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Flavor transitions of neutrinos with a nonstandard interaction are studied. A scalar field is conformally
coupled to matter and neutrinos. This interaction alters the neutrino effective mass and its wave function
leading to a damping factor, causing deficits in the probability densities and affecting the oscillation phase.
As the matter density determines the scalar field’s behavior, we also have an indirect matter density effect
on the flavor conversion. We explain our results in the context of screening models and study the deficit in
the total flux of electron-neutrinos produced in the Sun through the decay process, and we confront our
results with observational data.
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I. INTRODUCTION

One of the most interesting subjects in particle physics
and cosmology is the physics of neutrinos, which has
received a lot of attention, especially in the beyond standard
model theories. In the standard model of particles, neu-
trinos were assumed to be massless. Massive neutrinos
were first proposed theoretically in [1,2] and after some
decades has gained severe attention by the detection of
deficits in the number of electron neutrinos received from
the Sun [3,4], and in the number of atmospheric muon
neutrinos [5,6]. We may explain the discrepancy between
the expected number of neutrinos and the observation by
considering the flavor state as mixed mass states. This gives
rise to neutrino flavor change via oscillation during their
travels (in the atmosphere). Also, the influence of local
electron density on electron-neutrino density gives rise to
adiabatic flavor conversion (as in the Sun) through the
Mikheyev-Smirnov-Wolfenstein (MSW) effect [7,8]. Apart
from the standard weak interaction, one may consider
nonstandard neutrino interactions (not included in the
standard model) [7,9,10] and investigate their influences
on neutrino oscillations [11]. Nonstandard interaction of
neutrinos and exotic fields has also attracted much attention
in cosmology [12–17]. These additional fields may be the
dark energy describing the present cosmic acceleration of
the Universe. Inspired by the similarity of the neutrino mass
squared difference and the scale of dark energy, mass

varying neutrinos (whose masses depend on a light scalar
field) were introduced in [18–20] and used in [21,22] to
discuss the solar neutrino flavor survival probability. The
dependence of the neutrino mass on the environment due to
the interactions with dark sectors was also studied in [23],
showing that the interaction alters the oscillation drastically
by affecting the neutrino mass.
In [24–26], a model for the Universe’s cosmic accel-

eration [27] based on quintessence-neutrino interaction
through a conformal coupling was proposed such that
when the massive neutrinos became nonrelativistic, by
activating the quintessence they ignited the Universe’s
acceleration. In this class of scalar-tensor dark energy
models, the quintessence interacts with matter (including
neutrinos) through a conformal coupling [28–30]. This
coupling may give rise to the screening effect as was
studied in the chameleon [31–34] and the symmetron
[35,36] models. In these screening models, the scalar
field’s behavior is specified by the matter density such
that in a dense region, they are screened. In this paper, we
aim to study the effect of such a conformal coupling on the
neutrinos’ densities and oscillations. As the scalar field’s
behavior is specified by the matter density, we expect to
encounter an MSW-like effect but caused by a nonstandard
interaction, i.e., the conformal coupling. The interaction
with the scalar field by modifying the neutrino effective
mass and its density provides a mixed situation [37] in
which the neutrino deficit may be related to both the
neutrino oscillation and neutrino decay. Such neutrino
decay models as a second-order effect behind the solar
neutrino problem can better fit solar neutrino data [38],
which can constrain the lifetime (τ2) of the neutrino mass
eigenstate ν2. In the decay formalism presented in [38,39],
since the actual neutrino masses (mi) are unknown, the
decay of mass eigenstate ν2 is completely explained by the
ratio τi=mi. Fitting to all phases of 8B solar neutrino data by
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the Sudbury Neutrino Observatory (SNO) [38] constrains
the ratio τ2=m2 to be >8.08 × 10−5 sec =eV at a 90% con-
fidence level.
This paper is organized as follows: In Sec. II we discuss

the ingredients of our model starting with a conformal
transformation applied on the metric, which rescales the
relevant Dirac action governing the motion of neutrinos.
Corrections to the neutrino mass and wave function related
to the curved spacetime in the presence of a scalar field are
explicitly calculated in this section. We then give an
analytical solution to the mass-varying Dirac equation in
Sec. II A and show how the scalar-matter coupling function
will change the neutrino quantum mechanical phase. The
damped two-flavor transition is the subject of Sec. II B,
giving the probabilities for both chameleon and symmetron
cases. After that, we will extend damped neutrino tran-
sitions to three flavors and discuss the possibility of
neutrino decay and deficit in the total probability in
Sec. II C. Interactions with matter such as the Sun, for
instance, have a dramatic effect on the flavor conversion,
MSW effect, presented in Sec. II D. We will see that the
large mixing angle (LMA) solutions have the most apparent
effect on neutrino decay. Finally, we summarize and
present our results in Sec. III through some numerical
examples. A comparison of our results to the SNO [4],
SNOþ SK (super-Kamiokande) [40], and also to the
Borexino [41] data for the MSW-LMA survival probability
will be done.
Throughout this paper we use the units ℏ ¼ c ¼ kB ¼

8πG ¼ 1 and the metric signature ð−;þ;þ;þÞ.

II. CONFORMAL COUPLING AND
NEUTRINO OSCILLATION

Our model is specified by the following action, including
a scalar field conformally coupled to matter:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ

�

þ
Z

d4xLmðΨi; g̃μνÞ; ð1Þ

where g is the determinant of the metric gμν, Mp is the
reduced Planck mass, R is the Ricci scalar and Lm is the
Lagrangian density of other components generally denoted
by Ψi. g̃μν is related to the metric gμν, by [42–44]

g̃μν ¼ A2ðϕÞgμν: ð2Þ

The conformal factor AðϕÞ is a function of ϕ. Various
screening models are resulted by different choices of
the coupling and potential functions, e.g., the chameleon
model corresponds generally to the choice AðϕÞ≡
exp½ 1

Mp

R
βðϕÞdϕ�, where βðϕÞ is a field-dependent cou-

pling parameter. A simple case corresponds to a constant

value of β ∼ 1. In the symmetron model a quadratic

coupling function such as AðϕÞ≡ 1þ ϕ2ðrÞ
2M2 is chosen to

respect Z2 symmetry. In Appendix A, we will review these
two screening mechanisms and point out the required
relations for our discussion. If we want to respect the
weak equivalence principle (WEP), we must take a uni-
versal AðϕÞ [31]; otherwise, we may have different AiðϕÞ
corresponding to different Ψi.
To compute the probability of neutrino flavor transition,

we study the neutrino equation of motion. The neutrino
action is

Sn ¼
Z ffiffiffiffiffiffi

−g̃
p

ψ̄ðxÞðiγ̃μD̃μ −mÞψðxÞ: ð3Þ

To obtain the covariant derivative we proceed as follows:
The vierbein or tetrad, ϵμa, are

ϵ̃aμ ¼ AðϕÞϵaμ; ϵ̃μa ¼ A−1ðϕÞϵμa: ð4Þ

The Dirac γ-matrices and the Christoffel connections Γλ
μν

are given by

γ̃μ ¼ A−1ðϕÞγμ; ð5Þ

and

Γ̃λ
μν ¼ Γλ

μν − A−1ðϕÞA;λðϕÞgμν þ A−1ðϕÞA;μðϕÞδλν
þ A−1ðϕÞA;νðϕÞδλμ; ð6Þ

respectively. The spin connection is

ω̃ab
μ ¼ωab

μ −A−1ðϕÞA;νðϕÞϵaνϵbμþA−1ðϕÞA;νðϕÞϵbνϵaμ; ð7Þ

in which ωab
μ ¼ −ϵbνð∂μϵ

a
ν − Γλ

μνϵ
a
λÞ. So the covariant

derivative is

D̃μ ¼ ∂μ þ iω̃ab
μ Σab

¼ Dμ þ iA−1ðϕÞA;νðϕÞðϵbνϵaμ − ϵaνϵbμÞΣab: ð8Þ

The commutation of γ-matrices is unchanged under the
conformal transformation:

Σ̃ab ¼
−i
8
½γ̃a; γ̃b� ¼ ½ϵ̃aμγ̃μ; ϵ̃bνγ̃ν�

¼ −i
8
½AðϕÞA−1ðϕÞϵaμγμ; AðϕÞA−1ðϕÞϵbνγν�

¼ −i
8
½γa; γb� ¼ Σab: ð9Þ

The second term in (8) can be written in a more familiar
form,
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ðϵbνϵaμ − ϵavϵbμÞΣab ¼
−i
4
ðγμγν − γνγμÞ: ð10Þ

Therefore, the covariant derivative D̃μ can finally be
written as

D̃μ ¼ Dμ þ
1

4
A−1ðϕÞA;νðϕÞðγμγν − γνγμÞ; ð11Þ

leading to

γ̃μD̃μ ¼ A−1ðϕÞγμDμ þ
3

2
A−2ðϕÞA;μðϕÞγμ: ð12Þ

One can use this relation to show that
Z ffiffiffiffiffiffi

−g̃
p

ψ̄ðxÞðiγ̃μD̃μ −mÞψðxÞ

¼
Z ffiffiffi

g
p

ψ̄ 0ðxÞðiγμDμ −m0Þψ 0ðxÞ; ð13Þ

provided that

m0ðxÞ ¼ mAðϕÞ; ð14Þ
and

ψ 0ðxÞ ¼ ψðxÞA3
2ðϕÞ: ð15Þ

We fix gμν as the Minkowski metric ημν, so the covariant
derivative Dμ simply becomes the partial derivative ∂μ.

A. Neutrino oscillation

Neutrino oscillation or mixing can be explained in terms
of the relationship between flavor eigenstates (νe, νμ, ντ)
and mass eigenstates (ν1, ν2, ν3). This implies that we can
write each flavor eigenstate as a superposition of three mass
eigenstates. Mixing is given by

jνii ¼
X
α

Uαijναi; ð16Þ

where

jνii ¼

0
B@

ν1

ν2

ν3

1
CA

and

jναi ¼

0
B@

νe

νμ

ντ

1
CA

are mass and flavor eigenstates, respectively, and U, which
is a unitary mixing matrix called the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix, can be written as

U ¼

0
B@

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

1
CA: ð17Þ

Dirac Lagrangian density describing both right-handed
and left-handed neutrinos, including their masses and
dynamical terms, is given by [45]

L0 ¼ L0
mass þ L0

dyn

¼ −
X
α;β

ν0†αLm
0
αβν

0
βR −

X
α;β

ν0†αRm
0�
βαν

0
βL

þ
X
α

i½ν0†αLσμL∂μν
0
αL þ ν0†αRσ

μ
R∂μν

0
αR�; ð18Þ

where the m0
αβs are components of a 3 × 3 mass matrix in

the flavor basis, and ν0αðR;LÞ are 2-spinors implying right-

handed and left-handed neutrinos of flavor α. In addition,
σμR ≡ ðσ0; σ1; σ2; σ3Þ and σμL ≡ ðσ0;−σ1;−σ2;−σ3Þ are
Pauli matrices for right-handed and left-handed spinors,
respectively. We also note that all primes in the formulas
refer to the rescaled relations.
Now, by varying this Lagrangian with respect to the

spinors, equations of motion can be obtained. For the first
one, we have

iσμL∂μν
0
αL −m0

αβν
0
βR ¼ 0; ð19Þ

and the second equation is given by

iσμR∂μν
0
αR −m0�

βαν
0
βL ¼ 0: ð20Þ

Generally, the left-handed and right-handed spinors can be
defined by

ν0αLðr; tÞ ¼ e−iEðt−t0ÞeþiEðr−r0ÞfαðrÞ
�
0

1

�
; ð21Þ

ν0αRðr; tÞ ¼ e−iEðt−t0ÞeþiEðr−r0ÞgαðrÞ
�
0

1

�
: ð22Þ

Substituting these relations into Eqs. (19) and (20), we
obtain

i
d
dr

fαðrÞ −m0
αβgβðrÞ ¼ 0; ð23Þ

�
2E − i

d
dr

�
gγðrÞ −m0�

αγfαðrÞ ¼ 0: ð24Þ

Notice that the derivatives in the relations above are all
taken with respect to the radial coordinate r, because we
have only considered the radial propagation in our model to
solve Eqs. (23) and (24). For neutrino masses much less
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than their energies, the second term in the square brackets
in Eq. (24) is negligible with respect to the first one. By
applying this approximation, we obtain

gγðrÞ ¼
m0�

αγfαðrÞ
2E

; ð25Þ

and by putting this into Eq. (23), we have

i
d
dr

fβðrÞ −
m0

βγm
0�
αγ

2E
fαðrÞ ¼ 0; ð26Þ

where m0
βγ ¼ UL�

βi U
R
γim

0
i, m

0�
αγ ¼ UL

αjU
R�
γj m

0
j, and we know

ULðRÞULðRÞ† ¼ 1. Dropping the superscripts L, Eq. (26)
leads us to the following equation:

i
dfβðrÞ
dr

¼ U�
βiUαi

�
m02

i

2E

�
fαðrÞ: ð27Þ

By using fiðrÞ ¼ UαifαðrÞ and also Eq. (27) we obtain

i
dfiðrÞ
dr

¼
�
m02

i ðrÞ
2E

�
fiðrÞ: ð28Þ

This equation can be easily solved by

fiðrÞ ¼ fiðr0Þ exp
�
−i

Z
r

r0

m02
i ðrÞ
2E

dr

�
: ð29Þ

Therefore, according to Eq. (21), the normalized spacetime
part of the neutrino wave function denoted by Ψðr; tÞ and
satisfying the initial condition is given by (see [46–50])

Ψiðr; tÞ ¼ e−iE½ðt−t0Þ−ðr−r0Þ�e−iφiðrÞD
1
2

iiðrÞΨiðr0; t0Þ
≡ F iðr; tÞΨiðr0; t0Þ; ð30Þ

where

DijðrÞ≡ ½AiðϕÞAjðϕÞA−1
0i ðϕÞA−1

0j ðϕÞ�−
3
2: ð31Þ

As we will see depending on the model, D may be a
damping or an enhancing factor. Wewill note it byD factor.

φiðrÞ≡m2
i

2E

Z
r

r0

A2
i ½ϕðr0Þ�dr0 ð32Þ

is the phase of the oscillation. Note that in (31) and (32),
different A for different neutrinos are generally assumed.
By A0i we mean the value of Ai at the initial point ðr0; t0Þ.
Notice that the initial value of the function F iðr; tÞ is
clearly equal to one, i.e., F iðr0; t0Þ ¼ 1. In what follows,
the above results will be used to calculate the oscillation
probability.

B. Two-flavor neutrino transitions

We first consider two neutrino flavors: jνei and jνμi.
Using (30), the general state of a propagating neutrino in
the two-flavor basis is given by

jνðr; tÞi ¼ cos θΨ1ðr; tÞjν1i þ sin θΨ2ðr; tÞjν2i: ð33Þ

We have

jνðr0; t0Þi¼ cosθjν1iΨ1ðr0; t0Þþ sinθjν2iΨ2ðr0; t0Þ; ð34Þ

where we have used F iðr0; t0Þ ¼ 1. Choosing the initial
condition as Ψ1ðr0; t0Þ ¼ Ψ2ðr0; t0Þ≕Ψ0, we find

jνðr0; t0Þi ¼ Ψ0jνei; ð35Þ

where we have used jνei ¼ cos θjν1i þ sin θjν2i.
At the moment, we pay attention to the probability of

neutrino oscillation for the case of two-flavor neutrinos,
e.g., νe and νμ. As we know, the relation between mass and
flavor eigenstates can be described by a 2 × 2 mixing
matrix as follows:

�
ν1

ν2

�
¼

�
cos θ − sin θ

sin θ cos θ

��
νe

νμ

�
: ð36Þ

Using (36), the neutrino state (33) can be written in terms of
flavor eigenstates as

jνðr;tÞi¼ ½cos2θF 1ðr;tÞΨ0þsin2θF 2ðr;tÞΨ0�jνei
þ½−F 1ðr;tÞΨ0þF 2ðr;tÞΨ0�sinθcosθjνμi: ð37Þ

The transition probability ratio is given by

Peμ ≔
jhνμjνðr; tÞij2
jhνejνðr0; t0Þij2

¼ jhνμjνðr; tÞij2
jΨ0j2

; ð38Þ

and by substituting from Eq. (37) we have

Peμ ¼
1

4
sin2ð2θÞ½jF 1ðr; tÞj2 þ jF 2ðr; tÞj2

− 2ℜfF 1ðr; tÞF �
2ðr; tÞg�

¼ 1

4
sin2ð2θÞ½D11 þD22 − 2D12 cosΦ12�; ð39Þ

where Φ12ðrÞ ¼ φ1 − φ2 is the phase difference between
different neutrino mass eigenstates. On the other hand, the
survival probability ratio can be obtained by multiplying
(37) by hνej from the left-hand-side, so we have

Pee ¼
jhνejνðr; tÞij2

jΨ0j2
; ð40Þ

and doing some manipulation leads to
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Pee ¼ cos4 θjF 1ðr; tÞj2 þ sin4 θjF 2ðr; tÞj2

þ 1

2
sin2ð2θÞℜfF 1ðr; tÞF �

2ðr; tÞg
¼ D11 cos4 θ þD22 sin4 θ

þ 1

2
D12 sin2ð2θÞ cosðΦ12Þ: ð41Þ

These results are similar to the results obtained by
Refs. [51,52]. The conformal coupling beside the influence
on the oscillation phase through Φ12 has a damping or
enhancing effect via Dij:

Pee þ Peμ ¼ cos2ðθÞD11 þ sin2ðθÞD22; ð42Þ

which is not generally equal to one. For Dij ¼ 1, we have
only oscillatory wave functions and the sum of (42) equals
one. Besides the neutrino flavor oscillation we may have
neutrino production or annihilation via the scalar field
interaction. Note that if the conformal coupling is the same

for all the neutrinos, we have Dij ¼ A3
0

A3 for all i, js.
Let us give some examples: For the chameleon model,

we have AðϕÞ ¼ expðβϕðrÞ=MpÞ (see the Appendix).
Therefore,

Dij ¼ e−
3

2Mp
½βiðϕiðrÞ−ϕiðr0ÞÞþβjðϕjðrÞ−ϕjðr0ÞÞ�: ð43Þ

Hence,

Pee¼
h
e−

3β1
2Mp

½ϕ1ðrÞ−ϕ1ðr0Þ�cos2θþe−
3β2
2Mp

½ϕ2ðrÞ−ϕ2ðr0Þ�sin2θ
i
2

−e−
3
2
Σ12ðrÞsin2ð2θÞsin2

�
Φ12ðrÞ

2

�
;

Peμ¼e−
3
2
Σ12ðrÞsin2ð2θÞ

�
sin2

�
Φ12ðrÞ

2

�
þsinh2

�
3

4
Δ12ðrÞ

��
;

ð44Þ

where ΣijðrÞ≡ βi½ϕiðrÞ−ϕiðr0Þ�
Mp

þ βj½ϕjðrÞ−ϕjðr0Þ�
Mp

and ΔijðrÞ≡
βi½ϕiðrÞ−ϕiðr0Þ�

Mp
− βj½ϕjðrÞ−ϕjðr0Þ�

Mp
.

If both mass eigenstates are coupled with a same
coupling to the scalar field ϕ, i.e., β1 ¼ β2 ¼ β, the
probabilities (44) will reduce to

Pee ¼ e−
3β
Mp

½ϕðrÞ−ϕðr0Þ�
�
1 − sin2ð2θÞsin2

�
Φ12ðrÞ

2

��
;

Peμ ¼ e−
3β
Mp

½ϕðrÞ−ϕðr0Þ�sin2ð2θÞsin2
�
Φ12ðrÞ

2

�
: ð45Þ

To obtain the above probabilities’ values, we can use the
solution to the chameleon equation of motion, which is
solved numerically in Sec. A 1. According to relations (45),
the scalar field not only changes the oscillation phase but

multiplies the probabilities by a scalar field dependent
coefficient (for β1 ≠ β2, this coefficient becomes relevant
for the relative number of flavors to each other). The sum of
the probabilities is not one unless ϕðrÞ ¼ ϕðr0Þ. Hence,
generally

Ptot ¼ e−
3β
Mp

½ϕðrÞ−ϕðr0Þ� ≠ 1; ð46Þ

implying neutrino-scalar interaction and affecting the
neutrino density.
Similarly for the symmetron model, the factor D is

D ¼ ½AA−1
0 �−3 ≃ 1 −

3ðϕ2ðrÞ − ϕ2ðr0ÞÞ
2M2

: ð47Þ

Using these relations leads us to the following probabilities:

Pee ¼
�
1 −

3ðϕ2ðrÞ − ϕ2ðr0ÞÞ
2M2

��
1 − sin2ð2θÞsin2

�
Φ12

2

��
;

Peμ ¼
�
1 −

3ðϕ2ðrÞ − ϕ2ðr0ÞÞ
2M2

�
sin2ð2θÞsin2

�
Φ12

2

�
: ð48Þ

We can also obtain the sum of probabilities above, which is
independent of the mixing angle θ and the phase shift Φ12,

Ptot ¼ 1 −
3ðϕ2ðrÞ − ϕ2ðr0ÞÞ

2M2
≠ 1: ð49Þ

Provided that the field ϕðrÞ > ϕðr0Þ, the sum of the
probabilities is smaller than unity andDmay be interpreted
as a damping factor and conversely, for ϕðrÞ < ϕðr0Þ, the
neutrino density is enhanced.

C. Three-flavor oscillations

We extend our results by taking three flavors into
account. As before, we first have to write the most general
state of the neutrinos. The evolved neutrino state corre-
sponding to the flavor α can be suggested as follows:

jνðr; tÞiα ¼
X
i

Ψiðr0; t0ÞF iðr; tÞU�
αijνii; ð50Þ

where F iðr; tÞ is a function which consists of D and phase
factors. Note that F iðr0; t0Þ ¼ 1, which explicitly implies
that the initial condition can be satisfied by (50).
In order to obtain the different probabilities for this case,

we shall replace the mass eigenstates by flavor eigenstates.
As in the two-flavor case, the mixing between various
flavors of neutrinos can be described by a unitary mixing
matrix U as follows:

jνii ¼
X
α

Uαijναi; ð51Þ

or equivalently,
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jναi ¼
X
i

U�
αijνii: ð52Þ

Using relations (51) and (52), the state (50) can be
written as

jνðr; tÞiα ¼
X
i

X
β

Ψiðr0; t0ÞF iðr; tÞU�
αiUβijνβi: ð53Þ

Assume that at ðr0; t0Þ we have a specific flavor neutrino,
e.g., να requires that Ψiðr0; t0Þ ¼ Ψ0 for all i. The prob-
ability amplitude ratio (α → β) is then

Pαβ ¼
jhνβjνðr; tÞiαj2
jhναjνðr0; t0Þiαj2

¼
����
X
i

F iðr; tÞU�
αiUβi

����
2

¼
X
i;j

F iðr; tÞF �
jðr; tÞU�

αiUβiUαjU�
βj: ð54Þ

Therefore, the probability formula is given by

Pαβ ¼
����
X
i

F iðr; tÞU�
αiUβi

����
2

¼
X
i;j

F iðr; tÞF �
jðr; tÞU�

αiUβiUαjU�
βj: ð55Þ

Now, we can calculate this formula in more detail by using
the explicit forms of the functions F iðr; tÞ (30). Thus, we
have

Pαβ ¼
X
i;j

DijU
αβ
ij e

−iΦij ; ð56Þ

where Uαβ
ij ≡U�

αiUβiUαjU�
βj and Φij is the phase shift.

From properties DijðrÞ ¼ DjiðrÞ, Uαβ
ji ¼ ½Uαβ

ij ��, ℜ½Uαβ
ij � ¼

ℜ½Uαβ
ji �, and by doing some manipulation, the relation (56)

can be rewritten as

Pαβ ¼
X3
i¼1

DiiU
αβ
ii þ 2

X
1≤i<j≤3

Dijℜ½Uαβ
ij �

− 4
X

1≤i<j≤3
Dijℜ½Uαβ

ij � sin2
�
Φij

2

�

− 2
X

1≤i<j≤3
Dijℑ½Uαβ

ij � sinðΦijÞ; ð57Þ

where the two first nonoscillatory terms belong to the
damped (enhancing) neutrino mixing. From another stand-
point, the last term includes the imaginary sector of
the mixing matrix, so this term might correspond to the
CP-violation.
To calculate probabilities Pee, Peμ, etc., we have to apply

the general form of the mixing matrix [53],

U ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CA; ð58Þ

where cij ≡ cos θij, sij ≡ sin θij, and δ is the CP-violating
phase. As an example, νe-survival probability is given by

Pee ¼ c412c
4
13e

−3
2
Σ11ðrÞ þ s412c

4
13e

−3
2
Σ22ðrÞ þ s413e

−3
2
Σ33ðrÞ

þ 2c212s
2
12c

4
13 cosðΦ12Þe−3

2
Σ12ðrÞ

þ 2c212c
2
13s

2
13 cosðΦ13Þe−3

2
Σ13ðrÞ

þ 2s212c
2
13s

2
13 cosðΦ23Þe−3

2
Σ23ðrÞ; ð59Þ

where ΣijðrÞ is defined below Eq. (44). As can be seen,
the probabilities for the three-flavor case are so tedious
to calculate directly for the matrix elements of (58)
and they are beyond our scope in this paper. Instead,
we are going to investigate a simpler case in the next
subsection.

1. Neutrino decay: Stable ν1 and unstable ν2
We assume that the lightest neutrino mass eigenstate, ν1,

is stable during neutrino propagation, i.e., D11 ¼ 1,
whereas the decay of ν2, as well as mixing among three
neutrino eigenstates, has an effect on the deficit in the solar
neutrino flux [54]. This statement means that we have only
one coupled mass eigenstate affected by the scalar field. In
such a case, the WEP is violated in this level (β1 ¼ 0,
whereas β2 ≠ 0). Note that there is also the possibility that
the WEP is violated at the macroscopic level in the
screening models, but in regions where the scalar field is
highly screened, WEP violation may not be detected by
local gravitational tests [33,55].
For this case, we assume that theUe3 element of thematrix

(58) is approximately negligible. The reason is that experi-
ments result in small values for mixing angle θ13, e.g., in the
Daya Bay (sin2 2θ13 ¼ 0.0856� 0.0029) [56] and RENO
[sin2 2θ13 ¼ 0.0896� 0.0048ðstatÞ � 0.0047ðsystÞ] [57].
Therefore, the PMNS mixing matrix (58) reduces to
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U ≅

0
B@

c12 s12 0

−s12c23 c12c23 s23
s12s23 −c12s23 c23

1
CA:

Assuming jνei as the initial state andusing the unitarity of the
above matrix, we calculate different probabilities from
Eq. (57) as follows:

Pee ¼ c412 þ s412Dþ 1

2

ffiffiffiffi
D

p
sin2ð2θ12Þ cosΦ12;

Peμ ¼
1

4
sin2ð2θ12Þc223½1þD − 2

ffiffiffiffi
D

p
cosΦ12�;

Peτ ¼
1

4
sin2ð2θ12Þs223½1þD − 2

ffiffiffiffi
D

p
cosΦ12�; ð60Þ

where D≡D22 is the D factor corresponding to ν2-decay.
The observed neutrino rates in the SNO experiment from
the charged current, neutral current, and elastic scattering
interactions can be combined to place constraints on the
separate φðνeÞ and φðνμÞ þ φðντÞ fluxes, which are respec-
tively related to Pee and Peμ þ Peτ. Both of these proba-
bilities and also their sum, i.e., Ptot ¼ c212 þ s212D, are
independent from the atmospheric mixing angle θ23. On
the other hand, the deficit in the rate of the solar neutrinos in

this model on the Earth, i.e., δPαβ≡PðundampedÞ
αβ −PðdampedÞ

αβ ,
can be obtained as

δPeX ≡ 1 − Ptot ¼ ð1 −DÞs212: ð61Þ

The subscript X refers to the particle corresponding to the
(dark energy) scalar field (ϕ) to which neutrinos can decay.
This decay is provided by the conformal coupling, which
leads to neutrino-ϕ interaction as can be seen from the
equation of motion ðiγ̃μD̃μ −mÞψðxÞ ¼ 0 [see Eq. (3)],
where γ̃μD̃μ is given by Eq. (12). As the neutrino and the
scalar field exchange interact through the conformal cou-
pling, their density continuity equations are modified.
This has been used in [24] to alleviate the coincidence
problem and to explain the onset of the present acceleration
of the Universe in the nonrelativistic era of mass varying
neutrinos [18].
As it can be seen from (61), δPeX depends on the mixing

angle θ12 as well as the D factor. For increasing functions
ϕiðrÞ we have D ≤ 1 and so there is a possibility for
electron-neutrinos traveling from the source to the detector
decaying to ϕ particles. Comparing the D factor of our
model [Eq. (43), with β1 ¼ 0 and β2 ≠ 0] to the damping
(or depletion) factor presented in [38,54,58], i.e.,
exp ð−L=kEνÞ, suppresses the large values of the coupling
parameter β2. The solar neutrino lifetime k2ð¼ τ2=m2Þ is
then given by

k2 ¼
2LMp

3β2EνðϕðLÞ − ϕðL0ÞÞ
; ð62Þ

where L ≃ t (for ultra-relativistic neutrinos) is the distance
between Earth and the Sun. The behavior of lifetime k2 in
terms of β2 is plotted in Fig. 1. We picked the numerical
values t ≃ 500 sec. for distance from Earth to the Sun and
neutrino energyEν ≃ 10 MeV for 8B solar neutrinos. Fitting
all three phases of SNO data for 8B solar neutrinos [38,59]
and combined SNOþ other solar neutrino experiments [38]
yield k2 > k̃0 ¼ 8.08 × 10−5 sec =eV at 90% confidence
(β̃2 < 54.1735) and k2 > k0 ¼ 1.92 × 10−3 sec =eV at
90% confidence (β2 < 11.1235), respectively.
These requirements restrict the effective mass of the

chameleon scalar field deep in space (in the dilute regions)
[see (A7)]: m̃eff < 2.99 × 10−11 eV (for β̃2) and meff <
9.11 × 10−12 eV (for β2).
For this case, we also obtain the discrepancy between

undamped and damped probabilities for three cases sep-
arately. Using Eq. (60), we have

δPee¼s212ð1−
ffiffiffiffi
D

p
Þ½ð1þ

ffiffiffiffi
D

p
Þs212þ2c212cosðΦ12Þ�;

δPeμ¼c223s
2
12ð1−

ffiffiffiffi
D

p
Þ½ð1þ

ffiffiffiffi
D

p
Þc212−2c212cosðΦ12Þ�;

δPeτ¼s223s
2
12ð1−

ffiffiffiffi
D

p
Þ½ð1þ

ffiffiffiffi
D

p
Þc212−2c212cosðΦ12Þ�: ð63Þ

For example, if we are interested in oscillation of neutrinos
produced inside the Sun for the case δPee > 0, we would
have cosðΦ12Þ > − tan2 θ12, where we have assumed thatffiffiffiffi
D

p
≃ 1 outside the Sun, since both chameleon and symme-

tron fields are nearly constant deep in space. To have positive
δPeμ and δPeτ, however, the trivial condition cosðΦ12Þ < 1

has to be satisfied. Therefore, the resulting range for the
phase difference is − tan2 θ12 < cosðΦ12Þ < 1.

D. Flavor conversion in matter: The MSW effect

The weak interactions of neutrinos in matter modify the
flavor conversion relative to the cases of propagation in the
vacuum, as predicted decades ago by Mikheyev, Smirnov,
and Wolfenstein and dubbed the MSW effect [7,8]. After
solar neutrinos are produced in the solar core and during
their travels inside the Sun, they scatter forwardly from
electrons until they leave the Sun and propagate through the
vacuum to the Earth and are finally detected, e.g., in the
SNO detectors. Therefore, we should take this effect into
account. We start with the following rescaled Hamiltonian
of the system

H0 ¼ Δm02

4E

�− cos 2θ þ A sin 2θ

sin 2θ cos 2θ þ A

�
; ð64Þ

where A is a dimensionless parameter that originated from
νe − e− scattering in matter, which is defined by
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A≡ 2
ffiffiffi
2

p
GFEνne
Δm02 ; ð65Þ

where GF is the weak Fermi constant and ne is the number
density of electrons in the bulk of the Sun. Assuming A ¼
cos 2θ leads us to the resonance point indicating maximal
mixing in matter. The number density at the resonance
point is then given by

neðrresÞ ¼
cosð2θÞΔm02ðrresÞ

2
ffiffiffi
2

p
GFEν

: ð66Þ

According to Eq. (65) in the dilute regions, parameter A
takes a small value so that according to the Hamiltonian,
Eq. (64), this implies an ordinary mixing. On the other
hand, in the dense regions, A is large enough to dominate in
the diagonal elements of the Hamiltonian denoting mixing
suppression in such regions, e.g., in the solar core, where
neutrinos are born [46].
Remember that the rescaled mass-squared splitting

Δm02ðrÞ depends explicitly on the scalar field values [see
Eq. (14)]. The chameleon screening mechanism is specified
by its varying mass so that in the dense regions, where
parameter ne is considerable, this scalar field has a large
mass hiding it from detectors. From properties of the
chameleon (see the Appendix), we see that chameleon takes
small values, ϕmin;in ≪ Mp in such regions and, conse-
quently,Δm02 → Δm2. In the dilute regions, however,where
the chameleon has a small mass and the parameter A
becomes small, the chameleon acquires larger values
ϕmin;out ∼Mp, which results inΔm02 ¼ expð2βϕ=MpÞΔm2.

Another screening mechanism, the symmetron model, is
based on the spontaneous symmetry breaking discussed in
Appendix A 2. The Z2-symmetry will be broken in the low
density environments, which yield ϕmin;out ≠ 0 [see
Eq. (A15)], and parameter A is small, so neutrinos
experience ordinary oscillations. The restoration of the
Z2-symmetry, on the other side, imposes ϕmin;in → 0. In
such a region, A becomes dominant and, consequently,
gives mixing suppression [46].
The MSW flavor conversion in the Sun can be consid-

ered as a level crossing (or resonance) at which the most
flavor change occurs when neutrinos cross this point. The
first analytical formulas for adiabaticity violation in the
Sun were calculated by Parke [60]. The standard expression
for “jumping” probability between ν1 and ν2 inside the Sun
and at the resonance point is approximately given by
[54,61–63]

PJ ¼ e−α sin
2 θ − e−α

1 − e−α
: ð67Þ

The parameter α in the exponent is equal to πΔm02
Eν

j d lnðneÞdr j−1rres ,
where the electron number density of the Sun is considered
to have approximately an exponential form, i.e., ∝
expð−r=R⊙Þ [63]. Using Eq. (67), we predict that the
LMA solutions of neutrino oscillations can have the most
influence on the decay process. As we know, νe is produced
mostly as the mass eigenstate ν2 in the solar core [62].
Figure 2 shows the behavior of PJ as a function of the
mixing angle θ so that for the large values of this angle PJ
is too small, and then ν2 does not jump to ν1 at the level-
crossing. This means that the possibility of ν2-decay
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FIG. 1. Neutrino lifetime ratio k2 versus β2.
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survives. On the other side, PJ is appreciable for small
mixing angles and, hence, ν2 jumps to ν1, which has been
assumed to be the stable mass eigenstate.
This stability destroys the neutrino decay possibility. The

LMA solution has, therefore, the strongest influence on the
neutrino decay. The observation of electron antineutrino
(ν̄e) flavor oscillations by KamLAND [64] presented that
neutrino mixing is mainly responsible for what had been
known as solar neutrino problem. The mixing angle (θ12)
extracted by KamLAND [64] is quite consistent with
the MSW-LMA solution obtained by solar neutrino
experiments such as SNO [59] and SK [65]. The coinci-
dence of the mixing parameters (θ12, Δm2

21) determined in
KamLAND and solar neutrino experiments may imply the
confirmation of CPT invariance [66].
To discuss the probabilities from the MSWeffect [54,62]

in the Sun, which are a mixture of flavor oscillation and
neutrino decay, we proceed as follows: As discussed in
Sec. II C 1, ν2-instability with mixing causes the solar
neutrino problem, whereas the mass eigenstate ν1 remains
stable, thus, P1 and P2:D are respectively the probabilities
of detecting ν1 and ν2 on Earth. P1 (P2) defined as the
probability of νe → ν1 (ν2) can be written as

P1 ¼ 1 − P2 ¼ PJ sin2 θm þ ð1 − PJ Þ cos2 θm; ð68Þ

where θm is the mixing angle in the matter defined by
tan 2θm ¼ sin 2θ

cos 2θ−A [67]. Then using the unitary mixing
matrix in Sec. II C 1, the probability formulas are given by

Pee ¼ c212P1 þD⊙s212P2;

Peμ ¼ c223s
2
12P1 þD⊙c223c

2
12P2;

Peτ ¼ s223s
2
12P1 þD⊙s223c

2
12P2; ð69Þ

where D⊙ is the D factor inside the Sun and we have also
considered Dvac ≃ 1. To see the damping (decay) behavior
only, the phase parts in the probabilities have been ignored.

III. RESULTS, DISCUSSIONS,
AND CONCLUSION

We have studied a scenario about damped neutrino
oscillations in a curved spacetime, which consists of a
scalar field conformally coupled to other ingredients such
as matter and neutrinos [see Eq. (2)].
To derive the oscillation probabilities, we studied the

behavior of the Dirac equation under the conformal trans-
formation, which reduces the model into the flat spacetime
with a rescaled wave function and a coordinate dependent
mass [see Eqs. (14) and (15)]. By solving the mass-varying
Dirac equation in the flat spacetime, we derived mass-
eigenstates of the neutrinos [see Eq. (30)]. The presence of
factor Dij [see (31)] and the deficiency in the total
probability can be interpreted as the interaction of the
neutrino with the scalar field, allowing them to convert to
each other. To be more specific, we considered solar
neutrinos and consider two examples: the chameleon and
the symmetron models, which we review briefly and point
out the required relations for our discussion in the
Appendix. In these models, the effective masses depend
explicitly on the local matter density [see Eqs. (A7) and
(A16)] leading to the screening effect in a dense area.
The dynamics of the scalar field are determined with a

good approximation by the matter density. We first expand
the scalar field around its background value and obtain an
equation for the fluctuation [see (A9)]. Inside the Sun, the
density [ρ⊙ðRÞ] is shown in 9, and the scalar field equation
is numerically depicted in Figs. 10 and 11 for various
values of the coupling parameter β for the chameleon, and
is depicted in 12 for the symmetron. As can be seen from
(32), the chameleon scalar field affects the oscillation
phase. We then found the formulas for damped transition
and survival probabilities and also obtained a value for
violation in the total probability conservation [see Eq. (61)]
for both two-flavor and three-flavor neutrino oscillations.
Finally, we studied the nonoscillatory effects of neutrino
forward elastic scattering from electrons in matter, the
MSW effect, in Sec. II D. As we concluded, the LMA
solutions of neutrino oscillations are the best solutions
describing the decay process in this model.
Now let us illustrate our results via some numerical

examples. In Fig. 3, we plot the survival probabilityPee as a
function of (neutrino energy/solar radius) for the two-flavor
case to see the effects of the conformal coupling on the
oscillation phase. It should be noticed that we have picked
the numerical values n ¼ 1, M ≃ 2.08 keV [32], the mass-
squared splitting Δm2 ¼ 7.4 × 10−5 eV2, and the mixing
angle tan2 θ ¼ 0.41 for the LMA solution of neutrino
oscillations [68]. We have also picked three values for
coupling strength β in the chameleon model, panel 3(a).
In the chameleon model proposed by Khoury and
Weltman [69], scalar field is coupled to matter with
gravitational-strength, i.e., β ∼Oð1Þ (gray curve) in agree-
ment with expectations of the string theory [70], or smaller,
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FIG. 2. Jumping probability vs mixing angle θ for α ∼ 10−5.
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i.e., β ≪ 1. Setting β ∼ 0 reproduces the no-chameleon
figure (black dashed curve). On the other hand, as the
satellite experiments [71–73] have proposed, they are
unable to put an upper bound on β [70], so we plotted a
figure for β ∼Oð102Þ (black solid curve). The resulting
profile for the survival probability is sensitive to β such that
this probability will be suppressed with intense oscillations
when β increases. Note that the choice β ¼ Oð102Þ is not
suitable as it gives Pee ¼ 0.019 at energy Eν ¼ 10 MeV,
which is negligible compared to the experimental values
(PSNO

ee ¼ 0.340� 0.023 [4] and PBorexino
ee ¼ 0.350� 0.090

[41] for 8B neutrinos). Also, the probability Pee and its
oscillating behavior affected by the symmetron mechanism
is presented in the panel 3b for three values of the mass-
scale parameter M ≲ 10−4Mp. This constraint on M is
imposed by local tests of gravity [35,74]. Note that μ ∼
10−12 eV [46], λ ∼ 10−50 (λ≳ 10−96 [35]). As shown in this
figure, the choice M ≲ 10−7Mp is not consistent with the
observational results.
Fig. 4 shows the survival probability as a function of

ratio (neutrino energy/solar radius) assuming tan2 θ12 ¼
0.41, sin2 2θ23 ≃ 0.99, sin2 2θ13 ≃ 0.09, and

Δm2
21 ¼ 7.4 × 10−5 eV2;

and

jΔm2
23j ¼ 2.5 × 10−3 eV2;

for the three-flavor case [68] in the presence of the
chameleon scalar field. We have also chosen the numerical
values n ¼ 1, M ¼ 2.08 keV [32]. Pee is depicted for
various orders of magnitude of the coupling parameter to

compare the probability amplitude and phase of oscillations
for different βs. The gray curve is plotted ignoring the
effects of the chameleon. As can be seen, the probability
amplitude is suppressed with rapid oscillations for β ≳ 102

(black solid curve), such that it has an intersection with
none of the experimental values for survival probability of
8B neutrinos (Eν ≃ 10 MeV) measured by SNO (PSNO

ee ¼
0.340� 0.023) [4] and Borexino (PBorexino

ee ¼ 0.350�
0.090) [41], for instance. As an example, Pee ¼ 0.349
for β ∼ 1 and has energy Eν ¼ 10 MeV (8B solar neutri-
nos), whereas Pee ¼ 0.038 for β ∼ 102 and has the same
energy. This inconsistency in survival probability for
large β can be addressed to some similar discussions in
Sec. II C 1.
Figure 5, however, shows the effects of the symmetron

on the Pee-amplitude and its phase. Different values ofM ≲
10−4Mp and also a case in the absence of symmetron (gray
curve) are considered. As a numerical example, survival
probability is equal to Pee ¼ 0.067 for M ¼ 10−7Mp and
has energy Eν ¼ 10 MeV. As a result, probability Pee will
be suppressed for M ≲ 10−7Mp, with no experimental
evidence (see black solid curve) [4,41].
The electron-neutrino survival probability behavior is

also shown as a function of chameleon-matter coupling β
in Fig. 6.
Figure 6 shows a damped oscillation, of which its

damped part, illustrated by the upper envelope curve (light
gray curve), is trivial because of the D factor behind the
oscillatory term, which is responsible for its oscillation. As
can be easily seen, Pee has rapid oscillations for increasing
β, which is a clear sign of the effect of the chameleon on the
phase. Note that we have used the LMA mass-squared
splitting and mixing angle, as mentioned before, and this
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FIG. 3. Plots of Pee in the presence of chameleon and symmetron scalar fields for the two-flavor neutrino oscillations. Both panels are
figures depicted for the survival probability in terms of (neutrino energy/solar radius). Different curves describe Pee corresponding to
various values of the chameleon-matter coupling β, see left plot. Right panel, however, is plotted for Pee in the presence of symmetron
for μ ∼ 10−12 eV, λ ∼ 10−50 and for three various values of mass-scale parameter M. The solid horizontal line in each inset shows the
minimum values.
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FIG. 4. In this figure, we have depicted the electron-neutrino survival probability in terms of ratio Eν=R⊙, for n ¼ 1 and
M ¼ 2.08 keV. Different curves describe the Pee for various values of the coupling parameter β. Rapid oscillations by increasing β is a
result of the chameleon-dependent oscillation phase. The gray curve represents the survival probability in the absence of the
corresponding scalar field. The solid horizontal line shows the minimum values.
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FIG. 5. Describes the behavior of the Pee in the presence of the symmetron scalar field, for μ ∼ 10−12 eV, λ ∼ 10−50 and for three
various values of the mass-scale parameter, M. The gray curve represents the survival probability in the absence of the corresponding
scalar field.
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figure has been plotted for solar and high energy neutrinos
as shown in the legends.
The solar neutrino problem can be solved by considering

decay processes as well as mixing. There are generally
two kinds of decays depending on whether the final
state particles are only invisible, such as ϕ-particles, sterile
neutrinos (generally nonactive neutrino flavors), Majorons,
etc., or if they include visible particles too, e.g., active
neutrino flavors [75]. An applied fit to BS05(OP) data of
solar neutrinos [76] can lead us to the zeroth-order
measurements 0.292þ0.067

−0.039 and 0.12þ0.14
−0.23 for the electron-

neutrino survival probability and the conversion probability
to unknown states respectively [77]. The latter value of the
conversion probability (neutrino decay to unknown states)
can be interpreted as ϕ-particles.
To clarify our model, we take a numerical example

for δPeX. We need first to look for the numerical values
of the field, which minimize the effective potential for

background matter density on the cosmological scales,
i.e., ρ0 ∼ 10−24 g · cm−3 [78]. This means that we first set
Veff;ϕ ¼ 0 [see Eq. (A6)], then we have

ϕ0

Mp
¼

�
nM4þn

βρ0Mn
p

� 1
nþ1

:

Setting parameters n ¼ 1, β ≃ 1, and M ¼ 2.08 keV [32]
for the chameleon field gives us ϕ0 ≈ 0.609074Mp. As
mentioned earlier, our choice of coupling parameter β is
consistent with gravitation-strength interactions [79]. Using
all these and also the numerical values for the symmetron
field, i.e., μ ¼ 10−12, λ ¼ 10−50, andM ≃ 10−4Mp, we plot
Fig. 7, which shows the amount of the discrepancy in the
damped total probability from unity for two cases of
the chameleon and symmetron scalar fields. In both panels,
the discrepancy grows to a constant value at R ¼ 1 and
remains constant outside the body to the Earth. The left
panel of Fig. 7 shows that the numerical behavior outside of
the Sun agrees well with the numerical value presented
above. The discrepancy in total probability approaches the
value δPeX ≃ 0.118. This value is much larger than that
for the symmetron field depicted in the right panel of
Fig. 7. This difference may refer to their different coupling
functions.
Figure 8 illustrates the effects of matter (in the bulk of the

Sun) called MSW effect on solar neutrinos discussed in
Sec. II D. Both plots show the electron-neutrino survival
probability on the Earth as a function of its energy in MeV.
We have also depicted the Pee-experimental values from
the Borexino data [41] of pp, 7Be, pep, and 8B fluxes (gray
points). Black point also represents the SNOþ SK 8B data
[40]. A light gray band in both panels is the best theoretical
prediction of Pee (within �1σ) according to the MSW-
LMA solution [41]. We guess that the best fit to this curve
can be written as
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coupling 10−2 ≤ β ≤ 15 for solar and high energy neutrinos. Note
that Δm2 ¼ 7.4 × 10−5 eV2 and tan2 θ ¼ 0.41. The envelope
function (light gray curve) shows how Pee gradually drops when
β increases, due to the existence of the D factor.
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FIG. 7. The losses in the total probability for the chameleon model with β ∼ 1 (a) and for the symmetron model withM ∼ 10−4Mp (b),
inside and outside the Sun.
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PeeðEν½MeV�Þ ≃ 0.322þ 0.244e−0.25ð
Eν
MeVÞ:

To draw these figures, we have assumed that
Δm02 ≃ 2.49 × 10−4 eV2, tan2 θm ≃ 0.43, and

ffiffiffi
2

p
GFne ≃

2.27 × 10−7ð eV2

MeVÞ [67]. Different curves have been plotted
according to the present model of the MSW effect, which
are approximately consistent with experimental (Borexino)
values in the low energy range (pp, 7Be, and pep) and also
Borexino and SNOþ SK in the high energy range (8B),
where changing flavor for the latter range is caused mostly
by matter effects in the bulk of the Sun [41].
Data analysis of future neutrino flavor conversion mea-

surements, as has already been done by neutrino experi-
ments such as SK [65,80], HK [81], and JUNO [82], and
determining the different mixing parameters in the frame-
work of the nonstandard scalar-neutrino interactions might
improve the values of these parameters. Besides, such
nonstandard interaction effects on the mixing parameters
will help explain the difference of Δm2

21 extracted by solar
neutrino and KamLAND experiments [66,83].
The Deep Underground Neutrino Experiment (DUNE)

[84], as a long-baseline neutrino experiment with a well-
understood beam and trajectory, is ideal for probing matter-
scalar field nonstandard interactions affected by the mass
density of the Earth. DUNE will collect much more data
than the current experiments with improved systematic
uncertainties [85,86], which might help to reach a higher
sensitivity to the neutrino-scalar interactions and active-to-
sterile neutrino mixing. Since the chameleon and symme-
tron are environment-dependent scalar fields, the Earth’s
density [87] might be taken into account in a neutrino-
scalar coupling discussion, as has been done for the Sun in

the present paper. Furthermore, to restrict the coupling
parameter βi more precisely by the constraints on neutrino
lifetime, the DUNE data will be used [88].

APPENDIX A: SCREENING MECHANISM

This section provides a brief review of two screening
models: the chameleon and the symmetron models, and
their equations of motion in a nearly flat static spherically
symmetric spacetime.

1. Chameleon mechanism

This model is specified by a runaway power law
(continuously decreasing) potential of the form

VðϕÞ ¼ M4þnϕ−n; ðA1Þ

where n is a positive number, andM is a parameter of mass
scale. The chameleon scalar field’s main feature is that its
effective potential depends explicitly on the matter density.
By varying the action (1) with respect to the field, we obtain
the following equation of motion:

□ϕ ¼ V;ϕ − A3ðϕÞA;ϕðϕÞg̃μνT̃μν; ðA2Þ

where T̃μν ≡ ð−2= ffiffiffĩ
g

p ÞδLm=δg̃μν is the energy-momentum
tensor, which is conserved in the Jordan frame,

∇̃μT̃μν ¼ 0: ðA3Þ

From the equation of state p̃ ¼ ωρ̃ we know the relation-
ship between matter density in Einstein and Jordan
frames [89],
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FIG. 8. Electron-neutrino survival probability on the Earth as a function of its energy. The left panel describes Pee including the MSW-
LMA effect in the presence of the chameleon scalar field for four different βs, whereas the right panel shows how the MSW effect
governs Pee in the presence of the symmetron scalar field for four different values of mass-scaleM. In panel (b), curves ofM ∼ 10−5Mp

and M ∼ 10−6Mp are so close such that they seem overlapped. Note that the light gray band in both panels illustrates the theoretical
prediction of νe survival probability by Borexino for MSW-LMAwithin �1σ. Experimental values are also shown for Borexino (gray)
and SNOþ SK 8B (black) data.
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ρ ¼ A3ð1þωÞðϕÞρ̃: ðA4Þ

For nonrelativistic matter, i.e., ω ≈ 0, we have
T̃ ¼ −ρ̃ ¼ −A−3ðϕÞρ. So Eq. (A2) yields

□ϕ ¼ V;ϕ þ A;ϕρ; ðA5Þ

where the right-hand-side of this equation can be written
as the derivative of the effective potential VeffðϕÞ ¼
VðϕÞ þ AðϕÞρ, with respect to the field ϕ where ρ is the
matter density. The minimum of the potential is determined
by using the equation Veff;ϕðϕminÞ ¼ 0, which leads to

ϕmin ¼
�
nM4þnMp

βρ

� 1
nþ1

: ðA6Þ

Because the cosmological and local gravity experiments

impose the condition βϕ
Mp

≪ 1, we assume that e
βϕ
Mp ≈ 1. The

effective mass of the field is given by

m2
min ≡ Veff;ϕϕðϕminÞ ¼ V;ϕϕðϕminÞ þ

β2ρ

M2
p
e
βϕmin
Mp

¼ nðnþ 1ÞM4þn

ϕnþ2
min

þ ρβ2

M2
p
; ðA7Þ

where we have again used the assumption e
βϕmin
Mp ≈ 1.

To solve Eq. (A5) in a static, spherically symmetric
background we assume

dϕ
dr

¼ 0 at r → 0;

ϕ → ϕ0 at r → ∞; ðA8Þ

where the first condition is for nonsingularity of the scalar
field at the center of spherically symmetric body, while the
second implies that the field converges to a constant at
infinity.
The solution to Eq. (A5) can be obtained by expanding

the field about its background as ϕðrÞ ¼ ϕ0 þ δϕ up to
linear order, where ϕ0 is the uniform background value and
δϕ is the perturbation induced by a spherically symmetric
body like the Sun whose radius is R⊙. Therefore the field
equation turns into

d2δϕ
dr2

þ 2

r
dδϕ
dr

¼ m2
minðϕ0Þδϕþ βðϕ0Þ

Mp
ρðrÞ; ðA9Þ

where the solution to this equation in dilute regions outside
the body (R ≔ r

R⊙
> 1) with constant density ρ0 ≪ ρ̄⊙ is

given by

δϕoutðRÞ ¼ δϕinð1Þ
1

R
e−mminR⊙ðR−1Þ; ðR > 1Þ ðA10Þ

where δϕinð1Þ is the field value at the surface, i.e., R ¼ 1,
coming from the continuity condition and ρ̄⊙ is the average
density of the body. Adding this solution by the back-
ground value, we obtain the following solution for outside
the body:

ϕoutðRÞ ¼ ϕ0 þ δϕinð1Þ
1

R
e−mminR⊙ðR−1Þ: ðR > 1Þ ðA11Þ

As can be seen from this, the scalar field induced by a
celestial object, e.g., the Sun, is too small in large distances
such that we can ignore its effects on another object in the
solar system scale. For inside the object, however, the
density distribution of a spherical body like the Sun is a
function of its fractional radius R≡ r=R⊙, as depicted
in Fig. 9.
With this density function, by solving numerically

Eq. (A9) we obtain an interpolating function with a
gravitation-strength coupling β ∼ 1, as shown in Fig. 10.
In this figure, both the resulting perturbation and the whole
field inside the Sun are depicted.
We note that the resulting field profile can be sensitive

to the change of the coupling β, see Fig. 11. This figure
shows the behavior of the chameleon scalar field. We have
used the value of δϕinðRÞ at the surface of the Sun. The
effects of the coupling parameter β on the chameleon field
for three different values of β ∈ f1; 10; 100g are shown,
implying that the chameleon tends to smaller asymptotic
values when β grows. We also note that the field’s allowed
range becomes smaller when β reduces; hence, the field is
being constant for β ≪ 1.

2. Symmetron mechanism

In the symmetron screening mechanism, the screening
is realized by symmetry restoration in sufficiently
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FIG. 9. The solar density distribution function in terms of the
fractional radius R≡ r

R⊙
. This figure has been drawn by BP2004

data [90].
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high-density regions in which ϕ ¼ 0where the symmetron-
matter coupling tends to zero. In low-density regions,
the Z2-symmetry is spontaneously broken and hϕi ≠ 0.
An example of a Z2 symmetric coupling function and
potential is:

AðϕÞ ¼ 1þ 1

2M2
ϕ2 þO

�
ϕ4

M4

�
;

VðϕÞ ¼ V0 −
1

2
μ2ϕ2 þ 1

4
λϕ4; ðA12Þ

where M and μ are two parameters of mass scale and λ is a
dimensionless parameter. The equation of motion of the

scalar field in a static, spherically symmetric background is
given by

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ Veff;ϕðϕÞ; ðA13Þ

where the effective potential up to a constant is as follows:

VeffðϕÞ ¼
1

2M2
ðρ − ρcÞϕ2 þ 1

4
λϕ4; ðA14Þ

where ρc ≡ μ2M2 is the critical density. The breaking or
restoration of Z2-symmetry depends on whether the matter
density is smaller or larger than the critical density. In the
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FIG. 10. The chameleon field profile for inside the Sun (R ≤ 1) with a R-dependent mass density distribution function. Note that we
have assumed that β ∼ 1, n ¼ 1, ρ0 ≃ 10−11 eV4, andM ≃ 2 keV [32]. (a) The perturbation δϕinðRÞ in eV. (b) The chameleon inside the
Sun in eV, ϕinðRÞ ¼ ϕ0 þ δϕinðRÞ.

0 1 2 3 4 5

1.4826 1027

1.4827 1027

1.4828 1027

1.4829 1027

1.4830 1027

1.4831 1027

0 1 2 3 4 5

4.64 1026

4.65 1026

4.66 1026

4.67 1026

4.68 1026

4.69 1026

0 1 2 3 4 5

1.0 1026

1.1 1026

1.2 1026

1.3 1026

1.4 1026

1.5 1026

0 1 2 3 4 5

2.0 1026

4.0 1026

6.0 1026

8.0 1026

1.0 1027

1.2 1027

1.4 1027
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dilute regions the symmetry is spontaneously broken
and the scalar field acquires a vacuum expectation value
(VEV),

ϕmin;out ¼ � μffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρc

r
≈� μffiffiffi

λ
p : ðρ ≪ ρcÞ ðA15Þ

For the Sun, the scalar field effective massm2
min ≡ d2Veff

dϕ2 jϕmin

is then

mout ¼
ffiffiffi
2

p
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ0
ρc

r
≈

ffiffiffi
2

p
μ; ðR > 1Þ

min ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄⊙
ρc

− 1

r
≈ μ

ffiffiffiffiffiffi
ρ̄⊙
ρc

r
; ðR < 1Þ ðA16Þ

where, as before, ρ0 is the background matter density, ρ̄⊙ is
the solar average density, and R≡ r

R⊙
.

By expanding the scalar field around ϕmin and keeping
only the leading term, we obtain the equation of motion
inside and outside a body like the Sun as follows:

d2δϕ
dR2

þ 2

R
dδϕ
dR

¼ R2
⊙m2

inðδϕþ ϕ0Þ; ðR < 1Þ ðA17Þ

where we have used the approximation VeffðϕÞ ≃ ρ̄⊙
M2 ϕ and

ϕ0 ¼ ϕmin;out is the field value at the edge of the Sun [91].
The solution to the equation is

δϕinðRÞ ¼ −ϕ0 þ
A
R
sinhððminR⊙ÞRÞ; ðR < 1Þ ðA18Þ

where A is a constant to be determined by continuity
conditions at the boundary. For the outside, the equation of
motion is given by

d2δϕ
dR2

þ 2

R
dδϕ
dR

¼ R2
⊙m2

outδϕ: ðR > 1Þ ðA19Þ

This equation has an analytical solution, which can be
written as follows:

δϕoutðRÞ ¼ B
e−ðmoutR⊙ÞR

R
; ðR > 1Þ ðA20Þ

where B is a constant. To specify the constants A and B, we
should use the continuity of δϕðRÞ and its first derivative at
the R ¼ 1, which leads us to

A→ϕ0

1þmoutR⊙

minR⊙coshðminR⊙ÞþmoutR⊙ sinhðminR⊙Þ
;

B→−ϕ0emoutR⊙
minR⊙coshðminR⊙Þ−sinhðminR⊙Þ

minR⊙coshðminR⊙ÞþmoutR⊙ sinhðminR⊙Þ
:

ðA21Þ

By assuming minR⊙ ≫ 1 and moutR⊙ ≪ 1, and after some
manipulation, the solution is derived as

ϕinðRÞ ¼
ϕ0

minR⊙ coshðminR⊙Þ
sinhððminR⊙ÞRÞ

R
; ðR < 1Þ

ϕoutðRÞ ¼ ϕ0 −ϕ0

minR⊙ − tanhðminR⊙Þ
minR⊙

e−moutR⊙ðR−1Þ

R
:

ðR > 1Þ ðA22Þ

In Fig. 12, we have plotted the symmetron scalar field as a
function of the fractional radius R. Note that we have
picked the numerical values M ≃ 10−4Mp, μ ¼ 10−18 eV,
and λ ∼ 10−50 for model parameters. As in the chameleon
case, the symmetron tends to an asymptotic value ϕ0 at
large distances from the Sun.

[1] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957) [Sov.
Phys. JETP 6, 429 (1957)].

[2] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys.
28, 870 (1962).

[3] A. B. McDonald, Rev. Mod. Phys. 88, 030502
(2016).

[4] A. Bellerive, J. R. Klein, A. B. McDonald, A. J. Noble, and
A.W. P. Poon (SNO Collaboration), Nucl. Phys. B908, 30
(2016).

[5] T. Kajita, Rev. Mod. Phys. 88, 030501 (2016).
[6] T. Kajita, E. Kearns, and M. Shiozawa (Super-Kamiokande

Collaboration), Nucl. Phys. B908, 14 (2016).

1 10 20 30 40 50

0

2 106

4 106

6 106

8 106

1 107

FIG. 12. The symmetron field (in eV) of Eq. (A22) vs the
fractional radius of the Sun.

H. MOHSENI SADJADI and H. YAZDANI AHMADABADI PHYS. REV. D 103, 065012 (2021)

065012-16

https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1103/RevModPhys.88.030502
https://doi.org/10.1103/RevModPhys.88.030502
https://doi.org/10.1016/j.nuclphysb.2016.04.035
https://doi.org/10.1016/j.nuclphysb.2016.04.035
https://doi.org/10.1103/RevModPhys.88.030501
https://doi.org/10.1016/j.nuclphysb.2016.04.017


[7] L. Wolfenstein, Phys. Rev. D 20, 2634 (1979).
[8] S. P. Mikheyev and A. Y. Smirnov, Yad. Fiz. 42, 1441

(1985) [Sov. J. Nucl. Phys. 42, 913 (1985)].
[9] O. G. Miranda and H. Nunokawa, New J. Phys. 17, 095002

(2015).
[10] S.-F. Ge and S. J. Parke, Phys. Rev. Lett. 122, 211801

(2019).
[11] S. F. Ge and A. Y. Smirnov, J. High Energy Phys. 10 (2016)

138.
[12] L. Amendola, M. Baldi, and Ch. Wetterich, Phys. Rev. D 78,

023015 (2008).
[13] A.W. Brookfield, C. van de Bruck, D. F. Mota, and D.

Tocchini-Valentini, Phys. Rev. Lett. 96, 061301 (2006).
[14] M. C. González, Q. Liang, J. Sakstein, and M. Trodden,

arXiv:2011.09895.
[15] S. Mandal, G. Y. Chitov, O. Avsajanishvili, B. Singha, and

T. Kahniashvili, arXiv:1911.06099.
[16] J. G. Salazar-Arias and A. Pérez-Lorenzana, Phys. Rev. D
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