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We study chiral algebras associated with Argyres-Douglas theories engineered from M5 branes. For the
theory engineered using 6D (2,0) type J theory on a sphere with a single irregular singularity (without mass
parameter), its chiral algebra is the minimal model of W algebra of J type. For the theory engineered using
an irregular singularity and a regular full singularity, its chiral algebra is the affine Kac-Moody algebra
of J type. We can obtain the Schur index of these theories by computing the vacua character of the
corresponding chiral algebra.
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I. INTRODUCTION

In the past few years, it has been found that certain
observables of four-dimensional N ¼ 2 superconformal
field theories (SCFTs) can be identified with observables of
two-dimensional conformal field theories. Those 4D/2D
correspondences include the match between the 4D sphere
partition function and the correlator of 2D Liouville theory
[1], the match between the trace of 4D quantum mono-
dromy and the character of certain module of 2D chiral
algebra [2–5]. Recently, a remarkable map between 4D
N ¼ 2 SCFTs and 2D chiral algebras was constructed in
[6]. In many cases, 2D chiral algebras constructed from 4D
SCFTs are identified with known 2D models; see [5–13].
The purpose of this paper is to identify the chiral algebras

corresponding to Argyres-Douglas (AD) theories [14]
engineered from M5 branes [15–18]. The 2D chiral algebra
is constructed from the 4D theory as follows. First, pick
a two-dimensional slice in the four-dimensional space
R2 ⊂ R4 with complex coordinates ðz; z̄Þ. Then choose a
set of particular operators Oðz; z̄Þ living on this plane R2

annihilated by a combination of Poincare and conformal
supercharges Q ¼ Qþ S. At the origin, these operators
are just Schur operators. The operator product expansion
of these operators turns out to be meromorphic up to
the Q-exact piece. Therefore, by passing through the

Q-cohomology, the operators Oðz; z̄Þ form a meromorphic
chiral algebra or vertex operator algebra (VOA). The basic
4D/2D mappings used in this paper are [6]1 as follows:

(i) The 2D central charge c2D and the level of affine
Kac-Moody algebra k2D are related to the 4D central
charge c4D and the flavor central charge kF as2

c2D ¼ −12c4D; k2D ¼ −kF: ð1Þ
(ii) The (normalized) vacuum character χ0ðqÞ of 2D

chiral algebra is the 4D Schur index IðqÞ,3

χ0ðqÞ ¼ IðqÞ: ð2Þ

The second relation provides a powerful tool to study the
spectrum of Schur operators of 4D theories even when the
4D theory does not admit a Lagrangian description.
We consider two types of AD theories engineered from

M5 brane and propose that their chiral algebras take the
following form:

(i) The first class Jb½k� is engineered using a single
irregular singularity, and we consider those theories
without any flavor symmetry. The chiral algebra is
conjectured to be the following coset:

A ¼ Jl ⨁ J1
Jlþ1

; l ¼ −
kh − b

k
; ð3Þ
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1A very novel twisting procedure is needed to get those
4D/2D mappings [6].

2Our normalization of kF is half of that of [6,8].
3The definition of Schur and other indices are summarized in

the Appendix.
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with h being the dual Coxeter number of Lie algebra
J. This is the minimal model of W algebra of type J
[19]: WJðp0; pÞ ¼ WJðbþ k; bÞ.

(ii) The second class ðJb½k�; FÞ is engineered using a
single irregular singularity (no mass parameters) and
a full regular singularity. The chiral algebra is
conjectured to be the affine Kac-Moody algebra,

A ¼ J−kF ; kF ¼ h −
b

bþ k
: ð4Þ

II. AD THEORY WITHOUT FLAVOR SYMMETRY

Let us start with the theory engineered using one
irregular singularity. The irregular singularity has been
classified in [18] and the corresponding theory is called
Jb½k�; here J denotes the type of six-dimensional (2,0)
theory and b is a number specifying types. The classi-
fication is achieved using the classification of irregular
solution to Hitchin’s equation

Φ ¼ T

z2þk=b þ � � � : ð5Þ

The corresponding theory can also be realized by putting
type IIB string theory on a threefold singularity whose form
associated with the Jb½k� theory is listed in Table I. We are
interested in cases where there is no flavor symmetry. This
would put constraints on integer k in each class; see
Table II. The threefold singularity has a manifest C� action

fðλqiziÞ ¼ λfðziÞ: ð6Þ

This C� action is related to the Uð1ÞR symmetry of N ¼ 2
SCFT. The Seiberg-Witten curves for these theories can be
found from the miniversal deformation of the singularity
[20,21].
The 4D central charge can be computed using the

following formula [22]:

a ¼ RðAÞ
4

þ RðBÞ
6

þ 5r
24

; c ¼ RðBÞ
3

þ r
6
; ð7Þ

where r is the rank of the Coulomb branch, and for our
theories [21],

RðAÞ ¼
X
½ui�>1

ð½ui� − 1Þ; RðBÞ ¼ 1

4
μumax; ð8Þ

in which μ is the dimension of the charge lattice and umax is
the maximal scaling dimension of Coulomb branch oper-
ators, both of which can be expressed in terms of the
weights qi’s,

μ ¼
Y�

1

qi
− 1

�
; umax ¼

1P
qi − 1

: ð9Þ

Other quantities appearing in the central charge formula are
also easy to compute,

r ¼ μ0
2
; μ ¼ μ0: ð10Þ

We list μ0 in Table I and central charge c4D in Table III.
To illustrate how to use the central charge formula, we

consider A2Nþ1
2N ½2� theory with N an integer. Its Coulomb

branch operators have conformal dimension fð2N þ 4Þ=
ð2N þ 3Þ; ð2N þ 6Þ=ð2N þ 3Þ;…; ð4N þ 2Þ=ð2N þ 3Þg.
Therefore,

RðAÞ ¼ N2

2N þ 3
; RðBÞ ¼ Nð4N þ 2Þ

2ð2N þ 3Þ ð11Þ

TABLE I. Threefold singularities corresponding to our irregu-
lar punctures [18], where μ0 is the dimension of charge lattice.
When b ¼ h with h the dual Coxeter number, such theories are
also called ðJ; Ak−1Þ which were first studied in [2].

J Singularity b μ0

AN−1 x21 þ x22 þ xN3 þ zk ¼ 0 N ðN − 1Þðk − 1Þ
x21 þ x22 þ xN3 þ x3zk ¼ 0 N − 1 Nðk − 1Þ þ 1

DN x21 þ xN−1
2 þ x2x23 þ zk ¼ 0 2N − 2 Nðk − 1Þ

x21 þ xN−1
2 þ x2x23 þ zkx3 ¼ 0 N 2kðN − 1Þ − N

E6 x21 þ x32 þ x43 þ zk ¼ 0 12 6k − 6

x21 þ x32 þ x43 þ zkx3 ¼ 0 9 8k − 6

x21 þ x32 þ x43 þ zkx2 ¼ 0 8 9k − 6

E7 x21 þ x32 þ x2x33 þ zk ¼ 0 18 7k − 7

x21 þ x32 þ x2x33 þ zkx3 ¼ 0 14 9k − 7

E8 x21 þ x32 þ x53 þ zk ¼ 0 30 8k − 8

x21 þ x32 þ x53 þ zkx3 ¼ 0 24 10k − 8

x21 þ x32 þ x53 þ zkx2 ¼ 0 20 12k − 8

TABLE II. Constraint on k so that Jb½k� has no flavor
symmetry.

T T

AN
N−1½k� ðk; NÞ ¼ 1 AN−1

N−1½k� No solution

D2N−2
N ½k� k ≠ 2n DN

N ½k� N ¼ 2mð2iþ 1Þ; k ≠ 2mn

E12
6 ½k� k ≠ 3n E9

6½k� k ≠ 9n

E8
6½k� No solution E18

7 ½k� k ≠ 2n

E14
7 ½k� k ≠ 2n; n > 1 E30

8 ½k� k ≠ 30n

E24
8 ½k� k ≠ 24n E20

8 ½k� k ≠ 20n
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and then

c4DðAN
N−1½2�Þ ¼

1

6

Nð6N þ 5Þ
2N þ 3

: ð12Þ

A. 2D chiral algebra

It was realized in [4] that the chiral algebra of AN
N−1½k� is

WAN−1ðN þ k; NÞ minimal model. What is really important
to us is that such model can be realized as the coset [23]

A ¼ SUðNÞl ⨁ SUðNÞ1
SUðNÞlþ1

: ð13Þ

Here l ¼ − ðk−1ÞN
k . Motivated by this coset realization of

chiral algebra, we would like to conjecture that the 2D
chiral algebra for all our model Jb½k� can be realized as the
following diagonal coset model:

A ¼ gl ⨁ g1
glþ1

; g ¼ J; l ¼ −
hk − b

k
: ð14Þ

Here h is the dual Coxeter number. The 2D central charge
of our coset model is

c2D½J; l; h� ¼
l dim J
lþ h

þ dim J
1þ h

−
ðlþ 1Þ dim J
lþ 1þ h

: ð15Þ

One can check the 2D central charge is related to 4D central
charge as in formula 1. The Lie algebra data are shown in
Table IV.
We would like to make several comments which are as

follows:
(i) For our theory Jb½k�, the 2D chiral algebra is actually

the minimal model of the W algebra and can be
denoted as WJðp0; pÞ ¼ WJðbþ k; bÞ [19]. The 2D
central charge takes the following form:

c2D ¼ rankðJÞ
�
1 − hðhþ 1Þ ðp

0 − pÞ2
pp0

�
: ð16Þ

(ii) To match the central charges of 4D and 2D, there are
two choices of the levels l, l1 which satisfy the
condition

lþ l1 ¼ −ð2hþ 1Þ: ð17Þ

These two levels have the property: lþ h > 0 and
l1 þ h < 0. The choice of l makes the computation
easier, and it would be interesting to consider the
other choice too.

(iii) For the AN
N−1½k� type theory, they can be either

engineered using 6D AN−1 theory or 6D Ak−1 theory.
This implies that the two cosets should be isomor-
phic by exchanging k and N; indeed, such isomor-
phism has been confirmed in [24,25].

(iv) The D6
4½3� theory is also called the ðA2; D4Þ theory,

and this theory is the same as the theory considered
in [12]. We have found a different realization of the
chiral algebra from the one found in [12]. It would
be interesting to compare them.

Consider the chiral algebra AðJh½k�Þ ¼ WJ½p0; p� ¼
WJ½hþ k; h� with ðk; hÞ ¼ 1. The vacuum character takes
the following simple form [19,26]4:

χðqÞ ¼ 1

ηðτÞr
X
ω∈Ŵ

ϵðwÞq 1

2pp0jp0wðΛþþρÞ−pðΛ−þρÞj2 : ð18Þ

Here r is the rank of the Lie algebra J, Ŵ is the affine Weyl
group, and ϵðwÞ is the signature of the affine Weyl group
element. Λþ ∈ P0þ and Λ− ∈ Pkþ are principle admissible
weights such that

1

12
rhðhþ 1Þðp0 − pÞ2 ¼ jp0ðΛþ þ ρÞ − pðΛ− þ ρÞj2:

ð19Þ

We have the solution Λþ ¼ 0 and Λ− ¼ ðk; 0;…; 0Þ.
Substituting into the character formula, we get the Schur
index of our 4D theory Jb½k�. Other cases with b ≠ hwill be
considered in a separate publication.

TABLE III. 4D central charges of theory Jb½k� without flavor
symmetry.

T c4D T c4D

AN
N−1½k� ðN−1Þðk−1ÞðNþkþNkÞ

12ðNþkÞ AN−1
N−1½k� ðNk−Nþ1ÞðNþkþNk−1Þ

12ðN−1þkÞ
D2N−2

N ½k� Nðk−1Þð−2−kþ2Nþ2kNÞ
12ð−2þkþ2NÞ DN

N ½k� ððN−1Þ2k−NÞðNþkð2N−1ÞÞ
12ðkþNÞ

E12
6 ½k� ðk−1Þð12þ13kÞ

2ð12þkÞ E9
6½k� ð4k−3Þð13kþ9Þ

6ð9þkÞ
E8
6½k� ð3k−2Þð13kþ8Þ

4ð8þkÞ E18
7 ½k� 7ðk−1Þð19kþ18Þ

12ð18þkÞ
E14
7 ½k� ð9k−7Þð19kþ14Þ

12ð14þkÞ E30
8 ½k� 2ðk−1Þð30þ31kÞ

3ð30þkÞ
E24
8 ½k� ð5k−4Þð24þ31kÞ

6ð24þkÞ E20
8 ½k� ð3k−2Þð20þ31kÞ

3ð20þkÞ

TABLE IV. Lie algebra data.

J dimðJÞ rankðJÞ h

AN−1 N2 − 1 N − 1 N
DN 2N2 − N N 2N − 2

E6 78 6 12
E7 133 7 18
E8 248 8 30

4For J ¼ A, the character is already considered in [4].
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III. ARGYRES-DOUGLAS MATTER

Argyres-Douglas matters are defined as those isolated
N ¼ 2 SCFTs with the following properties: (i) the
Coulomb branch operators carry fractional scaling dimen-
sions and (ii) they carry non-Abelian flavor symmetries.
They can be engineered by putting M5 branes on a sphere
with one irregular and one regular puncture. These theories
can be labeled as ðJb½k�; YÞ [18]. The irregular singularity is
labeled by Jb½k� and the regular singularity is labeled by Y
[27,28].5 We focus on the theory whose irregular singu-
larity does not have mass parameters.
Let us consider the simplest case where the regular

puncture is full [28], and then our theory can be labeled as
ðJb½k�; FÞ. The 4D central charge can be computed using
formula (7), and we have the following observation:

umax ¼
1þ ðh − 1ÞqðzÞP

qi − 1
¼ u0max þ

ðh − 1ÞqðzÞP
qi − 1

: ð20Þ

Here qi are the weights of the coordinates xi; z of the
coordinates appearing in the threefold singularity of the
irregular puncture. Other quantities appearing in the central
charge formula are also easy to compute,

r ¼ μ0
2
þ dimðJÞ − rankðJÞ

2
; μ ¼ μ0 þ dimðJÞ: ð21Þ

The flavor central charge is conjectured to be equal to
the maximal scaling dimension of the Coulomb branch
operators,

kFðJb½k�; FÞ ¼ umax ¼ h −
b

bþ k
; ð22Þ

where h is the dual Coxeter number of Lie algebra J. The
central charges of 4D theories are listed in Table V.

A. 2D chiral algebra

We conjecture that the chiral algebra associated with the
AD matter ðJb½k�; FÞ is the affine Kac-Moody algebra,

A ¼ J−kF : ð23Þ

One can easily check the 2D central charge and 4D central
charge are related in the correct way as in Eq. (1). The 2D
vacuum character and hence the 4D Schur index can be
computed using the formula presented in [30] if b ¼ h,
ðb; kÞ ¼ 1; other cases would be considered elsewhere.
Now let us study some examples. Consider the simplest

model ðA2Nþ1
2N ½−2N þ 1�; FÞ ¼ D2½SUð2N þ 1Þ�. The 2D

chiral algebra is the Kac-Moody algebra SUð2N þ 1Þ−2Nþ1
2
.

For D2½SUð5Þ�, the first few orders of vacuum character of

the affine Kac-Moody algebra are computed using Eq. (18)
and we found that the equation can be written in a nice
compact form using the plethystic exponential

ID2½SUð5Þ� ¼ PE½ðqþ q3 þ q5 þ q7 þ � � �ÞχSUð5Þ
adj �; ð24Þ

and for D2½SUð7Þ�, we have

ID2½SUð7Þ� ¼ PE½ðqþ q3 þ � � �ÞχSUð7Þ
adj �; ð25Þ

where χGadj is the character of the adjoint representation of
Lie algebra G and PE means the plethystic exponential,

PE½x� ¼ exp

�X∞
n¼1

1

n
xn
�
¼ 1

1 − x
: ð26Þ

We conjecture that the Schur index of D2½SUð2N þ 1Þ� is

ID2½SUð2Nþ1Þ� ¼ PE

�
q

1 − q2
χSUð2Nþ1Þ
adj

�
: ð27Þ

Notice this is the same as the Schur index of half-hypers in
adjoint representation of SUð2N þ 1Þ with q substituted by
q2 [31,32], or in 2D language the vacuum character of
SUð2N þ 1Þ−2Nþ1

2
is the partition function of free symplectic

bosons in adjoint representation of SUð2N þ 1Þ with q
replaced by q2.
The Schur index of D2½SUð2N þ 1Þ� [Eq. (27)] also

reproduces the correct chiral ring relations of the theory.
One can check this by comparing with the Hall-Littlewood
(HL) index of the same theory. The HL index of the original
4D theory is the same as the Coulomb branch Hilbert series

TABLE V. The central charge c4D and flavor central charge kF
for Argyres-Douglas matter.

Theory c4D kF

ðAN
N−1½k�; FÞ 1

12
ðN þ k − 1ÞðN2 − 1Þ NðNþk−1Þ

Nþk

ðAN−1
N−1½k�; FÞ ðNþ1Þ½N2þNðk−2Þþ1�

12

ðN−1Þ2þkN
Nþk−1

ðD2N−2
N ½k�; FÞ 1

12
Nð2N − 1Þð2N þ k − 3Þ ð2N−2Þð2Nþk−3Þ

2N−2þk

ðDN
N ½k�; FÞ ð2N−1Þ½2kðN−1ÞþNð2N−3Þ�

12

2kðN−1ÞþNð2N−3Þ
Nþk

ðE12
6 ½k�; FÞ 13ðkþ11Þ

2

12ðkþ11Þ
kþ12

ðE9
6½k�; FÞ 13

6
ð33þ 4kÞ 12 − 9

kþ9

ðE8
6½k�; FÞ 13

4
ð22þ 3kÞ 12 − 8

kþ8

ðE18
7 ½k�; FÞ 133

12
ð17þ kÞ 18ðkþ17Þ

kþ18

ðE14
7 ½k�; FÞ 19

12
ð119þ 9kÞ 18 − 14

kþ14

ðE30
8 ½k�; FÞ 62

3
ð29þ kÞ 30ðkþ29Þ

kþ30

ðE24
8 ½k�; FÞ 31

6
ð116þ 5kÞ 30 − 24

kþ24

ðE20
8 ½k�; FÞ 31

3
ð58þ 3kÞ 30 − 20

kþ20

5When b ¼ h, J ≠ A, those theories are first studied in [29].
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of the mirror theory [32–34]. If the mirror theory admits a
quiver description, one can compute its Coulomb branch
Hilbert series following the method in [33,34].
For example, the quiver of the mirror theory of

D2½SUð2N þ 1Þ� is shown in Fig. 1 [35]. The Coulomb
branch Hilbert series HTðSUðNÞÞ of the two quiver tails
in the top part of Fig. 1 has been computed explicitly
(i.e., Eq. (3.9) of [34]); one can then glue two copies of
HTðSUðNÞÞ with the rest part of the quiver to get the full HL
index of D2½SUð2N þ 1Þ�. For example, the HL index of
D2½SUð5Þ� is

HLD2½SUð5Þ� ¼ PE½χ24t − ð1þ χ24Þt2 þ χ24t3 þ…�; ð28Þ

which means in the chiral ring of D2½SUð5Þ� there are
dimension 2 and 6 generators in 24 (adjoint) representation
of SUð5Þ together with dimension 4 relations in 24þ 1
representation and more. Exactly same generators and
relations can also be extracted from the Schur index (24)
by noticing that the Schur indices of dimension d chiral

operator (relations) are qd=2

1−q (−
qd=2

1−q) instead of td=2 (−td=2) in

HL index and stress tensor multiplet contributes q2

1−q to the
Schur index but not present in HL index. One can also
check that the Schur and HL indices of D2½SUð7Þ� produce
the same generators and relations of the chiral ring at lower
dimension.
The Schur index can also be computed from the trace of

the monodromy built from the Bogomolnyi-Prasad-
Sommerfield (BPS) spectrum [2,4,5]. For D2½SUð2Nþ1Þ�
theory, the minimal chamber has 2Nð2N þ 1Þ BPS states
using the tools developed in [36,37]. Unfortunately, for
D2½SUð5Þ� theory, the minimal chamber has 20 states; we
are not able to compute the trace of the monodromy due to
limiting computing power.

IV. DISCUSSIONS

The chiral algebra for theory considered in this paper is
strikingly simple, and it is closed related to the six-
dimensional construction; for example, the Lie algebra
appearing in the coset model and affine Kac-Moody
algebra are precisely the type of 6D (2,0) theory we start
with. It would be interesting to interpret why this same Lie
algebra appears in 2D chiral algebra description.

In this paper, we have considered only those irregular
singularities without mass parameters. For other type of
irregular singularities, one usually has a set of extra Uð1Þf
flavor symmetries, and the 2D chiral algebra should have
extra generators corresponding to the moment map and
other Higgs branch generators of Uð1Þf symmetries. The
4D central charge formula takes the following form:

12c4D ¼ −c2D − f: ð29Þ
Here c2D is the central charge from the coset or the affine
Kac-Moody part. The above observation motivates the
following conjecture about the chiral algebra of the general
case: one has the same coset or affine Kac-Moody factor,
and we add extra generator corresponding to Higgs
branch operators of Uð1Þf factor, and the 2D central charge
of this piece is −f. For example, D2½SUð2NÞ� is SUðNÞ
SQCD with Nf ¼ 2N, according to our proposal, the chiral
algebra consists of a affine Kac-Moody factor SUð2NÞ−N,
and we should have extra generators corresponding to the
extra Uð1Þ flavor symmetries. This structure agrees with
the conjecture made in [6].
We can gauge AD matter to form new N ¼ 2 SCFT.

Since we know the chiral algebra of the AD matter and the
gluing procedure of the chiral algebra, it would be
interesting to find the chiral algebra for theories built from
gauging AD matter. It would be also interesting to find out
the chiral algebra of the general N ¼ 2 SCFT engineered
from threefold singularity [21].
The Jb½k� theory can be derived by closing off the full

puncture of ðJb½k�; FÞ, and it is argued in [6] that the closing
off puncture procedure corresponds to Drinfeld-Sokolov
(DS) reduction for corresponding 2D chiral algebra. The
chiral algebra of Jb½k� theory isWalgebraWJðbþ k; kÞ, and
indeed it can be derived from DS reduction from the affine
Kac-Moody algebra J−hþb=ðbþkÞ [26] which is precisely the
chiral algebra of the theory ðJb½k�; FÞ.6
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APPENDIX: SOME FACTS ABOUT N = 2 INDEX

The generic representation of a 4D N ¼ 2 SCFT is
labeled by the states jE; R; r; j1; j2i. Here E is the scaling
dimension, R is the SUð2ÞR quantum number, r is the
Uð1ÞR quantum number, and j1, j2 are left and right spins.

FIG. 1. The 3D mirror quiver of D2ðSUð2N þ 1ÞÞ theory.

6We thank L. Rastelli for this very interesting observation.
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The superconformal index forN ¼ 2 SCFTs is a refined
Witten index on S3 × S1,

I ¼ Trð−1ÞFp1
2
ðEþ2j1−2R−rÞq1

2
ðE−2j1−2R−rÞtRþr; ðA1Þ

where the trace is over BPS states satisfying the
condition

E − 2j2 − 2Rþ r ¼ 0; ðA2Þ

which is annihilated by Q̃1 _− supercharge. Different limits
of the superconformal index are sensitive to different
superconformal multiplets. In this work, we are interested
in the following two limits.
The first is the Schur limit q ¼ t with p arbitrary. The

result is independent of fugacity p automatically. In a trace
formula, the Schur index can be written as

ISchur ¼ TrSchurð−1ÞFqE−R; ðA3Þ

which traces over BPS states satisfying an additional
condition

Eþ 2j1 − 2R − r ¼ 0; ðA4Þ
besides the original condition which is used to define the
index. They are annihilated by Q1þ and Q̃1 _− supercharge.
The Schur index counts Higgs branch operators, stress
tensor, and other multiplets and is mapped to the vacuum
character of the corresponding VOA.
The second is the Hall-Littlewood limit q; p → 0 with t

fixed. The trace formula is

IHL ¼ TrHLð−1ÞFτ2ðE−RÞ: ðA5Þ

The trace is restricted to states with

j1 ¼ 0; j2 ¼ r; E ¼ 2Rþ r ðA6Þ

and is annihilated by supercharges Q1þ, Q1−, and Q̃1 _−.
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