2=ðeEÞ; eE ≪ m2

β2

�
π

2

�
E2

2
; eE ≫ m2

ð35Þ

These leading behaviors at two-loop are structurally
identical to the leading behaviors at one-loop order (recall
(4) and (17). However, we show below that the subleading
corrections at two-loop order are very different from the
corrections at one-loop order.

B. Borel analysis at two-loop order

Based on the leading factorial growth in (33), and in
analogy to the one-loop case analyzed in Sec. II B, we
define the two-loop (truncated) Borel transform

Bð2Þ
N ðtÞ ≔ 2

XN−1

n¼0

að2Þn

ð2nþ 1Þ! ðπtÞ
2nþ1 ð36Þ

Note that we have adopted the same rescaling of t by a
factor of π, as at one loop in (19), because the leading
growth of the two-loop coefficients in (33) matches that at
one-loop (11). Recall also that at one-loop we obtained
high-precision analytic continuations by using a modified
Padé-Borel transform (24) that incorporated information
about the strong magnetic field behavior of the one-loop
effective Lagrangian. Since the strong magnetic field limit
in (34) has the same functional form as at one-loop, (12),
we adopt the same strategy here. We analytically continue
the truncated Borel transform (36) via a near-diagonal Padé
approximant, which encodes the logarithmic strong field
behavior (34) at two-loop:

PBð2Þ
N ðtÞ ¼ Pð2Þ

N ðtÞ
Qð2Þ

Nþ1ðtÞ
: ð37Þ

Figure 8 shows the singularities of this two-loop Padé-Borel

transform,PBð2Þ
N ðtÞ, based on 10 or 50 input coefficients (the

first 25 coefficients are listed in Appendix B, and the first 50
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coefficients are listed in an accompanying Supplementary
file). These plots confirm that the leading singularities are at
t ¼ �i, but they also show that the Borel plane singularity
structure is much richer than in the one-loop case, where the
singularities are just isolated poles at integer multiples of the
leading ones: recall Fig. 2. At two-loop, Fig. 8 suggests
that the leading singularities, at t ¼ �i, appear to be branch
points. Recall that a Padé approximant represents branch
cuts as lines of poles (interlaced by the Padé zeros)
that accumulate to the branch points [42,43,56]. This
novel branch point structure is probed in more detail in
Sec. III C below.
Given the Padé approximation (37) to the Borel trans-

form, the approximate two-loop effective Lagrangian for
the magnetic background is recovered by the Laplace
transform

Lð2Þ
N

�
eB
m2

�
¼ πB2

2

Z
∞

0

dte−m
2πt=ðeBÞPBð2Þ

N ðtÞ ð38Þ

The quality of this two-loop expression (38) as an accurate
extrapolation of the two-loop effective Lagrangian Lð2ÞðeBm2Þ
from weak magnetic field to strong magnetic field, and
from magnetic to electric field, relies on the quality of the
analytic continuation of the Borel transform in the Borel
plane, here provided by the Padé approximation (37).

Using only 10 input perturbative coefficients að2Þn , in

Fig. 9 we plot the resulting Borel representation Lð2Þ
N ðeBm2Þ

from (38). Similar to the one-loop result in Fig. 4, we see
that our modified Padé-Borel representation at two-loop
also extrapolates accurately over many orders of magnitude
from the weak magnetic field to the strong magnetic field
regime. The excellent agreement of this extrapolation to
asymptotically large magnetic field can be attributed to the

fact that we have constructed our Padé-Borel transform in
such a way that it incorporates the form of the known
logarithmic behavior (34) of the two-loop effective
Lagrangian: the Borel transform, which is generated from
an expansion about t ¼ 0, should be proportional to 1=ðπtÞ
as t → þ∞. Note that, (as at one-loop) we do not enforce
that the coefficient of proportionality be equal to β2.
Remarkably, once again this fact emerges from our

0.10 0.05 0.05 0.10

10

5

5

10

0.10 0.05 0.05 0.10

10

5

5

10

FIG. 8. Poles of the Padé approximation PBð2Þ
N ðtÞ in (37) for the truncated Borel transform, shown for N ¼ 10 (left) and N ¼ 50

(right). Note that the poles appear to be accumulating at �i. Contrast with one-loop case in Fig. 2 where the poles are integer-spaced
along the imaginary Borel axis.

0.100 10 1000

10 12

10 7

0.01

1000.00

108

FIG. 9. The blue curve is a log-log plot of the modified Padé-
Borel sum of the truncated weak field expansion in (38), Lð2Þ

N ,
plotted here forN ¼ 10. Compare with the one-loop result plotted
in Fig. 4. In contrast to the situation at one loop, there is no exact
expression for the Lagrangian at two loop against which to
compare the resummation. The gold curve shows the weak field
expansion (32), truncated at N ¼ 10. The red curve shows the
leading strong field behavior in (34). Once again, we see that the
truncated weak field expansion fails before the Schwinger critical
field eB ≈m2, whereas the modified Padé-Borel sum interpolates
over many orders of magnitude between the weak-field and
strong-field behavior. This plot was made using units in which
e ¼ m2 ¼ 1.
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50 input coefficients, even though these coefficients were
generated in the opposite limit near t ¼ 0. See Fig. 10.
We can also use the approximate Borel expression (38)

to achieve our second goal: analytic continuation from a
magnetic to an electric background, producing an expo-

nentially small nonperturbative imaginary part of Lð2Þ
N ðeEm2Þ.

The result is shown in Fig. 11, again showing good
agreement over many orders of magnitude of the external
field strength. However, there is a clear deviation from this
leading weak field contribution even at eE ≈m2, coming
from fluctuations about this one instanton term which were
not present at one-loop in (4). This deviation is analyzed in
the next section. See Fig. 13.

C. Power law corrections at two-loop order

The Padé-Borel pole structure in Fig. 8 suggests that the
leading singularities at two-loop are branch points rather
than poles. However, the leading large-order growth in (33)
is the same as the one-loop leading large-order growth in
(10), and this leading growth is associated with Borel poles.
The resolution of this apparent puzzle is that each of the
symmetric leading Borel singularities, at t ¼ �i, is in fact a
superposition of a pole and a branch point. This cannot be
seen directly from the Padé poles in Fig. 8. To resolve this
Borel singularity structure, we subtract the exact leading
growth behavior and study the remainder, defining modi-
fied perturbative weak-field expansion coefficients

ãð2Þn ≡ að2Þn − ð−1Þn Γð2nþ 2Þ
π2nþ2

: ð39Þ

We now analyze the large order behavior of the modified

coefficients ãð2Þn . Ratio tests indicate the following leading

growth of the ãð2Þn :

ãð2Þn ≈ ð−1.65Þ × ð−1Þn Γð2nþ 5
4
Þ

π2nþ2
þ… ð40Þ

See Fig. 12, where we have adjusted the offset shift, finding
the best agreement with the offset 5

4
.

After analytic continuation to an electric field, this
corresponds to the following power-law correction to the
imaginary part of the two-loop effective Lagrangian:

Im
�
Lð2Þ

�
eE
m2

��
∼
πE2

2
e−πm

2=ðeEÞ
�
1−1.65

�
eE
πm2

�
3=4

þ���
�
:

ð41Þ
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FIG. 11. A log-log plot of the imaginary part (blue dots) of the
two-loop effective Lagrangian in an electric field, calculated
using N ¼ 10 input perturbative terms. The gold curve shows the
leading weak-field one-instanton contribution in (37). This plot
was made using units in which e ¼ m2 ¼ 1.
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FIG. 12. The large order behavior of the modified coefficients

ãð2Þn defined in (39). Different growth rates are shown
here: fðnÞ ¼ ð−1Þnπ2nþ2=Γð2nþ 5

4
Þ (blue circles), fðnÞ ¼

ð−1Þnπ2nþ2=Γð2nþ 5
4
þ 1

4
Þ (gold squares), and fðnÞ ¼

ð−1Þnπ2nþ2=Γð2nþ 5
4
− 1

4
Þ (red diamonds). The form involving

Γð2nþ 5
4
Þ is clearly favored.
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FIG. 10. N dependence of the limiting value

lim ½πt · PBð2Þ
N ðtÞ�t→∞, for N ranging from 1 to 50, for the

near-diagonal Padé approximant of the truncated one-loop
Borel transform function in (37). The blue dots indicate the

values obtained from expanding πt · PBð1Þ
N ðtÞ about t → ∞,

and which tend toward the physical value β2 ¼ 1=4.
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This form of the leading correction suggests a fluctuation
expansion in powers of ðeEm2Þ3=4:

Im

�
Lð2Þ

�
eE
m2

��
∼
πE2

2
e−πm

2=ðeEÞ
�
1þ d1

�
eE
πm2

�
3=4

þ d2

�
eE
πm2

�
3=2

þ d3

�
eE
πm2

�
9=4

þ � � �
�
:

ð42Þ

In Fig. 13 we plot the result of fitting the imaginary
part of the two-loop effective Lagrangian directly from the
integral representation. Using the fit interval eEm2 ∈ ½10−1; 1�
we obtain fit parameters: d1 ¼ −1.65, d2 ¼ 2.43,
d3 ¼ −1.94. Figure 13 illustrates the improved agreement
with the successive weak-field corrections. This form
of the fluctuations about the one-instanton term fills in
the first set of missing dots in Ritus’s conjectured
expression (5).

D. Probing the higher instanton terms

In fact, the power-law corrections discussed in the
previous section are not the whole story. The weak-field
expressions in (37) and (42) only include the effects
of the leading Borel singularity at t ¼ �i: these are the
“one-instanton” effects. But we also expect that there
should be multi-instanton effects associated with Borel
singularities at all integer multiples of the leading ones.
These would appear as exponentially small corrections to
the large-order growth of the perturbative expansion

coefficients að2Þn . Therefore, the subleading corrections
to the large order growth of the two-loop perturbative
expansion coefficients should have the following struc-
tural form:

að2Þn ∼ ð−1Þn Γð2nþ 2Þ
π2nþ2

fð1þ power law correctionsÞ
þ ðexponentially small correctionsÞ
× ðpower law correctionsÞg ð43Þ

Even though the leading large-order growth has the same
form as at one-loop, compare (11) and (33), the structure
of the corrections is very different: there are power-law
corrections followed by much smaller exponentially sup-
pressed corrections, which themselves have power-law
corrections. This fact is directly responsible for the novel
structure (5) of the nonperturbative imaginary part at two-
loop order. Having studied the structure of the power-law
corrections in the previous subsection, we now turn to the
exponentially smaller corrections.
At one-loop the first few exponentially small corrections

can be resolved, see Fig. 6, because there are no power-law
corrections [recall (11)], but at two-loop it is much more
difficult because of the existence of the (much larger)
power-law corrections to the leading instanton term. These
power-law corrections obscure the exponentially small
corrections associated with multi-instantons. This problem
can be ameliorated by using more sophisticated Borel
techniques, beyond Padé-Borel. Indeed, this problem is
directly related to the fact that the Padé-Borel approxima-
tion represents the leading branch cut as a line of poles,
which therefore obscures the existence of genuine multi-
instanton singularities, which also lie on the imaginary axis,
and are also expected to be branch points. See Fig. 14,
which plots the Padé-Borel transform along the imaginary
axis: the leading singularity at t ¼ i can be seen, but
beyond that one sees coalescing Padé poles that are

1 2 3 4 5

2

1

1

2

FIG. 14. Plot of the real part of the Padé-Borel transform,

Re½PBð2Þ
N ðitþ 1=1000Þ� for N ¼ 50, showing the singularity

structure of the Padé-Borel transform along the imaginary axis.
Note that without the conformal map, the accumulation of poles
from the Padé-Borel approximation obscures the true singularity
structure associated with the physical higher instanton terms.
Compare with Fig. 16 where the physical multi-instanton Borel
singularities at t ¼ 2i and t ¼ 3i are resolved.
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FIG. 13. The imaginary part of the electric field effective
Lagrangian (blue dots), compared with the leading weak-field
one-instanton contribution (gold), and the fit including the
additional weak-field power-law corrections in (42) (red). This
plot was made using units in which e ¼ m2 ¼ 1.
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attempting to represent the branch cut t ∈ ½i; i∞�. This
also explains why the multi-instanton Borel singularities
are clear at one-loop from the Padé-Borel pole
distribution in Fig. 2 (because they are simple poles),
but are not seen directly at two-loop order from the Padé-
Borel pole distribution in Fig. 8 (because they are branch
points). Fortunately, there is a simple way to resolve this
problem.
The first step is to confirm that there are indeed integer-

repeated Borel singularities, and to determine if they are in
fact branch points. This problem can be resolved as follows
[41–43]. We use a conformal map [51,57,58] to map the
doubly-cut Borel plane (based on the two symmetric
leading branch point singularities at t ¼ �i) into the unit
disk in the conformal z plane. Specifically, the relevant
conformal map for this configuration is:

t ¼ 2z
1 − z2

; z ¼ t

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p ð44Þ

A reexpansion inside the unit disk to the original order,
followed by a Padé approximation within the unit disk,
separates subleading branch-points [41–43], as shown
in Fig. 15.
The doubly-cut t plane is mapped to the interior of the

unit disk, with the edges of the cuts mapped to segments of
the boundary, the unit circle. We expand the truncated
Borel transform inside the conformal disk, and truncate at
the same order as the t expansion:

Bð2Þ
N

�
2z

1 − z2

�
¼
X2N−1

n¼0

bð2Þn zn þOðz2NÞ: ð45Þ

This expansion uniquely defines the coefficients bð2Þn . By
construction, this expansion is convergent within the
conformal disk. We then make a near-diagonal Padé
approximation, and compute its poles. These singularities
are shown in Fig. 15. The poles accumulating to z ¼ �i
correspond to the leading singularities, since the conformal
map (44) takes t ¼ �i to z ¼ �i. The next cluster of poles
accumulate to z ¼ �e�iπ=6, which are the conformal map
images (on either side of the leading branch cuts) of the
two-instanton singularities at t ¼ �2i. The third cluster of
z-plane poles in Fig. 15 accumulate to the images of the
three-instanton singularities at t ¼ �3i. Thus the con-
formal map reveals the existence of integer-repeated higher
instanton Borel singularities, and shows that they all have
associated branch cuts.
This resolution phenomenon can also be visualized by

mapping the Padé approximation within the z-plane disk
back to the Borel t using the inverse transformation in (44)
[41,43]. This produces the Padé-Conformal-Borel approxi-
mation, and this is plotted along the imaginary t axis in
Fig. 16. We see that the one-instanton, two-instanton and
three-instanton singularities are all resolved. This should be
contrasted with the result of the Padé-Borel approximation,
without the conformal map, where nothing beyond the one-
instanton singularity can be clearly resolved: recall Fig. 14.
This failure of the Padé-Borel approximation to resolve
higher instanton singularities is a direct consequence of the
fact that the Padé approximation represents the leading
branch cuts as sequences of poles accumulating to the

1 2 3 4 5
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2

FIG. 16. Plot of the real part of the Padé-Conformal-Borel
transform, Re½PCBð2Þ

N ðitþ 1=1000Þ� for N ¼ 50, showing the
singularity structure of the conformally mapped Borel transform
along the imaginary axis. The plot reveals the existence of higher
Borel singularities at multiples of the leading singularity at t ¼ i,
corresponding to the multi-instanton expansion. It also confirms
the branch cut nature of the singularity structure at two loop.
Compare with Fig. 7 at one loop, where the Borel singularities are
simple poles, and compare with the analogous plot at two loop,
but without the conformal map, in Fig. 14.
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FIG. 15. Poles of the Padé-Borel approximation in the con-
formally mapped z plane. With N ¼ 50 terms, the first three
Borel singularities can be resolved as accumulation points
of Padé poles located on the unit circle at θ ¼ � π

2
;� π

6
;

� arctanð 1

2
ffiffi
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p Þ, denoted by the green arrows.
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leading branch points, as seen in Fig. 14, and these poles
obscure the existence of the genuine physical higher-
instanton singularities, which are themselves branch points.
The conformal mapping resolves this problem, as can be
seen in Fig. 16.
To find the nature of the two-instanton Borel singularity

at t ¼ �2i, we study the approach to the point z ¼ eiπ=6 in
the conformal disk. Writing z ¼ reiπ=6, we assume a
power-law behavior ð1 − rÞβ for the imaginary part of
the Borel transform, and fit a good fit with β ¼ − 3

2
. See

Fig. 17. When mapped back to the Borel t plane, this
corresponds to an imaginary part of the two-loop effective
Lagrangian, at the two-instanton level, of the form

Im

�
Lð2Þ

�
eE
m2

��
two-instanton

∼
πE2

2

ffiffiffiffiffiffi
m2

eE

r
e−2πm

2=ðeEÞ ð46Þ

which agrees with the form of the higher-instanton fluc-
tuation prefactor conjectured by Ritus: recall Eq. (5). It is
quite remarkable that this doubly exponentially suppressed
term can be deduced directly from just the first 50 pertur-
bative expansion coefficients of the effective Lagrangian in
a magnetic field background.

IV. CONCLUSIONS

We have shown that accurate extrapolations and analytic
continuations of the two-loop Euler Heisenberg effective
Lagrangian can be recovered from a relatively modest
number of terms of the perturbative weak magnetic field
expansion. These perturbative terms are generated from an
expansion of Ritus’s seminal results for the renormalized
two-loop effective Lagrangian in terms of two-parameter
integrals [8–11]. The new physical effect at two-loop,
compared to the well-known one-loop Euler-Heisenberg
effective Lagrangian, is that the Borel transform has branch
point singularities, rather than just simple poles. These

branch points reflect the interactions between virtual
particles, and have the effect of producing fluctuation
expansions multiplying the terms in the weak-field instan-
ton expansion for the imaginary part of the effective
Lagrangian in an electric field background. In order to
probe these fluctuation corrections we need high precision
extrapolations, which we achieve using a combination of
Padé approximations and conformal maps to obtain a
sufficiently accurate analytic continuation of the finite
order truncation of the associated Borel transform
[42,43]. We have also incorporated the known physical
information about the strong magnetic field limit, which is
fixed by the QED beta function, and which determines the
functional form of the asymptotic limit of the Borel
transform. In particular, with the input of just 10 terms
of the perturbative weak field expansion we find an
accurate extrapolation from the weak magnetic field regime
to the strong magnetic field regime, over many orders of
magnitude. See Figs. 4 and 9 for the one-loop and two-loop
results, respectively. Using 50 terms of the perturbative
weak magnetic field expansion at two-loop order, we
analytically continue to an electric field background and
obtain new information about the structure of the instanton
expansion of the imaginary part of the effective Lagrangian.
We resolve the leading power law correction at the one-
instanton level, and also identify the exponentially further
suppressed two-instanton term.
Our analysis was motivated by the question of whether

such extrapolations and associated nonperturbative infor-
mation could be accessible at higher loop order (i.e., higher
terms in the expansion (1) in the fine structure constant),
starting not from a closed form multi-parameter integral
representation, but from an explicit finite order perturbative
expansion. This is because even at three-loop order (see
Fig. 18) it has so far not been possible to find a parametric
integral representation (a 4-fold parameter integral at three
loop) of the Euler Heisenberg effective Lagrangian, even
though the exact propagators in a constant background field
are known in a relatively simple integral representation
form [17–19]. Our results suggest that an alternative
strategy might be more practical: work instead with a
perturbative expansion of the propagators, thereby gener-
ating a finite-order perturbative expansion of the l-loop
effective Lagrangian, from which extrapolations to other
parametric regimes could be performed. To be practical,
such extrapolations must be achievable with a “reasonable”

FIG. 18. The three diagrams which contribute to the Euler-
Heisenberg effective Lagrangian at l ¼ 3 loop order.

FIG. 17. Blue: plot of the imaginary part of ð1 − rÞ3=2 times the
Padé-Conformal-Borel transform along the radial line z ¼ reiπ=6

inside the conformal disk, approaching the z-plane image of the
two-instanton Borel singularity. Red: approximate extrapolation
of this plot to the singularity at z ¼ eiπ=6.
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amount of perturbative input, and our results suggest that
this may indeed be possible. To generate the perturbative
expansion at higher loop order, one needs an efficient way
to compute the renormalized effective Lagrangian, for
example using the background-field integration-by-parts
methods developed in [16,59].
Certain structural facts are known about the Euler

Heisenberg effective Lagrangian at higher loop orders,
and these could be used to constrain the higher-loop
computations. The exponentiation eαπ of the leading weak
electric corrections to the imaginary part, as in (7), leads to
a conjecture [15] that the leading large order behavior of the
perturbative expansion coefficients has the same form for
all loop orders l:

aðlÞn ∼ ð−1ÞnΓð2nþ2Þ
π2nþ2

; n→∞; ∀l: ð47Þ

Indeed, this conjectured behavior is the reason for the
choice of the overall normalization of the perturbative
expansion coefficients in (2): with this normalization
choice we recover the exponential factor eαπ in (7).
This conjecture, along with the exponentiation in (7),
would be interesting to confirm or disprove beyond two-
loop order. Physically, this correspondence is motivated
by the interpretation of the mass m appearing in the
exponential instanton factor, e−πm

2=ðeEÞ, as the renormal-
ized physical electron mass [10]. Already at two-loop
order, this correspondence between the renormalized
mass defined from the real or imaginary part of the
effective Lagrangian is sensitive to the finite mass
renormalization. The situation at three-loop order is not
yet clear [17–19], and we hope that the methods described
here might provide an alternative approach to shed light
on this open question.
The leading strong magnetic field behavior at l-loop

order (with l ≥ 2) is also known, arising from the Callan-
Symanzik equation in the strong field (or massless)
limit [8–10]:

LðlÞ
�
eB
m2

�
∝
B2

2

�
ln

�
eB
πm2

��
l−1

þ � � � ; eB≫m2 ð48Þ

The overall coefficient is expressed in terms of the beta
function coefficients up to order l. This leading contribution
comes from the renormalon-like “ring diagram”with (l − 1)
fermion loops connected in a single ring by (l − 1) photon
propagators. See Fig. 19. This general fact could be used to
constrain the asymptotic behavior of the Borel transform at
l-loop order.6 Deeper understanding of the strong field limit
at higher order in the fine structure constant α may also

shed light on the computation of scattering amplitudes in
strong background fields, in particular those associated with
ultraintense lasers [23,24]. For example, seminal work by
Ritus and Narozhnyi has made predictions for the resulting
structure at higher loop order for the special case where the
background laser field is represented as a constant crossed
field [25–31].
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APPENDIX A: RITUS’S EXACT
DOUBLE-INTEGRAL REPRESENTATION

The two-loop Euler-Heisenberg effective Lagrangian can
be written as the double integral

Lð2Þ
�
eB
m2

�
¼ B2

4

Z
∞

0

dt
t3
e−tm

2=ðeBÞðJ1 þ J2 þ J3Þ ðA1Þ

with

J1 ¼
2tm2

eB

Z
1

0

ds
sð1 − sÞ

�
cosh ts cosh tð1 − sÞ

a − b
ln
a
b
− t coth t

þ 5t2

6
sð1 − sÞ

�
ðA2Þ

J2 ¼ −
Z

1

0

ds
sð1 − sÞ

�
c

ða − bÞ2 ln
a
b
−
1 − b cosh tð1 − 2sÞ

bða − bÞ

þ b cosh tþ 1

2b2
−
5t2

6
sð1 − sÞ

�
ðA3Þ

FIG. 19. Two equivalent views of the irreducible l-loop
diagram giving the dominant strong-field behavior in (48) for
the l-loop Euler-Heisenberg effective Lagrangian. There are
(l − 1) fermion loops, with the double lines denoting fermion
propagators in the constant background field, and one overall
photon loop.

6It would be interesting to apply these perturbative Borel
methods also to the reducible diagrams studied in [60,61].
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J3¼
�
1þ3

tm2

eB

�
ln

�
tm2

eB

�
þ γ−

5

6

���
tcotht−1−

t2

3

�

ðA4Þ

and

a ¼ sinh ts sinh tð1 − sÞ
t2sð1 − sÞ ; b ¼ sinh t

t
;

c ¼ 1 − a cosh tð1 − 2sÞ: ðA5Þ

To generate a weak magnetic field expansion, for J1
and J2 we expand each term in the above expressions at
small t to order Oðt2nÞ. This is straightforward for most
terms, with

ln
a
b
¼
Xn
k¼0

22kðs2k þ ð1 − sÞ2k − 1Þ
2kð2kÞ! t2k: ðA6Þ

For the factors ða − bÞ−p, we first expand

a − b ¼ t2
Xn−1
k¼0

�
1

ð2kþ 4Þ!
1 − ð1 − 2sÞ2kþ4

2sð1 − sÞ −
1

ð2kþ 3Þ!
�
t2k

¼ t2
Xn−1
k¼0

Akt2k: ðA7Þ

Then, the coefficients of this Taylor series raised to an
arbitrary negative power can be generated recursively

ða − bÞ−p ¼ 1

t2p
Xnþp

k¼0

Að−pÞ
k t2k ðA8Þ

where (for A0 ≠ 0)

Að−pÞ
0 ¼ 1

Ap
0

ðA9Þ

Að−pÞ
k ¼ 1

kA0

Xk
l¼1

½lð1−pÞ−k�AlA
ð−pÞ
k−l ; k≥ 1: ðA10Þ

We then combine these expansions using a discrete
convolution

�Xn
k¼0

akt2k
��Xn

k¼0

bkt2k
�

¼
Xn
k¼0

ckt2k ðA11Þ

ck ¼
Xk
l¼0

albk−l: ðA12Þ

Although certain terms in J1 and J2 look divergent with
respect to the s integral, they are exactly canceled by the
expansion of other terms in the integrand. In addition, each
of the remaining terms contains a factor of sð1 − sÞ, leaving
well-defined integrals which result in polynomials in t. For
J3, there is no s integral to perform, and so we can just
expand the entire expression at small t to Oðt2nÞ, yielding
polynomials in t and polynomials multiplied by ln tm2

eB. Now,
all the t integrals can be performed, where we can make use
of the result

Z
∞

0

dte−m
2t=ðeBÞt2n ln

�
tm2

eB

�

¼
�
eB
m2

�
2nþ1

Γð2nþ 1Þψ ð0Þð2nþ 1Þ; n > −
1

2
ðA13Þ

with ψ ð0ÞðxÞ the digamma function. With this algorithm, we
were able to generate fifty coefficients in the weak
magnetic field expansion of Lð2ÞðeBm2Þ, whereas previous
analysis only obtained fifteen coefficients [14]. The first 25
weak magnetic field expansion coefficients of the two loop
Euler-Heisenberg Lagrangian can be found in Appendix B,
and the first 50 coefficients are contained in an accom-
panying Supplementary Material [55].
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APPENDIX B: COEFFICIENTS OF THE TWO-LOOP WEAK MAGNETIC FIELD EXPANSION

Table 1 contains the first 25 coefficients að2Þn in Eq. (32). The first 50 coefficients appear in the Supplementary
Material [55].
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