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An approach that has been given promising results concerning investigations on the physics of graphene
is the so-called reduced quantum electrodynamics. In this work we consider the natural generalization of
this formalism to curved spaces. We employ the local momentum space representation. We discuss the
validity of the Ward identity and study one-loop diagrams in detail. We show that the one-loop beta
function is zero. As an application, we calculate the one-loop optical conductivity of graphene by taking
into account curvature effects which can be incorporated locally. In addition, we demonstrate how such
effects may contribute to the conductivity. Furthermore, and quite unexpectedly, our calculations unveil the
emergence of a curvature-induced effective chemical potential contribution in the optical conductivity.
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I. INTRODUCTION

In the last decades condensed-matter systems of diverse
natures have been increasingly studied under the methods
of quantum field theory (QFT). This has emerged as an
important tool in the condensed-matter community in the
sense that QFT allows us to theoretically explore the
prominent physics developing on the relevant low-energy
scale probed in experiments. Remarkably, it has also been
realized that elusive particles that appear in the context of
high-energy physics, such as Weyl and Majorana fermions,
can naturally emerge in the form of quasiparticles in a
condensed-matter setting [1,2]. On the other hand, recently
one has witnessed the outbreak of investigations dedicated
to collectively understand the prospects of exploiting
condensed-matter models as possible experimental realiza-
tions of physical situations that arise in the context of
general relativity and of quantum field theories in curved
backgrounds. For instance, it now has been well established
that kinematic aspects of black holes can be investigated in
weakly interacting Bose gases [3]. In this analog model
configuration, theoretical surveys have also probed aspects
of interesting kinematical effects that arise in classical and
quantum systems, such as, for example, phenomena
involving superradiance processes [4].
The investigation proposed here considers this

current trend to borrow concepts originally developed in

high-energy physics for the study of low-energy systems
commonly found in condensed matter. We are particularly
interested in the transport properties of graphene. The low-
energy physics of two-dimensional carbon systems [5,6] is
governed by the presence of two generations of massless
Dirac fermions. The electronic interactions in Dirac liquids
lead to a wealth of intriguing transport phenomena which
have attracted a fair amount of attention since the first
synthesization of graphene in 2004 [7]. Indeed, recent
experiments uncover the relevance of such electronic
interactions at low temperatures [8–11]. In turn, the inter-
play between strong Coulomb interactions and weak
quenched disorder in graphene has also been elucidated,
and the general expectation is that vector-potential disorder
may play a key role in the description of transport in
suspended graphene films [12]. Motivated by clear evi-
dence of the strongly coupled nature of graphene, transport
coefficients were calculated within a modern holographic
setup [13].
The specific structure of the 2D crystal lattice permits

graphene systems to be viable settings to study some of the
interesting effects which arise in QFT in curved space-times
[14–16]. In this context, measurable effects of QFT in a
curved-background description of the electronic properties
of graphene represent a growing ongoing line of research.
A number of proposals to interpret several observed effects
in graphene sheets such as curved ripples [17], corrugations
[18], pure strain configurations [19] and even nonuniform
elastic deformations [20] in the light of a curved-space
description of the electronic properties of graphene has
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occupied much of the contemporary associated literature.
The appearance of gauge fields in graphene systems
has also made it possible to establish a firm bridge between
the physics of graphene and gravity-like phenomena
allowing the unification of concepts from elasticity and
cosmology [21].
The chiral nature of the charge carriers in graphene is

responsible for the existence of a minimal ac conductivity in
the collisionless regime which is universal [22]. In this
respect much theoretical effort has been devoted to under-
stand the effects of electronic interactions on the optical
conductivity in such a scenario (for an interesting discus-
sion, see Ref. [23] and references cited therein). One
possible framework with which one can address this issue
is given by the so-called reduced quantum electrodynamics
(RQED). This is a quantum field theory describing the
interaction of an Abelian Uð1Þ gauge field with a fermion
field living in flat space-times with different dimensions
[24,25]. Motivations for the investigation of such reduced
theories comprise their feasible application in low-dimen-
sional condensed-matter settings, in particular graphene
systems. Indeed, it has been claimed that calculations within
the formalism of RQED reproduce as close as possible the
experimental results for the minimum conductivity of
graphene [26]. Electromagnetic current correlation has also
been computed within the context of RQED [27]. Other
interesting, noteworthy features of RQED include the
validity of the Coleman-Hill theorem and the existence of
quantum scale invariance [28,29]. For recent studies of
chiral symmetry breaking inRQEDat finite temperature and
in the presence of a Chern-Simons term, see Refs. [30,31].
In the present exploration our theoretical laboratory will

be the generalization of the formalism of RQED to curved
spaces. We do not wish to single out one particular metric in
our exploration, but instead we will keep our discussion to
general spatial geometries. For that we will use a momen-
tum-space representation of the Feynman propagator in
arbitrary curved space-times [32,33]. As usual the con-
struction rests upon the usage of Riemann normal coordi-
nates [34,35]. As an application, our discussionwill allow us
to calculate the one-loop high-frequency behavior of the
optical conductivity in the presence of curvature effects in
graphene by using the Kubo formula. We will demonstrate
that the effect of the curvature upon the optical conductivity,
to a certain extent, is to induce the appearance of an effective
chemical potential when the Ricci scalar is positive. Wewill
also explore the intriguing possibility that such curvature
effects can actually contribute to an increase in the conduc-
tivity of graphene. We employ units such that ℏ ¼ c ¼ 1.

II. RQED IN CURVED SPACE

A. RQED in flat space

Let us begin our discussion in flat space. Massless Dirac
electrons are assumed to interact via the RQED in two

spatial dimensions. Such a model in flat space is given by
the following action1 (for the Euclidean version, see
Ref. [26]):

S ¼
Z

ddγx
�
−
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2

�

þ
Z

ddex

�
ψ̄AivF∂ψA − ηαβjαAβ

�
ð1Þ

where x0¼vFt and jμ¼eψ̄Aγ
μψA¼eðψ̄Aγ

0ψA;vFψ̄Aγ
iψAÞ,

i ¼ 1, 2. In such expressions, ψA is a 2-component Dirac
field, ψ̄A ¼ ψ†

Aγ
0 is its adjoint, Fμν ¼ ∂μAν − ∂νAμ, γμ are

rank-2 Dirac matrices given by γ0 ¼ σ3, γ1 ¼ iσ2,
γ2 ¼ −iσ1, satisfying fγμ; γνg ¼ 2ημν, with σj being the
usual Pauli matrices. Also, A denotes a flavor index,
specifying the spin component and the valley to which
the charge carrier belongs. Since the natural velocity in the
gauge sector is that of light, whereas the one occurring in
the fermionic sector is the Fermi velocity vF, Lorentz
invariance is broken. An SUð4Þ version of this model has
been recently used to study dynamical gap generation and
chiral symmetry breaking in graphene [36].
The above action describes the interaction between a

fermion field in de dimensions with a gauge field in dγ
dimensions, with de < dγ . Specifically for our purposes
dγ ¼ dþ 1 and de ¼ ðd − 1Þ þ 1. In addition, the indices
run as follows: For the first term μ ¼ 0; 1;…; d, and for the
second term μ ¼ μe ¼ 0; 1;…; ðd − 1Þ. For the case of
graphene, d ¼ 3. Equation (1) can also be written as

S ¼
Z

ddγx

�
−
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2

þ
�
ψ̄AivF∂ψA − ηαβjαAβ

�
δðxdγ−deÞ

�
ð2Þ

and then the conserved current is defined as

jμðxÞ ¼ eψ̄Aγ
μψAδðxdγ−deÞ; μ ¼ μe ð3Þ

and the other components are zero. In this work, we will be
particularly interested in an alternative model; this corre-
sponds to a vanishing space-time anisotropy and describes
the IR Lorentz invariant fixed point where vF → 1 and the
interaction is fully retarded (for a complete discussion see
Ref. [37]). To consider the situation away from this fixed
point, one should consider the replacement γi → vFγi.
By integrating out the degrees of freedom transverse to

the de-dimensional space, one obtains the gauge propagator
on the plane, which for the case of graphene reads

1To avoid cluttering notation the space-time indices of both
dimensions are labeled equally, their range is left implicit from
their corresponding action.
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D0μνðp2Þ ¼ −i
2

ffiffiffiffiffi
p2

p
�
ημν −

1 − ξ

2

pμpν

p2

�
: ð4Þ

It is possible to introduce now a d ¼ 3 gauge field Ãμ on the
plane that propagates like Eq. (4). The resulting theory is
the RQED mentioned above, also known as pseudo-
quantum electrodynamics (PQED) [24]

S ¼
Z

d3x

�
−
1

2
F̃μν

1ffiffiffiffiffiffiffiffi
−□

p F̃μν −
1

2ξ̃
∂μÃ

μ 1ffiffiffiffiffiffiffiffi
−□

p ∂νÃ
ν

þ ψ̄AivF∂ψA − ηαβjαÃβ

�
: ð5Þ

Actions (1) and (5) are physically equivalent. Whether one
should employ one or the other depends on the situation.
The mixed-dimensional (1) is adequate for position space
methods whereas action (5) is better suited for momentum
space techniques. However for the purpose of perturbation
theory in momentum space it suffices to derive the
propagator (4) without knowledge of (5).

B. RQED in curved space

In this paper we are interested in the curved-space
version of the Lorentz invariant fixed-point model. That is

S ¼
Z

ddγx
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

2ξ
ð∇μAμÞ

�

þ
Z

ddex
ffiffiffiffiffiffiffiffi
−H

p
ψ̄AiγμðxÞð∂μ þ Ωμ þ ieAμÞψA: ð6Þ

where Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ (the connec-
tion terms cancel), γμðxÞ ¼ eaμðxÞγa, ðΩμÞβα ¼
ð1=2Þωμ

abðJabÞβα, ðJabÞβα being the Lorentz generators
in spinor space, and ωμ

a
b ¼ ebνð−δλν∂μ þ Γλ

μνÞeaλ is
the spin connection, whose relation to the Christoffel
connection comes from the metricity condition: ∇μeaν ¼
∂μeaν − Γλ

μνeaλ þ ðωμÞabebν ¼ 0. We have introduced the
vielbein eaλ, which satisfies ηabeaμebν ¼ gμν. In addition,
Hαβ is the induced metric on the boundary of the space-
time with metric gμν. Besides the hypothesis of weak
curvatures made in Sec. III, the formalism presented here
can be elaborated without fixing a particular form to the
metric. That said, for application to the specific case of
graphene, one usually considers metrics in a normal
Gaussian-coordinate form, that is (in four space-time
dimensions)

gμνdxμdxν ¼ dt2 − dz2 − hijdxidxj ð7Þ

where i, j ¼ 1, 2. In this case,

Z
ddγx

ffiffiffiffiffiffi
−g

p ¼
Z

dt
Z

dz
Z

dx1dx2
ffiffiffi
h

p

where h is the determinant of the spatial metric hij.
Henceforth we will consider this form for the metric in
the subsequent calculations.
Equation (6) can also be written in a form similar to

Eq. (2), so that the conserved current will have an
expression similar to (3). However, one can also consider
an alternative form that will be useful in what follows.
Define

ēaμðxÞ ¼
�
eaμðxÞδðxdγ−deÞ a; μ ¼ μe

0 a; μ ¼ de;…; dγ − 1:
ð8Þ

In the case of graphene, xdγ−de ¼ z, see Eq. (7). Moreover,
we consider that the extra dimensions dγ − de are all flat
which justifies the usage of the standard Dirac delta
function. In this way the action displays a form which
closely resembles the one of the standard QED in curved
space, namely

S ¼
Z

ddγx
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

2ξ
ð∇μAμÞ

þ ψ̄Aiγ̄μðxÞð∂μ þ Ωμ þ ieAμÞψA

�
ð9Þ

where γ̄μðxÞ ¼ ēaμðxÞγa. Action (9) will be the starting
point of our analysis. In order to carry a one-loop analysis
our first goal is to derive a curved space version of
propagator (4). This is done in Sec. III where we also
discuss in the end the possibility to generalize the PQED
action (5) itself.

C. Ward Identity for curved space RQED

Consider the path-integral formulation of the theory,
whose generating functional is given by

Z ¼
Z

DAμDψDψ̄

× exp

�
iSþ i

Z
ddγx

ffiffiffiffiffiffi
−g

p ðJμAμ þ η̄ψ þ ψ̄ηÞ
�

ð10Þ

where S is given by (9). There should be also the
contribution of the Faddeev-Popov ghost fields to the
generating functional which is important in the evaluation
of the one-loop effective action; since they will not play a
role in our investigation, we choose to omit them for
brevity.
Using functional methods, it is not difficult to exhibit the

Schwinger-Dyson equation for the fermion propagator:

−iS−1ðx; x0Þ ¼ −iS−10 ðx; x0Þ þ iΣðx; x0Þ ð11Þ

where S0 is the free curved-space counterpart of the
fermion propagator and the self-energy reads
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−iΣðx; x0Þ ¼
Z

ddγz
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p

×
Z

ddγu
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðuÞ

p
ð−ieγμðxÞÞ

× iSðx; uÞð−ieΓνðu; x0; zÞÞiGμνðz; xÞ ð12Þ

with Gμν being the exact gauge propagator. In addition,
Γνðu; x0; zÞ is the exact three-point function with the
external exact propagator removed:

Γνðu; x0; zÞ ¼ δ3Γ
δAνðzÞδψðuÞδψ̄ðx0Þ

ð13Þ

where Γ is the proper vertex and the functional derivatives
are taken with respect to the so-called classical fields. The
inverse fermion propagator can also be given as

S−1ðx; x0Þ ¼ δ2Γ
δψðxÞδψ̄ðx0Þ : ð14Þ

The derivation of the Schwinger-Dyson equation for the
gauge propagator follows along similar lines; one finds

−iG−1
μν ðx; x0Þ ¼ −iG−1

0μνðx; x0Þ − iΠμνðx; x0Þ ð15Þ

where G0μν is the free gauge propagator in curved space.
The vacuum polarization is defined as

iΠμνðx; x0Þ ¼ −
Z

ddγy
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p Z
ddγy0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðy0Þ

p

× Tr½ð−ieγμðxÞÞiSðx; yÞð−ieΓνðy; y0; x0ÞÞ
× iSðy0; xÞ�: ð16Þ

QED in curved space-time has been discussed in several
places in the literature, see for instance Refs. [38–40] and
the monograph [41]. In turn, a proof of the Ward-Takahashi
identity for QED in curved space can be found, for
instance, in Ref. [42]. In the present case we can follow
a similar procedure. Namely, let Aμ change by∇μφðxÞ. This
amounts to consider a change in ψ̄ and ψ ,

ψ̄ðxÞ → e−ieφðxÞψ̄ðxÞ:

This implies the following change in S−1ðx; x0Þ:

δS−1ðx; x0Þ ¼ e
Z

ddγy
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
φðyÞ∇μΓμðx; x0; yÞ: ð17Þ

But δS−1ðx; x0Þ can also be calculated from the trans-
formation for in ψ̄ and ψ , which gives

δS−1ðx; x0Þ ¼ ie
Z

ddγy
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
φðyÞ½δðx; yÞ − δðx0; yÞ�

× S−1ðx; x0Þ ð18Þ

where δðx; yÞ ¼ ð−gðyÞÞ−1=2δdγ ðx − yÞ. Comparing both
expressions, one arrives at the Ward-Takahashi identity

∇μΓμðx; x0; yÞ ¼ i½δðx; yÞ − δðx0; yÞ�S−1ðx; x0Þ: ð19Þ

Simple usage of the definition of the vacuum polarization
together with Eq. (19) leads us to the Ward identity in
curved space:

∇x0
ν Πμνðx; x0Þ ¼ 0: ð20Þ

This derivation certainly holds for the model defined by the
action (9). But since this is equivalent to the action given by
Eq. (6), the validity of the Ward identity for RQED in
curved space is hence established.

III. LOCAL MOMENTUM SPACE
REPRESENTATION

A. QED4

In order to deal with the curved propagators, we employ
Riemann normal coordinates (RNC) with origin at the point
x0 [43]. This point is fixed and all other points will be in a
normal neighborhood of x0. This means that, in the loop
expressions to follow, x is free to vary in a normal
neighborhood of the fixed point x0. At the same time we
make a Schwinger-DeWitt proper time expansion for the
fermion and gauge propagators. Together with the RNC
this leads to the so-called local momentum space repre-
sentation. The usefulness of the local momentum space
representation is twofold. The first, practical reason, is that
it yields to the standard momentum space techniques
because only flat space-time quantities enter due to the
RNC expansion. The second, most relevant and physical, is
that it carries some nonperturbative information due to a
partial resummation of the scalar curvature. Here we give a
qualitative overview of this approach to contextualize later
discussions and comments. The detailed derivation of the
fermionic and gauge propagators are deferred to the
appendixes. See also Refs. [44,45].
We begin setting up the wave equations obeyed by the

propagators Gi
jðx; x0Þ [46]

½δik∇μ∇μ þQi
kðxÞ�Gk

jðx; x0Þ ¼ ϑδijδðx; x0Þ ð21Þ

where the indices i, j indicate any appropriate indices
carried by the fields of interest (spinor or vector), ϑ ¼ þ1
for the gauge field and ϑ ¼ −1 for the spinor field.
Qi

kðxÞ is a function with indices of the indicated type,
and, as above, δðx; x0Þ ¼ jgðxÞj−1=2δðx − x0Þ. Moreover, the
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covariant derivative in the above expression acts
upon the x-dependence of the Green’s function and is
defined by

∇μGi
jðx; x0Þ ¼ ∂μGi

jðx; x0Þ þ Γμ
i
kðxÞGk

jðx; x0Þ ð22Þ

where Γμ
i
k is the appropriate connection for the given spin.

For the free gauge field in the Feynman gauge, Eq. (21) is
simply

½ημλ□þ Rμλ�Gλ
ν0 ¼ ημν0δðx; x0Þ ð23Þ

so we see that Qμ
ν ¼ Rμ

ν. The free massless spinor field
satisfies the equation

iγμ∇μS0ðx; x0Þ ¼ δðx; x0Þ: ð24Þ

However, defining S0ðx; x0Þ ¼ iγμ∇μGðx; x0Þ and using the
identity [46]

γμγν∇μ∇νΨ ¼
�
□þ 1

4
R

�
Ψ

where Ψ is any appropriate test function, one obtains that

�
□þ 1

4
R

�
Gðx; x0Þ ¼ −δðx; x0Þ: ð25Þ

So we observe that Qi
j ¼ δijR=4, where i, j are now spinor

indices. Indeed, Gðx; x0Þ is a bispinor.
Let us first discuss the Riemann normal coordinates

expansion. In simple terms it amounts to the application of
the equivalence principle on some point x0. This allows a
strictly flat space-time description on x0 where the standard
methods of field theory are valid. For points within the
normal neighborhood of x0 we pick corrections that are
polynomial in the curvature tensors and their derivatives
computed at x0.
The Schwinger-DeWitt expansion on the other hand is

done directly on the fields’ propagators. It makes use of the
fact that Gðx; x0Þ is a transition amplitude hx; sjx0; 0i evolv-
ing under a Schrödinger equation from proper time τ ¼ 0 to
τ ¼ s. For x → x0 we fall into the domain of validity of the
RNC expansion, which ultimately leads to the following
fermionic and gauge propagators (see appendixes)

S0ðx; x0Þ ¼
Z

dDk
ð2πÞD e−iky

�
γνkν

k2 −M2
e

þ 1

ðk2 −M2
eÞ2

�
1

2
Rνργ

νkρ −
γνkν
6

R

�

þ 2

3

γνkνkσkρRρσ

ðk2 −M2
eÞ3

þ � � �
�

D0μν0 ðx; x0Þ ¼ −
Z

ddγk
ð2πÞdγ e

−iky
�

ημν0

k2 −M2
γ

þ 1

ðk2 −M2
γÞ2

�
2

3
Rμν0 −

1

6
Rημν0

�

−
2

3

ð2Rμαβν0 − Rαβημν0 Þkαkβ
ðk2 −M2

γÞ3
þ � � �

�
: ð26Þ

In the above M2
e ¼ Rðx0Þ=12 and M2

γ ¼ −Rðx0Þ=6 are the
result of a nonperturbative resummation. Some comments
are in order. First notice that Rðx0Þ being computed at x0 is
formally a number. Furthermore since this is a semiclassical
approximation neither M2

e nor M2
γ are subject to renormal-

ization. Finally we must be careful before interpreting the
poles atM2

e andM2
γ as physical masses because for a generic

curved space-time there is no unambiguous split between
positive and negative frequencies to define one-particle
states. For instance our general proof of the Ward Identity
guarantees that there is no conflict between the parameterMγ

and gauge invariance.
Obviously, the local-momentum space representation

provides only a local approximation to the propagator.
However, it should give reasonable approximate results
as long as curvature effects remain weak. It is in this sense
that the expression for the optical conductivity to be
calculated later on is to be regarded as a high-frequency
expansion.

B. Reduced QED

Up until now our discussion parallels the one for
standard curved QED4. We still need to reduce the gauge
sector down to (2þ 1) dimensions. This is a difficult
task for a general curved space-time, but within the
regime of validity of the local momentum space represen-
tation it can be done in the exact same fashion as in the flat
space-time case. We find to first order in the Feynman
gauge

D0μν0 ðk2Þ ¼
−iημν0

2ðk2 −M2
γÞ1=2

: ð27Þ

This is the propagator we shall employ in the following
one-loop analysis.
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In a general gauge the gauge field propagator in
QED4 is to first order in the local momentum space
representation2

D0μν0 ðk2Þ ¼
−i

k2 −M2
γ

�
ημν0 − ð1 − ξÞ kμkν0

k2 −M2
γ

�
: ð28Þ

Within this approximation we find upon projection

D0μν0 ðk2Þ ¼
−i

ðk2 −M2
γÞ1=2

�
ημν0 − ð1 − ξ̃Þ kμkν0

k2 −M2
γ

�
: ð29Þ

It is not straightforward, if possible at all, to infer a purely
(2þ 1)-dimensional action that reproduces (29) in analogy to
the passage from (4) to (5)—i.e., a curved space generaliza-
tion to PQED. Furthermore, if indeed possible this would
only be anUV limit of curved PQED. Finallywe notice this is
the reason for choosing the name curved RQED instead of
curved PQED for the approach we adopt in this work.

IV. ONE-LOOP ANALYSIS

In this work we are interested in calculating the one-loop
diagrams:

iΠμν
1 ðx; x0Þ ¼ −Tr½ð−ieγμðxÞÞiS0ðx; x0Þð−ieγνðx0ÞÞiS0ðx0; xÞ�

−iΣ1ðx; x0Þ ¼ ð−ieγμðxÞÞiS0ðx; x0Þð−ieγνðx0ÞÞiD0μνðx0; xÞ
−ieΓμðy; y0; xÞ ¼ ð−ieγβðxÞÞiS0ðx; yÞð−ieγμðyÞÞiS0ðx; y0Þð−ieγαðy0ÞÞiD0αβðy0; yÞ ð30Þ

where D0μν are the (free) curved-space counterpart of the
reduced gauge field propagators, respectively. The one-
loop fermion propagator is then given by

iSðx; x0Þ ¼ iS0ðx; x0Þ

þ
Z

ddγz
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p Z
ddγz0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðz0Þ

p

× iS0ðx; zÞð−iΣ1ðz; z0ÞÞiS0ðz0; x0Þ: ð31Þ

As standard in QFT calculations, some of such integrals are
divergent, and a careful procedure of regularization and
renormalization should be taken into account. As quoted
above, quantum electrodynamics in curved space has been
considerably discussed in the literature [38–42]. Following
[27], we employ dimensional regularization. Loop integrals
will depend on de which is given as a function of suitable
quantities ϵγ and ϵe:

de ¼ 4 − 2ϵγ − 2ϵe:

After evaluating the loop integrals for a general de, we
employ the above expression for a fixed value of ϵe, namely
ϵe ¼ 1=2. The associated divergences will correspond to
poles in 1=ϵγ . The relation between bare and renormalized
quantities follows the usual recipe,

ψ ¼ Z1=2
2 ψR

A ¼ Z1=2
3 AR

e ¼ ZeeR ¼ Z1

Z2Z
1=2
3

eR

Γμ
R ¼ Z−1

1 Γμ

ξ ¼ Z3ξR ð32Þ

where the subscript R means a renormalized quantity. As
usual, a renormalization scale μ̃ with dimensions of mass
must be introduced. One then rewrites the Lagrangian
density in terms of such renormalized quantities and
renormalization constants that absorb all UV divergences.
Use of theWard-Takahashi identity (19) leads toZ1 ¼ Z2. In
the modified minimal subtraction scheme (which we adopt
here) the renormalization constants take a simple form

Zn ¼ 1þ δZnðαR; ϵγÞ; n ¼ 1; 2; 3 ð33Þ

where αR ¼ e2R=4π is the renormalized fine-structure con-
stant and δZnðαR; ϵγÞ is expanded in powers of αR and 1=ϵγ .
Taking into account such an expression for the renormal-
ization constants, one obtains a counterterm Lagrangian
density (besides a Lagrangian density written in terms of
only the renormalized fields and parameters).
A theorem proved by Collins states that all counterterms

are necessarily local in a flat background [47]. An impor-
tant consequence of this theorem is that a nonlocal
contribution in the action does not get renormalized (i.e.,
the associated δZ ¼ 0). This point is extensively discussed
in Ref. [23]. In the case of RQED in flat space, this implies
that the beta function is zero to all orders in perturbation
theory, producing thereby an explicit example of an
interacting boundary conformal field theory. On the other

2Propagator (28) seems to break gauge invariance upon
contracting with pμ as there is a leftover proportional to M2

γ .
This is in no contradiction with our general result for gauge
invariance in Sec. II C. To understand the issue one must notice
that the leftover is of higher order in the local momentum space
expansion (26). Inspecting the corresponding higher order con-
tribution reveals a canceling term.
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hand, since the discussion in Ref. [47] was based on the
analysis of superficial degree of divergence of Feynman
diagrams, in a general curved space, when one combines
the local-momentum representation and the usual Feynman
technique, one obtains that the necessary counterterms
must also be covariant local expressions. This is because
divergences in loops should be tantamount to local effects.
However, one can argue that propagators represent corre-
lations of fields at different space-time points, so one must
be able to obtain nonlocal contributions. Indeed, these arise
from the finite parts of the loops, but not from the UV
divergences. The uncertainty principle lies underneath this
split: Ultraviolet divergences must be associated with the
high-energy contribution and hence emerge as short-dis-
tance (local) effects. This should also hold in curved space-
times, even if the theory contains some nonlocal operators.
That is why one should naturally expect that nonlocal
contributions in the curved-space action will not get
renormalized. In particular, this suggests that the beta
function of curved-space RQED should also be zero to
all orders in perturbation theory. The one-loop proof of this
statement will be given in due course.

A. One-loop fermion self-energy

Nowwe turn to the task of studying the one-loopdiagrams
in detail. We start our discussion with the fermion self-
energy. This is given by the second expression in Eq. (30),
see also Fig. 1. Considering Riemann normal coordinates
with origin at x0, one must insert into such an expression the
propagators calculated in the appendixes, which are given as
expansions in the curvatures. Concerning the gauge propa-
gator, and as discussed above, one should integrate out the
gauge degrees of freedom transverse to the de-dimensional
space in which the fermion lives. This amounts to consider
an integration over the dγ − de bulk degrees of freedom
of the gauge propagator, whose expression is derived in
Appendix C. After specializing to de¼ð2þ1Þ-dimensional
case, one finds the following local-momentum representa-
tion for the one-loop fermionic self-energy:

Σ1ðk; x0Þ ¼
1

2

Z
d3q
ð2πÞ3 ð−ieγ

μÞ ið=k − qÞ
ðk − qÞ2 −M2

e þ iϵ
ð−ieγνÞ

×
iημν

ðq2 −M2
γ þ iϵÞ1=2 : ð34Þ

where, as defined in the appendixes, M2
e ¼ Rðx0Þ=12 and

M2
γ ¼ −Rðx0Þ=6. As is clear from the above expression, we

are working in the Feynman gauge, ξ ¼ 1. Moreover, notice
that we kept only the leading-order terms in the expansion in
curvatures for the propagators. These are the only ones that
will generate a divergence at de ¼ 3 and hence to a μ̃
dependence. Accordingly, we also kept only the leading-
order term in the expansion of the gammamatrices, so the γ’s
in the above equation are just the standard flat-space gamma
matrices in three dimensions. Finally, observe the introduc-
tion of the iϵ’s in the denominators of the propagators. These
are necessary in order to take into account the time-ordering
boundary condition.
Using that γμγαγμ ¼ −γα and introducing usual Feynman

parameters and using dimensional regularization, together
with standard techniques, one finds

Σ1ðk; x0Þ ¼
e2=k
16π2

Z
1

0

du
ffiffiffiffiffiffiffiffiffiffiffi
1 − u

p �
1

ϵ̄γ
− ln

�
Δ − iϵ
μ2

��
ð35Þ

where Δ ¼ ΔðuÞ ¼ uM2
e þ ð1 − uÞM2

γ − uð1 − uÞk2 and

1

ϵ̄γ
≡ 1

ϵγ
− γE þ ln 4π; ð36Þ

γE is Euler’s constant and as asserted above 2ϵγ ¼ 3 − de.
Now let us present an explicit expression for the renorm-

alization constant Z2. Consider Eq. (31). Let us employ
Riemann normal coordinateswith origin at x0. In general, the
expansions for S0ðx; zÞ and Σ1ðz; z0Þ will be different from
the expressions given previously since it is x0 that is fixed and
the arguments of such quantities do not contain x0. Then one
should consider for S0ðx; zÞ and Σ1ðz; z0Þ a more general
momentum-space representation [48]. Nevertheless, at lead-
ing order the results are the same. Therefore, one finds the
following one-loop local-momentum representation at lead-
ing order in the expansion in curvatures

Sðk; x0Þ ¼ S0ðk; x0Þ þ S0ðk; x0ÞΣ1ðk; x0ÞS0ðk; x0Þ: ð37Þ

Now consider the leading term in the expansion of S0ðk; x0Þ.
Since curvature effects are supposed to be sufficiently small,
this can also be written as

S0;leadingðk; x0Þ ¼
γνkν

k2 −M2
e
¼ γνkν

k2
þ γνkν

k4
Rðx0Þ
12

þ � � � ð38Þ

in other words, we obtain the standard local-momentum
representation. Hence Eq. (37) can be written as

iSðk; x0Þ ¼ i
=k
þ i
=k
½−iΣ1ðk; x0Þ�

i
=k
þ � � � ð39Þ

wherewe are focusing only on the first term in the expansion
for S0 since this is the one important in discussing theFIG. 1. One-loop fermion self-energy.
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renormalization. On the other hand, since ψ ¼ Z1=2
2 ψR, one

obtains that S ¼ Z2SR. Hence following standard renorm-
alization procedures, one finds that

Z2 ¼ 1þ 2

3

αR
4πϵ̄γ

þOðα2Þ ð40Þ

wherewe have replacedα byαR in such an expression (this is
correct to leading order). This has the same form as in flat
space [27]. Observe also that renormalization constant Z2 at
one-loop is unaffected by space-time curvature, a result
similar to the standard quantum electrodynamics in curved
space-time [42]. Curvature terms only contribute to the finite
part of the self-energy:

Σ1Fðk; x0Þ ¼ −
e2=k
16π2

Z
1

0

du
ffiffiffiffiffiffiffiffiffiffiffi
1 − u

p
ln

�
Δ − iϵ
μ2

�

¼ −
e2=k
16π2

Z
1

0

du
ffiffiffi
u

p

× ln

�ð1 − uÞM2
e þ uM2

γ − iϵ − uð1 − uÞk2
μ2

�
:

ð41Þ

B. One-loop vertex correction

Let us now we turn our attentions to the vertex correction
at one-loop order. This is given by the third expression in
Eq. (30), see Fig. 2. Again considering Riemann normal
coordinates with origin at x0, one must insert into such an
expression the field propagators calculated in the appen-
dixes. By taking into account only the leading-order term of
such an expansion, one finds that

eΓμ
1ðk1; k2; x0Þ ¼

1

2

Z
d3q
ð2πÞ3

iηαβ
ðq2 −M2

γ þ iϵÞ1=2 ð−ieγ
βÞ

×
ið=k1 þ qÞ

ðk1 þ qÞ2 −M2
e þ iϵ

ð−ieγμÞ

×
ið=k2 þ qÞ

ðk2 þ qÞ2 −M2
e þ iϵ

ð−ieγαÞ ð42Þ

where as above we have considered the reduced gauge
propagator in the Feynman gauge. After introducing

suitable Feynman parameters and a simple change of
variables, one finds that only one of the possible terms
in the numerator produces an UV divergence—this is the
one independent of k1 and k2. Physically we interpret it as a
contribution to the charge form factor. So let us calculate
the vertex function for k1 ¼ k2 ¼ 0. Again following the
standard procedure, one finds

Γ̃μ
1ðx0Þ ¼

e2

32π2

Z
1

0

dydz
θð−y − zþ 1Þθðyþ zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y − z
p

×

�
1

ϵ̄γ
−
2

3
− ln

�
Δ̃ðy; z; 0; 0Þ − iϵ

μ̃2

��
γμ ð43Þ

where

Δ̃ðy; z; k1; k2Þ ¼ ð1 − y − zÞM2
γ þ ðyþ zÞM2

e

þ ðyk1 þ zk2Þ2 − yk21 − zk22:

Now we must discuss the one-loop renormalization of the
vertex function. This amounts to calculate the renormali-
zation constant Z1 at one-loop level. Proceeding as in the
previous section, the vertex function up to one-loop level in
the local-momentum representation can be written as

−ieΓμðk1; k2; x0Þ ¼ −ieγμ − ieΓμ
1ðk1; k2; x0Þ ð44Þ

where as above we considered only the leading order in the
expansion in curvatures. On the other hand, the renormal-
ized vertex function Γμ

R is given in terms of the associated
bare quantity Γμ and Z1 as

Γμ
Rðk1; k2; x0Þ ¼ Z−1

1 Γμðk1; k2; x0Þ ð45Þ

again in leading order in the expansion in curvatures. By
using again the standard approach, one finds that

Z1 ¼ 1þ 2

3

αR
4πϵ̄γ

þOðα2Þ: ð46Þ

where as above we have replaced α by αR. A simple
comparison between Eqs. (46) and (40) shows that
Z1 ¼ Z2. So we have explicitly verified the constraint
between such renormalization constants at one-loop order:
This result, which is a consequence of the Ward-Takahashi
identity, is still valid for the curved-space version of RQED.

C. One-loop vacuum polarization

Finally let us discuss the one-loop vacuum polarization.
This is given by the first expression in Eq. (30). See also
Fig. 3. We will consider this calculation with more detail
since we wish to explicitly check the aforementioned
expectation concerning the vanishing of the one-loop beta
function. Even though this is a somewhat standard calcu-
lation, we will give a step-by-step analysis of this issue, soFIG. 2. One-loop vertex correction.
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that our conclusions are presented in a clear way. The same
goes for checking the Ward identity.
Again considering Riemann normal coordinates with

origin at x0, one must insert into such an expression the
fermion propagator calculated in the Appendix B. By
taking into account only the leading-order term of such
an expansion, one finds that

iΠμν
1 ðp; x0Þ ¼ −e2

Z
d3k
ð2πÞ3 tr½γ

μγαγνγβ� ðpþ kÞαkβ
ððpþ kÞ2 −M2

e þ iϵÞðk2 −M2
e þ iϵÞ : ð47Þ

As above, in such an equation use is made of the flat-space version of the gamma matrices. Using properties of the traces of
products of gamma matrices and introducing Feynman parameters, one finds

iΠμν
1 ðp; x0Þ ¼ −2e2

Z
1

0

dx
Z

d3k
ð2πÞ3

ðð1 − xÞpþ kÞμðk − xpÞν þ μ ↔ ν − ðð1 − xÞpþ kÞ:ðk − xpÞημν
ðk2 − Δ̄þ iϵÞ2 ; ð48Þ

where Δ̄ ¼ M2
e − xð1 − xÞp2 and we have redefined k → k − xp. Keeping only even terms in k and considering that

kμkν → k2ημν=3 inside the integral, we get

iΠμν
1 ðp; x0Þ ¼ 2e2

Z
1

0

dx
Z

d3k
ð2πÞ3

1

ðk2 − Δ̄þ iϵÞ2
��

1

3
k2 − xð1 − xÞp2

�
ημν þ 2xð1 − xÞpμpν

�
: ð49Þ

This contribution turns out to be finite. Using standard techniques to calculate the momentum integral, one obtains

iΠμν
1 ðp; x0Þ ¼ −

ie2

2π
ðp2ημν − pμpνÞ

Z
1

0

dx
xð1 − xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
e − iϵ − xð1 − xÞp2

p þ ie2M2
e

4π
ημν

Z
1

0

dx
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
e − iϵ − xð1 − xÞp2

p : ð50Þ

Apparently the Ward identity is violated by the presence of an anomalous contribution, given by the second term on the
right-hand side of the above equation. However, by evaluating the x-integrals one finds that the transversality breaking term
is actually longitudinal; more importantly, since the numerator is proportional to M2

e ¼ Rðx0Þ=12, such a term is of higher
order in the curvature expansion currently considered. Hence at leading order

iΠμν
1 ðp; x0Þ ¼ ie2

4π
ðp2ημν − pμpνÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

e − iϵ
p

p2
þ 1

4p
ln

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

e − iϵ
p

− p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

e − iϵ
p

þ p

��
ð51Þ

and the Ward identity at one-loop order is satisfied.
The most relevant upshot from this calculation is that the

vacuum polarization is finite, at least at one-loop order.
This means that such a contribution does not get renor-
malized, δZð1Þ

3 ¼ 0. This in turn implies that the beta
function of the curved-space version of RQED is zero at
one-loop order.

V. APPLICATION TO CURVED
GRAPHENE LAYER

As described in [21] positive or negative intrinsic
curvature in graphene arises by removing or introducing
sites in a given hexagonal lattice ring. These are the so-
called disclination defects. Dislocation defects (pair of
disclinations of opposite curvature) introduce torsion but

have zero net curvature [49–51]. Ripples due to thermal
fluctuations have also been observed [52]. In this section
we describe how to apply the formalism developed so far to
the case of curved graphene layers.
An idealized model of a disclination in an elastic media

is obtained when the curvature is concentrated at the tip of a
cone. In this case, the geometry can be described by a
metric similar to the one found in the discussions of a single
cosmic string [18,53]. As well known, this generates a
conical singularity in the curvature: The scalar curvature in
this space will be proportional to a delta function [54,55].
Hence it appears at first sight that disclinations cannot be
encompassed in the present formalism. However, an
important issue concerns the core region of the defect.
Indeed, realistic models of cosmic strings, in which the
space-time curvature is spread over a region of finite size,

FIG. 3. One-loop vacuum polarization.
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was discussed in detail in Ref. [56]. The main idea
essentially consists in replacing the conical singularity
by a smooth spherical cap. In such cosmological models
the curvature is confined inside a cylinder, describing the
interior structure of the string. Concerning a graphene
sheet, the generation of a disclination by employing the
usual “cut and glue” procedure will result in a true cone.
This corresponds to a pointlike disclination defect and, in
particular, implies the presence of a conical singularity.
Notwithstanding, one must bear in mind that a membrane
possesses finite elasticity, so a realistic situation must
naturally go beyond the infinite-rigidity approximation.
Thus, in order to have the curvature spread over some finite
region one needs to take into account elastic properties. In
other words, one needs to consider the graphene layer at
finite elasticity [57,58]. For similar intriguing discussions
regarding a realistic account of a physical lattice in
graphene-like systems, see also Refs. [59,60]. In summary,
a realistic picture of disclinations should take into account
the finite elasticity of the graphene layer, and this amounts
to considering a suitable procedure of regularization for the
conical singularity (for interesting discussions regarding
techniques for regularizing the conical singularity, see
Refs. [61,62]). In such a situation, our formalism is
expected to be fully operational and to provide sensible
physical results. Other possible situations to which our
formalism can be applied are those discussed in Ref. [15],
where a quantum field theory in curved graphene was
constructed. On the other hand, as well known it is possible
to consider curved space-times with conical singularities
but with well-behaved scalar curvatures [63]. In any case,
around the tip of a cone (including the tip) a smooth
differentiable structure is available. Indeed, a heat kernel
expansion on spaces with a conical singularity can be
derived [62,64,65], which implies that the local-momentum
representation can also be used in such contexts.
There are two small modifications to be made. First of all

photons, contrary to electrons, are not subjected to a curved
space. Therefore we set M2

γ ¼ 0. Notice however that the
one-loop vacuum polarization (51) is not affected byM2

γ as
there are no internal gauge field propagators. Importantly
the Ward identity still holds for M2

γ ¼ 0 as only a few
immaterial factors of jgj1=2 drop out. This is confirmed by
the recovery of the known UV divergences from flat
graphene, see from [66].
In turn, we must substitute γi by vFγi, with vF ≈ 1=300.

This takes into account the actual Fermi velocity of the
Dirac excitations. The system (32) of renormalized param-
eters is then complemented by

vF ¼ ZvvR: ð52Þ

It has been shown that the relativistic theory with vF ¼
c ¼ 1 is a fixed point in the infrared [37,66]. It must be kept
in mind that v, hence also Zv, enter only alongside the
spatial components of the gamma matrices. This results in a
slightly more involved renormalization procedure as the
frequency parts of both the fermion self-energy and vertex
correction are proportional to Z2 and Z1, whereas the
momentum parts are proportional to Z2Zv and Z1Zv. By
virtue of the Ward Identity Z1 ¼ Z2 it is seen that the
fermion wave function and vertex renormalize equally as
usual. This suggests two independent ways to compute Zv,
the simplest being through the fermion self-energy.
The Feynman rules for the application of the theory to

graphene for the case of retarded Coulomb interaction
produce the following expressions for the fermionic and
gauge-field propagator, and the photon-fermion-fermion
vertex, respectively:

iS0ðωp;pÞ ¼
iðγ0ωp − vFγipiÞ
ω2
p − v2Fp

2 −M2
ev4F

iD0ðωp;pÞ ¼
1

2

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω2

p þ p2
q

−ieΓ0
0 ¼ −ieγ0: ð53Þ

The free fermion propagator above has the feature that it
does not modify the density of states at x0 becauseM2

eðx0Þ is
a momentum-independent constant within our framework.
This readily follows from

ρðωÞ ¼ −
1

π
Im

Z
d2kTr

�
γ0ω − vFγ:k

ω2 − v2Fk
2 −M2

ev4F
γ0
�
; ð54Þ

by use of the standard identity for the principal value P

P

�
1

x� iϵ

�
¼ 1

x
∓ iπδðxÞ: ð55Þ

Performing the integral with polar coordinates the Jacobian
factor of k cancels with one arising from the delta function
δðω2 − v2Fk

2 −M2
ev4FÞ, leading to the usual linear ω=v2F

behavior around the Dirac points.

A. 1-loop fermion self-energy

Let us discuss the one-loop self-energy. One finds that

−iΣ1ðωp;pÞ ¼
e2

2

Z
dd−1k
ð2πÞd−1

dωk

2π

γ0ðγ0ðωk þ ωpÞ − vFγiðkþ pÞiÞγ0
ððωk þ ωpÞ2 − v2Fðkþ pÞ2 −M2

ev4FÞðω2
k − k2Þ1=2 : ð56Þ
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Having already established that the UV divergences are in
general the same as in the flat model, we just state the result
for the Fermi-velocity renormalization

δZv ¼ −
αg
4π

�
3

1 − v2F
−
ð1þ 2v2FÞcos−1vF
vFð1 − v2FÞ3=2

�
: ð57Þ

which, apart from a constant factor proportional to the
square of the Fermi velocity (coming from the current
density interaction of the vertex we have dropped), recovers
the results from Ref. [37], to which we refer the reader for a
detailed computation. The Fermi velocity beta function βv
is shown in Fig. 4. The crucial point here is that, according
to our model, the relativistic fixed point achieved for
vF → 1 is predicted to survive in the presence of discli-
nation-induced curvature. Here αg ¼ e2=ð4πvFÞ. As for the
finite part of the self energy, we are particularly interested
in the imaginary part of ΣF

1 as it translates to the scattering
time among the charge carriers in graphene due to the
electromagnetic interaction in the presence of curvature.
The local p → 0 limit is relevant when considering level-
broadening effects on the conductivity. Hence

ΣF
1 ðωpÞ ¼ −

αg
4π

γ0ωp

Z
1

0

dx

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

1 − xð1 − v2FÞ

× log

�
μ̄2

xðM2
ev4F − ð1 − xÞω2

pÞ − iϵ

�
ð58Þ

There are now two possible cases to consider, namely
positive or negative Ricci scalar. For positive Ricci scalar,
i.e., M2

e > 0, we obtain, for the scattering time:

τ−1þ ðzÞ ¼ αg
4
Mev2Fz

Z
1

0

dx

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

1 − xð1 − v2FÞ
θðð1 − xÞz2 − 1Þ;

ð59Þ

where z2 ¼ ω2
p=M2

ev4F. This integrates to

τ−1þ ðzÞ ¼
8<
:

0; z ≤ 1

αg
4
Mev2Fz

	
2

1−v2F

	
1 − 1

z



þ 2

ð1−v2FÞ3=2
	
cot−1

	
vFzffiffiffiffiffiffiffiffi
1−v2F

p


− cos−1vF




; z > 1:

ð60Þ

For negative Ricci scalar, i.e., M2
e < 0, the self-energy

always acquires an imaginary part. In this case, the
scattering time is given by

τ−1− ðzÞ ¼ αg
4
Mev2Fz

�
2

1 − v2F
−
2vFcos−1vF
ð1 − v2FÞ3=2

�
: ð61Þ

From the imaginary part of the self-energy, one can use
standard dispersion relations to calculate the real part and,
as a result, one is able to evaluate explicitly the quasipar-
ticle residue at the Fermi energy. As will be argued in due
course, the quantity Mev2F for positive Ricci scalar may
play the role of an effective chemical potential. Using this
as the value of the Fermi energy in the present context,
one can easily show that the quasiparticle residue asymp-
totically should acquire a nonzero value at the Fermi
energy in the case M2

e > 0. All such results concerning

the self-energy should be compared with the ones of
Refs. [66,67].

B. 1-loop vertex correction

Now let us consider the one-loop vertex correction at
zero external momenta. This is given by

−ieΓμ
1ð0;0Þ¼

e3

2

Z
dd−1k
ð2πÞd−1

dωk

2π

γ0γαγμγβγ0kαkβ
ðω2

k−v2Fk
2Þ2ð−ω2

kþk2Þ1=2 :

ð62Þ

It is straightforward to check that the UV divergences
match those of −iΣ1. We once more refer to Ref. [37] for
the details. The finite parts of the time and spatial
components read

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Fermi velocity 1-loop beta function for graphene with
retarded Coulomb interaction.
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Γ0;F
1 γ0 ¼ −

αγ0

8π

Z
1

0

dx
xffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
�

1

1 − xð1 − v2FÞ
−

2v2F
ð1 − xð1 − v2FÞÞ2

�
log

�ð1 − xð1 − v2FÞÞμ̄2
xM2

ev4F

�
; ð63Þ

and

vFΓi;F
1 γi ¼ −

αvFγi

8π

Z
1

0

dx
xffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
�

1

1 − xð1 − v2FÞ
log

�ð1 − xð1 − v2FÞÞμ̄2
xM2

ev4F

�
þ v2F
ð1 − xð1 − v2FÞ2

�
: ð64Þ

These allow us to define a suitable effective Fermi velocity:

1

veff
¼ 1

vF

�
1þ ðΓ0;F

1 Þ3
Γi;F
1

�
: ð65Þ

At the point μ̄2 ¼ M2
ev4F the correction leads to a higher

effective Fermi velocity in accordance with expectation
from the running in Fig. 4

veff ≈ 1.0072vF: ð66Þ

In Ref. [17] it was shown that the effect of curvature on the
electronic properties of a graphene sheet leads to a decrease
in the Fermi velocity in comparison with the free velocity.
On the other hand, electron-electron interactions tend to
increase the Fermi velocity. In our model, we see that
both effects seem to be important, and their combination
contribute decisively to a slight increase in vF. We
remark that this conclusion was obtained for the choice
μ̄2 ¼ M2

ev4F, so one must be very careful with possibly
naive physical interpretations. In particular, this shows once
more the importance of considering a finite elasticity for the
graphene layer—for ideal disclinations, M2

e would present
a sharp singular behavior, as discussed above, and this
choice as a renormalization point would become problem-
atic. A renormalization-group treatment would be most
welcome here. This would indeed be interesting to explore,
and we hope to consider this calculation in the future.

C. Higher-frequency behavior
of the optical conductivity

As an application of the above results, let us determine
the high-frequency behavior of the optical conductivity in
the presence of curvature effects in graphene by using the
Kubo formula, which describes the linear response to a
static external electric field. In real time, it is given by

σik ¼ lim
p→0

i
hjijki
ωþ iϵ

ð67Þ

where the current correlation function is meant to contain
only one-particle irreducible (1PI) diagrams. A simple
analysis shows that [26]

hjμjνi1PI ¼ Πμν ð68Þ

where Πμν is the vacuum polarization tensor of the
electromagnetic field. The optical conductivity is then
given by

σjkðωÞ ¼ lim
p→0

iΠjk

ωþ iϵ
: ð69Þ

To derive the optical conductivity from the above formula,
one must change the boundary conditions employed so far.
This amounts to considering the various Green functions
appearing in Eq. (30) with retarded boundary conditions. In
this case the loop integrals in the vacuum polarization are to
be calculated using the in-in formalism, see for instance
Ref. [68]. The result has the same functional dependence,
but with a different iϵ prescription:

q0 → q0 þ iϵ:

The one-loop vacuum polarization is then given by

iΠμν
1 ðp; x0Þ ¼ ie2

4π
ðp2ημν − pμpνÞ

×

� ffiffiffiffiffiffiffiffiffiffiffiffi
M2

ev4F
p

p2
þ 1

4p
ln

�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
M2

ev4F
p

− p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
M2

ev4F
p

þ p

��
;

pμ ¼ ðp0 þ iϵ;pÞ: ð70Þ

Geometrically it is perfectly plausible for M2
e to be either

negative or positive. Both possibilities seem to lead to
qualitatively different behavior due to extra factors of i
arising for M2

e < 0. In the following we will focus mostly
on the positive scalar-curvature case where the physics is
clearer, and we give only a brief discussion on the negative
case at the end of this section. With that in mind, we
combine our results to obtain the high-frequency behavior
of the optical conductivity:

σjkðz;x0Þ ¼ e2

4

�
4

π

i
zþ iϵ

þ1þ i
π
ln

�
zþ iϵ−2

zþ iϵþ2

��
ηjk: ð71Þ

Observe that σjk a function of the ratio z ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffiffi
M2

ev4F
p

.
The real and imaginary parts of σjk are given by, for z ≠ 0∶
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Re½σjkðz; x0Þ� ¼ e2

4
θðz − 2Þηjk

Im½σjkðz; x0Þ� ¼ e2

4π

�
4

z
− ln

���� zþ 2

z − 2

����
�
ηjk: ð72Þ

The conductivity for the case M2
e > 0 is depicted in

Fig. 5(a). In this way, we recover the results presented
in Refs. [69,70] for zero temperature and zero mass gap, but
finite chemical potential in the local limit. Remarkably,
such equations also show that

ffiffiffiffiffiffiffiffiffiffiffiffi
M2

ev4F
p

cannot play the role
of a mass gap in the expression for the optical conductivity.
Rather, our results, combined with those obtained in
Refs. [69,70], seem to suggest an effective chemical-
potential interpretation for

ffiffiffiffiffiffiffiffiffiffiffiffi
M2

ev4F
p

, at least as far as the
optical conductivity is concerned. At the moment we do not
have more elements to argue in favor of the general validity
of this interpretation. In any case, this allows us to under-
stand the first term in Eq. (71) as due to intraband
transitions, and the remaining as the interband contribution.
The latter is just the minimal graphene conductivity σ0 ¼
e2=4 for z > 2. The absence of interband transitions for
z < 2 is due to the kinematics of momentum conservation
of chiral fermions as illustrated in Fig. 5(b). Even though
the validity of the local momentum representation translates
to high-frequency regime, our result seems to work for all z
given the identification

ffiffiffiffiffiffiffiffiffiffiffiffi
M2

ev4F
p

¼ μ.
If one wishes to include curvature effects of level

broadening due to scattering of the fermion, then one
should replace iϵ by τ−1þ ðzÞ in the expression of the optical
conductivity. One obtains

σjkðz;x0Þ¼e2

4

�
4

π

i
zþiτ−1þ ðzÞþ1þ i

π
ln

�
zþiτ−1þ ðzÞ−2

zþiτ−1þ ðzÞþ2

��
ηjk:

ð73Þ
If Im½ΣF

1 ðωÞ� is small, we can approximate it as a constant
value, which results in a constant τ−1þ . This implies that in

this case this expression can also be obtained by employing
resummed fermionic propagators in the calculation of the
vacuum polarization. The result will resemble a simple
one-loop calculation, even though higher-order corrections
are being taken into account with the usage of dressed
propagators. This is somewhat reminiscent of the standard
discussion on unstable particles in high-energy scattering
amplitudes within the narrow-width approximation. In the
context of condensed-matter settings, a vanishingly small
imaginary part of the self-energy (around the Fermi sur-
face) implies that the criterion for the Fermi-Landau liquid
theory is fully justified.
Let us first consider the full frequency dependence of

τ−1þ . When M2
e > 0 we see from Fig. 6 that there is no

longer a jump on the real part of the conductivity at z ¼ 2.
Instead, the conductivity starts to increase smoothly at
z ¼ 1. Accordingly the imaginary part of σðzÞ is also
smoothed at z ¼ 2, as dictated by the Kramers-Kronig
relations. For z → ∞ we still recover σ0. Eq. (73) is similar

Im[ 0 ]

Re[ 0 ]

0 1 2 3 4
2

1
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1

2

z

(a) (b)
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−

FIG. 5. Noninteracting conductivity in graphene with a finite chemical potential.
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FIG. 6. Real and imaginary parts of optical conductivity
normalized to σ0 with broadening effects for positive Ricci
curvature scalar. Dotted line shows that the minimum conduc-
tivity σ0 is approached asymptotically.
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to the one found in Ref. [71], except for the fact that here
the scattering time given by Eq. (60) kicks in only at z ¼ 1.
Indeed, these authors considered τ−1þ ðzÞ at z ¼ 1 in the first
term and τ−1þ ðzÞ → τ−1þ ðz=2Þ in the logarithmic term (in our
notation) whereas we have considered the full frequency
dependence of τ−1þ . The reason for this difference in the
approaches lies in the fact that the energy dependence of
the scattering time in both models behave differently at the
Fermi energy, as just mentioned, since they describe
different physical situations. Nevertheless, as shown by
these authors, the scaling of the dynamical conductivity
leads to a singular jump at ω ¼ 0 for zero Fermi energy, a
result that clearly resembles the behavior of Im½σ� in
our model.
One may consider the conductivity for a fixed value of

τ−1þ , somewhat partially similar to what was undertaken in
Ref. [71]. We explore this situation for the case in which
Im½ΣF

1 ðωÞ� is small so that τ−1þ can be taken to be
approximately constant. This will take place near the
Fermi energy. As an illustration, let us quote our result
for a matching scale of z ¼ z0, z0 ≳ 1, for the scattering
time (Fermi energy amounts to choosing z0 ¼ 1):

σjkðz; x0Þ ¼ e2

4

�
4

π

i
zþ iτ−1þ ðz0Þ

þ 1

þ i
π
ln
�
zþ iτ−1þ ðz0Þ − 2

zþ iτ−1þ ðz0Þ þ 2

��
ηjk: ð74Þ

It is easy to see that there is an enhancement in the
conductivity for z ≥ 2:

σ0 → σ0 þ
e2

π

τ−1þ ðz0Þ
z2 þ τ−2þ ðz0Þ

: ð75Þ

For z < 2 the intraband contribution produces a positive
contribution to the real part of the optical conductivity,
whereas the log yields a (constant) negative contribution.

However, for z → 0, the intraband transition is the dom-
inant term, and a positive contribution remains. In order
to confirm this analysis we would have to calculate the
optical conductivity for all regimes of frequency which
would mean going beyond the large-momentum expansion
used above for the propagators. We do not have a clear
evaluation of this physics, but at least the conclusion
seems indeed to be that curvature effects should contribute
positively to the conductivity of graphene. This is in
accordance with the arguments and expectations of
Ref. [26].
Let us now turn our attentions to the M2

e < 0 case. The
optical conductivity reads now

σjkðz; x0Þ ¼ e2

2

�
4

π

1

zþ iτ−1− ðzÞ þ 1þ i
π
ln

�
zþ iτ−1− þ 2i
zþ iτ−1− − 2i

��
:

ð76Þ

Figure 7(a) describes the noninteracting optical conduc-
tivity (τ−1− ¼ 0 above). Here the model seems to run into
trouble with the Kramers-Kronig relations as pointed out by
the vanishing of the imaginary component. In comparison
with Eq. (71), we note the source of its imaginary
component is solely due to the first term, i.e., the intraband
transitions. For M2

e < 0 (and τ−1− ¼ 0) this term becomes
purely real. Inclusion of broadening effects seems to lift the
problem as shown in Fig. 7(b). Here the real component
also assumes a form similar to Ref. [71] although it always
stays very close to σ0 after it crosses it from the above.

VI. CONCLUSIONS

The primary aim of this work was to develop a formalism
to study the curved-space RQED by employing the
local momentum representation. Then we applied the
model, with slight modifications, to graphene. In particular
the optical conductivity was computed to one-loop and
at leading adiabatic order surprisingly revealing the
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FIG. 7. Conductivity in graphene for negative Ricci scalar.
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appearance of an effective chemical potential for the
positive Ricci scalar case. Importantly, this effect is non-
perturbative as it stems from the partial ressumation of the
Ricci scalar. Furthermore, we demonstrated how the
combined effect of intrinsic curvature of the graphene
sheet and electron-electron interactions as described by the
curved-space RQED could affect the optical conductivity.
In summary, by comparing the outcomes of the present
paper with the ones in the existing literature, we have
showed that the curved-space RQED as a model for
describing transport properties of curved graphene layers
is able to (re)produce sensible physical results.
There are many open questions outside our scope that are

nonetheless of great importance. Most obvious is devel-
oping curved space RQED beyond the approximations
presented here. Within our approach it would also be
interesting to study the trace anomaly and conformal
invariance of the model. Research into possible holographic
models (both for flat and curved RQED) would be most
welcome for providing a tool into the nonperturbative
regime. A two-loop analysis is also desirable specially for a
more rigorous account of electron-electron interaction
contributions to the optical conductivity. Additionally a
computation of the global conductivity σðωÞ from the local
σðω; x0Þ by a disorder averaging treatment of M2

eðx0Þ is
expected to accurately model real samples. On the other
hand, a nontrivial interesting generalization of our work
could include torsion [72,73]. We hope to access these
issues in future works.
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APPENDIX A: RIEMANN NORMAL
COORDINATES EXPANSION

The construction of Riemann normal coordinates
about some point x0 in the manifold goes as follows. On
x0 it is possible to make gμνðx0Þ ¼ ημνðx0Þ along with
Γα

μνðx0Þ ¼ 0. Now suppose that points x in the neighbor-
hood of x0 can be reached by a unique geodesic starting
from x0. This is the so-called normal neighborhood of x0.
We can make use of the tangent vectors to the geodesics to
introduce a normal coordinate system Xμ with origin at x0
such that

d2Xα

dλ2
¼ 0 ðA1Þ

along any geodesic, with λ some affine parameter describ-
ing the geodesic. By expanding with respect to these
coordinates one finds that [46,74]

gμνðxÞ¼ ημν−
1

3
Rμρσνðx0ÞXρXσþ�� �

ð−gðxÞÞ1=2 ¼ 1þ1

6
Rμνðx0ÞXμXνþ�� �

Γμ
i
jðxÞ¼−

1

4
Rμρabðx0ÞðJabÞijXρþ���

Qi
jðxÞ¼Qi

jðx0Þþ � � �

eaμðxÞ¼ eaνðx0Þ
�
δμν þ1

6
Rνα

μ
βðx0ÞXαXβ

�
þ��� ðA2Þ

where only the lowest-order terms are retained. Here Rμρab

is the Riemann curvature tensor with two vielbein indices
and Jab is the Lorentz generator for the representation
appropriate to the field under consideration. Also Qi

j is a
quantity proportional to the curvature. Let us derive the
expansion for the spin connection. From Eq. (A2), one
finds

ωμab ¼ −
1

2
Rμρabðx0ÞXρ ðA3Þ

where we used the cyclicity property of the Riemann tensor.
Hence

Ωμ ¼
1

2
ωμabJab ¼ −

1

4
Rμρabðx0ÞXρJab

¼ −
1

8
Rμρabðx0ÞγaγbXρ ðA4Þ

which implies that

γμðxÞ∇μ ¼ γaeaμðxÞð∂μ þΩμÞ

¼ γνðx0Þ
�
∂ν þ

1

6
Rμ

ανβðx0ÞXαXβ∂μ

−
1

8
Rabνρðx0ÞγaγbXρ

�
: ðA5Þ

However, using the anticommutation relations for the
gamma matrices and again the cyclicity property of the
Riemann tensor, one finds that

Rabcργ
cγaγb ¼ 2Raργ

a
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which yields

γμðxÞ∇μ ¼ γνðx0Þ
�
∂νþ

1

6
Rμ

ανβðx0ÞXαXβ∂μ−
1

4
Rνρðx0ÞXρ

�
:

ðA6Þ

APPENDIX B: LOCAL-MOMENTUM
REPRESENTATION OF THE
FERMIONIC PROPAGATOR

In this Appendix we consider the local-momentum
representation for the fermion propagator. The standard
representation has been extensively discussed in the liter-
ature, see for instance Refs. [46,75,76]. Typically, since
curvature effects are small, we will be interested only in the
leading terms in the Riemann curvature. But for the
moment we will keep our discussion as general as possible.
In principle, we could follow the same steps outlined
above. There is, however, another alternative form of
proper-time expansion for propagators in curved space-
time which could be useful here. It is based on a partial
resummation of the above series [77]. Consider Eq. (21)
with ϑ ¼ −1. One can write the Green’s function as

Gðx; x0Þ ¼ −i
Z

∞

0

dshx; sjx0; 0i ðB1Þ

where we omitted matrix indices, and the kernel hx; sjx0; 0i
has a Schwinger-DeWitt expansion given by [78]

hx; sjx0; 0i ¼ ið4πisÞ−d=2eiσðx;x0Þ=2sΔ1=2
VMðx; x0ÞFðx; x0; isÞ

Fðx; x0; isÞ ¼ 1þ
X∞
j¼1

ðisÞjfjðx; x0Þ ðB2Þ

where 2σðx; x0Þ is the square of the proper arc length along
the geodesic from x0 to x and ΔVMðx; x0Þ is the Van Vleck-
Morette determinant defined by [79]

ΔVMðx; x0Þ ¼ −jgðxÞj−1=2jgðx0Þj−1=2 det
�
−
∂2σðx; x0Þ
∂xμ∂ 0ν

�
:

ðB3Þ

In turn, such an expansion can be rewritten in the form

hx; sjx0; 0i ¼ ið4πisÞ−d=2eiσðx;x0Þ=2sΔ1=2
VMðx; x0ÞF̄ðx; x0; isÞ

× e−is½Qðx0Þ−1
6
Rðx0Þ�

F̄ðx; x0; isÞ ¼ 1þ
X∞
j¼1

ðisÞjf̄jðx; x0Þ ðB4Þ

an assertion which was proved in Ref. [77]. The coef-
ficients f̄jðx; x0Þ are R independent to all orders, but

generically depend on the Ricci curvature and the
Riemann tensor and their powers and derivatives. In
addition, we stress that such coefficients in the fermionic
case should be envisaged as bispinors; hence to perform
properly the above expansion one should form the con-
traction between such bispinors with the bispinor of parallel
displacement σðx; x0Þ. It can be proved that σðx; x0Þ ¼
f̄0ðx; x0Þ ¼ 1 [43].
The term e−is½Qðx0Þ−1

6
Rðx0Þ1� should be defined as a a formal

matrix power series (1 is the unit spinor, in the case of
fermions). A straightforward calculation yields

F̄ðx; x0; isÞe−is½Qðx0Þ−1
6
Rðx0Þ1�

¼ 1þ ðisÞðf̄1ðx; x0Þ − Aðx0ÞÞ

þ ðisÞ2
�
f̄2ðx; x0Þ þ

1

2
A2ðx0Þ − f̄1ðx; x0ÞAðx0Þ

�

þ � � � ðB5Þ

where Aðx0Þ ¼ Qðx0Þ − Rðx0Þ=6. Since such expansions
should be equal, one finds that

f̄1ðx; x0Þ ¼ f1ðx; x0Þ þ Aðx0Þ

f̄2ðx; x0Þ ¼ f2ðx; x0Þ −
1

2
A2ðx0Þ þ ðf1ðx; x0Þ þ Aðx0ÞÞAðx0Þ

ðB6Þ

and so on. On the other hand, with Riemann normal
coordinates yμ for the point x with origin at the point x0,
one has that

f1ðx; x0Þ ¼ f1ðx0Þ þ f1αðx0Þyα þ f1αβðx0Þyαyβ þOðy3Þ

where an expansion about the point x0 was considered. The
coefficients fjαβ��� are all proportional to derivatives of the
fj evaluated at the origin of the Riemann normal coor-
dinates (i.e., at x0). The coefficients fj have been calculated
in the literature [43]. In particular, f̄1 ¼ 0.
Now use the fact that, in Riemann normal coordinates

about x0, ΔVMðx; x0Þ ¼ jgðxÞj−1=2, together with the results

Z
dDk
ð2πÞD e−isð−k2þm2Þ−iky

¼ ið4πisÞ−d=2eiσðx;x0Þ=2se−ism2 ðB7Þ

where σðx; x0Þ ¼ −yαyα=2, and

Z
∞

0

idse−isð−k2þm2Þ ¼ 1

−k2 þm2

to obtain that
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Gðx; x0Þ ¼ Δ1=2
VMðx; x0Þ

Z
dDk
ð2πÞD e−iky

× F̄

�
x; x0;−

∂
∂m2

�
1

k2 −m2
ðB8Þ

where m2 ¼ Qðx0Þ − Rðx0Þ=6 (Q now is just a function).
Here D ¼ de for the case of the fermionic propagator. We
also consider the replacement

yα → i
∂
∂kα ðB9Þ

in the above expression.
Now we are in the position of presenting an explicit

expression for the fermionic propagator using Riemann
normal coordinates about x0. Using that m2 ¼ M2

e ¼
Rðx0Þ=12 for fermions as well as the above expansions
for ΔVMðx; x0Þ and γμ∇μ, one finds, for the fermionic
propagator

S0ðx; x0Þ ¼
Z

dDk
ð2πÞD e−iky

�
γνkν

k2 −M2
e

þ 1

ðk2 −M2
eÞ2

�
1

2
Rνργ

νkρ −
γνkν
6

R

�

þ 2

3

γνkνkσkρRρσ

ðk2 −M2
eÞ3

þ � � �
�

ðB10Þ

where in the above equation γμ is the usual gamma matrix
in flat space and R ¼ Rμνη

μν when considering only terms
linear in the curvature for the expansion of gμν in Riemann
normal coordinates.

APPENDIX C: LOCAL-MOMENTUM
REPRESENTATION OF THE

GAUGE PROPAGATOR

In this Appendix we present the local-momentum
representation of the gauge propagator. For a standard
discussion, see for instance Refs. [46,74,80]. In the present
case, one has that the gauge propagator obeys Eq. (23).
Following [77,81] one has, for the gauge propagator (in the
Feynman gauge ξ ¼ 1)

Gμ
ν0 ðx; x0Þ ¼ i

Z
∞

0

dshx; sjx0; 0iμν0 ðC1Þ

with

hx; sjx0; 0iμν0 ¼ ið4πisÞ−d=2eiσðx;x0Þ=2sΔ1=2
VMðx; x0Þ

× H̄μ
ν0 ðx; x0; isÞeisRðx0Þ=6

H̄μ
ν0 ðx; x0; isÞ ¼ gμν0 ðx; x0Þ þ

X∞
j¼1

ðisÞjh̄jμν0 ðx; x0Þ ðC2Þ

We stress that h̄jμν0 is a bivector. Recall that, for a proper
expansion of a bivector, such as the gauge propagator, one
must form the combination gνλ0Gμλ0 , which is a contra-
variant tensor of rank two at x and a scalar at x0. The object
gνλ0 is the bivector of parallel transport from x0 to x [82].
Note that gμν0 ðx; xÞ ¼ gμν.
Proceeding with analogous considerations as above, one

obtains that

h̄1μν0 ðx0Þ ¼ h1μν0 ðx0Þ þ Bðx0Þgμν0
h̄1αμν0 ðx0Þ ¼ h1αμν0 ðx0Þ
h̄1αβμν0 ðx0Þ ¼ h1αβμν0 ðx0Þ

h̄2μν0 ðx0Þ ¼ h2μν0 ðx0Þ þ
1

2
B2ðx0Þgμν0

þ Bðx0Þh1μν0 ðx0Þ ðC3Þ

where Bðx0Þ ¼ −Rðx0Þ=6, h̄1μν0 ðx; x0Þ ¼ h̄1μν0 ðx0Þ þ
h̄1αμν0 ðx0Þyα þ h̄1αβμν0 ðx0Þyαyβ þOðy3Þ. Here the coeffi-
cients hjμν0 can also be found in the literature [82].
As above, we are interested only in terms linear in the

Riemann curvature. Using Riemann normal coordinates
about x0, one obtains

Gμν0 ðx; x0Þ ¼ −Δ1=2
VMðx; x0Þ

Z
ddγk
ð2πÞdγ e

−iky

× H̄μν0

�
x; x0;−

∂
∂M2

γ

�
1

k2 −M2
γ

ðC4Þ

where M2
γ ¼ −Rðx0Þ=6 and we used that [81]

gμν0 ðx; x0Þ ¼ ημν0 −
1

6
Rμρσν0 ðx0Þyρyσ þ � � � : ðC5Þ

By using the aforementioned expansion for the Van Vleck-
Morette determinant, together with previous results, one
finds that

Gμν0 ðx; x0Þ ¼ −
Z

ddγk
ð2πÞdγ e

−iky
�

ημν0

k2 −M2
γ

þ 1

ðk2 −M2
γÞ2

�
2

3
Rμν0 −

1

6
Rημν0

�

−
2

3

ð2Rμαβν0 − Rαβημν0 Þkαkβ
ðk2 −M2

γÞ3
þ � � �

�
: ðC6Þ

Recall that the gauge propagator obtained above corre-
sponds to the one in dγ dimensions. Since here we are
interested in the properties of the system in the reduced
space where the fermion field is living, we integrate over
the dγ − de bulk gauge degrees of freedom.
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