
 

Newtonian potential in higher-derivative quantum gravity
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We hereby derive the Newtonian metric potentials for the fourth-derivative gravity including the one-
loop logarithm quantum corrections. It is explicitly shown that the behavior of the modified Newtonian
potential near the origin is improved respect to the classical one, but this is not enough to remove the
curvature singularity in r ¼ 0. Our result is grounded on a rigorous proof based on numerical and analytic
computations.
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I. INTRODUCTION

Higher-derivative extensions of general relativity are
ubiquitous when considering quantum gravity or quantum
field theory in curved spacetimes [1]. While the quantum
version of general relativity is perturbatively nonrenorma-
lizable, in [2] it was formally shown that the model with
four derivatives of the metric is renormalizable. Regarding
the semiclassical approach, the inclusion of higher-deriva-
tive terms in the gravitational sector is necessary to
renormalize the vacuum diagrams, even though gravity
is still treated as an external classical field (for a peda-
gogical review, see [3]). In this sense, the minimal higher-
derivative gravity model needed to address the problem of
renormalizability is the fourth-derivative gravity,

S ¼ SEH þ
Z

d4x
ffiffiffiffiffiffi
−g

p fa1C2 þ a2Eþ a3□Rþ a4R2g;

ð1Þ

where

SEH ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 2ΛÞ ð2Þ

denotes the Einstein-Hilbert action with cosmological
constant, C2 ¼ CμναβCμναβ is the square of the Weyl tensor
and E is the integrand of the topological Gauss-Bonnet
term in four dimensions.
The theory (1) shows good quantum properties like

renormalizability and asymptotic freedom [4], but also
ghost instabilities in its original quantization based on
the Feynman prescription [2]. However, a new quantum

prescription [5,6], introduced recently by Anselmi and
Piva, makes it possible to tame the ghost instability of
the Stelle’s model (1). The prescription consists in a com-
pletion of the one proposed by Cutkosky, Landshoff, Olive
and Polkinghorne (CLOP) long ago [7] for the Lee-Wick
theories [8,9] and the unitary problem is now definitely
solved at any perturbative order in the loop expansion [10].
More precisely, the prescription involves deforming also
the integration domain in the space of complex spatial
momenta in order to make vanish the imaginary part of
the amplitude at quantum as well as classical level.
Furthermore, the procedure guarantees Lorentz invariance
at quantum level, which was violated in the original
incomplete CLOP prescription.
At the classical level, the ghost (or, in general, what the

authors defined “fakeons”) is removed solving the equa-
tions of motion for the fake fields by the mean of advanced
plus retarded Green’s function and fixing to zero the
homogeneous solution [11,12]. Such a prescription is very
general and can be applied to ghosts or normal particles. In
particular, it is needed to make perturbatively unitary the
theory proposed byModesto and Shapiro in [13,14], named
“Lee-Wick quantum gravity.” Therefore, we can claim to
have a class of finite and unitary theories of quantum
gravity. The theory by Modesto and Shapiro has been
designed to show up only complex conjugate poles (besides
the graviton) in the propagator in order to guarantee tree-
level unitarity. At the same time, the new prescription of
[10] ensures unitarity at any perturbative order. The Wick
rotation issue is also properly addressed by choosing the
usual integration contour proposed by Lee and Wick [8,9]
and performing the integral on the energy E. This is done
by means of the residue theorem in the energy complex
plane and the contributions on the arcs vanish as a
particular feature of the dimensional regularization, as
rigorously proved for any local higher-derivative theory
in [15]. In short, we can here summarize the proof given in
the Appendix A of [15]. Let us consider the integral on the
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arc of the first quadrant of the energy complex plane. The
latter is performed, as usual, fixing the radius jEj and
integrating on the angular variable. So far the integral is
finite. Therefore, we expand the loop integrals in powers of
the energy for jEj → þ∞ to finally end up with a finite
number of integrals that diverge. However, since such
integrals are polynomial in the spatial momentum k, in
dimensional regularization they turn out to be zero inD − 1
dimensions. Notice that this procedure works because there
is a finite number of integrals. Let us also mention that the
peculiarity of Stelle’s theory [2] with the Anselmi-Piva
prescription is that it is the only strictly renormalizable
theory of gravity, versus the theories proposed in [13]
which are super-renormalizable or finite [16].
In this paper, we focus on the occurrence of curvature

singularities in the fourth-derivative gravity [2] with one-
loop quantum corrections [17–19]. Indeed, being associ-
ated with small-distance and high-density configurations,
quantum effects and related higher derivatives may have an
important role in scenarios for which the classical gravi-
tational solutions possess singularities, for example, inside
black holes or in the primordial universe. Calculations in
these regimes are complicated even at the classical level
owed to the nonlinearity of the theory and the presence of
higher derivatives. Despite the difficulties, static spherically
symmetric solutions have been obtained for the classical
Stelle’s gravity [20], and it was shown that there exists a
family of regular solutions, but it is not associated with a
positive-definite energy density. The asymptotically flat
solutions that couple to a physical source contain sin-
gularities; this can be seen already at the linear approxi-
mation. Indeed, in the linearized limit, the modified
Newtonian potential is finite, but the curvature invariants
are singular [21].
The present work considerations are still restricted to the

linear level, but we provide a step forward in the appro-
ximation of quantum effects. Our treatment of the loga-
rithm corrections is general, in the sense that they can be
originated from the effective approach to quantum gravity,
from the fourth-derivative gravity treated as a fundamental
quantum theory, or from the integration of loops of mater
fields in a given quantum field theory, etc. The quantum
effective action of our interest has the general structure

Γ¼ −
1

ϰ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
2Rþ α2C2 −

α0
3
R2

þ β2Cμναβ logð□=μ22ÞCμναβ −
β0
3
R logð□=μ20ÞR

�
; ð3Þ

where ϰ2 ¼ 32πG, μs (s ¼ 0, 2) are renormalization group
invariant scales, and βs are related to the MS-scheme beta
functions. Notice that the constants βs depend on the
particular quantum field content of the theory (see, e.g.,
[22,23]). The classical action (1) is recovered from (3) as
the particular case βs ¼ 0. Here, we omitted the terms

which are irrelevant for computing the Newtonian poten-
tial, such as the cosmological constant, □R and the Gauss-
Bonnet term E; we have also defined the coefficients in a
more convenient manner for our purposes.
In the high-energy domain, where singularities may

arise, the dominant finite quantum corrections to the
effective action take the form of the logarithmic terms
written in (3), since in this regime the quantum fields can
be treated in a good approximation as massless. For
instance, in [19] it was shown by the explicit calculation
of the nonlocal OðR2Þ part of the effective action that, for a
high-energy (k2 ≫ m2) massive virtual quanta, the com-
plicated one-loop form factors reduce to those in (3) (see
also the discussion in [24,25]). In the other extreme of the
spectrum, the effective action also has the same general
structure (3), although with different values for βs. This
happens because in the IR the massive degrees of freedom
decouple according to the Appelquist and Carazzone
theorem [19,26], while for massless fields we have an
IR-UV correspondence of quantum effects.
Another important observation concerning the parameter

βs is that the contributions of different types of standard
two-derivative matter fields have the same sign pattern.
This also takes place in the fourth-derivative quantum
gravity [4] and in the effective quantum gravity based on
the covariant definition of the effective action [18] (see [27]
for recent developments and further references). This
universality of signs means that no cancellation of the
beta functions is possible in the standard model or in
beyond standard model theories which increases the
number of scalar, vector and spinor fields, such as super-
symmetry.1 A balanced phenomenological choice could be
to couple Stelle’s gravity, a renormalizable theory, to the
standard model of particle physics. However, since we here
want to keep the discussion on a general ground, we let the
parameters βs arbitrary.
The paper is organized as follows. In Sec. II we review

the general perturbative formalism that relates the graviton
perturbation to a static gravitational source [in particular,
for the theory (3)] and the curvature invariants in terms of
the gravitational perturbation. Moreover, we relate the per-
turbation hμν to two independent potentials. In Sec. III we
evaluate the potentials analytically near r ¼ 0, and exactly,
but numerically, for the theory (3). In Sec. IV, we compute
the same potentials analytically but perturbatively at the
first order in βs. The latter computation considers only the
first-order correction to the 2-point metric perturbation
correlation function rather than the full re-summation of the
one-loop 1-particle irreducible dressed propagator like in
(3). Finally, in the last section we draw our conclusions.

1The same holds for the skew-symmetric rank-2 and rank-3
tensor fields, which may emerge after the compactification of the
superstring effective action, since in this case, there is the quan-
tum equivalence theorem with scalar and vector fields [28,29].
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II. SINGULARITIES IN THE NEWTONIAN LIMIT

In the Newtonian limit we consider metric fluctuations
around the Minkowski spacetime, i.e.,

ffiffiffiffiffiffi
−g

p
gμν ¼ ημν þ ϰhμν; jϰhμνj ≪ 1; ð4Þ

and expand the action (3) to the second order in hμν. We
also introduce an action for the matter sector, whose
energy-momentum tensor Tμν couples linearly to gravity.
Therefore, the latter field sourced by TμνðxÞ can be
evaluated utilizing the propagator, namely,

hμνðxÞ ¼
ϰ

2

Z
d4x0Gμναβðx − x0ÞTαβðx0Þ: ð5Þ

The Green’s function Gμναβ is obtained by inverting the
operator which follows from the expansion of the action up
to second order in hμν subjected, of course, to a gauge-
fixing condition. Finally, it is possible to show that the
propagator associated to (3) in the Euclidean signature
reads (see, e.g., [30])

GμναβðkÞ ¼
Pð2Þ
μναβ

k2f2ðk2Þ
−

Pð0−sÞ
μναβ

2k2f0ðk2Þ
; ð6Þ

where the functions fsðzÞ for the quantum theory (3) read

fsðzÞ ¼ 1þ z½αs þ βs logðz=μ2sÞ�; s ¼ 0; 2: ð7Þ

Notice that in (6) we omitted the gauge-dependent terms
which are not relevant for the Newtonian limit. Moreover,
k2 ¼ kμkμ and Pð2Þ and Pð0−sÞ are the spin-2 and spin-0
projectors [31],

Pð2Þ
μναβ ¼

1

2
ðθμαθνβ þ θμβθναÞ −

1

3
θμνθαβ; ð8Þ

Pð0−sÞ
μναβ ¼ 1

3
θμνθαβ; ð9Þ

where the longitudinal and transverse vector-space projec-
tors are respectively:

ωμν ¼
kμkν
k2

and θμν ¼ ημν −
kμkν
k2

: ð10Þ

Therefore, the solution associated with a pointlike massive
source at rest with energy-momentum tensor

Tμνðr⃗Þ ¼ Mδ0μδ
0
νδ

ð3Þðr⃗Þ ð11Þ

is given by the diagonal metric perturbation with
components:

h00 ¼
ϰM
4

�
4

3
I2 −

1

3
I0

�
; ð12Þ

h11 ¼ h22 ¼ h33 ¼
ϰM
4

�
2

3
I2 þ

1

3
I0

�
; ð13Þ

Is ¼
Z

d3k
ð2πÞ3

e−ik⃗·r⃗

k⃗2fsðk⃗2Þ
¼ −

1

2π2r

Z
∞

0

dk
sinðkrÞ
kfsðk2Þ

; ð14Þ

with jk⃗j ¼ k.
By defining the auxiliary spin-s potentials [32]

χsðrÞ ¼ κsMIsðrÞ; with κs ≡ ϰ2

8

�
3s
2
− 1

�
; ð15Þ

one can write the associated Newtonian potentials Φ and Ψ
in the form

ΦðrÞ ¼ ϰ

2
h00 ¼

1

3
ð2χ2 þ χ0Þ; ð16Þ

ΨðrÞ ¼ ϰ

2
h11 ¼

1

3
ðχ2 − χ0Þ: ð17Þ

The main benefit of using the potentials (15) is because
they only depend on the spin-s sector of the propagator [see
Eqs. (6) and (14)] and allow to split the contributions owed
to the scalar and tensor degrees of freedom. Since the
Newtonian potentials Φ and Ψ are linear combinations of
χs, there is no loss of generality in restricting our consid-
erations to the latter ones. For example, if both χ0;2 are
bounded, the metric is bounded too. Moreover, the struc-
ture of the Eqs. (14) and (15), which define χ0;2, is
essentially the same, allowing the derivation of general
results by working with only one generic function fs.
The occurrence of spacetime singularities in the solution

(16)–(17) can be investigated by checking whether the
curvature invariants built with this linearized metric are
bounded. For instance, for the Kretschmann scalar one gets:

R2
μναβ ¼ 4ðΦ002 þ 2Ψ002Þ þ 16

r
Ψ0Ψ00 þ 8

r2
ðΦ02 þ 3Ψ02Þ;

ð18Þ

while the Weyl tensor squared and the scalar curvature read

C2
μναβ ¼

4

3

�
χ002 −

χ02
r

�
2

and R ¼ 2

�
χ000 þ

2χ00
r

�
; ð19Þ

which depend only on the spin-2 and spin-0 sectors,
respectively.
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In view of these equations, the existence of the limits

lim
r→0

χ00s ðrÞ < ∞ and lim
r→0

χ0sðrÞ
r

< ∞; ð20Þ

is a necessary and sufficient condition for avoiding curva-
ture singularities.2 Therefore, the finiteness of the potentials
is not enough to avoid curvature singularities. Let us point
out that if the potential χsðrÞ is analytic around r ¼ 0, then
the first limit in (20) is automatically satisfied, whereas the
condition posed by the second one reduces to χ0sð0Þ ¼ 0
(being an analytic function, this means that χ0sðrÞ ∼ r for
small enough r). However, when dealing with nonanalytic
form factors of the type (7), one must be careful and verify
if the two conditions in (20) holds separately. Extending the
terminology of [34], we shall say that a potential χsðrÞ is
regular if it regularizes the curvature invariants, that is, if it
satisfies (20). According to (19), the potentials χ0 and χ2
are responsible, respectively, for the regularity of the scalars
R and C2

μναβ, while to ensure that the Kretschmann scalar
(18) does not diverge, both potentials must be regular.
Before considering the effects of the logarithmic quan-

tum corrections to the potential, it is instructive to remind
the classical fourth-derivative gravity results, i.e., for
βs ¼ 0 in (3). This theory is a well-known example of
the existence of curvature singularities despite the poten-
tials being finite. In fact, the integral in (14) in this case
gives

Z
∞

0

dk
sinðkrÞ

kð1þ αsk2Þ
¼ π

2
ð1 − e−msrÞ; ð21Þ

where ms ¼ α−1=2s (hereafter, we assume αs > 0, otherwise
the particle with mass ms would be a tachyon). Whence,

χsðrÞ ¼ −
κsM
4πr

ð1 − e−msrÞ: ð22Þ

The potential (22) is finite [2]. Indeed,

χsðrÞ ¼ −
κsM
4π

�
ms −

m2
s

2
r

�
þOðr2Þ; ð23Þ

but the second condition in (20) is violated because (23)
implies χ0sð0Þ ∝ m2

s . Thus the potential (22) is not regular,
and the curvature invariants diverge as r → 0 [21].
We recall that for local higher-derivative gravitational

theories with more than four derivatives in the spin-s sector
of the classical action, the associated potential χsðrÞ is not
only finite [35,36], but also regular [32]. This result was
extended to a larger class of nonlocal ghost-free gravity
models defined by analytic form factors in [37]. Therefore,

all super-renormalizable models of Refs. [16,30,38] have a
regular Newtonian limit. The question of whether the
insertion of the nonanalytic logarithmic quantum correction
spoils the good regularity features of these models is
addressed in a separate publication [39]. Given the differ-
ence between classical fourth- and higher-derivative gravity
models in what concerns the presence of singularities, in
the next section we will investigate if the improvement due
to the logarithmic quantum correction is strong enough to
regularize the curvature singularities that are present at the
classical level.
To simplify the notation, in the following we will only

write the s-label when this specification is necessary to
avoid ambiguity.

III. TOWARD NEWTONIAN POTENTIALS IN
FOURTH-DERIVATIVE QUANTUM GRAVITY

In order to get the Newtonian potentials for the theory (3),
namely, the one-loop 1-particle irreducible quantum correc-
tions to hμν, we have to evaluate the following integral,

χðrÞ ¼ −
κM
2π2r

Z
∞

0

dk
sinðkrÞ

k½1þ αk2 þ 2βk2 logðk=μÞ� : ð24Þ

A natural attempt is to apply the methodology based on
Cauchy’s residue theorem, which was proved to be success-
ful for theories whose propagator has massive poles
[2,32,35,36]. The first step would be to identify the propa-
gator’s poles and define a contour C in the complex plane
such that the integral (24) can be obtained as part of the
contour. Via the residue theorem, the value of the integral
would then be related to the pole(s) inside C.
The massive poles of the propagator (6) are the zeros of

the equation

1þ k2½αþ 2β logðk=μÞ� ¼ 0; ð25Þ

that has an infinite number of solutions because the
complex logarithm is a multivalued function. A detailed
study of the structure of these poles in the Riemann surface
has been carried out in the Ref. [40]. However, we can
focus on the principal branch because our final goal is to
solve an integral of the type (14) over the real line. Indeed,
only in the principal branch the complex logarithm
restricted to the real line coincides with the real one. In
this case, the Eq. (25) can have either one real root, or two
complex conjugate roots [40–44], namely, k2 ¼ −m2 and
k2 ¼ −m̄2, where

m2 ¼ 1

βWð− eα=β

βμ2
Þ ð26Þ

and W is the Lambert (product logarithm) function. The
quantity m2 is complex provided that

2It is possible to show that these conditions ensure the
regularity of the other invariants built with curvature tensors
only, such as R2

μν (see, e.g., [32,33]).
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e
α
βþ1 > βμ2 with β > 0: ð27Þ

Notice that m2 becomes real and negative (tachyonic) for
βμ2 > e

α
βþ1; it is also negative if β < 0, as WðxÞ > 0 for

x > 0. In what follows we assume that the condition (27) is
satisfied so as to avoid tachyon instabilities.
Nevertheless, it seems that the procedure based on the

residue theorem does not help in the case of (24). Choosing
the logarithm’s branch cut along the negative imaginary
axis, it is possible to define a contour C formed by a path
that goes along the real axis (with an indentation around the
origin) and which is closed by a semicircular arc in the
upper half-plane. However, the integral along the negative
part of the real axis yields a term log jzj þ iπ in the
integrand’s denominator, which results in a new integral
which seems to be more complicated than the original one.
Other branch cuts and/or integration contours can be used,
but it always remains an integral to be evaluated. The
conclusion is that this procedure is not as useful as in the
cases mentioned above.

A. Small-r behavior of the potential

Although we could not find an explicit expression for the
potential χðrÞ, we can use the integral representation (24) to
deduce its behavior near r ¼ 0 and study its regularity
properties. For this purpose, let us change variables k ↦
1=u in the integral in Eq. (14),

Z
∞

0

dk
sinðkrÞ
kfðk2Þ ¼

Z
∞

0

du
sinðr=uÞ
ufð1=u2Þ : ð28Þ

Using the Schwinger parametrization3 it follows

1

ufð1=u2Þ ¼
u

u2 þ α − 2β log ðμuÞ
¼ u

Z
∞

0

dξðμuÞ2βξe−ðαþu2Þξ: ð29Þ

Whence (14) turns into:

I ¼ −
1

2π2r

Z
∞

0

Z
∞

0

dξduu sin ðr=uÞðμuÞ2βξe−ðαþu2Þξ:

ð30Þ

Performing the integration in the variable u and inserting
the result into (24), the potential reads

χðrÞ ¼ −
κM
4π2

Z
∞

0

dξe−αξ½t1ðr; ξÞ þ t2ðr; ξÞ�; ð31Þ

where

t1ðr; ξÞ ¼ 2rðμrÞ2βξΓð−2 − 2βξÞ sinðπβξÞ

× 0F2

�
3

2
þ βξ; 2þ βξ;

r2ξ
4

�
; ð32Þ

t2ðr; ξÞ ¼ ξ−
1
2

�
μ2

ξ

�
βξ

Γ
�
1

2
þ βξ

�
0F2

�
3

2
;
1

2
− βξ;

r2ξ
4

�
:

ð33Þ

Moreover, 0F2ðy1; y2; zÞ ¼ 0F2ð−; y1; y2; zÞ is the gener-
alized hypergeometric function.
Before discussing the small-r behavior of this potential,

it is useful to make another brief digression on the classical
fourth-derivative gravity. In fact, the potential (22) can be
recovered from the three previous equations simply by
taking the limit β → 0. In this case

t1ðr; ξÞ ¼ −
πr
2 0F2

�
3

2
; 2;

r2ξ
4

�
ð34Þ

gives the odd-power terms of the series expansion of χðrÞ,
while

t2ðr; ξÞ ¼
ffiffiffi
π

ξ

r
0F2

�
3

2
;
1

2
;
r2ξ
4

�
ð35Þ

gives the even-power ones. It is possible to integrate the
series in r term by term because 0F2 is an entire function of
ξ and the exponential damping in (31) makes each term
well-behaved in the limit of large ξ. The only divergent
integrand in the series is the zero-order term, which behaves
like ξ−1=2 for small ξ, see (35). However, the latter improper
integral can be performed to finally get the value of χð0Þ
in Eq. (22).
Following the intuition from the classical fourth-deriva-

tive gravity case, one may be tempted to analyze the terms
related to t1 and t2 separately also in the more general case
of Eqs. (32) and (33). It turns out that this procedure does
not work because t1 cannot be written as a standard power
series in r due to the term r2ξβ. Moreover, regarded as
functions of ξ, t1 and t2 have discontinuities for finite
values of ξ. In the case of t1 this is generated by the gamma
function with negative arguments, meanwhile in t2 it is due
to the occurrence of negative parameters in the hypergeo-
metrical function. Indeed, using the identity

3That is, given an x > 0, it holds

1

x
¼

Z
∞

0

dξe−xξ:

Since the Schwinger parametrization (29) is going to be applied
in the integral (28), we must make sure that the effect of varying u
does not spoil the validity of the parametrization—which is
equivalent to show that ufð1=u2Þ > 0 for u > 0. This is indeed
the case as we already assumed that the propagator has no
tachyonic poles; therefore, being a continuous function, fð1=u2Þ
does not change sign along the real line.
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ΓðxÞΓð−xÞ ¼ −
π

x sinðπxÞ ð36Þ

one obtains

Γð−2− 2βξÞ sinðπβξÞ ¼−
π

4ð1þ βξÞΓð2þ 2βξÞcosðπβξÞ ;

implying that t1ðr; ξÞ only diverges at ξ ¼ 1þ2n
2β (with

n ∈ N). This is the same condition that defines the sin-
gular points in t2ðr; ξÞ. Actually, only the sum of the two
functions makes sense and gives a well-behaved integrand
in Eq. (31). These features are related to the parameter β
and, therefore, they are just a manifestation of the non-
analyticity of the logarithmic function in (24), which makes
it not possible to write a power series of the resultant
potential χðrÞ around r ¼ 0.
Despite the impossibility of finding a series representa-

tion to (31), we can still analyze its behavior for small r and
investigate the regularity of the Newtonian at the origin. For
this purpose, let us divide the sum t1 þ t2 in (31) in a part
dependent on r and a part that does not depend. In order to
achieve this goal, we define the following two functions,

t0ðξÞ≡ t2ð0; ξÞ ¼ ξ−
1
2

�
μ2

ξ

�
βξ

Γ
�
βξþ 1

2

�
; ð37Þ

tðr; ξÞ ¼ −t0ðξÞ þ t1ðr; ξÞ þ t2ðr; ξÞ: ð38Þ

The function e−αξtðr; ξÞ of the variable ξ is bounded
because the singularities that t1 and t2 have for finite
values of ξ > 0 cancel each other, and the singularity that t2
has for ξ → 0 is canceled by t0. Furthermore, it is clear that
e−αξtðr; ξÞ is small for r2 ≪ minfβ; μ−2g, except for a
region near ξ ¼ 0. Indeed, for βξ > 1=2 the function tðr; ξÞ
is at least of order μr2 or β−1=2r2 and in a region near r ¼ 0
the leading contributions come from small ξ too. Taking
into account these two approximations, it follows4:

tðr; ξÞ ¼ −
πr
2
ðμrÞ2βξ½1þ c1βξþOðξ2Þ� þOðr2Þ; ð39Þ

where c1 is a constant.
Comparing (31) with (38), the potential reads

χðrÞ ¼ −
κM
4π2

Z
∞

0

dξe−αξ½t0ðξÞ þ tðr; ξÞ�: ð40Þ

Since it holds (assuming β logðμrÞ < 0, α > 0 and n ∈ N)

Z
∞

0

dξe−αξðμrÞ2βξξn ¼ n!
½α − 2β logðμrÞ�nþ1

; ð41Þ

it is straightforward to verify that

χðrÞ ¼ −
κM
8π

�
c0 −

r
α − 2β logðμrÞ þOðr½logðμrÞ�−2Þ

�
;

ð42Þ

where

c0 ¼
2

π

Z
∞

0

dξe−αξt0ðξÞ: ð43Þ

The potential is finite at r ¼ 0,

lim
r→0

χðrÞ ¼ −
κMc0
8π

; ð44Þ

nonetheless, as discussed in Sec. II, the regularity of the
Newtonian limit is related to the behavior of the derivatives
of χðrÞ near the origin. Differentiating (42) it follows that

χ0ðrÞ ∼
r→0

κM
8π

1

α − 2β logðμrÞ : ð45Þ

This expression coincides with the one presented in [45],
and shows that the potential satisfies χ0ð0Þ ¼ 0. However, it
tends to zero in such a slowly manner that the curvature
singularities still remain. In fact,

lim
r→0

χ0ðrÞ
r

¼ ∞: ð46Þ

It turns out that the solution (42) violates both the regularity
conditions in (20) because of its nonanalyticity. Indeed, we
also have:

χ00ðrÞ ∼
r→0

κM
8π

2β

r½α − 2β logðμrÞ�2 ; ð47Þ

which diverges in the limit r → 0.
This analysis reveals that the one-loop nonlocal quantum

corrections to the fourth-derivative gravity do not substan-
tially modify the regularity of the Newtonian potential.
Unlike in the case of analytic form factors, the improve-
ment χ0ð0Þ ¼ 0 is not enough to regularize the curvature
invariants.

B. Numerical analysis of the potential

Given the difficulties of finding an explicit expression for
the fourth-derivative gravity potential with one-loop log-
arithmic quantum corrections, here we carry out a numeri-
cal analysis that serves as a double check of the general
results proved in the previous section. In Fig. 1 we plot the

4Notice that we cannot expand ðμrÞ2βξ ¼ 1þ 2ξβ logðμrÞ þ
2ξ2β2½logðμrÞ�2 þOðξ3β3Þ because each of these terms diverges
when r → 0; this gives an indeterminacy when ξ is integrated
down to 0. Ultimately, the behavior of the potential for small r
results from this ambiguity.
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numerical integration of the potential (24). In order to make
a comparison of different theories, we display the Newton
potential in Einstein’s gravity, the solution (22) for the
classical fourth-derivative gravity, and the modified poten-
tial of Ref. [46]. The latter, in our notations, has the form

χðrÞ ¼ −
κM
4πr

ð1 − e−ReðmÞrÞ; ð48Þ

where the effective massm is given by Eq. (26), see [46] for
a further discussion.

The direct inspection of Fig. 1 suggests that the corrected
potential changes its concavity as it approaches r ¼ 0. This
is clear in the plot of the derivative of the solutions in Fig. 2,
which even shows that χ0ð0Þ ¼ 0, as we proved above in a
general and analytic setting. These distinguishing features
are not present in the potential of the classical fourth-
derivative gravity, nor in its modification proposed in [46].
In fact, the modification (48) does not change the functional
form of the potential (22), but only its massive parameter.
The change of concavity of χðrÞ can be verified

analytically using the results obtained in the previous
section. Indeed, χ0ðrÞ vanishes for r → 0 and r → ∞, then,
because of Rolle’s theorem, there must be some r0 ∈
ð0;∞Þ such that χ00ðr0Þ ¼ 0. Obviously, we cannot inves-
tigate the potential for large r making use of (42), but it
should be analyzed by taking the limit of large u in
Eq. (29). This is equivalent of making a perturbative
expansion in β, but we postpone this discussion to
Sec. IV. We hereby only point out that in the limit
r → ∞ the integral (29) tends to π=2, giving the standard
Newton’s potential proportional to r−1, as expected and
suggested by Fig. 1.
Finally, in Fig. 3 we compare the analytic small-r

approximation obtained in the previous section, given by
Eq. (42), with the numerical solution of Eq. (24). As
expected, they agree with good precision near r ¼ 0.

IV. PERTURBATIVE SOLUTION OF THE
POTENTIAL AND INFRARED LIMIT

Another approach to obtain the potential with logarith-
mic quantum corrections is to expand (24) in the parameter
β. This relies on the assumption that the scale related to
the one-loop quantum correction term is, consistently with
the perturbative loop expansion, much smaller than the
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FIG. 1. Plot of χðrÞ for different models: numerical solution of
Eq. (24) for α ¼ 1.0, μ ¼ 1.2 and β ¼ 0.5 (solid line), classical
fourth-derivative gravity with α ¼ 1.0 (β ¼ 0) (dashed), the
modified potential of Eq. (48) (dot-dashed), and the 1=r New-
ton’s potential (α ¼ β ¼ 0) (dotted).
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FIG. 2. Derivative of the numerical solution (solid line) and of
the classical fourth-derivative gravity (dashed). It is clear that the
second derivative of the potential changes sign only for the log-
corrected solution, which also satisfies χ0ð0Þ ¼ 0.
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FIG. 3. Comparison of the approximate solution (42) close to
r ¼ 0 (solid line) with the numerical one (dashed) in the linear-
log scale.
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classical counterpart because the former is of order OðℏÞ.
Therefore, we define the perturbative expansion of χ in the
parameter β as follows,

χ ¼ χð0Þ þ χð1Þ þOðβ2Þ; ð49Þ

where χð0Þ is the classical potential, whose explicit solution
is given by Eq. (22), and

χð1ÞðrÞ ¼ βκM
π2r

Z
∞

0

dk
k sinðkrÞ
ð1þ αk2Þ2 log ðk=μÞ: ð50Þ

is the first order quantum correction.
To solve the integral in (50) it is useful to apply the

change of variables in the form k ¼ mx, where m ¼ ffiffiffiffiffiffiffiffi
1=α

p
[as in Eq. (21)]. Thus, we get:

χð1ÞðrÞ ¼ βm2κM
π2r

Ið1Þ; ð51Þ

Ið1Þ ≡
Z

∞

0

dx
x sinðmrxÞ logðmx=μÞ

ðx2 þ 1Þ2 : ð52Þ

Because of the perturbative expansion, and differently from
the approach of Sec. III, here the logarithmic function
appears in the integrand’s numerator, and it is possible to
obtain the solution for the integral in (51) using Cauchy’s
residue theorem.
Let us define

FðzÞ ¼ z logðmz=μÞ
ðz2 þ 1Þ2 eimrz; −

π

2
⩽ arg z <

3π

2
: ð53Þ

The branch cut defined in (53) corresponds to the negative
part of the imaginary axis. Therefore, one can define
the oriented closed path C depicted in Fig. 4, for which

ImðzÞ ⩾ 0. Notice that C has an indentation around z ¼ 0,
where log z is not defined. Since only the double pole at
z ¼ þi is inside C, we find:

∳
C
dzFðzÞ ¼ 2πiResðFðzÞ; iÞ: ð54Þ

On the other hand, using the paths described in Fig. 4
we get

∳
C
dzFðzÞ ¼

Z
R

ε
dx

x logðmx=μÞ
ðx2 þ 1Þ2 eimrx þ

Z
CR

dzFðzÞ

þ
Z

−ε

−R
dx

x½logðmjxj=μÞ þ iπ�
ðx2 þ 1Þ2 eimrx

þ
Z
Cε

dzFðzÞ: ð55Þ

Taking R sufficiently large and ε small, we can use the
triangle inequalities and the upper bound for contour
integrals over an arc Ck,

				
Z
Ck

dzFðzÞ
				 ⩽ lengthfCkg × max

z∈Ck

fjFðzÞjg; ð56Þ

to find
				
Z
CR

dzFðzÞ
				 ⩽ πR2½logðmR=μÞ þ π�

ðR2 − 1Þ2 ;

				
Z
Cε

dzFðzÞ
				 ⩽ πε2½logðmε=μÞ þ π�

ð1 − ε2Þ2 : ð57Þ

Therefore, the integrals along CR and Cε vanish, respec-
tively, in the limit R → ∞ and ε → 0. Thus, making the
substitution x ↦ −x in the third integral in the right-hand
side of formula (55) and equaling with (54) we find

2πiResðFðzÞ; iÞ ¼
Z

∞

0

dx
xðeimrx − e−imrxÞ

ðx2 þ 1Þ2 logðmx=μÞ

− iπ
Z

∞

0

dx
xe−imrx

ðx2 þ 1Þ2 : ð58Þ

Now, having the definition (52) in mind, after a small
rearrangement, the imaginary part of the equation above
gives

Ið1Þ ¼ πRe½ResðFðzÞ; iÞ� þ π

2

Z
∞

0

dx
x cosðmrxÞ
ðx2 þ 1Þ2 : ð59Þ

Like in the case discussed at the beginning of Sec. III,
the integration over the negative real axis leaves a remain-
ing integral, but the one found here is more tractable
than the other. Actually, the last integral in (59) can be
reduced, after integration by parts, to the Raabe’s integral
(for m2 ⩾ 0) [47],

FIG. 4. Contour of integration used to evaluate (55), poles and
branch cut defined by (53).
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Z
∞

0

dx
2x cosðmrxÞ
ðx2 þ 1Þ2 ¼ 1þmr

2
½emrEið−mrÞ

− e−mrEiðmrÞ�; ð60Þ

where EiðxÞ is the exponential integral function,

EiðxÞ ¼ −
Z

∞

−x
dt

e−t

t
: ð61Þ

It is not difficult to show that

Re½ResðFðzÞ; iÞ� ¼ e−mr

4
½mr logðm=μÞ − 1�: ð62Þ

Therefore, collecting all the results, we get the solution
for the quantum correction to the classical potential,

χð1ÞðrÞ ¼ βκMm2

4πr

�
1 − ½1 −mr logðm=μÞ�e−mr

þmr
2

½emrEið−mrÞ − e−mrEiðmrÞ�
�
: ð63Þ

In Fig. 5 we present the comparison of the numerical
solution of (24) and the perturbative one-loop approxima-
tion (63). It reveals that, close to r ¼ 0, the OðℏÞ-result
deviates from the nonperturbative one as β increases. Not
surprisingly, this represents the one-loop approximation
breakdown for large β in the high-energy domain. We recall

that, within the perturbation theory, even the numerical
solution of Eq. (24) is not accurate beyond OðℏÞ, for the
form factor in the action (3) does not include the corre-
sponding higher-loop terms.
Finally, as mentioned in the previous section, we can use

(63) to investigate the large-r limit of the quantum
correction to the potential. Since the term inside the square
brackets in the last line of Eq. (63) behaves as

emrEið−mrÞ − e−mrEiðmrÞ

¼ −
2

mr
−

4

ðmrÞ3 −
48

ðmrÞ5 þOðr−7Þ;

it is straightforward to verify that

χð1ÞðrÞ ∼
r→∞

−
βκM
2πr3

: ð64Þ

This shows that in the far-IR limit, the one-loop corrected
potential matches the behavior of the quantum corrected
potential evaluated in [48–55] in the realm of the effective
quantum theory of general relativity. Our result supports the
hypothesis of the universality of the IR quantum gravity
approach.

V. CONCLUSION

We computed the quantum corrections to the Newtonian
potential and all the other gravitational perturbation com-
ponents in the quantum effective action for the fourth-order
gravitational theory. The calculations were done both
numerically and perturbatively, but also analytically close
to the singularity point r ¼ 0.
We proved that the logarithmic quantum corrections

improve the behavior of the Kretschmann curvature invari-
ant near r ¼ 0 respect to the classical theory, but are not
enough to solve the spacetime singularity problem.
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