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We study two dimensional soliton solutions in the CP2 nonlinear sigma model with a Dzyaloshinskii-
Moriya type interaction. First, we derive such a model as a continuous limit of the SUð3Þ tilted
ferromagnetic Heisenberg model on a square lattice. Then, introducing an additional potential term to the
derived Hamiltonian, we obtain exact soliton solutions for particular sets of parameters of the model. The
vacuum of the exact solution can be interpreted as a spin nematic state. For a wider range of coupling
constants, we construct numerical solutions, which possess the same type of asymptotic decay as the exact
analytical solution, both decaying into a spin nematic state.
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I. INTRODUCTION

In the 1960s, Skyrme introduced a (3þ 1)-dimensional
Oð4Þ nonlinear (NL) sigma model [1,2], which is now well
known as a prototype of a classical field theory that
supports topological solitons (See Ref. [3], for example).
Historically, the Skyrme model has been proposed as a low-
energy effective theory of atomic nuclei. In this framework,
the topological charge of the field configuration is iden-
tified with the baryon number.
The Skyrme model, apart from being considered a good

candidate for the low-energy QCD effective theory, has
attracted much attention in various applications, ranging
from string theory and cosmology to condensed matter
physics. One of the most interesting developments here is
related to a planar reduction of the NLσ model, the so-
called baby Skyrme model [4–6]. This (2þ 1)-dimensional
simplified theory resembles the basic properties of the
original Skyrme model in many aspects.
The baby Skyrme model finds a number of physical

realizations in different branches of modern physics.
Originally, it was proposed as a modification of the
Heisenberg model [4,5,7]. Then, it was pointed out that
skyrmion configurations naturally arise in condensed

matter systems with intrinsic and induced chirality [8–12].
These baby skyrmions, often referred to as magnetic
skyrmions, were experimentally observed in noncentro-
symmetric or chiral magnets [13–15]. This discovery
triggered extensive research on skyrmions in magnetic
materials. This direction is a rapidly growing area both
theoretically and experimentally [16].
A typical stabilizing mechanism of magnetic skyrmions

is the existence of the Dzyaloshinskii-Moriya (DM) inter-
action [17,18], which stems from the spin-orbit coupling. In
fact, the magnetic skyrmions in chiral magnets can be well
described by the continuum effective Hamiltonian

H ¼
Z

d2x

�
J
2
ð∇mÞ2 þ κm · ð∇ ×mÞ − Bm3

þ Afjmj2 þ ðm3Þ2g
�
; ð1:1Þ

where mðrÞ ¼ ðm1; m2; m3Þ is a three component unit
magnetization vector which corresponds to the spin expect-
ation value at position r. The first term in Eq. (1.1) is the
continuum limit of the Heisenberg exchange interaction,
i.e., the kinetic term of theOð3Þ NLσ model, which is often
referred to as the Dirichlet term. The second term there
is the DM interaction term, the third one is the Zeeman
coupling with an external magnetic field B, and the last,
symmetry breaking term Afjmj2 þ ðm3Þ2g represents the
uniaxial anisotropy.
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It is remarkable that in the limiting case A ¼ κ2=2J;
B ¼ 0, the Hamiltonian (1.1) can be written as the static
version of the SUð2Þ gauged Oð3Þ NLσ model [19,20]

H ¼ J
2

Z
d2xð∂kmþ Ak ×mÞ2; k ¼ 1; 2; ð1:2Þ

with a background gauge field A1 ¼ ð−κ=J; 0; 0Þ;A2 ¼
ð0;−κ=J; 0Þ. Though the DM term is usually introduced
phenomenologically, a mathematical derivation of the
Hamiltonian (1.2) with arbitrary Ak has been developed
recently [19]; i.e., it has been shown that the Hamiltonian
can be derived mathematically in a continuum limit of the
tilted (quantum) Heisenberg model

H ¼ −J
X
hiji

ðWiSaiW
−1
i ÞðWjSajW

−1
j Þ; ð1:3Þ

where the sum hiji is taken over the nearest-neighbor sites,
Sai denotes the ath component of spin operators at site i and
Wi ∈ SUð2Þ. It was reported that the tilting Heisenberg
model can be derived from a Hubbard model at half-filling
in the presence of spin-orbit coupling [21]. Therefore, the
background field Ak can still be interpreted as an effect of
the spin-orbit coupling.
There are two advantages of utilizing the expression

(1.2) for the theoretical study of baby skyrmions in the
presence of the so-called Lifshitz invariant, an interaction
term that is linear in a derivative of an order parameter
[22,23], like the DM term. The first advantage of the form
Eq. (1.2) is that one can study a NLσ model with various
forms of Lifshitz invariants which are mathematically
derived by choice of the background field Ak, although
Lifshitz invariants have, in general, a phenomenological
origin corresponding to the crystallographic handedness
of a given sample. The second advantage of the model (1.2)
is that it allows us to employ several analytical techniques
developed for the gauged NLσ model. It has been recently
reported in Ref. [20] that the Hamiltonian (1.2) with a
specific choice of the potential term exactly satisfies the
Bogomol’nyi bound, and the corresponding Bogomol’nyi-
Prasad-Sommerfield (BPS) equations have exact closed-
form solutions [20,24,25].
Geometrically, the planar skyrmions are very nicely

described in terms of the CP1 complex field on the
compactified domain space S2 [6]. Further, there are
various generalizations of this model; for example, two-
dimensional CP2 skyrmions have been studied in the
pure CP2 NLσ model [26–28] and in the Faddeev-
Skyrme type model [29,30].
Remarkably, the two-dimensional CP2 NLσ model can

be obtained as a continuum limit of the SUð3Þ ferromag-
netic (FM) Heisenberg model [31,32] on a square lattice
defined by the Hamiltonian

H ¼ −
J
2

X
hiji

Tm
i T

m
j ; ð1:4Þ

where J is a positive constant, and Tm
i (m ¼ 1;…; 8) stand

for the SUð3Þ spin operators of the fundamental represen-
tation at site i satisfying the commutation relation

½Tl
i; T

m
i � ¼ iflmnTn

i : ð1:5Þ

Here, the structure constants are given by flmn ¼
− i

2
Trðλl½λm; λn�Þ, where λm are the usual Gell-Mann

matrices.
The SUð3Þ FMHeisenberg model may play an important

role in diverse physical systems ranging from string theory
[33] to condensed matter, or quantum optical three-level
systems [34]. It can be derived from a spin-1 bilinear-
biquadratic model with a specific choice of coupling con-
stants, so-called FM SUð3Þ point; see, e.g., Ref. [35]. The
SUð3Þ spin operators can be defined in terms of the SUð2Þ
spin operators Sa (a ¼ 1, 2, 3) as

0
B@

T7

T5

T2

1
CA ¼

0
B@

S1

−S2

S3

1
CA;

0
BBBBBB@

T3

T8

T1

T4

T6

1
CCCCCCA

¼ −

0
BBBBBB@

ðS1Þ2 − ðS2Þ2
1ffiffi
3

p ½S · S − 3ðS3Þ2�
S1S2 þ S2S1

S3S1 þ S1S3

S2S3 þ S3S2

1
CCCCCCA
: ð1:6Þ

Using the SUð2Þ commutation relation ½Sai ; Sbi � ¼ iεabcSci
where εabc denotes the antisymmetric tensor, one can check
that the operators (1.6) satisfy the SUð3Þ commutation
relation (1.5).
In the present paper, we study baby skyrmion solutions

of an extended CP2 NLσ model composed of the CP2

Dirichlet term, a DM type interaction term, i.e., the Lifshitz
invariant, and a potential term. The Lifshitz invariant,
instead of being introduced ad hoc in the continuum
Hamiltonian, can be derived in a mathematically well-
defined way via consideration of a continuum limit of the
SUð3Þ tilted Heisenberg model. Below we will implement
this approach in our derivation of the Lifshitz invariant. In
the extended CP2 NLσ model, we derive exact soliton
solutions for specific combinations of coupling constants
called the BPS point and solvable line. For a broader range
of coupling constants, we construct solitons by solving the
Euler-Lagrange equation numerically.
The organization of this paper is the following: In the

next section, we derive an SUð3Þ gauged CP2 NLσ model
from the SUð3Þ tilted Heisenberg model. Similar to the

AKAGI, AMARI, SAWADO, and SHNIR PHYS. REV. D 103, 065008 (2021)

065008-2



SUð2Þ case described as Eq. (1.2), the term linear in a
background field can be viewed as a Lifshitz invariant term.
In Sec. III, we study exact skyrmionic solutions of the
SUð3Þ gauged CP2 NLσ model in the presence of a
potential term for the BPS point and solvable line using
the BPS arguments. The numerical construction of baby
skyrmion solutions off the solvable line is given in Sec. IV.
Our conclusions are given in Sec. V.

II. GAUGED CP2 NLσ MODEL FROM
A SPIN SYSTEM

To find Lifshitz invariant terms relevant for the CP2 NLσ
model, we begin to derive an SUð3Þ gauged CP2 NLσ
model, a generalization of Eq. (1.2), from a spin system on
a square lattice. By analogy with Eq. (1.2), the Lifshitz
invariant, in that case, can be introduced as a term linear in a
nondynamical background gauge potential of the gauged
CP2 model.
Following the procedure to obtain a gauged NLσ model

from a spin system, as discussed in Ref. [19], we consider a
generalization of the SU(3) Heisenberg model defined by
the Hamiltonian

H ¼ −
J
2

X
hiji

Tm
i ðÛijÞmnT

n
j ; ð2:1Þ

where Ûij is a background field which can be recognized as
a Wilson line operator along with the link from the point i
to the point j, which is an element of the SUð3Þ group in the
adjoint representation. As in the SUð2Þ case [19], the field
Ûij may describe effects originated from spin (nematic)-
orbital coupling, complicated crystalline structure, and so
on. This Hamiltonian can be viewed as the exchange
interaction term for the tilted operator T̃m

i ¼ WiTm
i W

−1
i ,

where Wi ∈ SUð3Þ, because one can write WjTm
j W

−1
j ¼

ðRjÞmnT
n
j where Rj is an element of SUð3Þ in the adjoint

representation. Clearly, Ûij ¼ RT
i Rj, where T stands for the

transposition.
Let us now find the classical counterpart of the quantum

Hamiltonian (2.1). It can be defined as an expectation value
of Eq. (2.1) in a state possessing over completeness,
through a path integral representation of the partition
function. In order to construct such a state for the spin-1
system, it is convenient to introduce the Cartesian basis

jx1i ¼ iffiffiffi
2

p ðj þ 1i − j − 1iÞ;

jx2i ¼ 1ffiffiffi
2

p ðj þ 1i þ j − 1iÞ;

jx3i ¼ −ij0i; ð2:2Þ
where jmi ¼ jS ¼ 1; mi (m ¼ 0, �1). In terms of the
Cartesian basis, an arbitrary spin-1 state at a site j can

be expressed as a linear combination jZij ¼ ZaðrjÞjxaij
where rj stands for the position of the site j, and Z ¼
ðZ1; Z2; Z3ÞT is a complex vector of unit length [31,36].
Since the state jZij satisfies an over-completeness relation,
one can obtain the classical Hamiltonian using the state

jZi ¼⊗j jZij ¼⊗j ZaðrjÞjxaij: ð2:3Þ
Since Z is normalized and has the gauge degrees of freedom
corresponding to the overall phase factor multiplication, it
takes values in S5=S1 ≈ CP2. In terms of the basis (2.2), the
SUð3Þ spin operators can be defined as

Tm ¼ ðλmÞabjxaihxbj; m ¼ 1; 2;…; 8; ð2:4Þ
where λm is the mth component of the Gell-Mann matrices.
One can check that they satisfy the SUð3Þ commutation
relation (1.5). The expectation values of the SUð3Þ oper-
ators in the state (2.3) are given by

hTm
j i≡ nmðrjÞ ¼ ðλmÞabZ̄aðrjÞZbðrjÞ; ð2:5Þ

where Z̄a denotes the complex conjugation of Za. In the
context of QCD, the field nm is usually termed a color
(direction) field [37]. The color field satisfies the
constraints

nmnm ¼ 4

3
; nm ¼ 3

2
dmpqnpnq; ð2:6Þ

where dmpq ¼ 1
4
Trðλmfλp; λqgÞ. Consequently, the number

of degrees of freedom of the color field reduces to four.
Note that, combining the constraints (2.6), one can get the
Casimir identity dmpqnmnpnq ¼ 8=9.
In terms of the color field, the classical Hamiltonian is

given by

H ≡ hZjHjZi ¼ −
J
2

X
hiji

nlðriÞðÛijÞlmnmðrjÞ: ð2:7Þ

Let us write the position of a site j next to a site i as
rj ¼ ri þ aϵek, where ek is the unit vector in the kth
direction ϵ ¼ �1, and a stands for the lattice constant.
For a ≪ 1, the field Ûij can be approximated by the
exponential expansion

Ûij ≈ eiaϵA
m
k ðriÞl̂m

¼ 1þ iaϵAm
k ðriÞl̂m −

a2

2
Am
k ðriÞAn

kðriÞl̂ml̂n þOða3Þ;
ð2:8Þ

where 1 is the unit matrix and l̂m are the generators of
SUð3Þ in the adjoint representation, i.e., ðl̂mÞpq ¼ ifmpq.
In addition, since the model (2.1) is ferromagnetic, it is
natural to assume that nearest-neighbor spins are oriented
in the almost same direction, which allows us to use the
Taylor expansion
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nmðrjÞ ¼ nmðriÞ þ aϵ∂knmðriÞ þOða2Þ: ð2:9Þ

Replacing the sum over the lattice sites in Eq. (2.7) by the
integral a−2

R
d2x, we obtain a continuum Hamiltonian,

except for a constant term, of the form

H ¼ J
8

Z
d2x½Trð∂kn∂knÞ − 2iTrðAk½n; ∂kn�Þ

− Trð½Ak;n�2Þ�; ð2:10Þ

where Ak ¼ Am
k λm and n ¼ nmλm. Similar to its SUð2Þ

counterpart expressed as Eq. (1.2), this Hamiltonian can
also be written as the static energy of an SUð3Þ gaugedCP2

NLσ model

H ¼ J
8

Z
d2xTrðDknDknÞ; ð2:11Þ

whereDkn ¼ ∂kn − i½Ak;n� is the SUð3Þ covariant deriva-
tive. Since the Hamiltonian is given by the SUð3Þ covariant
derivative, Eq. (2.11) is invariant under the SUð3Þ gauge
transformation

n → gng−1; Ak → gAkg−1 þ ig∂kg−1; ð2:12Þ

where g ∈ SUð3Þ. Note that, however, since the
Hamiltonian (2.11) does not include kinetic terms for
the gauge field, like the Yang-Mills term, or the Chern-
Simons term, the gauge potential is just a background field,
not the dynamical one. We suppose that the gauge field is
fixed beforehand by the structure of a sample and give the
value by hand, like the SUð2Þ case. The gauge fixing allows
us to recognize the second term in Eq. (2.10) as a Lifshitz
invariant term.
We would like to emphasize that we do not deal with

Eq. (2.11) as a gauge theory. Rather, we deem it the CP2

NLσ model with a Lifshitz invariant, and show the
existence of the exact and the numerical solutions. For
the baby skyrmion solutions we shall obtain, the color
field n approaches to a constant value n∞ at spatial infinity
so that the physical space R2 can be topologically com-
pactified to S2. Therefore, they are characterized by the
topological degree of the map n∶R2 ∼ S2 ↦ CP2 given by

Q ¼ −
i

32π

Z
d2xεjkTrðn½∂jn; ∂kn�Þ: ð2:13Þ

Combining with the assumption that the gauge is fixed, it is
reasonable to identify this quantity (2.13) with the topo-
logical charge in our model.1

III. EXACT SOLUTIONS OF THE SUð3Þ
GAUGED CP2 NLσ MODEL

In this section, we derive exact solutions of the
model with the Hamiltonian (2.11) supplemented by a
potential term. We first remark on the validity of the
variational problem. As discussed in Refs. [20,25] for
the SUð2Þ case, a surface term, which appears in the
process of variation, cannot be ignored if the physical space
is noncompact and the gauge potential Ak does not vanish
at the spatial infinity like the DM term. This problem can
be cured by introducing an appropriate boundary term,
like [20]

HBoundary ¼∓ 4ρ

Z
d2xεjk∂jTrðnAkÞ; ð3:1Þ

where ρ ¼ J=8. Here the gauge potential Ak satisfies

½n∞; Aj� �
i
2
εjk½n∞; ½n∞; Ak�� ¼ 0; ð3:2Þ

where n∞ is the asymptotic value of n at spatial infinity.
Note that Eq. (3.2) corresponds to the asymptotic form of
the BPS equation, which we shall discuss in the next
subsection. Hence, all field configurations we consider in
this paper satisfy this equation automatically.
Since Eq. (3.1) is a surface term, it does not contribute to

the Euler-Lagrange equation, i.e., the classical Heisenberg
equation. Note that the solutions derived in the following
sections satisfy Derrick’s scaling relation with the boundary
term, which is obtained by keeping the background field Ak
intact under the scaling, i.e., E1 þ 2E0 ¼ 0, where E1

denotes the energy contribution from the first derivative
terms including the boundary term (3.1) and E0 from no
derivative terms.

A. BPS solutions

Recently, it has been proved that the SUð2Þ gauged
CP1 NLσ model (1.2) possesses BPS solutions in the
presence of a particular potential term [20,24]. Here, we
show that BPS solutions also exist in the SUð3Þ gauged
CP2 model with a special choice of the potential term,
which is given by

Hpot ¼ �4ρ

Z
d2xTrðnF12Þ; ð3:3Þ

where Fjk ¼ ∂jAk − ∂kAj − i½Aj; Ak�. As we shall see in
the next subsection, the potential term can possess a
natural physical interpretation for some background
gauge field. It follows that the Hamiltonian we study here
reads

1If one extends the model (2.11) with a dynamical gauge field,
the topological charge is defined by the SUð3Þ gauge invariant
quantity which is directly obtained by replacing the partial
difference in Eq. (2.13) with the covariant derivative.
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H ¼ ρ

Z
d2xTrðDknDknÞ � 4ρ

Z
d2xTrðnF12Þ

∓ 4ρ

Z
d2xεjk∂jTrðnAkÞ; ð3:4Þ

where the double-sign corresponds to that of Eq. (3.1).
First, let us show that the lower energy bound of

Eq. (3.4) is given by the topological charge (2.13). The
first term in Eq. (3.4) can be written as

ρ

Z
d2xTrðDknDknÞ

¼ ρ

2

Z
d2x

�
TrðDknDknÞ þ

�
i
2

�
2

Trð½n; Dkn�2Þ
�

¼ ρ

2

Z
d2xTr

�
Djn� i

2
εjk½n; Dkn�

�
2

� iρ
2

Z
d2xεjkTrðn½Djn; Dkn�Þ

≥ � iρ
2

Z
d2xεjkTrðn½Djn; Dkn�Þ: ð3:5Þ

It follows that the equality is satisfied if

Djn� i
2
εjk½n; Dkn� ¼ 0; ð3:6Þ

which reduces to Eq. (3.2) at the spatial infinity. Therefore,
one obtains the lower bound of the form

H ≥ � ρ

2

Z
d2x½iεjkTrðn½Djn; Dkn�Þ þ 8TrðnF12Þ

− 8εjk∂jTrðnAkÞ�

¼ � iρ
2

Z
d2xεjkTrðn½∂jn; ∂kn�Þ

¼ ∓16πρQ; ð3:7Þ

where the corresponding BPS equation is given by
Eq. (3.6). Note that, unlike the energy bound of the
CPN self-dual solutions [7,27], the energy bound (3.7)
can be negative, and it is not proportional to the absolute
value of the topological charge.
As is often the case in two-dimensional BPS equations

[7,20], solutions can be best described in terms of the
complex coordinates z� ¼ x1 � ix2. Further, we make use
of the associated differential operator and background field
defined as ∂� ¼ 1

2
ð∂1 ∓ i∂2Þ and A� ¼ 1

2
ðA1 ∓ iA2Þ.

Then, the BPS equation (3.6) can be written as

D�n −
1

2
½n; D�n� ¼ 0: ð3:8Þ

Similar to the SUð2Þ case [20], Eq. (3.8) with a plus sign
can be solved if the background field has the form

Aþ ¼ ig−1∂þg; ð3:9Þ

where g ∈ SLð3;CÞ. Note that Eq. (3.9) is not necessarily a
pure gauge. Similarly, Eq. (3.8) with the minus sign on the
right-hand side can be solved if A− ¼ ig−1∂−g. For the
background field (3.9), one finds that the BPS equa-
tion (3.8) is equivalent to

∂þñ −
1

2
½ñ; ∂þñ� ¼ 0; ñ ¼ gng−1; ð3:10Þ

because, under the SLð3;CÞ gauge transformation, the
fields are changed as n → ñ ¼ gng−1 and Aþ → Ãþ ¼
gAþg−1 þ ig∂þg−1 ¼ 0. In the following, we only consider
Eq. (3.9) to simplify our discussion.
In order to solve the equation (3.10), we introduce a

tractable parametrization of the color field

n ¼ −
2ffiffiffi
3

p Uλ8U†; ð3:11Þ

with U ¼ ðY1;Y2;ZÞ ∈ SUð3Þ, where Z is the continuum
counterpart of the vector Z in Eq. (2.3) and Y1, Y2 are
vectors forming an orthonormal basis for C3 with Z. Up to
the gauge degrees of freedom, the components Yi can be
written as

Y1 ¼
ð−Z̄3; 0; Z̄1ÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jZ2j2
p ; Y2 ¼

ð−Z̄2Z1; 1 − jZ2j2;−Z̄2Z3ÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jZ2j2

p :

ð3:12Þ

Therefore, the vector Z fully defines the color field n.
Accordingly, we can write

ñ ¼ −
2ffiffiffi
3

p Wλ8W−1; ð3:13Þ

with W ¼ gU ¼ ðW1;W2;W3Þ ∈ SLð3;CÞ. It follows that
the field Z, which is the fundamental field of the model, is
given by Z ¼ g−1W3. Substituting the field (3.13) into the
equation (3.10), one finds that Eq. (3.10) reduces to the
coupled equation

�
W−1

1 ∂þW3 ¼ 0

W−1
2 ∂þW3 ¼ 0

ð3:14Þ

with W−1
l ¼ Y†

l g
−1 (l ¼ 1, 2). Since the three vectors

fY1;Y2;Zg form an orthonormal basis, Eq. (3.14) implies
∂þW3 ¼ βW3 where the function β is given by
β ¼ βW−1

3 W3 ¼ W−1
3 ∂þW3. Therefore, the Eq. (3.10) is

solved by any configuration satisfying

DþW3 ¼ 0; ð3:15Þ
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where DþΦ ¼ ∂þΦ − ðΦ−1∂þΦÞΦ for arbitrary nonzero
vector Φ. Moreover, we write

W3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
jW3j2

q
w; ð3:16Þ

where w is a three component unit vector, i.e.,
jwj2 ¼ w†w ¼ 1. Then, Eq. (3.15) can be reduced to

Dþw≡ ∂μw − ðw†∂μwÞw ¼ 0; ð3:17Þ

which is the very BPS equation of the standard CP2 NLσ
model. Thus, a general solution of Eq. (3.15), up to the
gauge degrees of freedom, is given by

w ¼ P
jPj ; P ¼ ðP1ðz−Þ; P2ðz−Þ; P3ðz−ÞÞT; ð3:18Þ

where P has no overall factor, and Pa is a polynomial in z−.
Therefore, we finally obtain the solution for the Z field

Z ¼ g−1W3 ¼ χg−1w ¼ χg−1P; ð3:19Þ

where χ is a normalization factor.

B. Properties of the BPS solutions

As the BPS bound (3.7) indicates, the lowest energy
solution among Eq. (3.19) with a given background
function g possesses the highest topological charge. In
terms of the explicit calculation of the topological charge,
we discuss the conditions for the lowest energy solutions.
The topological charge (2.13) can be written in terms

of Z as

Q ¼ −
i
2π

Z
d2xεijðDiZÞ†DjZ: ð3:20Þ

We employ the constant background gauge field Aþ for
simplicity. Then, the matrix g in Eq. (3.9) becomes

g ¼ exp ð−iAþzþÞ; ð3:21Þ

so that the components of g−1 are given by power series in
zþ. It allows us to write Eq. (3.20) as a line integral along
the circle at spatial infinity

Q ¼ 1

2π

Z
S1∞

C; ð3:22Þ

with C ¼ −iZ†dZ [27,38], since the one-form C becomes
globally well defined. To evaluate the integral in Eq. (3.22),
we write explicitly

Z ¼ χffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jP1j2 þ jP2j2 þ jP3j2

p X
a

0
BB@

g−11a ðzþÞPaðz−Þ
g−12a ðzþÞPaðz−Þ
g−13a ðzþÞPaðz−Þ

1
CCA;

ð3:23Þ

where g−1ab is the ða; bÞ component of the inverse matrix g−1.
Let Na (Kab) be the highest power in Pa (g−1ab ). Note that

though g−1ab are formally represented as power series in zþ,
the integers Kba are not always infinite; especially, if a
positive integer power of Aþ is zero, all of Kba become
finite because g−1 reduces to a polynomial of finite degree
in zþ. Using the plane polar coordinates fr; θg, one can
write g−1baðzþÞPaðz−Þ ∼ rNaþKba exp½−iðNa − KbaÞθ� at the
spatial boundary and find that only the components of the
highest power in r contribute to the integral (3.22). Since
we are interested in constructing topological solitons, we
consider the case when the physical space R2 can be
compactified to the sphere S2, i.e., the field Z takes some
fixed value on the spatial boundary. Such a compactifica-
tion is possible if there is only one pair fNa; Kbag giving
the largest sum Na þ Kba or any pairs fNa; Kbag, sharing
the largest sum, have the same value of the difference. For
such configurations, the topological charge is given by

Q ¼ −Na þ Kba; ð3:24Þ
where the combination fNa; Kbag yields the largest sum
among any pairs fNc; Kdcg. This equation (3.24) indicates
that the highest topological charge configuration is given
by the choiceNa ¼ 0 for a particular value of awhich gives
the biggest Kba.
We are looking for the lowest energy solutions with an

explicit background field. As a particular example, let us
consider

A1 ¼ κðλ1 þ λ4 þ λ5Þ; A2 ¼ κðλ2 þ λ4 − λ5Þ; ð3:25Þ

where κ is a constant. Clearly, this choice yields the
potential term

FIG. 1. Topological charge density of the axial symmetric
solution (3.28) with κ ¼ 1.
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V ¼ 4TrðnF12Þ ¼ −16
ffiffiffi
3

p
κ2n8 ¼ 16κ2ð2 − 3hðS3Þ2iÞ;

ð3:26Þ

which can be interpreted as an easy-axis anisotropy, or
quadratic Zeeman term, which naturally appears in con-
densed matter physics. In this case, the solution (3.19) can
be written as

Z ¼ χffiffiffiffi
Δ

p

0
BB@

P1ðz−Þ þ
ffiffiffi
2

p
κzþe

πi
4P3ðz−Þ

P2ðz−Þ þ iκzþP1ðz−Þ þ κ2z2þffiffi
2

p e
3πi
4 P3ðz−Þ

P3ðz−Þ

1
CCA:

ð3:27Þ

Therefore, the solution with the highest topological charge
is given by P1 ¼ α1, P2 ¼ α2z− þ α3 with αi ∈ C, and P3

being a nonzero constant. Choosing P1 ¼ P2 ¼ 0, one can
obtain the axially symmetric solution

Z ¼ 1ffiffiffiffi
Δ

p

0
BB@

ffiffiffi
2

p
κzþe

πi
4

κ2z2þffiffi
2

p e
3πi
4

1

1
CCA; Δ ¼ 1þ 2κ2zþz− þ κ4

2
z2þz2−;

ð3:28Þ

which possesses the topological charge Q ¼ 2. Note that
this configuration also satisfies the BPS equation of
the pure CP2 NLσ model [26,27,31]. Figure 1 shows the
distribution of the topological charge (3.20) of this solution
(3.28) with κ ¼ 1. We find that the topological charge
density has a single peak, although higher charge topo-
logical solitons with axial symmetry are likely to possess a
volcano structure, see, e.g., Ref. [39]. These highest charge
solutions give the asymptotic values at spatial infinity of the
color field

ðn1∞; n2∞; n3∞; n4∞; n5∞; n6∞; n7∞; n8∞Þ
¼ ð0; 0;−1; 0; 0; 0; 0; 1=

ffiffiffi
3

p
Þ: ð3:29Þ

It indicates that n takes the vacuum value in the Cartan
subalgebra of SUð3Þ. Hence, the vacuum of the model
corresponds to a spin nematic, i.e., hS1i ¼ hS2i ¼ hS3i ¼ 0

and hðS2Þ2i ¼ 0; hðS1Þ2i ¼ hðS3Þ2i ¼ 1. Unlike the pure
CP2 model, there is no degeneracy between the spin
nematic state and ferromagnetic state in our model because
the SUð3Þ global symmetry is broken. As shown in Fig. 2,
the spin nematic state is partially broken around the soliton
because the expectation values hSai become finite. Figure 3
shows that hðSaÞ2i of the solution (3.28) are axially
symmetric, although the expectation values hSai have
angular dependence.

C. Exact solutions off the BPS point

Note that the Hamiltonian (1.1) with B ¼ 2A admits
closed-form analytical solutions [40]. Further, the CP1 BPS
truncation corresponds to the restricted choice of the
parameters, B ¼ 2A ¼ κ2. The relation B ¼ 2A is referred
to as the solvable line, whereas the restriction B ¼ 2A ¼ κ2

is called the BPS point [25]. Here we show that similar
restrictions occur in our model. For this purpose, we
consider the generalized Hamiltonian

H ¼ HD þHL þHBoundary þ ν2Hani þ μ2Hpot; ð3:30Þ

where ν and μ are real coupling constants. Here, HD

indicates the CP2 Dirichlet term, i.e., the first term in the
right-hand side (r.h.s.) of Eq. (2.10), and HL does the
Lifshitz invariant term which is the second term of that.
Explicitly, these and other terms read

HD ¼ ρ

Z
d2xTrð∂kn∂knÞ; ð3:31Þ

FIG. 2. The expectation values hSai for the solution (3.28) with κ ¼ 1.
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HL ¼ −2iρ
Z

d2xTrðAk½n; ∂kn�Þ; ð3:32Þ

Hani ¼ −ρ
Z

d2x½Trð½Ak;n�2Þ − Trð½Ak;n∞�2Þ�; ð3:33Þ

Hpot ¼ 4ρ

Z
d2x½TrðnF12Þ − Trðn∞F12Þ�; ð3:34Þ

where Ak is a constant background field, as before. Finally,
the boundary termHBoundary is defined by Eq. (3.1) with the
negative sign in the r.h.s., the same as before. Note that we
also introduced constant terms in Eqs. (3.33) and (3.34) in
order to guarantee the finiteness of the total energy. Clearly,
the Hamiltonian (3.30) is reduced to Eq. (3.4) as we
set ν2 ¼ μ2 ¼ 1.
The existence of exact solutions of the Hamiltonian

(3.30) with ν2 ¼ μ2 can be easily shown if we rescale
the space coordinates as x⃗ → r0x⃗, where r0 is a positive
constant, while the background gauge field Ak remains
intact. By rescaling, the Hamiltonian (3.30) becomes

H ¼ HD þ r0ðHL þHBoundaryÞ þ r20ðν2Hani þ μ2HpotÞ:
ð3:35Þ

Setting ν2 ¼ μ2 and choosing the scale parameter r0 ¼ ν−2,
one gets

Hr0¼ν−2

ν2¼μ2
¼ HD þ ν−2ðHL þHBoundary þHani þHpotÞ:

ð3:36Þ
Notice that since the solutions (3.19) with Pi being

arbitrary constants are holomorphic maps from S2 to
CP2, they satisfy not only the variational equations
δHν2¼μ2¼1 ¼ 0, but also the equations δHD ¼ 0, where δ
denotes the variation with respect to n with preserving
the constraint (2.6). Therefore, the solutions also satisfy

the equations δHr0¼ν−2

ν2¼μ2
¼ 0. This implies that, in the limit

μ2 ¼ ν2, the Hamiltonian (3.30) supports a family of exact
solutions of the form

Zðν2Þ ¼ exp ½iν2Aþzþ�c; ð3:37Þ
where c is a three-component complex unit vector.
Since the solution (3.37) is a BPS solution of the pure

CP2 model with the positive topological chargeQ, one gets
HD½Zðν2Þ� ¼ 16πρQ. In addition, the lower bound at
the BPS point (3.7) indicates that Hν2¼μ2¼1½Zðν2 ¼ 1Þ� ¼
−16πρQ. Combining these bounds, we find that the total
energy of the solution (3.37) is given by

Hν2¼μ2 ½Zðν2Þ� ¼ 16πρ

�
1 −

2

ν2

�
Q: ð3:38Þ

Since the energy becomes negative if ν2 < 2, we can expect
that for small values of the coupling ν2, the homogeneous
vacuum state becomes unstable, and then separated 2D
skyrmions (or a skyrmion lattice) emerge as a ground state.

IV. NUMERICAL SOLUTIONS

A. Axial symmetric solutions

In this section, we study baby skyrmion solutions of the
Hamiltonian (3.30) with various combinations of the
coupling constants. Apart from the solvable line, no exact
solutions could find analytically, and then we have to solve
the equations numerically. Here, we restrict ourselves to the
case of the background field given by Eq. (3.25).
For the background field (3.25), by analogy with the case

of the single CP1 magnetic skyrmion solution, we can look
for a configuration described by the axially symmetric
ansatz

Z ¼

0
B@

sinFðrÞ cosGðrÞeiΦ1ðθÞ

sinFðrÞ sinGðrÞeiΦ2ðθÞ

cosFðrÞ

1
CA; ð4:1Þ

FIG. 3. The expectation values hðSaÞ2i for the solution (3.28) with κ ¼ 1.
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where F and G (Φ1 and Φ2) are real functions of the plane
polar coordinates r (θ).
The exact solution on the solvable line ν2 ¼ μ2 with axial

symmetry can be written in terms of the ansatz with the
functions

F ¼ tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν4κ2r2 þ ν8κ4r4

2

r
; G ¼ tan−1

�
ν2κr
2

�
;

Φ1 ¼ θ þ π

4
; Φ2 ¼ 2θ þ 3π

4
: ð4:2Þ

Further, the solution (3.28) is given by Eq. (4.2)
with ν2 ¼ 1. This configuration is a useful reference
point in the configuration space as we discuss below

some properties of numerical solutions in the extended
model (3.30).
For our numerical study, it is convenient to introduce

the energy unit 8ρ and the length unit κ−1, in order
to scale the coupling constants. Then, the rescaled
components of the Hamiltonian with the ansatz (4.1)
become

HD ¼
Z

d2x

�
F02 þ sin2FG02

þ sin2F
r2

f _Φ2
1cos2Gþ _Φ2

2sin2Gg

−
sin4F
r2

ð _Φ1cos2Gþ _Φ2sin2GÞ2
�
; ð4:3Þ

HL ¼ −2
Z

d2x
r

� ffiffiffi
2

p
cos

�
θ þ π

4
−Φ1

��
r

�
cosGF0 − sin 2F sinG

G0

2

�
þ sin 2F cosG

_Φ1

2

− sin 2Fsin2F cosGðcos2G _Φ1 þ sin2G _Φ2Þ
�
− sin ðθ þΦ1 −Φ2Þ

�
rsin2FG0 þ 1

2
sin2F sin 2Gð _Φ1 þ _Φ2Þ

− sin4F sin 2Gðcos2G _Φ1 þ sin2G _Φ2Þ
��

; ð4:4Þ

Hani ¼
1

2

Z
d2x

�
16sin2Fcos2G

�
cos2F −

1ffiffiffi
2

p cos

�
2Φ1 −Φ2 þ

π

4

�
sin 2F sinGþ sin2F sinG2

�

þ sin22Fð1þ 2sin2GÞ þ 8ðcos2F − cos2Gsin2FÞ2 þ 4cos22Gsin4F − 4

�
; ð4:5Þ

Hpot ¼ 2

Z
d2xð1 −

ffiffiffi
3

p
n8Þ ¼ 6

Z
d2x cos2 F; ð4:6Þ

where the prime 0 and the dot _ stands for the derivatives with respect to the radial coordinate r and angular coordinate θ,
respectively. The system of corresponding Euler-Lagrange equations for Φi can be solved algebraically for an arbitrary set
of the coupling constants, and the solutions are

Φ1 ¼ θ þ π

4
; Φ2 ¼ 2θ þ 3π

4
þmπ; ð4:7Þ

where m is an integer. Without loss of generality, we choose m ¼ 0 by transferring the corresponding multiple windings of
the phaseΦ2 to the sign of the profile functionG. Then, the system of the Euler-Lagrange equations for the profile functions
with the phase factor (4.7) reads

δHD

δF
þ δHL

δF
þ ν2

δHani

δF
þ μ2

δHpot

δF
¼ 0;

δHD

δG
þ δHL

δG
þ ν2

δHani

δG
þ μ2

δHpot

δG
¼ 0; ð4:8Þ

with

δHD

δF
¼

�
2rF00 þ 2F0 − sin 2F

�
rG02 þ 1þ 3sin2G

r
−
2sin2F

r
ð1þ sin2GÞ2

��
; ð4:9Þ
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δHL

δF
¼ −2

�
2

ffiffiffi
2

p
sin2Ff−r sinGG0 þ cosGþ cosGð1þ sin2GÞð4cos2F − 1Þg

− r sin 2FG0 −
3

2
sin 2F sin 2Gþ 4 cosFsin3F sin 2Gð1þ sin2GÞ

�
; ð4:10Þ

δHani

δF
¼ 2r½4

ffiffiffi
2

p
sinGcos2Gsin2Fð3 − 4sin2FÞ − 4 cosFsin3Fcos22G

þ 4 sin 2Ffcos2F − sin2Fcos2Gð1þ sin2GÞg − sin 2F cos 2Fð1þ 2sin2GÞ�; ð4:11Þ
δHpot

δF
¼ 6r sin 2F; ð4:12Þ

δHD

δG
¼

�
2r sinF2G00 þ 2r sin 2FF0G0 þ 2sin2FG0 −

sin2F sin 2G
r

f3 − 2sin2Fð1þ sin2GÞg
�
; ð4:13Þ

δHL

δG
¼ −2½

ffiffiffi
2

p
sin2F sinGf2rF0 þ sin 2Fð1 − 3sin2GÞg

þ r sin 2FF0 þ sin2Fð1 − 3 cos 2GÞ þ sin4Fð1þ 3 cos 2G − 2cos22GÞ�; ð4:14Þ

δHani

δG
¼ r½8

ffiffiffi
2

p
cosFsin3F cosGð1 − 3sin2GÞ þ 16sin4Fcos3G sinG − sin22F sin 2G�; ð4:15Þ

δHpot

δG
¼ 0: ð4:16Þ

We solve the equations for ν2 ≠ μ2 numerically with the
boundary condition

Fð0Þ ¼ Gð0Þ ¼ 0; lim
r→∞

FðrÞ ¼ lim
r→∞

GðrÞ ¼ π=2; ð4:17Þ

which the exact solution (4.2) satisfies. This vacuum
corresponds to the spin nematic state (3.29).
Let us consider the asymptotic behavior of the solutions

of the equations (4.8). Near the origin, the leading terms in
the power series expansion are

F ≈ cFr; G ≈ cGr; ð4:18Þ

where cF and cG are some constants implicitly depending
on the coupling constants of the model. To see the behavior
of solutions at large r, we shift the profile functions as

F ¼ π

2
− F ; G ¼ π

2
− G: ð4:19Þ

Then, one obtains linearized asymptotic equations on the
functions F and G of the forms�
F 00 þ F 0

r
−
4F
r2

�
þ 2

ffiffiffi
2

p �
G0 −

G
r

�
− 2ðν2 þ 3μ2ÞF ¼ 0;

�
G00 þ G0

r
−

G
r2

�
− 2

ffiffiffi
2

p �
F 0 þ 2F

r

�
¼ 0:

ð4:20Þ

FIG. 4. Plot of the profile functions fF;Gg (left) and the topological charge density (right) of numerical solutions for changing the
coupling constant ν2 at μ2 ¼ 1.5. The gray line indicates the quantities of the exact solution (4.2) on the solvable line.
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Unfortunately, Eqs. (4.20) may not support an analytical
solution. However, these equations imply that the
asymptotic behavior of the profile functions is similar to
that of the functions (4.2), by a replacement ν2κ with
ðν2 þ 3μ2Þ=4. Indeed, the asymptotic equations (4.20)
depend on such a combination of the coupling constants,
and there may exist an exact solution on the solvable line
with the same character of asymptotic decay as the
localized soliton solution of the equation (4.8).
To implement a numerical integration of the coupled

system of ordinary differential equations (4.8), we intro-
duce the normalized compact coordinate X ∈ ð0; 1� via

r ¼ 1 − X
X

: ð4:21Þ

The integration was performed by the Newton-Raphson
method with the mesh point NMESH ¼ 2000.
In Fig. 4, we display some set of numerical solutions for

different values of the coupling ν2 at μ2 ¼ 1.5 and their
topological charge density Q defined through Q ¼
2π

R
rQdr. The solutions enjoy Derrick’s scaling relation

and possess a good approximated value of the topological
charge, as shown in Table I. One observes that as the value
of the coupling ν2 becomes relatively small, the function G
is delocalizing while the profile function F is approaching
its vacuum value everywhere in space except for the origin.
This is an indication that any regular nontrivial solution
does not exist ν2 ¼ 0.

B. Asymptotic behavior

Asymptotic interaction of solitons is related to the
overlapping of the tails of the profile functions of well-
separated single solitons [3]. Bounded multisoliton con-
figurations may exist if there is an attractive force between
two isolated solitons.
Considering the above-mentioned soliton solutions of

the gauged CP2 NLσ model, we have seen that the exact
solution (4.2) has the same type of asymptotic decay as any
solution of the general system (4.8). Therefore, it is enough
to examine the asymptotic force between the solutions
on the solvable line (4.2) to understand whether or not
the Hamiltonian (3.30) supports multisoliton solutions of

higher topological degrees. Thus, without loss of general-
ity, we can set μ2 ¼ ν2.
Following the approach discussed in Ref. [3], let us

consider a superposition of the two exact solutions
above. This superposition is no longer a solution of the
Euler-Lagrange equation, except for in the limit of infinite
separation, because there is a force acting on the solitons.
The interaction energy of two solitons can be written as

EintðRÞ ¼ HspðRÞ − 2Hexact; ð4:22Þ

where HspðRÞ is the energy of two BPS solitons separated
by some large but finite distance R from each other, and
Hexact stands for the static energy of a single exact solution.
Notice that the lower bound of the Hamiltonian (3.30) with
μ2 ¼ ν2 is given

H¼ν−2Hν2¼μ2¼1þð1−ν2ÞHD≥2πð1−2ν−2ÞQ; ð4:23Þ

where the equality is enjoyed only by holomorphic sol-
utions. Therefore, we immediately conclude

HspðRÞ ≥ 2Hexact; ð4:24Þ

where the equality is satisfied only at the limit R → ∞.
It follows that the interaction energy is always positive
for finite separation, and the interaction is repulsive. Since
the exact solution has the topological charge Q ¼ 2, it
implies that there are no isolated soliton solutions with the
topological chargeQ ≥ 4 in this model. Note that, however,
as the BPS solution (3.19) suggests, there can exist soliton
solutions with an arbitrary negative charge, which are
topological excited states on top of the homogeneous
vacuum state.

V. CONCLUSION

In this paper, we have studied two-dimensional sky-
rmions in theCP2 NLσ model with a Lifshitz invariant term
which is an SUð3Þ generalization of the DM term. We have
shown that the SUð3Þ tilted FMHeisenberg model turns out
to be an SUð3Þ gauged CP2 NLσ model in which the term
linear in a background gauge field can be viewed as a
Lifshitz invariant. We have found exact BPS-type solutions

TABLE I. The Hamiltonian and topological charge for the numerical solutions with μ2 ¼ 1.5 where “Derrick” denotes the value
ðHL þHBoundaryÞ=ðν2Hani þ μ2HpotÞ, which is expected to be −2 by the scaling argument. For ν2 ¼ 1.5, we used the exact solution (4.2)
so that the Derrick and topological charge for ν2 ¼ 1.5 are exact values.

ν2 H HD HL ν2Hani μ2Hpot HBoundary Derrick Q

0.1 −117.47 13.51 −136.48 125.49 5.67 −125.67 −2.00 2.00
0.3 −34.02 13.41 −53.60 41.37 6.69 −41.89 −1.99 2.00
0.8 −8.46 13.06 −29.37 14.73 8.82 −15.71 −1.91 2.00

1.5 −4.19 12.57 −16.76 1.09 15.66 −16.76 −2 2
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of the gaugedCP2 model in the presence of a potential term
with a specific value of the coupling constant. The least
energy configuration among the BPS solutions has been
discussed. We have reduced the gauged CP2 model to the
(ungauged) CP2 model with a Lifshitz invariant by choos-
ing a background gauge field. In the reduced model, we
have constructed an exact solution for a special combina-
tion of coupling constants called the solvable line and
numerical solutions for a wider range of them.
For numerical study, we chose the background field,

generating a potential term that can be interpreted as
the quadratic Zeeman term or uniaxial anisotropic term.
One can also choose a background field generating the
Zeeman term; if the background field is chosen as A1 ¼
−κλ7 and A2 ¼ κλ5, the associated potential term is
proportional to hS3i. The Euler-Lagrange equation for
the extended CP2 model with this background field is
not compatible with the axial symmetric ansatz (4.1).
Therefore, a two-dimensional full simulation is required
to obtain a solution with this background field. This
problem, numerical simulation for nonaxial symmetric
solutions in the CP2 model with a Lifshitz invariant, is
left to future study. In addition, the construction of a CP2

skyrmion lattice is a challenging problem. The physical
interpretation of the Lifshitz invariants is also an impor-
tant future task. The microscopic derivation of the SUð3Þ
tilted Heisenberg model [21] may enable us to understand
the physical interpretation and physical situation where
the Lifshitz invariant appears. Other future work would
be the extension of the present study to the SUð3Þ

antiferromagnetic Heisenberg model where soliton or
sphaleron solutions can be constructed [41–43].
We restricted our analysis on the case that the additional

potential term μ2Hpot is balanced or dominant against the
anisotropic potential term ν2Hani, i.e., ν2 ≤ μ2. We expect
that a classical phase transition occurs outside of the
condition, and it causes instability of the solution. At the
moment, the phase structure of the model (3.30) is not clear,
and we will discuss it in our subsequent work.
Moreover, it has been reported that in some limit of a

three-component Ginzburg-Landau model [44,45], and of a
three-component Gross-Pitaevskii model [46,47], their
vortex solutions can be well described by planar CP2

skyrmions. We believe that our result provides a hint to
introduce a Lifshitz invariant to the models, and that our
solutions find applications not only in SUð3Þ spin systems
but also in superconductors and Bose-Einstein condensates
described by the extended models, including the Lifshitz
invariant.
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