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Damped neutrino oscillations in a conformal coupling model
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Flavor transitions of neutrinos with a nonstandard interaction are studied. A scalar field is conformally
coupled to matter and neutrinos. This interaction alters the neutrino effective mass and its wave function
leading to a damping factor, causing deficits in the probability densities and affecting the oscillation phase.
As the matter density determines the scalar field’s behavior, we also have an indirect matter density effect
on the flavor conversion. We explain our results in the context of screening models and study the deficit in
the total flux of electron-neutrinos produced in the Sun through the decay process, and we confront our

results with observational data.
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I. INTRODUCTION

One of the most interesting subjects in particle physics
and cosmology is the physics of neutrinos, which has
received a lot of attention, especially in the beyond standard
model theories. In the standard model of particles, neu-
trinos were assumed to be massless. Massive neutrinos
were first proposed theoretically in [1,2] and after some
decades has gained severe attention by the detection of
deficits in the number of electron neutrinos received from
the Sun [3.4], and in the number of atmospheric muon
neutrinos [5,6]. We may explain the discrepancy between
the expected number of neutrinos and the observation by
considering the flavor state as mixed mass states. This gives
rise to neutrino flavor change via oscillation during their
travels (in the atmosphere). Also, the influence of local
electron density on electron-neutrino density gives rise to
adiabatic flavor conversion (as in the Sun) through the
Mikheyev-Smirnov-Wolfenstein (MSW) effect [7,8]. Apart
from the standard weak interaction, one may consider
nonstandard neutrino interactions (not included in the
standard model) [7,9,10] and investigate their influences
on neutrino oscillations [11]. Nonstandard interaction of
neutrinos and exotic fields has also attracted much attention
in cosmology [12—17]. These additional fields may be the
dark energy describing the present cosmic acceleration of
the Universe. Inspired by the similarity of the neutrino mass
squared difference and the scale of dark energy, mass
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varying neutrinos (whose masses depend on a light scalar
field) were introduced in [18-20] and used in [21,22] to
discuss the solar neutrino flavor survival probability. The
dependence of the neutrino mass on the environment due to
the interactions with dark sectors was also studied in [23],
showing that the interaction alters the oscillation drastically
by affecting the neutrino mass.

In [24-26], a model for the Universe’s cosmic accel-
eration [27] based on quintessence-neutrino interaction
through a conformal coupling was proposed such that
when the massive neutrinos became nonrelativistic, by
activating the quintessence they ignited the Universe’s
acceleration. In this class of scalar-tensor dark energy
models, the quintessence interacts with matter (including
neutrinos) through a conformal coupling [28-30]. This
coupling may give rise to the screening effect as was
studied in the chameleon [31-34] and the symmetron
[35,36] models. In these screening models, the scalar
field’s behavior is specified by the matter density such
that in a dense region, they are screened. In this paper, we
aim to study the effect of such a conformal coupling on the
neutrinos’ densities and oscillations. As the scalar field’s
behavior is specified by the matter density, we expect to
encounter an MSW-like effect but caused by a nonstandard
interaction, i.e., the conformal coupling. The interaction
with the scalar field by modifying the neutrino effective
mass and its density provides a mixed situation [37] in
which the neutrino deficit may be related to both the
neutrino oscillation and neutrino decay. Such neutrino
decay models as a second-order effect behind the solar
neutrino problem can better fit solar neutrino data [38],
which can constrain the lifetime (z,) of the neutrino mass
eigenstate v,. In the decay formalism presented in [38,39],
since the actual neutrino masses (m;) are unknown, the
decay of mass eigenstate v, is completely explained by the
ratio 7;/m;. Fitting to all phases of ®B solar neutrino data by
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the Sudbury Neutrino Observatory (SNO) [38] constrains
the ratio 7,/m, to be >8.08 x 107> sec /eV at a 90% con-
fidence level.

This paper is organized as follows: In Sec. II we discuss
the ingredients of our model starting with a conformal
transformation applied on the metric, which rescales the
relevant Dirac action governing the motion of neutrinos.
Corrections to the neutrino mass and wave function related
to the curved spacetime in the presence of a scalar field are
explicitly calculated in this section. We then give an
analytical solution to the mass-varying Dirac equation in
Sec. IT A and show how the scalar-matter coupling function
will change the neutrino quantum mechanical phase. The
damped two-flavor transition is the subject of Sec. II B,
giving the probabilities for both chameleon and symmetron
cases. After that, we will extend damped neutrino tran-
sitions to three flavors and discuss the possibility of
neutrino decay and deficit in the total probability in
Sec. II C. Interactions with matter such as the Sun, for
instance, have a dramatic effect on the flavor conversion,
MSW effect, presented in Sec. II D. We will see that the
large mixing angle (LMA) solutions have the most apparent
effect on neutrino decay. Finally, we summarize and
present our results in Sec. Il through some numerical
examples. A comparison of our results to the SNO [4],
SNO + SK  (super-Kamiokande) [40], and also to the
Borexino [41] data for the MSW-LMA survival probability
will be done.

Throughout this paper we use the units 7 = ¢ = kg =
87G = 1 and the metric signature (—, 4, +, +).

II. CONFORMAL COUPLING AND
NEUTRINO OSCILLATION

Our model is specified by the following action, including
a scalar field conformally coupled to matter:

M? 1
s= [ atny= [;R S 0,00,8 V()
+ /d4x£m(lpi’ g,ul/)’ (1)

where g is the determinant of the metric g,,, M, is the
reduced Planck mass, R is the Ricci scalar and £, is the
Lagrangian density of other components generally denoted
by ¥;. g,, is related to the metric g,,, by [42-44]

g/w = A? (¢)g/w (2)

The conformal factor A(¢) is a function of ¢. Various
screening models are resulted by different choices of
the coupling and potential functions, e.g., the chameleon
model corresponds generally to the choice A(¢)=
exp[Mip [ B(p)de], where p(¢) is a field-dependent cou-

pling parameter. A simple case corresponds to a constant

value of f~ 1. In the symmetron model a quadratic
coupling function such as A(¢) =1 +% is chosen to
respect Z, symmetry. In Appendix A, we will review these
two screening mechanisms and point out the required
relations for our discussion. If we want to respect the
weak equivalence principle (WEP), we must take a uni-
versal A(¢) [31]; otherwise, we may have different A;(¢)
corresponding to different ;.

To compute the probability of neutrino flavor transition,
we study the neutrino equation of motion. The neutrino

action is

x=/¢%mmwm—mwn (3)

To obtain the covariant derivative we proceed as follows:
The vierbein or tetrad, €;, are

o

The Dirac y-matrices and the Christoffel connections Ffw
are given by

7 =A@, (5)

and

1:‘;/11/ = Fﬁy - A_l (¢)A’l(¢)gﬂu + A_l (¢)Aﬂ (¢)5ﬁ
+AT (@)AL(D)3,, (6)

respectively. The spin connection is
@ = o’ =A™ (P)A L ()e™ep +AT ()AL (@)™ e, (T)

: : ab _ bu a A pa :
in which wj” = —e"(0,€e] —T',€). So the covariant
derivative is

D, =9, + id’%,,
= D,u +iA™! (¢)Au(¢) (ehyez - eabe;};)zab' (8)

The commutation of y-matrices is unchanged under the
conformal transformation:

- - SO,
X = ? [Ya’ ]/b] = {ea/ﬂ/ s €pY ]
—i

= T ADA D APA (Plenr’

—l1

8 [Yav yb] = Zah- (9)

The second term in (8) can be written in a more familiar
form,
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—i
(ebl/ Z eabeb)zab (yyyb - yuyﬂ)‘ (10)

4

Therefore, the covariant derivative Dﬂ can finally be

written as

- 1

Dy =Dy + ;AT PAD) rur” =77,), - (11)
leading to

P, = A7 (B)pD, + A7 DAL) . (12
One can use this relation to show that
[ VD, -y
— [ Vo oD, =@, (13)
provided that

m'(x) = mA(¢)), (14)

and

y(x) = w(x)A(). (15)

We fix g, as the Minkowski metric 7,,,, so the covariant
derivative D, simply becomes the partial derivative J,,.

A. Neutrino oscillation

Neutrino oscillation or mixing can be explained in terms
of the relationship between flavor eigenstates (v,, v, v;)
and mass eigenstates (v, v, v3). This implies that we can
write each flavor eigenstate as a superposition of three mass
eigenstates. Mixing is given by

|l/z> = X:Um‘|l/az>7 (16)

where

and
|I/a> =1V

are mass and flavor eigenstates, respectively, and U, which
is a unitary mixing matrix called the Pontecorvo—Maki—
Nakagawa—Sakata (PMNS) matrix, can be written as

Uel Ue2 Ue3
U - Uﬂl Uﬂz Ull3 . (17)
U‘rl U12 U13

Dirac Lagrangian density describing both right-handed
and left-handed neutrinos, including their masses and
dynamical terms, is given by [45]

L= ['/mase + ‘C/dyn

Zl/aL ma/}l//iR ZyrlRm/}aD/}L

ap af
+ Z U ooy + VO], (18)

where the m/ ;s are components of a 3 x 3 mass matrix in
the flavor basis, and v/ «(R.L) AT€ 2-spinors implying right-

handed and left-handed neutrinos of flavor a. In addition,
o = (0% 06',06%,6°) and o = (6% —6',—0% —0c*) are
Pauli matrices for right-handed and left-handed spinors,
respectively. We also note that all primes in the formulas
refer to the rescaled relations.

Now, by varying this Lagrangian with respect to the
spinors, equations of motion can be obtained. For the first
one, we have

lOJlaﬂl/aL IaﬂylﬂR = 07 (19)

and the second equation is given by
10RO Vo — MV = 0. (20)

Generally, the left-handed and right-handed spinors can be
defined by

. . 0
V(i) = e (1), e

) ) 0
Voalrit) = e e g, (1), 22

Substituting these relations into Eqgs. (19) and (20), we
obtain

i Fulr) = mgp(r) = O 23)
{ZE - ljr} g,(r) = my, fo(r) = 0. (24)

Notice that the derivatives in the relations above are all
taken with respect to the radial coordinate r, because we
have only considered the radial propagation in our model to
solve Egs. (23) and (24). For neutrino masses much less
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than their energies, the second term in the square brackets
in Eq. (24) is negligible with respect to the first one. By
applying this approximation, we obtain

gy(r) = Merlelt). (25)

and by putting this into Eq. (23), we have

mﬁyma},

d

d —o. 26
L) =T 1) = (26)
where mj, = U USm}, my, = UL;U'm, and we know
UMRIULR)T = 1. Dropping the superscripts L, Eq. (26)
leads us to the following equation:

d 2
i fﬁfr) = Uj,U, (’;_E> Ful(r). (27)
By using f;(r) = U,if.(r) and also Eq. (27) we obtain
df. /2
A (M) 1), (28)

This equation can be easily solved by

£:(r) = fi(ro) exp {—i / Or%dr} . (29)

Therefore, according to Eq. (21), the normalized spacetime
part of the neutrino wave function denoted by ¥(r, 1) and
satisfying the initial condition is given by (see [46-50])

Y (r,t) = e—iE[(’—lo)—(V—rn)]e—ilﬂi(r)D%fi(r)lPi(ro, t)
= F(r.t)¥(ro. t0), (30)

where

Dyj(r) = [Ai(9)A;()AF (D)AT} ()] (31)

As we will see depending on the model, D may be a
damping or an enhancing factor. We will note it by D factor.

m2

3 | At (32)

@i(r) =

is the phase of the oscillation. Note that in (31) and (32),
different A for different neutrinos are generally assumed.
By A; we mean the value of A; at the initial point (ry, #y).
Notice that the initial value of the function F,(r, 1) is
clearly equal to one, i.e., F;(ry, %)) = 1. In what follows,
the above results will be used to calculate the oscillation
probability.

B. Two-flavor neutrino transitions

We first consider two neutrino flavors: [v,) and [v,).
Using (30), the general state of a propagating neutrino in
the two-flavor basis is given by

lu(r, 1)) = cos O (r,t)|v) + sin@¥,(r, 1)|vy).  (33)
We have
[u(ro,t0)) = cosO|vy) Py (1o, to) +sinb|v,) Py (1o, 1y),  (34)

where we have used F;(ry,ty) = 1. Choosing the initial
condition as lP] (ro, to) = Tz(ro, lo) = lPo, we find

lv(ro. to))

where we have used |v,) = cosO|v;) + sinO|v,).

At the moment, we pay attention to the probability of
neutrino oscillation for the case of two-flavor neutrinos,
e.g., v, and v,. As we know, the relation between mass and
flavor eigenstates can be described by a 2 x 2 mixing

matrix as follows:
—sinf v,
) ( ) (36)
cos @ vy

< vy ) ( cosf
Vs ~ \sin®
Using (36), the neutrino state (33) can be written in terms of
flavor eigenstates as

|u(r,t)> = [COSZH‘FI(I",l‘)lpo‘f'SinzH]:z(r, [)IP()HI/6>
+[=F1(r.))®+ F,(r.1)¥]sinfcosblv,). (37)

:‘P0|Ve>7 (35)

The transition probability ratio is given by

e )l )P
Pe = o o)) 2

and by substituting from Eq. (37) we have

, (38)

Py = S Q0)[F, ()P + [Fo(r, )
=20%{F(r,0)F5(r,1)}]

1
= ZSlnz(ZQ) [Dll + D22 - 2D12 COS q)lz], (39)
where @, (r) = @ — ¢, is the phase difference between
different neutrino mass eigenstates. On the other hand, the
survival probability ratio can be obtained by multiplying
(37) by (v,| from the left-hand-side, so we have

[(vele(r. )P

P, = s (40)

and doing some manipulation leads to
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P, = cos* O|F (r,1)|? + sin* 0| F,(r, 1)|?
1 ,
+3 sin?(20)R{F,(r, 1) F3(r, 1)}
= Dy, cos* @ + D,, sin* 0

1
+§D]2 Sin2(29) COS(CDIQ). (41)

These results are similar to the results obtained by
Refs. [51,52]. The conformal coupling beside the influence
on the oscillation phase through @, has a damping or
enhancing effect via D;;:

P, + P, = cos*(0)Dy; + sin?(0) D, (42)
which is not generally equal to one. For D;; = 1, we have
only oscillatory wave functions and the sum of (42) equals
one. Besides the neutrino flavor oscillation we may have

neutrino production or annihilation via the scalar field
interaction. Note that if the conformal coupling is the same

. A} ..
for all the neutrinos, we have D;; = =% for all i, Js.

Let us give some examples: For the chameleon model,
we have A(¢) = exp(fp(r)/M,) (see the Appendix).
Therefore,

D, = TGO BB OB g

ij— €

Pee:|: 23,5,1,)[(/’1 )=, r0>]00829+e Wp[fﬁz ¢2(r0)]sin26:|2

— e =2()sin2(20)sin’ (%(;»)) ,

P, =e#00sin?(26) {Sin2 <d>%(r)) +sinh? GMQ(’”)) ]’
(@4)

where X;(r) = Bildbi(r)=i(ro)]

M,
Bilbi(n)=i(ro)] _ Bjli(r)=;(ro)]
MI’ MI7 ’
If both mass eigenstates are coupled with a same
coupling to the scalar field ¢, ie., f; =p, =p, the

probabilities (44) will reduce to

—L1p(r)=(r . . O]
p,, — ¢ -] [1 _sz(zg)smz< le(r)ﬂ’

q A
P, = 000 G2 (20)sin? (#) . (45)

_‘_/3/[fl?/<’1‘)/1‘¢f(r°ﬂ and A;(r) =

u

To obtain the above probabilities’ values, we can use the
solution to the chameleon equation of motion, which is
solved numerically in Sec. A 1. According to relations (45),
the scalar field not only changes the oscillation phase but

multiplies the probabilities by a scalar field dependent
coefficient (for f; # f,, this coefficient becomes relevant
for the relative number of flavors to each other). The sum of
the probabilities is not one unless ¢(r) = ¢(ry). Hence,
generally

3

Pt = e M,,[(/) r)=¢(ro)] £1, (46)

implying neutrino-scalar interaction and affecting the
neutrino density.
Similarly for the symmetron model, the factor D is

3(¢*(r) — ¢*(r0))
2M? ’

D= [AA;' P =1 - (47)

Using these relations leads us to the following probabilities:

P [ | _3(¢2(F;A—/[2¢2(V0))} [1 _ sin?(20)sin? (@212>}7
P, = [1 —3(‘/’2(2;42"5 Z(ro))} sin2(26)sin’ (@2 ) (48)

We can also obtain the sum of probabilities above, which is
independent of the mixing angle @ and the phase shift ®,,

3(¢*(r) — ¢*(r0))
2M?

PtOt: 1— Sﬁl (49)
Provided that the field ¢(r) > ¢(ry), the sum of the
probabilities is smaller than unity and D may be interpreted
as a damping factor and conversely, for ¢(r) < ¢(rg), the
neutrino density is enhanced.

C. Three-flavor oscillations

We extend our results by taking three flavors into
account. As before, we first have to write the most general
state of the neutrinos. The evolved neutrino state corre-
sponding to the flavor o can be suggested as follows:

le ro, [0

where F;(r, 1) is a function which consists of D and phase
factors. Note that F;(rg, ty) = 1, which explicitly implies
that the initial condition can be satisfied by (50).

In order to obtain the different probabilities for this case,
we shall replace the mass eigenstates by flavor eigenstates.
As in the two-flavor case, the mixing between various
flavors of neutrinos can be described by a unitary mixing
matrix U as follows:

(r.)Uglvi). (50

= ZUai|l/a>’ (51)

or equivalently,
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va) = ZU vi)- (52)

Using relations (51) and (52), the state (50) can be
written as

lv(r, 1))

ZZ‘P ro, to)F

(r UL Upgilvg).  (53)

Assume that at (rg, 7y) we have a specific flavor neutrino,
e.g., v, requires that ¥;(rg, 1y) = ¥, for all i. The prob-
ability amplitude ratio (o — f) is then

[(wple(r. 1))ql?
|{valv(ro. 10))al?

ZF r UL U

= Zj:i r ) Fi(r.1)
i

Therefore, the probability formula is given by

Paﬁ:

2

UgiUpiUgjUp;. (54)

P afp —

2
Z}—i(”» DU Upi

= Z]-"i(r, 1) Fi(r. 1)

Ui UsiUyiUs;.  (55)

C12€13
_ i5
U= —s1223 — C12823513€'

is
$12823 — C12€23813€

where ¢;; = cos 0;;, s;; = sin0;;, and § is the CP-violating

phase. As an example, v,-survival probability is given by

3
P,, C?zc?%e 3z () S12C41t3e En(r) 4 S?3e 355(r)
4 )

+ 2012s12013cos(¢>12)e 3Z2(r)
2 )
+2¢2,¢255%; cos(Dy3)e ()

+ 257,157 cos(Dgg e L), (59)

where X;;(r) is defined below Eq. (44). As can be seen,
the probabilities for the three-flavor case are so tedious
to calculate directly for the matrix elements of (58)
and they are beyond our scope in this paper. Instead,
we are going to investigate a simpler case in the next
subsection.

Now, we can calculate this formula in more detail by using
the explicit forms of the functions F,(r, 7) (30). Thus, we
have

Poy = ZDUU“ﬁ ~id; (56)

where Z/{;’j/} = U;iUﬁ,»Ua»U*. and ®@;; is the phase shift.

a[)’ a1« g P
() Z/[ [Z/{l]] ’m[ul]]_
N [Z/{ #], and by doing some manlpulatlon the relation (56)
can be rewritten as

3
Pus = ZDHUZ” +2 Z Dijm[uaﬁ]

From properties D;;(r) =

1<i<j<3
_41<Z D, R[UT] sin < > )
i<j<3
-2 Y DySUT]sin(@;). (57)
1<i<j<3

where the two first nonoscillatory terms belong to the
damped (enhancing) neutrino mixing. From another stand-
point, the last term includes the imaginary sector of
the mixing matrix, so this term might correspond to the
CP-violation.

To calculate probabilities P,,, P,,, etc., we have to apply
the general form of the mixing matrix [53],

—i5
S12€13 S13€
is
C12€23 — S12523513€ $23C13 | (58)
i
—C12823 — S12C3513¢€" C€23C13

1. Neutrino decay: Stable v, and unstable v,

We assume that the lightest neutrino mass eigenstate, v,
is stable during neutrino propagation, i.e., D;; =1,
whereas the decay of v,, as well as mixing among three
neutrino eigenstates, has an effect on the deficit in the solar
neutrino flux [54]. This statement means that we have only
one coupled mass eigenstate affected by the scalar field. In
such a case, the WEP is violated in this level (f; =0,
whereas f#, # 0). Note that there is also the possibility that
the WEP is violated at the macroscopic level in the
screening models, but in regions where the scalar field is
highly screened, WEP violation may not be detected by
local gravitational tests [33,55].

For this case, we assume that the U ,; element of the matrix
(58) is approximately negligible. The reason is that experi-
ments result in small values for mixing angle 6,3, e.g., in the
Daya Bay (sin® 26,5 = 0.0856 + 0.0029) [56] and RENO
[sin? 20,5 = 0.0896 & 0.0048(stat) & 0.0047(syst)] [57].
Therefore, the PMNS mixing matrix (58) reduces to
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C12 S12 0

U= | —sppcs cpcz sn3

S12823  —C12823 €23
Assuming |v, ) as the initial state and using the unitarity of the

above matrix, we calculate different probabilities from
Eq. (57) as follows:

1
P, =c}, + 5D+ 3 VDsin?(26,,) cos @y,
1. =
Pey = Zsmz(Zﬁlz)c%[l + D — 2V Dcos @12],

1
P, = Zs1112(2¢912)s§3[1 +D-2VDcos®p,],  (60)

where D = D,, is the D factor corresponding to v,-decay.
The observed neutrino rates in the SNO experiment from
the charged current, neutral current, and elastic scattering
interactions can be combined to place constraints on the
separate ¢(v,) and ¢(v,) 4 ¢(v,) fluxes, which are respec-
tively related to P,, and P,, + P,,. Both of these proba-
bilities and also their sum, i.e., Py = 3, + s3,D, are
independent from the atmospheric mixing angle #,3. On
the other hand, the deficit in the rate of the solar neutrinos in

this model on the Earth, i.e., 6P,5 = Pg;}ndamped) _ pg;‘}amped)’
can be obtained as

8P.x =1 =Pyt = (1 = D)si,. (61)

The subscript X refers to the particle corresponding to the
(dark energy) scalar field (¢) to which neutrinos can decay.
This decay is provided by the conformal coupling, which
leads to neutrino-¢b interaction as can be seen from the
equation of motion (i7*D, —m)y(x) =0 [see Eq. (3)],
where 7D, is given by Eq. (12). As the neutrino and the
scalar field exchange interact through the conformal cou-
pling, their density continuity equations are modified.
This has been used in [24] to alleviate the coincidence
problem and to explain the onset of the present acceleration
of the Universe in the nonrelativistic era of mass varying
neutrinos [18].

As it can be seen from (61), 6P,y depends on the mixing
angle 6, as well as the D factor. For increasing functions
¢;(r) we have D <1 and so there is a possibility for
electron-neutrinos traveling from the source to the detector
decaying to ¢ particles. Comparing the D factor of our
model [Eq. (43), with #; = 0 and $, # 0] to the damping
(or depletion) factor presented in [38,54,58], i.e.,
exp (—L/kE,), suppresses the large values of the coupling
parameter f3,. The solar neutrino lifetime k,(= 7,/m,) is
then given by

B 2LM, ©2)
 3BE(H(L) — p(Lo))

ks

where L ~ t (for ultra-relativistic neutrinos) is the distance
between Earth and the Sun. The behavior of lifetime k, in
terms of S, is plotted in Fig. 1. We picked the numerical
values 7~ 500 sec. for distance from Earth to the Sun and
neutrino energy E, ~ 10 MeV for ®B solar neutrinos. Fitting
all three phases of SNO data for ®B solar neutrinos [38,59]
and combined SNO + other solar neutrino experiments [38]
yield k, > ko = 8.08 x 1075 sec /eV at 90% confidence
(B, < 54.1735) and ky > kg = 1.92 x 1073 sec /eV at
90% confidence (f, < 11.1235), respectively.

These requirements restrict the effective mass of the
chameleon scalar field deep in space (in the dilute regions)
[see (AT)]: i < 2.99 x 1071 eV (for fB,) and meg <
9.11 x 1072 eV (for f,).

For this case, we also obtain the discrepancy between
undamped and damped probabilities for three cases sep-
arately. Using Eq. (60), we have

8P,. =53 (1=VD)[(1+VD)s?, +2c},cos(®y,)].
6Peﬂ:c%3s%2(1—\/Z_))[(l—l—\/l_))c%z—Zc%zcos((Dn)],
5P€T:S%3s%2(l_\/5)[(1—'—\/’5)6%2_26‘%2("05(@12)]' (63)

For example, if we are interested in oscillation of neutrinos
produced inside the Sun for the case 6P,, > 0, we would
have cos(®;,) > —tan®@,, where we have assumed that
/D ~ 1 outside the Sun, since both chameleon and symme-
tron fields are nearly constant deep in space. To have positive
6P, and 6P,,, however, the trivial condition cos(®y,) < 1
has to be satisfied. Therefore, the resulting range for the
phase difference is —tan? 8, < cos(®;,) < 1.

D. Flavor conversion in matter: The MSW effect

The weak interactions of neutrinos in matter modify the
flavor conversion relative to the cases of propagation in the
vacuum, as predicted decades ago by Mikheyev, Smirnov,
and Wolfenstein and dubbed the MSW effect [7,8]. After
solar neutrinos are produced in the solar core and during
their travels inside the Sun, they scatter forwardly from
electrons until they leave the Sun and propagate through the
vacuum to the Earth and are finally detected, e.g., in the
SNO detectors. Therefore, we should take this effect into
account. We start with the following rescaled Hamiltonian
of the system

e Am”? [ —cos260 + A sin 260 (64)
 4E sin 20 cos20+A |

where A is a dimensionless parameter that originated from
v, — e~ scattering in matter, which is defined by
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FIG. 1. Neutrino lifetime ratio k, versus f,.
2V2G rE,n, Another screening mechanism, the symmetron model, is
A= N2 (65)  based on the spontaneous symmetry breaking discussed in

where G is the weak Fermi constant and 7, is the number
density of electrons in the bulk of the Sun. Assuming A =
cos 26 leads us to the resonance point indicating maximal
mixing in matter. The number density at the resonance
point is then given by

B c0s(20)Am" (rygg)

Ne(Tres) = 2\/§GFEI/ (66)

According to Eq. (65) in the dilute regions, parameter A
takes a small value so that according to the Hamiltonian,
Eq. (64), this implies an ordinary mixing. On the other
hand, in the dense regions, A is large enough to dominate in
the diagonal elements of the Hamiltonian denoting mixing
suppression in such regions, e.g., in the solar core, where
neutrinos are born [46].

Remember that the rescaled mass-squared splitting
Am"(r) depends explicitly on the scalar field values [see
Eq. (14)]. The chameleon screening mechanism is specified
by its varying mass so that in the dense regions, where
parameter n, is considerable, this scalar field has a large
mass hiding it from detectors. From properties of the
chameleon (see the Appendix), we see that chameleon takes
small values, @minin < M, in such regions and, conse-
quently, Am’> — Am?. In the dilute regions, however, where
the chameleon has a small mass and the parameter A
becomes small, the chameleon acquires larger values
Pminout ~ M ,, whichresultsin Am'> = exp(2f¢/M ,) Am?.

Appendix A 2. The Z,-symmetry will be broken in the low
density environments, which yield @minouwt 70 [see
Eq. (Al5)], and parameter A is small, so neutrinos
experience ordinary oscillations. The restoration of the
Z,-symmetry, on the other side, imposes ¢ninijn — 0. In
such a region, A becomes dominant and, consequently,
gives mixing suppression [46].

The MSW flavor conversion in the Sun can be consid-
ered as a level crossing (or resonance) at which the most
flavor change occurs when neutrinos cross this point. The
first analytical formulas for adiabaticity violation in the
Sun were calculated by Parke [60]. The standard expression
for “jumping” probability between v and v, inside the Sun
and at the resonance point is approximately given by
[54,61-63]

1—e@ (67)

zAm” | din(n,)
E, dr
where the electron number density of the Sun is considered
to have approximately an exponential form, i.e., «
exp(—r/Rgy) [63]. Using Eq. (67), we predict that the
LMA solutions of neutrino oscillations can have the most
influence on the decay process. As we know, v, is produced
mostly as the mass eigenstate v, in the solar core [62].
Figure 2 shows the behavior of P, as a function of the
mixing angle @ so that for the large values of this angle P ;
is too small, and then v, does not jump to v; at the level-
crossing. This means that the possibility of v,-decay

-1

Tres?

The parameter a in the exponent is equal to
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FIG. 2. Jumping probability vs mixing angle & for a ~ 107>

survives. On the other side, P is appreciable for small
mixing angles and, hence, v, jumps to v, which has been
assumed to be the stable mass eigenstate.

This stability destroys the neutrino decay possibility. The
LMA solution has, therefore, the strongest influence on the
neutrino decay. The observation of electron antineutrino
(v,) flavor oscillations by KamLAND [64] presented that
neutrino mixing is mainly responsible for what had been
known as solar neutrino problem. The mixing angle (0,,)
extracted by KamLAND [64] is quite consistent with
the MSW-LMA solution obtained by solar neutrino
experiments such as SNO [59] and SK [65]. The coinci-
dence of the mixing parameters (6,,, Am3,) determined in
KamLLAND and solar neutrino experiments may imply the
confirmation of CPT invariance [66].

To discuss the probabilities from the MSW effect [54,62]
in the Sun, which are a mixture of flavor oscillation and
neutrino decay, we proceed as follows: As discussed in
Sec. IIC 1, v,-instability with mixing causes the solar
neutrino problem, whereas the mass eigenstate v; remains
stable, thus, P, and P,.D are respectively the probabilities
of detecting v; and v, on Earth. P; (P,) defined as the
probability of v, — vy (v,) can be written as

Pl:I—PZZPJSin26m+(1—PJ)COS29m, (68)

where 6, is the mixing angle in the matter defined by

tan 20, = cossi%f + [67]. Then using the unitary mixing

matrix in Sec. Il C 1, the probability formulas are given by

P, = ci,P| + D°si,Ps,

P, = c5351,P1 + DOc33c1, P,

P, = s3351,P) + DOs3;¢1, Py, (69)
where DP is the D factor inside the Sun and we have also

considered DVa° ~ 1. To see the damping (decay) behavior
only, the phase parts in the probabilities have been ignored.

III. RESULTS, DISCUSSIONS,
AND CONCLUSION

We have studied a scenario about damped neutrino
oscillations in a curved spacetime, which consists of a
scalar field conformally coupled to other ingredients such
as matter and neutrinos [see Eq. (2)].

To derive the oscillation probabilities, we studied the
behavior of the Dirac equation under the conformal trans-
formation, which reduces the model into the flat spacetime
with a rescaled wave function and a coordinate dependent
mass [see Egs. (14) and (15)]. By solving the mass-varying
Dirac equation in the flat spacetime, we derived mass-
eigenstates of the neutrinos [see Eq. (30)]. The presence of
factor D;; [see (31)] and the deficiency in the total
probability can be interpreted as the interaction of the
neutrino with the scalar field, allowing them to convert to
each other. To be more specific, we considered solar
neutrinos and consider two examples: the chameleon and
the symmetron models, which we review briefly and point
out the required relations for our discussion in the
Appendix. In these models, the effective masses depend
explicitly on the local matter density [see Egs. (A7) and
(A16)] leading to the screening effect in a dense area.

The dynamics of the scalar field are determined with a
good approximation by the matter density. We first expand
the scalar field around its background value and obtain an
equation for the fluctuation [see (A9)]. Inside the Sun, the
density [pg(R)] is shown in 9, and the scalar field equation
is numerically depicted in Figs. 10 and 11 for various
values of the coupling parameter  for the chameleon, and
is depicted in 12 for the symmetron. As can be seen from
(32), the chameleon scalar field affects the oscillation
phase. We then found the formulas for damped transition
and survival probabilities and also obtained a value for
violation in the total probability conservation [see Eq. (61)]
for both two-flavor and three-flavor neutrino oscillations.
Finally, we studied the nonoscillatory effects of neutrino
forward elastic scattering from electrons in matter, the
MSW effect, in Sec. IID. As we concluded, the LMA
solutions of neutrino oscillations are the best solutions
describing the decay process in this model.

Now let us illustrate our results via some numerical
examples. In Fig. 3, we plot the survival probability P,, as a
function of (neutrino energy/solar radius) for the two-flavor
case to see the effects of the conformal coupling on the
oscillation phase. It should be noticed that we have picked
the numerical values n = 1, M ~2.08 keV [32], the mass-
squared splitting Am?> = 7.4 x 107 eV?, and the mixing
angle tan’@ = 0.41 for the LMA solution of neutrino
oscillations [68]. We have also picked three values for
coupling strength f in the chameleon model, panel 3(a).
In the chameleon model proposed by Khoury and
Weltman [69], scalar field is coupled to matter with
gravitational-strength, i.e., f ~ O(1) (gray curve) in agree-
ment with expectations of the string theory [70], or smaller,
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ie., f <k 1. Setting f~ 0 reproduces the no-chameleon
figure (black dashed curve). On the other hand, as the
satellite experiments [71-73] have proposed, they are
unable to put an upper bound on f [70], so we plotted a
figure for f~ O(10%) (black solid curve). The resulting
profile for the survival probability is sensitive to f such that
this probability will be suppressed with intense oscillations
when f increases. Note that the choice f = O(10?) is not
suitable as it gives P,, = 0.019 at energy E, = 10 MeV,
which is negligible compared to the experimental values
(PSNO = 0.340 + 0.023 [4] and PBOr®xino — (0,350 £ 0.090
[41] for ®B neutrinos). Also, the probability P,, and its
oscillating behavior affected by the symmetron mechanism
is presented in the panel 3b for three values of the mass-
scale parameter M < 107*M p- This constraint on M is
imposed by local tests of gravity [35,74]. Note that y ~
10712 eV [46], A ~ 1070 (4 = 107¢ [35]). As shown in this
figure, the choice M < 107'M » 18 not consistent with the
observational results.

Fig. 4 shows the survival probability as a function of
ratio (neutrino energy/solar radius) assuming tan’ 0, =
0.41, sin” 20,3 ~ 0.99, sin” 26,5 ~ 0.09, and

Am}, =74 x 107 eV?,
and

|Am3;| = 2.5 x 107 eV?,
for the three-flavor case [68] in the presence of the
chameleon scalar field. We have also chosen the numerical

values n =1, M =2.08 keV [32]. P,, is depicted for
various orders of magnitude of the coupling parameter to

Survival probability Pee —Chameleon

Ey/R [MeV/km]

(a)

FIG. 3.

compare the probability amplitude and phase of oscillations
for different fs. The gray curve is plotted ignoring the
effects of the chameleon. As can be seen, the probability
amplitude is suppressed with rapid oscillations for 5 > 102
(black solid curve), such that it has an intersection with
none of the experimental values for survival probability of
8B neutrinos (E, ~ 10 MeV) measured by SNO (PSNO —
0.340 +0.023) [4] and Borexino (PBorexino — (350 +
0.090) [41], for instance. As an example, P, = 0.349
for f~ 1 and has energy E, = 10 MeV (®B solar neutri-
nos), whereas P,, = 0.038 for  ~ 10% and has the same
energy. This inconsistency in survival probability for
large f can be addressed to some similar discussions in
Sec. IC 1.

Figure 5, however, shows the effects of the symmetron
on the P,,-amplitude and its phase. Different values of M <
107*M » and also a case in the absence of symmetron (gray
curve) are considered. As a numerical example, survival
probability is equal to P,, = 0.067 for M = 10~'M » and
has energy £, = 10 MeV. As a result, probability P,, will
be suppressed for M <107'M »» With no experimental
evidence (see black solid curve) [4,41].

The electron-neutrino survival probability behavior is
also shown as a function of chameleon-matter coupling S
in Fig. 6.

Figure 6 shows a damped oscillation, of which its
damped part, illustrated by the upper envelope curve (light
gray curve), is trivial because of the D factor behind the
oscillatory term, which is responsible for its oscillation. As
can be easily seen, P,, has rapid oscillations for increasing
f, which is a clear sign of the effect of the chameleon on the
phase. Note that we have used the LMA mass-squared
splitting and mixing angle, as mentioned before, and this

T T T T T T

TOF ) e mmmmmm o e :
=
= !
2 088/ 21
£ ] M~10-"Mp.
= ]
w1 1
| | M~10-6Mp
3 0.6 ! i
D; oo NN ] M~10-5Mp
= 1 I
= 1
g 04 | i
=)
8 AL
= MWNANC—~— —
= 0.0 4 f N X . .
é 0.2F 002 004 006 008 010 012 0.14 1
a

0.0" - ) 4
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Ev/R@ [MeV /km]
(b)

Plots of P,, in the presence of chameleon and symmetron scalar fields for the two-flavor neutrino oscillations. Both panels are

figures depicted for the survival probability in terms of (neutrino energy/solar radius). Different curves describe P,, corresponding to
various values of the chameleon-matter coupling £, see left plot. Right panel, however, is plotted for P,, in the presence of symmetron
for y ~ 10712 eV, 2 ~ 1070 and for three various values of mass-scale parameter M. The solid horizontal line in each inset shows the

minimum values.

065012-10



DAMPED NEUTRINO OSCILLATIONS IN A CONFORMAL ... PHYS. REV. D 103, 065012 (2021)

1.0F ' ' ' ' ' ' ' ' ' ' ' ' ' ' B

o6 o B3 T o102 -

No Chameleon 4

04r

0.2F

Survival probability P —Chameleon

0 2 4 6 8 10
E,,/RO [MeV /km]

FIG. 4. In this figure, we have depicted the electron-neutrino survival probability in terms of ratio E,/Rg, for n =1 and
M = 2.08 keV. Different curves describe the P,, for various values of the coupling parameter . Rapid oscillations by increasing 3 is a
result of the chameleon-dependent oscillation phase. The gray curve represents the survival probability in the absence of the
corresponding scalar field. The solid horizontal line shows the minimum values.
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FIG. 5. Describes the behavior of the P,, in the presence of the symmetron scalar field, for u ~ 10712 eV, 1 ~ 107" and for three
various values of the mass-scale parameter, M. The gray curve represents the survival probability in the absence of the corresponding
scalar field.
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FIG. 6. The behavior of P,, versus the chameleon-matter
coupling 1072 < f# < 15 for solar and high energy neutrinos. Note
that Am?> = 7.4 x 107 eV? and tan’6 = 0.41. The envelope
function (light gray curve) shows how P,, gradually drops when
p increases, due to the existence of the D factor.

figure has been plotted for solar and high energy neutrinos
as shown in the legends.

The solar neutrino problem can be solved by considering
decay processes as well as mixing. There are generally
two kinds of decays depending on whether the final
state particles are only invisible, such as ¢-particles, sterile
neutrinos (generally nonactive neutrino flavors), Majorons,
etc., or if they include visible particles too, e.g., active
neutrino flavors [75]. An applied fit to BSO5(OP) data of
solar neutrinos [76] can lead us to the zeroth-order
measurements 0.292709% and 0.1270)3 for the electron-
neutrino survival probability and the conversion probability
to unknown states respectively [77]. The latter value of the
conversion probability (neutrino decay to unknown states)
can be interpreted as ¢-particles.

To clarify our model, we take a numerical example
for 6P,y. We need first to look for the numerical values
of the field, which minimize the effective potential for
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0.04F

Loss of total Probability 0Pex

0.02f

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
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(a)

Loss of total probability 6P.x

background matter density on the cosmological scales,
i.e., po~ 107> g.cm™3 [78]. This means that we first set
Vettp = 0 [see Eq. (A6)], then we have

¢0 - &M4+n:| #1
p poMy,]

M

Setting parameters n = 1, f~ 1, and M = 2.08 keV [32]
for the chameleon field gives us ¢y~ 0.609074M ,. As
mentioned earlier, our choice of coupling parameter f is
consistent with gravitation-strength interactions [79]. Using
all these and also the numerical values for the symmetron
field, i.e., u = 107'2, 1 = 107, and M ~ 10*M ,, we plot
Fig. 7, which shows the amount of the discrepancy in the
damped total probability from unity for two cases of
the chameleon and symmetron scalar fields. In both panels,
the discrepancy grows to a constant value at R = 1 and
remains constant outside the body to the Earth. The left
panel of Fig. 7 shows that the numerical behavior outside of
the Sun agrees well with the numerical value presented
above. The discrepancy in total probability approaches the
value 0P,y ~0.118. This value is much larger than that
for the symmetron field depicted in the right panel of
Fig. 7. This difference may refer to their different coupling
functions.

Figure 8 illustrates the effects of matter (in the bulk of the
Sun) called MSW effect on solar neutrinos discussed in
Sec. I D. Both plots show the electron-neutrino survival
probability on the Earth as a function of its energy in MeV.
We have also depicted the P,,-experimental values from
the Borexino data [41] of pp, 'Be, pep, and ®B fluxes (gray
points). Black point also represents the SNO + SK ®B data
[40]. A light gray band in both panels is the best theoretical
prediction of P,, (within +16) according to the MSW-
LMA solution [41]. We guess that the best fit to this curve
can be written as

15% 10736 F

1.x107% b

5.x10737 |

S S S P TS |

0.0 0.5 1.0

Fractional radius R

(b)

FIG.7. The losses in the total probability for the chameleon model with # ~ 1 (a) and for the symmetron model with M ~ 10~*M » (),

inside and outside the Sun.
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FIG. 8.

Electron-neutrino survival probability on the Earth as a function of its energy. The left panel describes P, including the MSW-

LMA effect in the presence of the chameleon scalar field for four different fs, whereas the right panel shows how the MSW effect
governs P,, in the presence of the symmetron scalar field for four different values of mass-scale M. In panel (b), curves of M ~ 10> M »
and M ~ 107°M » are so close such that they seem overlapped. Note that the light gray band in both panels illustrates the theoretical
prediction of v, survival probability by Borexino for MSW-LMA within +16. Experimental values are also shown for Borexino (gray)

and SNO + SK ®B (black) data.

P,.(E,[MeV]) ~0.322 + 0.244¢ 0256

To draw these figures, we have assumed that
Am? ~2.49 x 10~* V2, tan? 6, ~0.43, and V2Grn, ~

2.27 x 1077 (1\%;) [67]. Different curves have been plotted
according to the present model of the MSW effect, which
are approximately consistent with experimental (Borexino)
values in the low energy range (pp, ‘Be, and pep) and also
Borexino and SNO + SK in the high energy range (*B),
where changing flavor for the latter range is caused mostly
by matter effects in the bulk of the Sun [41].

Data analysis of future neutrino flavor conversion mea-
surements, as has already been done by neutrino experi-
ments such as SK [65,80], HK [81], and JUNO [82], and
determining the different mixing parameters in the frame-
work of the nonstandard scalar-neutrino interactions might
improve the values of these parameters. Besides, such
nonstandard interaction effects on the mixing parameters
will help explain the difference of Am2, extracted by solar
neutrino and KamLAND experiments [66,83].

The Deep Underground Neutrino Experiment (DUNE)
[84], as a long-baseline neutrino experiment with a well-
understood beam and trajectory, is ideal for probing matter-
scalar field nonstandard interactions affected by the mass
density of the Earth. DUNE will collect much more data
than the current experiments with improved systematic
uncertainties [85,86], which might help to reach a higher
sensitivity to the neutrino-scalar interactions and active-to-
sterile neutrino mixing. Since the chameleon and symme-
tron are environment-dependent scalar fields, the Earth’s
density [87] might be taken into account in a neutrino-
scalar coupling discussion, as has been done for the Sun in

the present paper. Furthermore, to restrict the coupling
parameter f8; more precisely by the constraints on neutrino
lifetime, the DUNE data will be used [88].

APPENDIX A: SCREENING MECHANISM

This section provides a brief review of two screening
models: the chameleon and the symmetron models, and
their equations of motion in a nearly flat static spherically
symmetric spacetime.

1. Chameleon mechanism

This model is specified by a runaway power law
(continuously decreasing) potential of the form
V(g) = M*"g, (A1)
where r is a positive number, and M is a parameter of mass
scale. The chameleon scalar field’s main feature is that its
effective potential depends explicitly on the matter density.
By varying the action (1) with respect to the field, we obtain
the following equation of motion:

O =V 4= A ()A 4(0)FT . (A2)
where T,w = (-2/V9)6L,,/ 53y, is the energy-momentum
tensor, which is conserved in the Jordan frame,

v, " =0. (A3)
From the equation of state p = wp we know the relation-

ship between matter density in FEinstein and Jordan
frames [89],
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p = 4050 (), (Ad)
For nonrelativistic matter, ie., w~0, we have
T =—p=—A"3(¢)p. So Eq. (A2) yields

|:|¢ = V,qg + Ay¢p, (AS)

where the right-hand-side of this equation can be written
as the derivative of the effective potential Veg(¢p) =
V() + A(¢)p, with respect to the field ¢ where p is the
matter density. The minimum of the potential is determined
by using the equation Vg 4(¢min) = 0, which leads to

M4+nM -
n p:| n+l (A6)

Pmin = [ Bp

Because the cosmological and local gravity experiments

impose the condition 1{7
P

effective mass of the field is given by

< 1, we assume that eMP ~ 1. The

p W’mln
Mo = Vet gp(Dmin) = V pp(Pmin) + M2 eMr
n(n+ 1M*" 2
_ nlnt M pb (A7)
¢min MP

Fémin
where we have again used the assumption e "r = 1.

To solve Eq. (AS) in a static, spherically symmetric
background we assume

%:O at r—0,
¢— ¢y at r— oo, (AR)

where the first condition is for nonsingularity of the scalar
field at the center of spherically symmetric body, while the
second implies that the field converges to a constant at
infinity.

The solution to Eq. (AS5) can be obtained by expanding
the field about its background as ¢(r) = ¢y + 5¢p up to
linear order, where ¢, is the uniform background value and
O¢ is the perturbation induced by a spherically symmetric
body like the Sun whose radius is Rg. Therefore the field
equation turns into

d*5¢ 2d6¢
dr? rodr

ﬁ(¢ )

P

m|n(¢0)5¢ + p(r), (A9)

where the solution to this equation in dilute regions outside
the body (R := é > 1) with constant density py < pg is

given by

_mmmRo (R 1)

6¢0Ut( )

Spin (1 ) (R>1) (Al0)

where 6¢in (1) is the field value at the surface, i.e., R = 1,
coming from the continuity condition and p, is the average
density of the body. Adding this solution by the back-
ground value, we obtain the following solution for outside
the body:

~MpminRo (R— 1)

Dou(R) = o + (1) e (R>1) (Al

As can be seen from this, the scalar field induced by a
celestial object, e.g., the Sun, is too small in large distances
such that we can ignore its effects on another object in the
solar system scale. For inside the object, however, the
density distribution of a spherical body like the Sun is a
function of its fractional radius R =r/Ry, as depicted
in Fig. 9.

With this density function, by solving numerically
Eq. (A9) we obtain an interpolating function with a
gravitation-strength coupling f# ~ 1, as shown in Fig. 10.
In this figure, both the resulting perturbation and the whole
field inside the Sun are depicted.

We note that the resulting field profile can be sensitive
to the change of the coupling f, see Fig. 11. This figure
shows the behavior of the chameleon scalar field. We have
used the value of 5¢b,(R) at the surface of the Sun. The
effects of the coupling parameter $ on the chameleon field
for three different values of € {1, 10,100} are shown,
implying that the chameleon tends to smaller asymptotic
values when £ grows. We also note that the field’s allowed
range becomes smaller when f reduces; hence, the field is
being constant for f < 1.

2. Symmetron mechanism

In the symmetron screening mechanism, the screening

is realized by symmetry restoration in sufficiently
[T T T T T T T T T T T T T T T T T ]
100 ¢ E
7 [
2 10g ]
-
- i
=
[75]
P :
o
=]
=
Z 0.10¢ |
3
A
001 ¢ E
:1 I I I 1 I I I 1 I I I 1 I I I 1 I 3
00 02 04 0.6 038

Fractional radius R

FIG. 9. The solar density distribution function in terms of the
fractional radius R = - ThlS figure has been drawn by BP2004
data [90].
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FIG. 10. The chameleon field profile for inside the Sun (R < 1) with a R-dependent mass density distribution function. Note that we
have assumed that f ~ 1,n = 1, py ~ 10711 eV*, and M ~ 2 keV [32]. (a) The perturbation 5¢;,(R) in eV. (b) The chameleon inside the

Sun in eV, ¢in(R) = ¢ + 5¢hin(R).
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FIG. 11.

This figure shows how the coupling parameter might affect the chameleon inside and outside the Sun. The chameleon in each

case approaches to an asymptotic value outside the body, which increases with decreasing . The field values are all in eV.

high-density regions in which ¢ = 0 where the symmetron-
matter coupling tends to zero. In low-density regions,
the Z,-symmetry is spontaneously broken and (¢) # 0.
An example of a Z, symmetric coupling function and
potential is:

1 ) ¢4
1 1
Vig) =V, — §H2¢2 + 1/1454, (A12)

where M and u are two parameters of mass scale and 4 is a
dimensionless parameter. The equation of motion of the

scalar field in a static, spherically symmetric background is
given by

iy 2dg

-—— Al3
dr*  rdr ( )

= Vet p (@),

where the effective potential up to a constant is as follows:

1

1
Veit () (p _Pc>¢2 +Zl¢4»
where p. = u>?M? is the critical density. The breaking or
restoration of Z,-symmetry depends on whether the matter
density is smaller or larger than the critical density. In the
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dilute regions the symmetry is spontaneously broken
and the scalar field acquires a vacuum expectation value
(VEV),

pz:l:'u

H
inout = £—=4/1—— —.
¢m|n, t ﬂ pc ﬂ

For the Sun, the scalar field effective mass m

(p<pe) (ALS)

2 = d2veﬂ |
min = "d¢? Pmin

is then

~Vap,

min = U “—_IN”N’ R<l

where, as before, p, is the background matter density, p is
the solar average density, and R = 3~

(R>1)

(A16)

By expanding the scalar field around ¢, and keeping
only the leading term, we obtain the equation of motion
inside and outside a body like the Sun as follows:

op 2 dog
dR*> R dR

= Remi (3 + o). (R<1) (Al7)

where we have used the approximation Vg (¢) ~ 2 7o ¢ and

@0 = @min.ow 15 the field value at the edge of the Sun [91].
The solution to the equation is

Sin(R) = =~y + sinh(maRo)R).  (R<1)  (Al8)

where A is a constant to be determined by continuity
conditions at the boundary. For the outside, the equation of
motion is given by

Psp 2 dég
a2 "R ar ~ Romaudd:

(R>1) (A19)

This equation has an analytical solution, which can be
written as follows:

e‘(’"oulRo)R
Spout(R) = BT’ (R>1) (A20)

8x 100 |
6x 100 F

4x100F

Symmetron scalar field ¢(R)

2% 100

1 10 20 30 40 50
Fractional radius R

FIG. 12. The symmetron field (in eV) of Eq. (A22) vs the
fractional radius of the Sun.

where B is a constant. To specify the constants A and B, we
should use the continuity of 5¢»(R) and its first derivative at
the R = 1, which leads us to

L +moRo

A— - )
¢OminR® cosh(minRg) +moytRe sinh(minR )

minR g cosh(minRy) —sinh(minRy)
minR cosh(minRo ) +mouRe sinh(minRe)
(A21)

B— _¢0 emoutRO

By assuming mijpRg > 1 and mq Ry < 1, and after some
manipulation, the solution is derived as

bin(R) = $o sinh((mjnRg)R) (R<1)
" minRQ COSh(minRo) R s
mlnRo - tanh(mlnRO) e_momRo(R—l)
R) = —
Foulfl) = =0 MminRo R
(R>1) (A22)

In Fig. 12, we have plotted the symmetron scalar field as a
function of the fractional radius R. Note that we have
picked the numerical values M ~ 107*M ,, u = 107"* eV
and A ~ 107° for model parameters. As in the chameleon

case, the symmetron tends to an asymptotic value ¢, at
large distances from the Sun.
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