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A definition of nonequilibrium free energy F s is proposed for dynamical Gaussian quantum open
systems strongly coupled to a heat bath and the formal relation with the generating functional, the coarse-
grained effective action and the influence action is indicated. For Gaussian open quantum systems
exemplified by the quantum Brownian motion model studied here, a time-varying effective temperature can
be introduced in a natural way, and, with it, the nonequilibrium free energy F s, von Neumann entropy SvN

and internal energy Us of the reduced system (S) can be defined accordingly. In contrast to the
nonequilibrium free energy found in the literature which references the bath temperature, the non-
equilibrium thermodynamic functions we find here obey the familiar relation F sðtÞ¼UsðtÞ−TEFFðtÞSvNðtÞ
at any and all moments of time in the system’s fully nonequilibrium evolution history. After the system
equilibrates they coincide, in the weak coupling limit, with their counterparts in conventional equilibrium
thermodynamics. Since the effective temperature captures both the state of the system and its interaction
with the bath, upon the system’s equilibration, it approaches a value slightly higher than the initial bath
temperature. Notably, it remains nonzero for a zero-temperature bath, signaling the existence of system-
bath entanglement. Reasonably, at high bath temperatures and under ultraweak couplings, it becomes
indistinguishable from the bath temperature. The nonequilibrium thermodynamic functions and relations
discovered here for dynamical Gaussian quantum systems should open up useful pathways toward
establishing meaningful theories of nonequilibrium quantum thermodynamics.
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I. INTRODUCTION

Using the techniques and language of quantum field
theory (QFT) for the description of the statistical mechanics
of quantum many-body systems [1] has a successful history
of well over half a century. The first stage was dominated
by imaginary-time finite temperature QFT [2–4] which has
proven its high utility for the study of equilibrium quantum
systems in a vast range of fields. Real-time formulation [5]
and nonequilibrium Green functions [6] are necessary for
treating time-dependent quantum systems [7]. The most
powerful toolbox for the study of nonequilibrium (NEq)
quantum systems in our opinion is the Schwinger-Keldysh
close-time-path (CTP) formalism [8] which easily enables
the use of diagrammatic techniques and the Feynman-
Vernon influence functional (IF) [9] formalism which is
naturally adept to treating open quantum systems [10–12].
They contributed to the synergy between QFT and non-
equilibrium statistical mechanics as witnessed by the fast

advancement of nonequilibrium quantum field theory
[13–17] in the last three decades.

A. Nonequilibrium quantum
thermodynamic functions

While it is reasonable to assume some theoretical
confidence that equilibrium quantum thermodynamics
can be obtained from nonequilibrium QFT as a limiting
case after the system equilibrates—for those systems which
indeed can do so—it remains a nontrivial challenge to come
up with well-defined thermodynamic functions under fully
dynamical nonequilibrium conditions, and even more of a
challenge, to show that the equilibrium thermodynamic
relations also hold for these nonequilibrium thermodynam-
ical functions. On the practical side, to meet the needs of
quantum sciences and technologies, establishing viable
theories of quantum thermodynamics for the parameter
regimes where the underlying assumptions of classical
thermodynamics breaks down—at low temperatures, for
small systems, with sizable fluctuations and persistent
memories—becomes a pressing necessity.
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In this work we shall focus on nonequilibrium free energy,
arguably the most important thermodynamic function, and
also the most studied. Most important because many equi-
librium thermodynamic quantities in canonical distribution
can be obtained from the free energy. In the statistical
mechanics literature, for classical systems, Esposito and
Van den Broeck [18] define [in their Eq. (6)] the non-
equilibrium system free energy asF sðtÞ¼UsðtÞ−TBSvNðtÞ,
(we have adapted it with notations used for easy comparison)
where TB is the temperature of an ideal heat bath held
constant with which the system is in contact. Deffner and
Lutz [19] [in their Eq. (7)] define the NEq free energy
by relating it to the relative (Kullback-Leibler) entropy
between the nonequilibrium state ρ̂ðtÞ of the system driven
by an external agent α and the instantaneous equilibrium
(canonical) distribution ρ̂eqðtÞ corresponding to the system
Hamiltonian that takes the same value of α at that moment.
For a lucid description of nonequilibrium free energy for
isothermal processes in quantum systems and related quan-
tum information issues, we refer to the review of Parrondo,
Horowitz, and Sagawa [20] and references therein.
The so-called “nonequilibrium free energy” is most

studied because of its linkage to the famous fluctuation
theorems of Jarzynski [21] and Crooks [22] (J-C). Many
authors call the free energy in this context as “nonequili-
brium free energy” referring to the difference between the
free energies of the initial and final equilibrium states of the
system (on the RHS of the J-C relation) which is equal to
and obtainable from the nonequilibrium work function (on
the LHS of the J-C relation). E.g., in Evans [23], an elegant
derivation of the Jarzynski-Crooks relation valid for time
reversible deterministic systems is given, highlighting the
close relationship between the nonequilibrium free energy
theorems and the fluctuation theorem. Or, e.g., in Sivak and
Crooks [24], a simple near-equilibrium approximation for
the free energy is found in terms of an excess mean time-
reversed work, which can be experimentally measured on
real systems. This is an important subject which we shall
closely examine in a later work. Another noted difference
between our setup of free open systems (systems coupled to
a heat bath but otherwise free of applied forces) and those
in the fluctuation theorems context is the presence of an
external agent doing work on the systems. E.g., Parrondo
et. al., [18] [Box 1, Eq. (2)], define

“a nonequilibrium free energy for a generic statistical
state ρ̂ of a system, with a Hamiltonian Ĥ0, in contact
with a thermal bath by

F ðρ̂; Ĥ0Þ ¼ hĤ0iρ̂ − TBSvNðρ̂Þ ð1:1Þ

where hĤ0iρ̂ is understood as hĤ0iρ̂ ¼ Trsfρ̂Ĥ0g. The
von Neumann entropy and the associated nonequili-
brium free energy are analogous to their equilibrium
counterparts in nonequilibrium isothermal processes.

Here, isothermal implies that the system is in contact
with a thermal reservoir at constant temperature TB,
although the system itself may not have a well-defined
temperature. The minimal work, on average, necessary
to isothermally drive the system from one arbitrary state
to another is simply the difference, ΔF between the
nonequilibrium free energy in each state. The excess
work with respect to this minimum is the dissipated or
irreversible work” contributing to entropy increase.

Note the presence of an external agent doing work on their
system, driving it through a nonequilibrium evolution,
while the free energy difference there refers to the free
energy of their system in two different states, both are under
thermal equilibrium conditions. Whereas, in our setup, the
free system is coupled with arbitrary strength with the same
heat bath and we seek to define a mathematically well-
defined and physically meaningful NEq free energy and
NEq temperature for the system throughout its evolution
in time.

B. Quantum field theoretical approaches

In terms of QFT approach to this issue we mention early
work of Berges and Wetterich [25] for equilibrium con-
ditions and Éboli, Jackiw and Pi [26], who use a variational
principle to derive a Liouville-von Neumann equation
for quantum fields out of equilibrium. In a functional
Schrödinger picture they produce the isentropic, but
energy-non-conserving, time evolution of mixed quantum
states. Two more recent papers by van Zon et al. [27] use
nonequilibrium path integrals to calculate the free energy
difference for quantum systems. However, since they use the
imaginary-time path-integral representation of the canonical
partition function and introduce fictitious Hamiltonian
dynamics it is not a bona fide treatment of nonequilibrium
physical processes. As the authors stated, there is significant
difference between the fictitious dynamics and real quantum
dynamics, even though the free energy found from their
nonequilibriummethod with fictitious dynamics is the exact
quantum free-energy difference in the Jarzynski relation.
The work computed in their scheme bears no relation to the
work performed in any real quantum process except in the
classical limit.
Turning now to our present work, as mentioned earlier,

we aim at arriving at a free energy well defined at all times
throughout the reduced system’s evolution in the open-
system framework. Then we show that the generalized
generating functional or nonequilibrium partition function
in fact can be identified as the in-in effective action of the
system with an appropriate normalization. First, we rec-
ognize the analogy between the generating functional in the
real-time formalism and the partition function in the
imaginary-time formalism, and that both formulations
can be fused into a unified language in an open quantum
system framework. We will establish these connections in
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the Appendix, and rewrite the nonequilibrium partition
function in terms of the forward- and backward-time path
integrals weighed by the coarse-grained effective action
[14,28], with the influence of the bath field accounted for in
the Feynman-Vernon influence action [9,29], itself being
the CTP effective action [8] of the bath field. One key issue
in this formulation is to identify the suitable normalization
factor [30,31]. Linking the nonequilibrium partition func-
tion of a Gaussian system to the CTP effective action of the
system establishes a sound theoretical base and a powerful
toolbox to further extend these results to tackle more
general cases such as nonlinear or non-Gaussian systems
by the functional perturbative technique [32,33].

C. Key points and major findings

The model we use for this investigation is the vintage
quantum Brownian motion of a harmonic oscillator
coupled with arbitrary strength bilinearly to a scalar field
thermal bath [10,11,29,34,35]. We begin in Sec. II with a
brief review of a Gaussian system in thermal equilibrium,
as a motivation and comparison to its nonequilibrium
counterpart in Sec. III. There our system is initially placed
not in a thermal state, but in an arbitrary Gaussian state,
thus out of equilibrium from the bath. After the system
begins to interact with the bath the full effect of the
environment on the system is registered in the covariance
matrix elements. We seek the generic operator form of the
density matrix of this open quantum system. For this we use
the displacement, squeeze and rotation parametrization
which can be expressed in terms of the time-dependent
covariance matrix elements.
Invoking the McCoy theorem in this construction we can

uniquely relate the nonequilibrium parameter ϑ and the
squeeze parameter η with the covariance matrix elements
associated with the density operator of the reduced quantum
system and identify the nonequilibrium partition function,
Eq. (3.24) for the reduced system. This is the first important
result of this paper. For the Gaussian system under study,
squeezing is a consequence of the system-bath interaction. It
remains in nonequilibrium until equilibration at late times,
after which the nonequilibrium partition function, in the
weak coupling limit, becomes the familiar equilibrium
partition function. With this nonequilibrium partition func-
tion we can identify in Sec. IV a time-dependent parameter
βEFF in (4.1) which serves as a nonequilibrium effective
temperature. With this, it is natural to identify the non-
equilibrium free energy, Eq. (4.4). These are the second and
third important results in our findings.
Having fleshed out the essential ingredients sought after,

we then show in Sec. V that they do obey the familiar
thermodynamic relation, now extended to nonequilibrium
conditions: F sðtÞ ¼ UsðtÞ − TEFFðtÞSvNðtÞ where Us is the
system’s internal energy and SvN is the von Neumann
entropy of the reduced system. This is the fourth important
result in our findings and arguably a distinctly attractive

feature, namely, that the nonequilibrium partition function,
free energy, internal energy, and entropy have the same
functional dependence on the effective temperature as their
counterparts in the weak-coupling thermodynamics on the
system temperature. In this identification, the Hamiltonian
of mean force arises [36] and enters in strong coupling
thermodynamics [37–42]. Recently, alternative construc-
tions for the Hamiltonian of mean force have been
proposed in [42–44]. In Sec. VI, more discussions on
the nonequilibrium effective temperature will be found.
Further developments based on the results here are con-
tained in three companion papers, one on the Zeroth Law in
the new light of this effective temperature defined here [45],
the second on the comparison of the system’s internal
energy and the Hamiltonian of mean force [46], and the
third on entropy, entanglement and the second law [47].
The Appendix is a self-contained summary of the formal

relations between quantum field theory and statistical
mechanics, in a path-integral formulation, starting from
the familiar equilibrium thermal field theory and extending
to nonequilibrium quantum thermodynamics as is done in
this paper. By way of the closed-time-path formalism, using
the time-varying effective temperature TEFFðtÞ the non-
equilibrium free energy is shown to be related to the coarse-
grained effective action which contains the influence
action.

II. PARTITION FUNCTION IN EQUILIBRIUM
THERMODYNAMICS

We first consider a quantum harmonic oscillator, with
mass m and oscillating frequency ω, in thermal equilibrium
at temperature β−1 in the framework of conventional weak-
coupling thermodynamics. The partition function Zβ can
be readily found by [48]

Zβ ¼ Tre−βĤβ ¼ 1

2
csch

βω

2
; ð2:1Þ

with the Hamiltonian taking the form

Ĥβ ¼
p̂2

2m
þmω2

2
χ̂2; ð2:2Þ

in which χ̂ is the displacement operator of the oscillator and
p̂ is the conjugated momentum operator, satisfying
½χ̂; p̂� ¼ i. The equilibrium free energy F β, which is
equivalent to the generating functional of the connected
thermal correlation functions in the context of the func-
tional method, is then given by

F β ¼ −
1

β
lnZβ ¼

ω

2
þ 1

β
lnð1 − e−βωÞ: ð2:3Þ

The position uncertainty hχ̂2i and the momentum uncer-
tainty hp̂2i are respectively given by
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hχ̂2i ¼ 1

2mω
coth

βω

2
; hp̂2i ¼ mω

2
coth

βω

2
; ð2:4Þ

since in the thermal state of the oscillator we have
hχ̂i ¼ 0 ¼ hp̂i. We immediately find the mean value of
the energy is

hĤβi ¼
ω

2
coth

βω

2
¼ −

∂
∂β lnZβ: ð2:5Þ

Here in taking the averages we trace over the complete set
of the Fock number states. In the context of the open
systems, it is more convenient to use the eigenstates of the
displacement operator.
Thus, to prepare for a comparison with the ensuing

treatment of open Gaussian systems, we will reformulate
the previous results. In analogy to the unitary evolution
operator, we find

hχje−βĤβ jχ0i

¼
�

mω

2π sinhβω

�1
2

×exp

�
−

mω

2sinhβω
½ðχ2þ χ02Þcoshβω− 2χχ0�

�
: ð2:6Þ

It explicitly shows that the matrix elements of an expo-
nentiated quadratic operator yields not only a Gaussian
function of χ and χ0, but contains an additional factor. When
we attempt to generalize the current result to a general
Gaussian state, it can be nontrivial to identify the corre-
sponding factor from the matrix elements of the reduced
density matrix.
Equation (2.6) implies

Zβ ¼
Z

∞

−∞
dχ

Z
∞

−∞
dχ0δðχ − χ0Þhχje−βĤβ jχ0i

¼ 1

2
csch

βω

2
; ð2:7Þ

such that the corresponding density matrix element of the
oscillator in its thermal state is given by

hχjρ̂βjχ0i ¼
1

Zβ
hχje−βĤβ jχ0i

¼
�
mω

π
tanh

βω

2

�1
2

×exp

�
−

mω

2 sinhβω
½ðχ2þ χ02Þcoshβω− 2χχ0�

�
:

ð2:8Þ

We then readily recover the earlier results

hχ̂2i ¼
Z

∞

−∞
dχ

Z
∞

−∞
dχ0δðχ − χ0Þχ2hχjρ̂βjχ0i

¼ 1

2mω
coth

βω

2
; ð2:9Þ

hp̂2i ¼
Z

∞

−∞
dχ

Z
∞

−∞
dχ0δðχ − χ0Þ

�
−

∂2

∂χ2 hχjρ̂βjχ
0i
�

¼ mω

2
coth

βω

2
: ð2:10Þ

Relating the density matrix elements (2.8) with the general
expressions of the Gaussian state, we will see an interesting
connection between the partition Zβ and the uncertainty
principle.
The matrix elements ρðχ; χ0Þ ¼ hχjρ̂jχ0i of a general

Gaussian state in the χ-representation can be written as

ρðχ; χ0Þ ¼
�
a1 þ a2 þ a3

π

�1
2

exp

�
−

ða4 þ a5Þ2
4ða1 þ a2 þ a3Þ

�

× exp½−ðα1Σ2 þ α2ΣΔþ α3Δ2 þ α4Σþ α5ΔÞ�;
ð2:11Þ

with

α1 ¼þ 1

2hΔχ̂2i ; α2 ¼−i
hfΔχ̂;Δp̂gi
2hΔχ̂2i ;

α3 ¼þhΔp̂2i
2

−
hfΔχ̂;Δp̂gi2

8hΔχ̂2i ; α4 ¼−
hχ̂i

hΔχ̂2i ;

α5 ¼−ihp̂iþ i
hχ̂i

2hΔχ̂2ihfΔχ̂;Δp̂gi;

a1þa2þa3 ¼
1

2hΔχ̂2i ;
ða4þa5Þ2

4ða1þa2þa3Þ
¼ hχ̂i2
2hΔχ̂2i ;

with Σ ¼ ðχ þ χ0Þ=2, Δ ¼ χ − χ0 and Δχ̂ ¼ χ̂ − hχ̂i. The
thermal state is a special case of the Gaussian state, with
α2 ¼ α4 ¼ α5 ¼ 0, and

α1 ¼þ 1

2hχ̂2i ; α3 ¼þhp̂2i
2

; a1 þ a2 þ a3 ¼
1

2hχ̂2i :

ð2:12Þ

Comparing with (2.11), we find (2.6) can be expressed as

hχje−βĤβ jχ0i ¼
�
1

π

�
α3−

α1
4

��1
2

exp

�
−
�
α3þ

α1
4

�
ðχ2þ χ02Þ

þ2

�
α3−

α1
4

�
χχ0

�
; ð2:13Þ

with
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α1 ¼ mω tanh
βω

2
; α3 ¼

mω

4
coth

βω

2
: ð2:14Þ

Using (2.7) and (2.13), we find that the partition function
Zβ is given by

Zβ ¼
�
α3
α1

−
1

4

�1
2 ¼

�
hχ̂2ihp̂2i − 1

4

�1
2 ð2:15Þ

after substituting (2.12) in (2.15). Equation (2.1) is recov-
ered with the use of (2.14). However, interestingly, it
reveals a hidden structure, namely the partition function
(2.15) contains the uncertainty relation,

hχ̂2ihp̂2i ≥ 1

4
: ð2:16Þ

We shall show that for more general cases the Schrödinger-
Robertson uncertainty relation emerges when there are
cross correlations between the canonical variables in (2.16).

III. NONEQUILIBRIUM PARTITION FUNCTION
OF GAUSSIAN STATES

Here, our system is a harmonic oscillator with displace-
ment χ, which can represent the internal degrees of freedom
of a harmonic atom or an Unruh-DeWitt detector in the
dipole approximation. The external position z of this
atom/detector is, for simplicity, assumed fixed in space.
The bath which the atom/detector interacts with is modeled
by a quantummassless scalar field ϕ initially prepared in its
thermal state. Suppose that the system oscillator is initially
in any arbitrary Gaussian state, thus out of equilibrium from
the thermal bath, the subsequent evolution of the system
oscillator is nonequilibrium in nature.
Many studies [34,35,49] have shown that when a system

oscillator is bilinearly coupled to a linear thermal bath, it
will eventually relax to an equilibrium state. In the weak
coupling limit, this equilibrium state turns out to be the
oscillator’s thermal state. Throughout the nonequilibrium
evolution, the reduced dynamics of the system oscillator is
in general nonstationary but remains Gaussian. Thus in
analogy with (2.1), to generalize the concept of the
equilibrium partition function, we shall replace the density
matrix operator of the thermal state of the system oscillator
by that of a general Gaussian state.
The density matrix operator [not the matrix elements

as shown in (2.11)] of a general Gaussian state takes the
form [50–54]

ρ̂s ¼ D̂ðαÞŜðζÞR̂ðθÞρ̂ϑR̂†ðθÞŜ†ðζÞD̂†ðαÞ; ð3:1Þ

where the subscript s denotes the reduced system and ϑ
emphasizes the system under nonequilibrium evolution.
The operators D̂ðαÞ, ŜðζÞ and R̂ðθÞ are, respectively, the
displacement, squeeze and the rotation operators

D̂ðαÞ ¼ exp½αâ† − α�â�; ŜðζÞ ¼ exp

�
1

2
ζ�â2 −

1

2
ζâ†2

�
;

R̂ðθÞ ¼ exp

�
−iθ

�
â†âþ 1

2

��
; ð3:2Þ

with the coherent parameter α, the squeeze parameter ζ ∈ C
and the rotation angle θ ∈ R. The annihilation and creation
operators a, a† satisfy the canonical commutation relation
½â; â†� ¼ 1 and are related to the position operator χ̂ and the
momentum operator p̂ of the oscillator by

χ̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2mωR

p ðâ† þ âÞ; p̂ ¼ i

ffiffiffiffiffiffiffiffiffiffi
mωR

2

r
ðâ† − âÞ; ð3:3Þ

where m, ωR are the mass and the physical oscillating
frequency of the oscillator. Here the operator ρ̂ϑ is a
thermal-like state,

ρ̂ϑ ¼ 1

Zϑ
exp

�
−ϑ

�
â†âþ 1

2

��
;

Zϑ ¼ Tr exp
�
−ϑ

�
â†âþ 1

2

��
¼ 1

2 sinh ϑ
2

; ð3:4Þ

because at this stage the positive real parameter ϑ does not
have the interpretation of the inverse temperature yet. The
parameters α, ζ, θ, and ϑ are completely arbitrary and thus
can be in principle functions of time. A nice feature of (3.1)
is that the trace

Tr

�
D̂ðαÞŜðζÞR̂ðθÞexp

�
−ϑ

�
â†âþ1

2

��
R̂†ðθÞŜ†ðζÞD̂†ðαÞ

�

ð3:5Þ

is independent of the included coherent, squeeze, and
rotation operators, so it is still given by Zϑ. This suggests
thatZϑ will be our candidate of the nonequilibrium partition
function, once we have identified (3.1) with the reduced
density matrix of the oscillator system at an arbitrary
moment and have expressed the parameters α, ζ, and ϑ in
terms of the time-dependent covariance matrix elements.
Note that θ in this case amounts to an arbitrary global phase
of the state, so it will not enter in the following results.
Direct evaluation of (3.1) gives

ρ̂sðâ; â†Þ

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2φ − 1

p exp

�
−2e−φcosh−1ðcothφÞ

�
κðâ − αÞ2

þ κ�ðâ† − α�Þ2 þ λ

2
fâ − α; â† − α�g

��
; ð3:6Þ

where the squeeze parameter ζ is decomposed into
ζ ¼ ηeiψ with η ≥ 0, ψ ∈ R, and
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e2φ ¼Ξ2; κ¼Ξ
4
sinh2ηe−iψ ; λ¼Ξ

2
cosh2η; ð3:7Þ

Ξ ¼ coth
ϑ

2
; Zϑ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2φ − 1

p

2
: ð3:8Þ

It will be identified later, from the matrix element of the
density matrix, that the parameters λ, κ in (3.6) are related to
the elements of the covariant matrix of the oscillator by

b ¼ hχ̂2i ¼ 2ðλ − κ − κ�Þb2

¼ 1

2mωR
Ξðcosh 2η − sinh 2η cosψÞ; ð3:9Þ

a ¼ hp̂2i ¼ 2ðλþ κ þ κ�Þa2

¼ mωR

2
Ξðcosh 2ηþ sinh 2η cosψÞ; ð3:10Þ

c¼ 1

2
hfχ̂; p̂gi¼−2iðκ− κ�Þab¼−

Ξ
2
sinh2ηsinψ ; ð3:11Þ

with e2φ ¼ 4ðλ2 − 4jκj2Þ ¼ 4ðab − c2Þ and

a ¼
ffiffiffiffiffiffiffiffiffiffi
mωR

2

r
; b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2mωR
p ; ab ¼ 1

2
: ð3:12Þ

Since in our configuration the mean values of the canonical
variables of the oscillator are zeros, we have set α ¼ 0 such
that the displacement operator does not play any role. Thus
the reduced density operator describes a general squeezed
thermal state.
We then express the density matrix operator ρ̂s in terms

of the canonical operators ðχ̂; p̂Þ of the oscillator by (3.3) in
order to facilitate subsequent evaluation of its matrix
elements,

ρ̂sðχ̂;p̂Þ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

e2φ−1
p

×expf−e−φcosh−1ðcothφÞ½aχ̂2þbp̂2−cfχ̂;p̂g�g:
ð3:13Þ

Note that the factor e−φ cosh−1 cothφ in (3.13) can be
related to the covariance matrix elements by

e−φ cosh−1 cothφ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p
þ 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p
− 1

2

: ð3:14Þ

The evaluation of the matrix elements of this density
operator is carried out with the help of the McCoy theorem
[55–57]:
Theorem 1. [McCoy theorem] Given the operators

χ̂, p̂ satisfying the commutation relation ½p̂; χ̂� ¼ c, and
supposing that in the χ-representation p̂ will behave as
a differential operator c∂=∂χ, the operator function

expð−Aχ̂2 − Bp̂2 þ 2Cχ̂ p̂Þ in the standard ordering can
be decomposed as

expð−Aχ̂2 − Bp̂2 þ 2Cχ̂ p̂Þ

¼
�

ς

ADe−2cς − BC

�1
2

e−Dc exp

�
Z
2
χ̂2
�

× expðþYχ̂ p̂ÞSTD exp

�
þX

2
p̂2

�
: ð3:15Þ

with arbitrary parameters A, B, C, ς ¼ AD − BC,

X ¼ −
1

c
ACðe−2cς − 1Þ
ADe−2cς −BC

; Y ¼ −
1

c

�
1−

ςe−cς

ADe−2cς −BC

�
;

Z ¼ BD
AC

X; ð3:16Þ

and

A¼1; B¼−
1

B

	
C−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2−AB

p 

; C¼−B;

D¼Cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2−AB

p
; E¼−D; K¼

�
η

ADe−2cη−BC

�1
2

:

The subscript STD refers to the standard ordering of the
χ̂, p̂ operators.
Then the matrix elements hχj expð−Aχ̂2 − Bp̂2 þ

2Cχ̂ p̂Þjχ0i are given by

hχj expð−Aχ̂2 − Bp̂2 þ 2Cχ̂ p̂Þjχ0i

¼ Kffiffiffiffiffiffiffiffiffiffiffiffi
−2πX

p e−Dc

× exp

�
XZ − ðY þ iÞ2

2X
χ2 þ iðY þ iÞ

X
χχ0 þ 1

2X
χ02

�
:

ð3:17Þ

In the case of (3.13), we have chosen c ¼ −i, and expressed
the parameters in the McCoy theorem in terms of the
covariance matrix elements

A ¼ ae−φ cosh−1 cothφ;

B ¼ be−φ cosh−1 cothφ;

C ¼ ce−φ cosh−1 cothφ;

with a, b, c and φ given by (3.7) and (3.9)–(3.11). After
some algebra, we find

A ¼ 1; B ¼ −cþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p

b
; ð3:18Þ
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C ¼ −
b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p
þ 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p
− 1

2

;

D ¼ cþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p
þ 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p
− 1

2

; ð3:19Þ

η ¼ i ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p
þ 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p
− 1

2

;

K ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − ðc − i=2Þ2

p ; ð3:20Þ

such that

X ¼ −
b

ab − ðc − i
2
Þ2 ; Y ¼ c − i

2

ab − ðc − i
2
Þ2 ;

Z ¼ −
a

ab − ðc − i
2
Þ2 : ð3:21Þ

From (3.17), we find the elements of the density matrix
operator (3.13) take on the form

hχjp̂sðχ̂; p̂Þjχ0i ¼
1ffiffiffiffiffiffiffiffi
2πb

p exp

�
−
ab − ðcþ i

2
Þ2

2b
χ2

þ ab − c2 − 1
4

b
χχ0 −

ab − ðc − i
2
Þ2

2b
χ02

�
;

ð3:22Þ

after we plug in the parameters in (3.18)–(3.21) with
b ¼ hχ̂2i, a ¼ hp̂2i, and c ¼ 1

2
hfχ̂; p̂gi. Equation (3.22)

can be further simplified if we use the CoM (Σ) and relative
(Δ) variables defined by χ ¼ Σþ Δ=2 and χ0 ¼ Σ − Δ=2,
respectively,

ρsðχ; χ0Þ ¼ hχjρ̂sðχ̂; p̂Þjχ0i

¼ 1ffiffiffiffiffiffiffiffi
2πb

p exp

�
−

1

2b
Σ2 þ i

c
b
ΣΔ −

ab − c2

2b
Δ2

�
:

ð3:23Þ

Thus we recover the familiar result for the Gaussian state in
(2.11) for the case hχ̂i ¼ 0 ¼ hp̂i.
The previous results allow us to uniquely relate the

parameter ϑ and the squeeze parameter ζ with the covari-
ance matrix elements associated with ρ̂s. Thus the non-
equilibrium partition function Zs of the reduced system in
(3.4) can be written as

Zs ¼ Zϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2φ − 1

p

2
¼

�
ab − c2 −

1

4

�1
2 ¼ 1

2
csch

ϑ

2
;

ð3:24Þ

again, with b ¼ hχ̂2i, a ¼ hp̂2i, and c ¼ 1
2
hfχ̂; p̂gi. Clearly

it looks similar to (2.1), and the expression inside the braces
is connected to the Robertson-Schrödinger uncertainty
relation

hχ̂2ihp̂2i − 1

4
hfχ̂; p̂gi2 ≥ 1

4
: ð3:25Þ

The uncertainty principle ensures the reality of the non-
equilibrium partition function in the close-time path/in-in
formalism.
We observe that (1) Eq. (3.24) is an immediate gener-

alization of (2.16) by including the correlation between
the canonical variables of the system, (2) it is manifestly
time-dependent because for the nonequilibrium evolution
of the system coupled to the thermal bath, the covariance
matrix elements of the system change with time, and (3) it
points out a profound connection between quantum non-
commutativity and statistical mechanics. Violation of this
uncertainty relation engenders unphysical results for the
nonequilibrium partition function, and in turn the non-
equilibrium free energy, which is proportional to the
logarithm of the nonequilibrium partition function. Any
thermodynamic function derived from them, such as
entropy, flawed, thus endangering the consistency of the
thermodynamic relations. Finally we note that the calcu-
lations we have performed make no approximations and the
results we obtained are exact, so they are valid for strong
coupling between the system and the bath.

IV. NONEQUILIBRIUM EFFECTIVE
TEMPERATURE

We see that the nonequilibrium partition function Zs,
and the covariance matrix elements of the oscillator system
at any time can be related to the temperaturelike parameter
ϑ in a way analogous to their counterparts in Sec. II when
the system stays in an equilibrium thermal state. Thus we
can introduce the effective temperature β−1EFFðtÞ ¼ ωR=ϑðtÞ,
where ωR is the physical frequency of the system oscillator.
A question remains, whether the nonequilibrium partition
function and the covariance matrix elements may introduce
inequivalent effective temperatures. We observe that from
the analogy between the general Gaussian state and the
thermal state, it is not sufficient to identify the effective
temperature by the covariance matrix elements hχ̂2i and
hp̂2i alone, because hfχ̂; p̂gi vanishes in the thermal state
but not in the general Gaussian state. Thus we will use the
nonequilibrium partition function, such that the effective
temperature β−1EFFðtÞ satisfies

2 sinh
βEFFωR

2
¼

�
ab − c2 −

1

4

�
−1
2

: ð4:1Þ

Note that since the nonequilibrium partition function
defined this way is always real and non-negative, the
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corresponding effective temperature β−1EFFðtÞ possesses the
same property for the Gaussian system. The effective
temperature introduced here has a dynamic significance
more so than a statistical one. From its construction, we
observe that even before the interaction is turned on, we can
assign an effective temperature to the initial state of the
system. It may not have any statistical meaning as that in an
equilibrium thermal state at this stage. When we turn on the
interaction between the oscillator and a thermal bath of
initial temperature β−1B , the effective temperature starts
evolving and moves toward the initial value of the bath
temperature after the oscillator gradually settles down to an
equilibrium state. In general it will approach a constant
different from the initial temperature of the bath, unless the
oscillator-bath coupling is vanishingly weak. At this final
asymptotic state of the oscillator, the effective temperature
gradually loses the characteristics of the oscillator’s initial
state, but assumes the statistical nature of the thermal bath,
skewed by the finite oscillator-bath coupling. Not until this
regime will this time-dependent parameter β−1EFF acquire the
true meaning of temperature defined in equilibrium thermo-
dynamics. This is particularly clearly seen in the weak
oscillator-bath coupling limit, shown in Fig. 1. There, the
dependence of the effective temperature on the initial
temperature β−1B of the bath is drawn for three different
oscillator-bath coupling strengths. The weaker the coupling
is, the closer the solid curve approaches to the dashed
straight line, representing the initial temperature of the bath.
In addition, in the high bath temperature limit, all three

curves have the same slope unity, signaling that the quantum
effects become subdominant. In contrast, in the low bath
temperature limit, the curves significantly deviate from the
dashed line. This is the consequence of finite system-bath
coupling and is related to the quantum entanglement
between the oscillator system and the field bath. In particu-
lar, the effective temperature is not zero even when the
oscillator is initially coupled to a zero-temperature bath.
This point will become clearer once we derive the von
Neumann entropy of the oscillator system [47]. It also has
some interesting implications in the interpretation of the
third law with entanglement considerations.
Even though the meaning of the effective temperature is

rather obscure during the nonequilibrium evolution, it can
be used to provide a unified formulation of nonequilibrium
quantum thermodynamics on a par with the equilibrium
thermodynamics we have been familiar with. In formulat-
ing the nonequilibrium thermodynamics at finite coupling,
numerous ambiguities arise in the choices of thermody-
namic potentials and temperatures of the system [31,41,58].
Consistency may be inadvertently lost within a myriad of
their combinations. For example, in the expression
F ¼ U − TS, there is more than one possibility for the
choice of the internal energy U, the temperature T and the
entropy S, given that the free energy F is known. Thus a
more detailed investigation is needed into what qualifies as
a sensible combination.
The introduction of the effective temperature allows us to

identify a Hamiltonian of the mean force [36,59] in the
exponent in (3.13) during the nonequilibrium evolution of
the system

ĤMF ¼ β−1EFFfe−φcosh−1ðcothφÞ½aχ̂2 þ bp̂2 − cfχ̂; p̂g�g;
ð4:2Þ

so that the density matrix (3.13) take on a familiar form

ρ̂sðtÞ ¼
1

ZsðtÞ
exp½−βEFFðtÞĤMFðtÞ�; ð4:3Þ

compared to the equilibrium thermal state, except for that
here in (4.3) every quantity is time-dependent. Note that the
factor e−φ cosh−1 cothφ in (4.2) can be related to the
covariance matrix elements by (3.18). We can do the same
thing for the initial state of the oscillator. Such defined
Hamiltonian of the mean force bears no resemblance to the
Hamiltonian of the isolated oscillator. It and the effective
temperature at this stage are more like paraphrasing the
Gaussian state in a form mimicking the equilibrium thermal
state. The similar modus operandi is widely used. We
want to emphasize that (4.2) is by no means stationary
even though it looks like an equilibrium thermal state.
Accordingly, the expectation value hfχ̂; p̂gi ≠ 0.
Once we identify the effective temperature, we can then

introduce the nonequilibrium free energy F s by

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIG. 1. The dependence of the effective temperature β−1EFF on the
initial temperature β−1B of the bath. The parameters are normalized
with respect to the resonance frequency Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − γ2

p
such that

m ¼ 1Ω, γt ¼ 3.6, and the cutoff frequency Λ ¼ 1000Ω. The
parameter γ ¼ e2=8πm is the damping constant. We choose
the initial displacement dispersion hχ̂2ð0Þi ¼ 1=2 and the mo-
mentum dispersion hp̂2ð0Þi ¼ 1=2. We choose γ ¼ 0.3 for the
blue solid curve, γ ¼ 0.1 for the orange solid curve, and γ ¼ 0.03
for the green solid curve. The evolution time is long enough such
that the dynamics is sufficiently relaxed. The dashed line
represents the reference to the initial temperature of the bath.
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F sðtÞ ¼ −β−1EFFðtÞ lnZsðtÞ

¼ ωR

2
þ 1

βEFFðtÞ
lnð1 − e−βEFFðtÞωRÞ: ð4:4Þ

This is an analogy of (2.3), and will be extremely essential
for the development of nonequilibrium quantum thermo-
dynamics.
The covariance matrix elements a, b and c can be quite

readily found by the Langevin equation for the reduced
dynamics of the oscillator system [35]. For example,

bðtÞ ¼ hχ̂2ðtÞi
¼ d21ðtÞhχ̂2ð0Þi þ d22ðtÞhp̂2ð0Þi

þ e2

m2

Z
t

0

dsds0d2ðt − sÞd2ðt − s0ÞGðϕÞ
H ðz; s; z; s0Þ;

aðtÞ ¼ hp̂2ðtÞi
¼ m2 _d21ðtÞhχ̂2ð0Þi þm2 _d22ðtÞhp̂2ð0Þi

þ e2
Z

t

0

dsds0 _d2ðt − sÞ _d2ðt − s0ÞGðϕÞ
H ðz; s; z; s0Þ;

cðtÞ ¼ 1

2
hfχ̂ðtÞ; p̂ðtÞgi

¼ md1ðtÞ _d1ðtÞhχ̂2ð0Þi þmd2ðtÞ _d2ðtÞhp̂2ð0Þi

þ e2

m

Z
t

0

dsds0d2ðt − sÞ _d2ðt − s0ÞGðϕÞ
H ðz; s; z; s0Þ;

where for simplicity we have assumed that χ̂ and p̂ are not
initially correlated and that hχ̂ð0Þi ¼ 0 ¼ hp̂ð0Þi. The two
fundamental homogeneous solutions d1ðtÞ and d2ðtÞ of the
Langevin equation

̈χ̂ðtÞ þ 2γ _̂χðtÞ þ ω2
Rχ̂ðtÞ ¼

e
m
ϕ̂hðz; tÞ; ð4:5Þ

obey the initial conditions

d1ð0Þ¼ 1; _d1ð0Þ¼ 0; d2ð0Þ¼ 0; _d2ð0Þ¼ 1; ð4:6Þ

at the initial time t ¼ 0. Equation (4.5) describes the
reduced dynamics of the internal degree of freedom of
an atom/Unruh-DeWitt detector at the spatial location z,
when it bilinearly couples with the a free massless quantum
scalar field ϕ̂h with the coupling strength e. As mentioned
earlier, we model the internal degree of freedom by the
harmonic oscillator of mass m and physical oscillating
frequency ωR. The damping constant γ ¼ e2=8πm signifies
the relaxation time scale and the coupling strength.
The associated quantum frictional force −2mγ _̂χðtÞ and
the quantum noise force eϕ̂hðz; tÞ results from the inter-
action between the detector and the bath field. This
dissipative backaction will be self-consistently paired with
the quantum noise force in a definite way [35,49]. Since we

assume that the bath field is initially in its thermal state,

described the density matrix ϱ̂ðϕÞβ of temperature β−1B , the

free field operator ϕ̂hðz; tÞ has these properties

hϕ̂hðz; tÞi ¼ 0; ð4:7Þ

1

2
hfϕ̂hðz; tÞ; ϕ̂hðz; tÞgi ¼

1

2
Trϕ½ϱ̂ðϕÞβ fϕ̂hðz; tÞ; ϕ̂hðz; t0Þg�

¼ GðϕÞ
H ðz; t; z; t0Þ: ð4:8Þ

In (4.8), the trace is carried out over the field degree of
freedom and all the higher moments of the free field can be
expanded by these first two moments. This and the
assumption about the initial state of the system explain
why we do not need to consider the displacement operator.
It will not pose any problem to our discussions but greatly
simplify the mathematical presentations.

V. NONEQUILIBRIUM THERMODYNAMIC
FUNCTIONS

From the effective free energy (4.4), we can introduce the
corresponding nonequilibrium thermodynamic entropy for
the reduced system,

Ss ¼ β2EFF
∂F s

∂βEFF ; ð5:1Þ

which can be shown [47] to coincide with the von Neumann
entropy associated with the reduced density matrix by

SvN ¼ −Trχfρ̂s ln ρ̂sg: ð5:2Þ

This enables us to introduce the internal energy Us by
F s ¼ Us − β−1EFFSs

Us ¼ F s þ β−1EFFSs ¼
ωR

2
coth

βEFFωR

2
: ð5:3Þ

This expression is of the same form as the internal energy of
an oscillator in its thermal state in the conventional (weak
coupling) thermodynamics except that the oscillator’s
temperature is replaced by the nonequilibrium effective
temperature β−1EFF. Notably it satisfies

Us ¼ −
∂

∂βEFF lnZs; ð5:4Þ

and we can straightforwardly show that

�∂U
∂S

�
¼ β−1EFF; ð5:5Þ

so that the effective temperature satisfies the conventional
thermodynamic relation derived from the internal energy
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and the entropy. This is expected formally since our
nonequilibrium effective temperature is defined via the
nonequilibrium partition function. Note that all these
aforementioned quantities are time-dependent and the
relations hold at any moment in the nonequilibrium
evolution, not just restricted to the equilibrium condition
as in conventional thermodynamics.
The internal energy can be shown to be the quantum

expectation value of the Hamiltonian of mean force (4.2)

Us ¼ hĤMFi ¼ Trχfρ̂sĤMFg: ð5:6Þ

However, it is not equal to the expectation value of the
system’s Hamiltonian operators [46]. From the representa-
tion of the reduced density matrix (3.1), we can see the
connection between the two Hamiltonian operators ĤMF

and Ĥs

e−βEFFĤMF ¼ ŜðζÞe−βEFFĤs Ŝ†ðζÞ ¼ e−βEFFŜðζÞĤsŜ
†ðζÞ;

⇒ ĤMF ¼ ŜðζÞĤsŜ
†ðζÞ: ð5:7Þ

This shows how interaction with the bath enters in the
Hamiltonian of mean force via the squeeze parameter.
Here it is interesting to compare our new findings with

the earlier results on thermodynamics at strong coupling
[37–39,41]. In theories assuming the entire system is in a
global thermal state, in the absence of the external driving
protocol, there is a well defined partition function for the
reduced system, from which the free energy, internal
energy and the entropy can be introduced by taking the
derivatives of the partition function. Alternatively, one may
introduce the thermodynamic functions from the expect-
ation values of suitable, physically sensible system oper-
ators. It has been argued that these two common practices,
though totally compatible in the conventional weak-cou-
pling thermodynamics, become inequivalent when the
system-bath coupling is not vanishingly weak. The only
temperature scale in that context is the initial temperature
of the bath, so the free energy, the entropy and the
Hamiltonian of mean force are introduced with respect
to the initial bath temperature. In these earlier works, there
is no natural way to bring in the effective or nonequilibrium
temperature. Here, at least for a general Gaussian system,
we can introduce the effective temperature via the non-
equilibrium partition function, and from there define the
nonequilibrium free energy and entropy. In particular, the
entropy so defined gives the same results taken by both
approaches [37,41]. When it comes to the internal energy,
although it is still different from the expectation of the
system’s Hamiltonian through the whole evolution history,
the internal energy we have defined here has an advantage
over the internal energy defined with respect to the initial
bath temperature. The latter, even for a simple case like the
coupled Brownian oscillators, has been shown [60] to have
negative heat capacity at the low temperature regime. The

internal energy introduced in (5.3) is free from such
anomalies because the hyper cotangent function is a
monotonic function of positive effective temperature. In
addition, it makes a consistent connection when quantum
entanglement enters into the considerations, since the
effective temperature may contain the same amount of
information about the system-bath entanglement. All this
will be discussed in the subsequent papers [46,47].

VI. DISCUSSIONS

The four major findings of this paper as enumerated in
the Introduction reflect also the main features of non-
equilibrium quantum thermodynamics. For a dynamical
Gaussian system strongly coupled to a thermal bath studied
here, we have shown from (1) a nonequilibrium partition
function how (2) a nonequilibrium effective temperature
and (3) a nonequilibrium free energy can be defined at all
times in the system’s history. These quantities enter in (4) a
nonequilibrium thermodynamic relation F sðtÞ ¼ UsðtÞ −
TEFFðtÞSvNðtÞwhere Us is the internal energy and SvNðtÞ is
the von Neumann entropy of the reduced system. It has the
same form as in the conventional (weak coupling) equi-
librium thermodynamics, but each entry in this relation is
now dynamical, valid at any moment of time in the system’s
evolution under fully nonequilibrium conditions. In addi-
tion, the thermodynamic functions in this new framework
have the same functional dependence on the effective
temperature as their counterparts in conventional weak-
coupling thermodynamics do on the system temperature. It
provides a systematic and complete formulation of non-
equilibrium quantum thermodynamics on a par with the
familiar weak-coupling equilibrium thermodynamics. In
this paper, we have focused more on the nonequilibrium
partition function, the nonequilibrium effective temperature
and the nonequilibrium free energy. The other two equally
important quantities, the Hamiltonian of mean force enter-
ing in the system’s internal energy and the von Neumann
entropy which recognizes the presence of quantum entan-
glement, will be treated with greater details in two
subsequent papers [46,47]. We wish to end this paper with
some added information about the concept and context of
effective temperature as have been used to describe glassy,
aging or complex systems and to address some fundamen-
tal nonequilibrium issues.
It might be useful to begin with a quick refresh of what

temperature means. In microcanonical ensembles for an
isolated system with internal energy U, the inverse temper-
ature β≡ T−1 can be defined by β ¼ ∂ lnΩ=∂U whereΩ is
the number of accessible states (e.g., [48]). Temperature
becomes a more directly relatable notion in canonical
ensembles describing systems in weak contact with a
thermal bath. Many systems placed in contact with a heat
bath, given long enough time, will relax and equilibrate. If
the coupling is weak enough, the system is small enough
compared to the bath, and the temperature is not at absolute
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zero, then the system will settle into a thermal state at a
temperature very close to that of the bath. In equilibrium
when a fluctuation-dissipation relation exists, we can with
confidence refer to the system as at a certain temperature,
namely, at the initial bath temperature. This is our con-
ceptual starting point in trying to make sense of what
temperature means for a system in nonequilibrium evolu-
tion prior to equilibration. First let us mention situations
which deviate not much from thermal equilibrium. The
concept of effective temperature is used in a loose sense for
systems which in the mean can be described by a temper-
ature. A somewhat exotic example is assigning a time-
dependent Unruh temperature for circular acceleration [61]
(at constant speed but changing direction) while strictly
speaking the Unruh effect refers to constant linear accel-
eration [62]. It is also used for systems close to equilibrium
such as in the linear response regime, even for nonequili-
brium linear response theory [63].
What we prefer to do is to take baby steps but proceed in

a rigorous manner in the use of effective temperatures. Now
that we have a precisely defined nonequilibrium effective
temperature for Gaussian systems we shall start from the
beginning, reexamining the meaning and contents of the
Zeroth Law. Already there are implications of fundamental
significance: E.g., in the statement of the Zeroth Law the
transitive relation should not be based on “at equal temper-
ature” but only on “in equilibrium” with [45].
Effective temperature is also invoked for nonequilibrium

systems but only in phases which evolve sufficiently
slowly, with low entropy production. As suggested in
Cugliandolo’s review [64] the energy density, and more
generally, the averages of one-time-dependent observables,
converge to finite values. A common example is glassy
systems with short-range interactions where all these
features are satisfied in some solvable mean-field-like
description. Central to the correct identification of an
effective temperature for these systems is to correctly
identify the relaxation time scales and to deal with each
of them separately. With well separated timescales, as in
aging glassy systems, equilibrium fluctuation-dissipation
theorem applies at each scale with its own effective
temperature. With mixed timescales, as for example in
active or granular fluids or in turbulence, temperature is no
more well-defined, the dynamical nature of fluctuations
fully emerges [65].
Finally, whether fluctuation-dissipation relations can

exist in far from equilibrium situations [66] is also actively
debated. In a suitably slow regime the existence of a
fluctuation-dissipation relation is conceivable and would
provide some justification for introducing an effective
temperature for that regime. The question is, under what
conditions can the response function R be related to the
correlation functions C of the unperturbed systems? It has
been shown that for Markovian dynamics this can be done,
although the correlation functions contain more than what

is in the equilibrium case [67,68]. The derivative of ∂R=∂C
has been used as an effective temperature [69]. Generalized
fluctuation-dissipation theorems have also been suggested
for active matter [70].
In the backdrop of the broader scope described above,

the appearance in our system (which ostensibly is not
“complex”—one way to measure complexity is the exist-
ence of multiple time scales) of a function which changes in
time and approaches the well-defined temperature upon
equilibration—the effective temperature—should not be
too concerning. It just takes some time to get use to in
dealing with nonequilibrium systems. In fact we hope the
attractive features of this nonequilibrium effective temper-
ature can outweigh its temporary lack of familiarity: We
mention three here: One is obvious, that it changes with
time, and since it carries information of both the system and
the interaction with its environment, we can see how the
energy to entropy ratio changes as the system encounters
the environment, negotiates its way, ending in equilibration
with its environment. Second feature is strong coupling.
Usually temperature is a valid concept only for a small
system very weakly coupled to a large environment. Here
with strong coupling one can still use the notion of
temperature all the way toward equilibration. Finally,
thanks to the Gaussian nature of our system and environ-
ment and their coupling, the findings here, albeit not
exhaustive, are based on exact solutions. This helps to
reveal important physical features which cannot be
accessed by relying on commonplace perturbative or
approximate methods such as weak coupling, or
Markovian assumptions. It also enables one to rule out
erroneous predictions drawn from applying wrong approx-
imations for regimes beyond their capabilities. In future
work we will use the theoretical framework and technical
platform constructed here to explore the many basic issues
of nonequilibrium quantum thermodynamics.
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APPENDIX: NONEQUILIBRIUM PARTITION
FUNCTION AND CTP EFFECTIVE ACTION

We begin with a short summary of the imaginary- and
real-time description of thermal system, in so doing tran-
scribing the major statistical thermodynamic quantities and
relations to a quantum field theoretic formulation, high-
lighting their correspondences such as that of the partition
function to the generating functional, the free energy to the
effective action.
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Systems in an equilibrium thermal state are customarily
described in terms of the Feynman path integral formalism
[1,3,4,7] in which the partition function Zβ is given by a
path integral along the imaginary time τ, from τ ¼ 0 to
τ ¼ β

Zβ ¼ Trβe−βĤβ ¼
Z

Dχe−SE½χ;_χ�; ðA1Þ

where SE is the Euclidean action of the system correspond-
ing to the Hamiltonian Ĥβ and _χ in this case denotes the
derivative of the system’s canonical variable χ with respect
to the imaginary time τ. It has a simple connection1 with the
real-time path integral formalism for the transition ampli-
tude of the system undergoing an unitary evolution,
namely, if we perform a Wick rotation of time from its
real axis to the imaginary axis, i.e., t ¼ −iτ with τ ∈ R.
Then the generating functional in the real-time formalism
will be analogous to the partition function in statistic
mechanics. This correspondence persists even when we
include the external c-number sources in our system, thus
facilitating the construction of Green’s functions. An
important thermodynamic quantity, the free energy,
F β ¼ −β−1 lnZβ, is formally the counterpart of the effec-
tive actionW, or the generating functional of the connected
Green’s functions, in the real- and imaginary-time path
integral analogy [5]. Moreover, both formalisms can be
nicely unified under the close-time path integral formalism
[8,9], which, in the framework of quantum open systems, is
particularly suitable for the description of the dynamical
evolution of nonequilibrium interacting systems [14–16].
This is the pathway we shall take to generalize the concept
of free energy from an equilibrium setting to a nonequili-
brium scenario.
We use the close-time path integral formalism to assimi-

late the nonequilibrium partition function and free energy
for Gaussian open systems within the formal structure of
nonequilibrium quantum field theory, as a generalization of
their counterparts in equilibrium thermodynamics (A1).
First observe from (3.1) and (3.13) that

Zs ¼ Trχ

�
D̂ðαÞŜðσÞR̂ðθÞ

× exp

�
−ϑ

�
â†âþ 1

2

��
R̂†ðθÞŜ†ðσÞD̂†ðαÞ

�

¼ Trχ exp½−Aχ̂2 − Bp̂2 þ Cfχ̂; p̂g�; ðA2Þ

for a general Gaussian state, since Trχ ρ̂s ¼ 1, with

A ¼ ae−φ cosh−1ðcothφÞ;
B ¼ be−φ cosh−1ðcothφÞ;
C ¼ ce−φ cosh−1ðcothφÞ;

and the covariance matrix elements a, b, c, φ are related to
the squeeze parameter ζ, and nonequilibrium parameter ϑ
by (3.7)–(3.9). This establishes the first equal sign in (A1)
for the nonequilibrium Gaussian system.
To establish the second equality in (A1) for the non-

equilibrium Gaussian system, we note that in the open
system framework the reduced density matrix elements
(3.22) can be represented by the forward- and backward-
time-path integrals as

ρsðχ; χ0Þ ¼
Z

dχidχ0i

Z
χ

χi

Dχþ

×
Z

χ0

χ0i

Dχ− expfiSχ ½χþ� − iSχ ½χ−�

þ iSIF½χþ; χ−�gρsðχi; χ0iÞ: ðA3Þ

The functions χ�ðtÞ denote χ evaluated at the forward
(backward) real-time path, the variables χi, χ0i represent
different initial values of χ, and Sχ is the (real-time, not
Euclidean) action of the free system in the absence of
interaction with the bath. The influence action SIF½χþ; χ−�
in the current case for a Gaussian open system takes the form

SIF½χþ; χ−� ¼ e2
Z

t

0

ds
Z

t

0

ds0ΔðχÞðsÞGðϕÞ
R ðs; sÞΣðχÞðs0Þ

þ i
e2

2

Z
t

0

ds
Z

t

0

ds0ΔðχÞðsÞGðϕÞ
H ðs; s0ÞΔðχÞðs0Þ;

ðA4Þ

where ΔðχÞ ¼ χþ − χ−, ΣðχÞ ¼ ðχþ þ χ−Þ=2, and GðϕÞ
R ðt; t0Þ

is the retarded Green’s function, or dissipation kernel, of the
free scalar field ϕ̂h,

GðϕÞ
R ðt; t0Þ ¼ GðϕÞ

R ðz; t; z; t0Þ
¼ iθðt − t0Þ½ϕ̂hðz; tÞ; ϕ̂hðz; t0Þ�; ðA5Þ

a c-number function independent of the initial state of the

field. A similar shorthand notation applies to GðϕÞ
H ðt; t0Þ.

Essentially it summarizes the effects of the bath field on the
system of interest in a self-consistent way. It can be under-
stood as the close-time-path effective action of the bath field
driven by the coupling with the system

1Subtleties may arise when we perform analytic continuations
between the real-time and the imaginary-time formalism, and
when we identify the suitable Green’s functions in the context.
Detailed discussions can be found in [1,3,4,7].
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eiSIF½χþ;χ−�

¼
Z

∞

−∞
dϕ

Z
∞

−∞
dϕidϕ0

iρϕðϕi;ϕ0
iÞ
Z

ϕ

ϕi

Dϕþ

Z
ϕ

ϕ0
i

Dϕ−

× expfiSϕ½ϕþ� − iSϕ½ϕ−� þ iSI½ϕþ; χþ� − iSI½ϕ−; χ−�g

¼
Z

∞

−∞
dϕidϕ0

i

I
ϕ0
i

ϕi

Dϕ expfiSϕ½ϕ� þ iSI½ϕ; χ�gρϕðϕi;ϕ0
iÞ:

ðA6Þ

We form a loop path integral by concatenating the forward
and backward time paths. Here SI½ϕ; χ� is the bilinear
interaction term between the bath and the system. Now
the coarse-grained effective action SCG½χþ; χ−� for the
system is defined by [14,28,29],

SCG½χþ; χ−� ¼ Sχ ½χþ� − Sχ ½χ−� þ SIF½χþ; χ−�: ðA7Þ
Then the trace of (A3) takes a compact form

Z
∞

−∞
dχdχ0δðχ − χ0Þρsðχ; χ0Þ ¼ 1

¼
Z

∞

−∞
dχ

Z
dχidχ0i

Z
χ

χi

Dχþ

×
Z

χ

χ0i

Dχ− expfiSCG½χþ; χ−�gρsðχi; χ0iÞ: ðA8Þ

In analogy with (A6), this implies that the above path
integrals give a result proportional to some sort of close-
time-path effective action.
Since we have the operator equation

exp½−Aχ̂2 − Bp̂2 þ Cfχ̂; p̂g� ¼ Zsρ̂s ðA9Þ

from (3.13), we thus formally arrive at

Zsρsðχ; χ0Þ ¼ hχj exp½−Aχ̂2 − Bp̂2 þ Cfχ̂; p̂g�jχ0i

¼ Zs

Z
dχidχ0i

Z
χ

χi

Dχþ

×
Z

χ0

χ0i

Dχ− expfiSCG½χþ; χ−�gρsðχi; χ0iÞ;

such that after taking the trace with respect to χ, Eq. (A2)
implies

Zs ¼ N ðtÞ
Z

dχidχ0i

I
χ0i

χi

Dχ expfiSCG½χþ; χ−�gρsðχi; χ0iÞ;

ðA10Þ
where the time path runs from t ¼ 0 to t and then returns
to t ¼ 0 again, a consequence of Trχρ̂sðtÞ ¼ 1. This is a
formal generalization of (A1) from the imaginary-time path

integral formalism to the close-time path integral formal-
ism, and from equilibrium dynamics to nonequilibrium
dynamics. The normalization functionN ðtÞ is such that the
left-hand side of (A10) gives the nonequilibrium partition
function Zs. This may sound trivial because in practice the
normalization factor N ðtÞ still has to be determined by the
method discussed in Sec. III. However, this expression
provides a formal intermediary from which we can general-
ize previous results for nonlinear systems by the functional
perturbative method, such as outlined in [32,71].
It is interesting to note that if we also write the initial

general Gaussian state ρ̂sð0Þ in (A10) in a form similar
to (4.3)

ρ̂sð0Þ ¼
1

Zsð0Þ
exp½−βEFFð0ÞĤMFð0Þ�; ðA11Þ

where ĤMF is the Hamiltonian of mean force defined in
(4.2), then (A10) can be written as

βEFFðtÞF sðtÞ − βEFFð0ÞF sð0Þ

¼ ln

�
1

N ðtÞ
Z

dχidχ0i

I
χ0i

χi

Dχ expfiSCG½χþ; χ−�g

× hχije−βEFFð0ÞĤMFð0Þjχ0ii
�
: ðA12Þ

This is the “difference” of the nonequilibrium free energy
of the reduced system with respect to its initial state. This
may be linked to the fluctuation theorem in the case where
there is no external drive, but viewed as a generalization
when the final state is not an equilibrium state. This is
because the close-time-path integral include the combined
effects of all possible forward and backward trajectories
connecting the initial and the final configurations. We note
that the matrix elements in the integrand in (A12) is not an
exponential form, as shown in (3.22). That is, in general the
matrix element of the an exponential operator is not of an
exponential function per se; it will yield an additional
normalization factor, and that makes the determination of
the normalization in (A10) less trivial than it appears.
Finally, in contrast to the classical case where only the
diagonal elements (measuring the probabilities) exist, for
quantum systems, the off-diagonal elements of the density
matrix also contribute to the expression involving time
evolution.
Equation (A10), though formal in appearance, is the base

of the platform for the construction of the nonequilibrium
quantum thermodynamics for nonlinear or non-Gaussian
systems once we incorporate the functional perturbative
techniques [32,33], and to derive the corresponding non-
equilibrium thermodynamic functions.
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