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We study chiral algebras associated with Argyres-Douglas theories engineered from M5 branes. For the
theory engineered using 6D (2,0) type J theory on a sphere with a single irregular singularity (without mass
parameter), its chiral algebra is the minimal model of W algebra of J type. For the theory engineered using
an irregular singularity and a regular full singularity, its chiral algebra is the affine Kac-Moody algebra
of J type. We can obtain the Schur index of these theories by computing the vacua character of the

corresponding chiral algebra.
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I. INTRODUCTION

In the past few years, it has been found that certain
observables of four-dimensional N = 2 superconformal
field theories (SCFTs) can be identified with observables of
two-dimensional conformal field theories. Those 4D/2D
correspondences include the match between the 4D sphere
partition function and the correlator of 2D Liouville theory
[1], the match between the trace of 4D quantum mono-
dromy and the character of certain module of 2D chiral
algebra [2-5]. Recently, a remarkable map between 4D
N =2 SCFTs and 2D chiral algebras was constructed in
[6]. In many cases, 2D chiral algebras constructed from 4D
SCFTs are identified with known 2D models; see [5-13].

The purpose of this paper is to identify the chiral algebras
corresponding to Argyres-Douglas (AD) theories [14]
engineered from M5 branes [15—18]. The 2D chiral algebra
is constructed from the 4D theory as follows. First, pick
a two-dimensional slice in the four-dimensional space
R? c R* with complex coordinates (z,z). Then choose a
set of particular operators O(z,7) living on this plane R>
annihilated by a combination of Poincare and conformal
supercharges 2 = Q + S. At the origin, these operators
are just Schur operators. The operator product expansion
of these operators turns out to be meromorphic up to
the Q-exact piece. Therefore, by passing through the
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Q-cohomology, the operators O(z, 7) form a meromorphic
chiral algebra or vertex operator algebra (VOA). The basic
4D/2D mappings used in this paper are [6]' as follows:
(i) The 2D central charge c,p and the level of affine
Kac-Moody algebra k,p, are related to the 4D central
charge c4p and the flavor central charge kg as”

kZD = _kF' (1)

(ii) The (normalized) vacuum character yo(q) of 2D
chiral algebra is the 4D Schur index Z(g),’

x0(q) =Z(q). (2)

cop = —12¢4p,

The second relation provides a powerful tool to study the
spectrum of Schur operators of 4D theories even when the
4D theory does not admit a Lagrangian description.

We consider two types of AD theories engineered from
MS brane and propose that their chiral algebras take the
following form:

(i) The first class J?[k] is engineered using a single
irregular singularity, and we consider those theories
without any flavor symmetry. The chiral algebra is
conjectured to be the following coset:

5@, kh —b
A= h M2 g
Ji k ®)

'A very novel twisting procedure is needed to get those
4D/2D mappings [6].

’Our normalization of k- is half of that of [6,8].

3The definition of Schur and other indices are summarized in
the Appendix.
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with 4 being the dual Coxeter number of Lie algebra
J. This is the minimal model of W algebra of type J
[19]: W/ (p', p) = W/ (b + k, b).

(ii) The second class (J?[k], F) is engineered using a
single irregular singularity (no mass parameters) and
a full regular singularity. The chiral algebra is
conjectured to be the affine Kac-Moody algebra,

bon W

A=t b+k'

II. AD THEORY WITHOUT FLAVOR SYMMETRY

Let us start with the theory engineered using one
irregular singularity. The irregular singularity has been
classified in [18] and the corresponding theory is called
JP[k]; here J denotes the type of six-dimensional (2,0)
theory and b is a number specifying types. The classi-
fication is achieved using the classification of irregular
solution to Hitchin’s equation

T

O =t (5)

The corresponding theory can also be realized by putting
type IIB string theory on a threefold singularity whose form
associated with the J?[k] theory is listed in Table 1. We are
interested in cases where there is no flavor symmetry. This
would put constraints on integer k in each class; see
Table II. The threefold singularity has a manifest C* action

f(A%z;) = Af (z;)- (6)

TABLE I. Threefold singularities corresponding to our irregu-
lar punctures [18], where f is the dimension of charge lattice.
When b = h with h the dual Coxeter number, such theories are
also called (J,A;_;) which were first studied in [2].

J Singularity b Ho
Aver G4+ +25=0 N (N-D(k=1)
x%+x%+xé’v+x3zk:0 N -1 N(k—1)+1
Dy B4+ +5=0 2N-2 N(k—-1)
x24T+ x0ox3 + 2k =0 N 2k(N-1)—N
Es X+ +xi+z28=0 12 6k —6
x4+ x5+ =0 9 8k —6
43+ +75=0 8 9% —6
E; x%+x%—|—x2x%—|—zk:0 18 Tk —17
X3 4 X3 + x5 + 23 = 0 14 9k —7
E8 x%er%erquzk:O 30 Sk_g
X Hx+x+2=0 24 10k —8
x%+x%+xg+zkx220 20 12k —8

TABLE 1II. Constraint on k so that J’[k] has no flavor
symmetry.

T T

AN [K] (k.N)=1  AN-1[K] No solution
DI k#2n DYk N=2"(Qi+1).k#2"n
E{* (k] k # 3n E[K] k # 9n

E8[k] No solution  EI3[k] k#2n

EL*[k] k#2n,n>1 EPKk| k # 30n

E24[K] k#24n  EV[K] k # 20n

This C* action is related to the U(1), symmetry of N' = 2
SCFT. The Seiberg-Witten curves for these theories can be
found from the miniversal deformation of the singularity
[20,21].

The 4D central charge can be computed using the
following formula [22]:

LR R®B) S _RB)

4 6 ' 24’ 3 ()

AN~

where r is the rank of the Coulomb branch, and for our
theories [21],

4

u;|>1

1
RA)= > (w]=1),  R(B) = ptma (8)
[
in which p is the dimension of the charge lattice and u,,,, is
the maximal scaling dimension of Coulomb branch oper-
ators, both of which can be expressed in terms of the
weights ¢;’s,

G e

Other quantities appearing in the central charge formula are
also easy to compute,

r==, W= H (10)

We list po in Table I and central charge c,p in Table IIL.

To illustrate how to use the central charge formula, we
consider A3N"'[2] theory with N an integer. Its Coulomb
branch operators have conformal dimension {(2N + 4)/
(2N +3),(2N +6)/(2N + 3), ..., (4N + 2)/(2N + 3)}.
Therefore,

N? _ N(4N +2)

RB) =358 (1)
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TABLE III. 4D central charges of theory J*[k] without flavor
symmetry.
T C4D T C4D
N (N—=1)(k—=1)(N+k+Nk) N-1 (Nk=N+1)(N+k+Nk—1)
AN—l [k} —]2(N+k) AN—I [k] A 12(N_]+k)
2N-2 N(k=1)(=2—k+2N+2kN N N—1)2k=N)(N-+k(2N~1
N R R I e e
12 k=1)(12+13k 9 4k=3)(13k+9
Fo St BR S
EB[k] (3k=2)(13k+8) E8[K] 7(k=1)(19k+18)
6 4(8-+k) 7 T2(18+K)
EN k] (Ok=7)(19%k+14) EO[K] 2(k=1)(30+31k)
7 12(145%) 8 3(30+k)
EX K] (5k=4)(24+31k) EX[K] (3k-2)(20431%)
8 6(241k) 8 3(2014)
and then
IN(6N +5)
cap(AY_[2]) = - ———2 12
(A2 = o (12

A. 2D chiral algebra

It was realized in [4] that the chiral algebra of AY_, [k] is
WAN-1(N + k, N) minimal model. What is really important
to us is that such model can be realized as the coset [23]

L SUW), @ sU),
SUNN)

(13)

Here [ = — <k_kl N Motivated by this coset realization of
chiral algebra, we would like to conjecture that the 2D
chiral algebra for all our model J”[k] can be realized as the

following diagonal coset model:

hk — b
A=8Qs oMby
81+1 k

Here 4 is the dual Coxeter number. The 2D central charge
of our coset model is

ldimJ dimJ (I+1)dimJ
I+h 14+h [+1+nh

coplJ, 1 h] = (15)

One can check the 2D central charge is related to 4D central
charge as in formula 1. The Lie algebra data are shown in
Table IV.

We would like to make several comments which are as

follows:

(i) For our theory J?[k], the 2D chiral algebra is actually
the minimal model of the W algebra and can be
denoted as W/ (p’, p) = W’ (b + k, b) [19]. The 2D
central charge takes the following form:

¢ap = rank(J) 1—h(h+l)M . (16)

TABLE IV. Lie algebra data.

J dim(J) rank(J) h
Ay N> —1 N-1 N
Dy 2N> - N N 2N -2
Eq 78 6 12
E; 133 7 18
Eq 248 8 30

(i1) To match the central charges of 4D and 2D, there are
two choices of the levels /, /; which satisfy the
condition

[+, =—(2h+1). (17)

These two levels have the property: [+ h > 0 and
[y + h < 0. The choice of / makes the computation
easier, and it would be interesting to consider the
other choice too.

(iii) For the AYN_[k] type theory, they can be either
engineered using 6D Ay_; theory or 6D A;_; theory.
This implies that the two cosets should be isomor-
phic by exchanging k and N; indeed, such isomor-
phism has been confirmed in [24,25].

(iv) The D§[3] theory is also called the (A,, D) theory,
and this theory is the same as the theory considered
in [12]. We have found a different realization of the
chiral algebra from the one found in [12]. It would
be interesting to compare them.

Consider the chiral algebra A(J"[k]) = W/[p’, p] =
WY[h + k, h] with (k, h) = 1. The vacuum character takes
the following simple form [19,26]"

1 LI p'w(A T +p)=p(A=+p)
= 2pp’ . 18
x(q) w7 }ewe(W)q (18)

Here r is the rank of the Lie algebra J, W is the affine Weyl
group, and e(w) is the signature of the affine Weyl group
element. A € PY and A~ € PX are principle admissible
weights such that

(R 1)(p' = p) = [P (A" + ) = p(A™ + PP

(19)

We have the solution AT =0 and A~ = (k,0,...,0).
Substituting into the character formula, we get the Schur
index of our 4D theory J?[k]. Other cases with b # h will be
considered in a separate publication.

*For J = A, the character is already considered in [4].
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III. ARGYRES-DOUGLAS MATTER

Argyres-Douglas matters are defined as those isolated
N =2 SCFTs with the following properties: (i) the
Coulomb branch operators carry fractional scaling dimen-
sions and (ii) they carry non-Abelian flavor symmetries.
They can be engineered by putting M5 branes on a sphere
with one irregular and one regular puncture. These theories
can be labeled as (J?[k], Y) [18]. The irregular singularity is
labeled by J?[k] and the regular singularity is labeled by Y
[27,28].> We focus on the theory whose irregular singu-
larity does not have mass parameters.

Let us consider the simplest case where the regular
puncture is full [28], and then our theory can be labeled as
(JP[k], F). The 4D central charge can be computed using
formula (7), and we have the following observation:

1+ (=Dg@) | (h=1)g)
Umax = qu‘ 1 Ode qu -1 (20)

Here ¢g; are the weights of the coordinates x;,z of the
coordinates appearing in the threefold singularity of the
irregular puncture. Other quantities appearing in the central
charge formula are also easy to compute,

_ Ho , dim(J) —rank(J)
r= ) + 7 ,

u=po+dim(J). (21)

The flavor central charge is conjectured to be equal to
the maximal scaling dimension of the Coulomb branch
operators,

b
F):umax:h_—ﬂ (22)

ke (J7 K], i

where £ is the dual Coxeter number of Lie algebra J. The
central charges of 4D theories are listed in Table V.

A. 2D chiral algebra

We conjecture that the chiral algebra associated with the
AD matter (J°[k], F) is the affine Kac-Moody algebra,

A = J—kp' (23)

One can easily check the 2D central charge and 4D central
charge are related in the correct way as in Eq. (1). The 2D
vacuum character and hence the 4D Schur index can be
computed using the formula presented in [30] if b = h,
(b, k) = 1; other cases would be considered elsewhere.
Now let us study some examples. Consider the simplest
model (ASNT'[-2N + 1], F) = D,[SU(2N + 1)]. The 2D
chiral algebra is the Kac-Moody algebra SU(2N + 1)_ax1.
For D,[SU(5)], the first few orders of vacuum character of

When b = h, J # A, those theories are first studied in [29].

TABLE V. The central charge c,p and flavor central charge k
for Argyres-Douglas matter.

Theory C4p kr
(AN_, K], F) LN+ k-1)(N? = 1) N o)
(AN-1[k], F) N+ DIV N2 +1) <N];i>;_+lkN
(DY F) 5NN -1)(2N +k=3)  GN2ONIES)
(D% [k] , ) (2N—1)[2k(N1—21)+N(2N—3)] 2k(1v—1})v++1\]/<(21v—3)
(Eéz[k] ) 13(k+11) 12(k+11)

2 k+12
(EQ[k], F) 3(33 + 4k) 12 -5
(ES[K], F) 1322 + 3k) 12— %
(E[k]. F) 217+ k) 240
(EX[K], F) 5 (119 + 9k) 18— 4%
(EL[K]. F) 2 (294 k) = e
(EZ*[K], F) 3L(116 + 5k) 3 k§424
(EX[k], F) 31 (58 + 3k) 30 - 2%

the affine Kac-Moody algebra are computed using Eq. (18)
and we found that the equation can be written in a nice
compact form using the plethystic exponential

Ip,sus) =PEl(g+ ¢+ +4" + - ')Zigj@}a (24)

and for D,[SU(7)], we have
Ip,sum) = PE[(g+ ¢ + - '))(ifj]ja)]’ (25)

where )(Sd ; 1s the character of the adjoint representation of
Lie algebra G and PE means the plethystic exponential,

PE[x] = exp [i%xn] = ! . (26)

— 1—x

We conjecture that the Schur index of D,[SU(2N + 1)] is

4 SU@RN+1
_ qz)(adj( ! )} (27)

Ip,suen+1) = PE [1

Notice this is the same as the Schur index of half-hypers in
adjoint representation of SU(2N + 1) with g substituted by
g* [31,32], or in 2D language the vacuum character of
SU(2N + 1)_# is the partition function of free symplectic

bosons in adjoint representation of SU(2N + 1) with ¢
replaced by ¢°.

The Schur index of D,[SU(2N + 1)] [Eq. (27)] also
reproduces the correct chiral ring relations of the theory.
One can check this by comparing with the Hall-Littlewood
(HL) index of the same theory. The HL index of the original
4D theory is the same as the Coulomb branch Hilbert series
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o @

FIG. 1. The 3D mirror quiver of D,(SU(2N + 1)) theory.

of the mirror theory [32-34]. If the mirror theory admits a
quiver description, one can compute its Coulomb branch
Hilbert series following the method in [33,34].

For example, the quiver of the mirror theory of
D,[SU(2N + 1)] is shown in Fig. 1 [35]. The Coulomb
branch Hilbert series Hr(sy(y)) of the two quiver tails
in the top part of Fig. 1 has been computed explicitly
(i.e., Eq. (3.9) of [34]); one can then glue two copies of
Hr(sy(n)) with the rest part of the quiver to get the full HL
index of D,[SU(2N + 1)]. For example, the HL index of
D,[SU(5)] is

HLp,(su(s)) = PE[raaf = (1 + 24) + 24 + ...],  (28)

which means in the chiral ring of D,[SU(5)| there are
dimension 2 and 6 generators in 24 (adjoint) representation
of SU(5) together with dimension 4 relations in 24 + 1
representation and more. Exactly same generators and
relations can also be extracted from the Schur index (24)

by noticing that the Schur indices of dimension d chiral
o ; o q"y A2 (. d)2
perator (relations) are =2 ( 1_q) instead of %/= (—t%/#) in

. . . 2
HL index and stress tensor multiplet contributes ﬂTq to the

Schur index but not present in HL index. One can also
check that the Schur and HL indices of D,[SU(7)] produce
the same generators and relations of the chiral ring at lower
dimension.

The Schur index can also be computed from the trace of
the monodromy built from the Bogomolnyi-Prasad-
Sommerfield (BPS) spectrum [2,4,5]. For D,[SU(2N+1)]
theory, the minimal chamber has 2N (2N + 1) BPS states
using the tools developed in [36,37]. Unfortunately, for
D,[SU(5)] theory, the minimal chamber has 20 states; we
are not able to compute the trace of the monodromy due to
limiting computing power.

IV. DISCUSSIONS

The chiral algebra for theory considered in this paper is
strikingly simple, and it is closed related to the six-
dimensional construction; for example, the Lie algebra
appearing in the coset model and affine Kac-Moody
algebra are precisely the type of 6D (2,0) theory we start
with. It would be interesting to interpret why this same Lie
algebra appears in 2D chiral algebra description.

In this paper, we have considered only those irregular
singularities without mass parameters. For other type of
irregular singularities, one usually has a set of extra U(1)/
flavor symmetries, and the 2D chiral algebra should have
extra generators corresponding to the moment map and
other Higgs branch generators of U(1)/ symmetries. The
4D central charge formula takes the following form:

12¢4p = —cop = f- (29)

Here c,p is the central charge from the coset or the affine
Kac-Moody part. The above observation motivates the
following conjecture about the chiral algebra of the general
case: one has the same coset or affine Kac-Moody factor,
and we add extra generator corresponding to Higgs
branch operators of U(1)” factor, and the 2D central charge
of this piece is —f. For example, D,[SU(2N)] is SU(N)
SQCD with N; = 2N, according to our proposal, the chiral
algebra consists of a affine Kac-Moody factor SU(2N)_y,
and we should have extra generators corresponding to the
extra U(1) flavor symmetries. This structure agrees with
the conjecture made in [6].

We can gauge AD matter to form new N =2 SCFT.
Since we know the chiral algebra of the AD matter and the
gluing procedure of the chiral algebra, it would be
interesting to find the chiral algebra for theories built from
gauging AD matter. It would be also interesting to find out
the chiral algebra of the general N' = 2 SCFT engineered
from threefold singularity [21].

The J?[k] theory can be derived by closing off the full
puncture of (J[k], F), and it is argued in [6] that the closing
off puncture procedure corresponds to Drinfeld-Sokolov
(DS) reduction for corresponding 2D chiral algebra. The
chiral algebra of J?[k] theory is W algebra W/ (b + k, k), and
indeed it can be derived from DS reduction from the affine
Kac-Moody algebra J_j;/(5+k) [26] which is precisely the
chiral algebra of the theory (J?[k], F).°
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APPENDIX: SOME FACTS ABOUT N =2 INDEX

The generic representation of a 4D AN =2 SCFT is
labeled by the states |E, R, 1, ji, j,). Here E is the scaling
dimension, R is the SU(2); quantum number, r is the
U(1)x quantum number, and j,, j, are left and right spins.

®We thank L. Rastelli for this very interesting observation.
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The superconformal index for N' = 2 SCFTs is a refined
Witten index on S? x S1,

T — Tr(_l)Fp%(E+2j]—2R—r)q%(E—2j,—2R—r) R+, (A1)
where the trace is over BPS states satisfying the
condition

E—-2j,-2R+r=0, (A2)
which is annihilated by Q,- supercharge. Different limits
of the superconformal index are sensitive to different
superconformal multiplets. In this work, we are interested
in the following two limits.

The first is the Schur limit ¢ = ¢ with p arbitrary. The
result is independent of fugacity p automatically. In a trace
formula, the Schur index can be written as

Tschur = Trsehur(—1)F g5k, (A3)

which traces over BPS states satisfying an additional
condition

E+2j,—2R-r=0, (A4)

besides the original condition which is used to define the
index. They are annihilated by Q,, and Q,- supercharge.
The Schur index counts Higgs branch operators, stress
tensor, and other multiplets and is mapped to the vacuum
character of the corresponding VOA.

The second is the Hall-Littlewood limit g, p — 0 with ¢
fixed. The trace formula is

Ty = Try (=1)F72ER), (AS)
The trace is restricted to states with
j1 =0, Ja=r, E=2R+r (A6)

and is annihilated by supercharges Q;,, Q,_, and Q,-.
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