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We study the Maxwell quasinormal spectrum on asymptotically anti–de Sitter black holes with a set of
two Robin type boundary conditions, by requiring the energy flux to vanish at asymptotic infinity.
Focusing, for illustrative purposes, on Schwarzschild–anti–de Sitter black holes both without and with a
global monopole, we unveil that, on the one hand, the Maxwell quasinormal spectrum bifurcates as the
black hole radius increases for both boundary conditions, which is termed the mode split effect; while on
the other hand, with an appropriate fixed black hole radius but increasing the monopole parameter, the first
(second) boundary condition may trigger (terminate) the mode split effect.
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I. INTRODUCTION

Black holes (BHs) are predicted by general relativity as
solutions of the elegant Einstein field equations, charac-
terized by an event horizon at the boundary and a
singularity at the origin [1]. When a cosmological constant
is included in the Einstein equations, one may obtain BH
solutions with various asymptotics. Among them, asymp-
totically anti-de Sitter (AdS) BHs have attracted a lot of
attention recently. One reason is that the AdS=CFT
correspondence [2–4], which is a correspondence between
a gravitation theory and a quantum field theory, may be
applied to strongly coupled systems, ranging from con-
densed matter physics [5–7] to nuclear physics [8–10].
Another reason is that the timelike property of the AdS
boundary may lead to interesting features, as compared to
other asymptotic spacetimes, such as the weak turbulent
instability [11], the superradiant instability of massless
fields [12–14] and the generic Robin type vanishing energy
flux boundary conditions [14–19]. In this paper, we unveil
another novel feature of asymptotically AdS BHs, that is
bifurcation of the Maxwell quasinormal spectrum.
Black hole quasinormal modes (QNMs), describing the

characteristic oscillations of BHs, are defined as eigenval-
ues of perturbation equations with appropriate boundary
conditions [20–22]. On asymptotically AdS BHs, one may
look for QNMs of various spin fields by imposing an
ingoing wave boundary condition at the horizon and at
infinity, requiring either Dirichlet type field vanishing

boundary conditions [23–31] or Robin type vanishing
energy flux boundary conditions [14–19]. The advantage
of the latter Robin type boundary conditions is that they are
applicable, on spherically symmetric backgrounds, not
only in the Regge–Wheeler–Zerilli [32,33] but also in
the Teukolsky formalisms [34,35]. In this paper, we focus
on the Regge–Wheeler–Zerilli formalism and employ the
Robin type vanishing energy flux boundary conditions.
In the study of QNMs on asymptotically AdS BHs, the

Maxwell spectrum has a peculiar structure, as compared to
other spin fields, in the sense that the real part of some
Maxwell modes asymptotes to zero for large BHs [15,26–
28]. To further investigate and understand this behavior, we
implement a study in this paper to solve the Maxwell
QNMs on Schwarzschild–AdS BHs both without and with
a global monopole, by varying the BH radius. We confirm
that there is a critical BH radius, associated to each fixed
angular momentum quantum number l and overtone
number N, and the real part of the Maxwell QNMs
becomes zero when the BH size is greater than the critical
BH radius. More surprisingly, we further unveil that when
the real part of the Maxwell spectrum becomes zero, the
imaginary part branches off. This is dubbed as the mode
split effect, and it may be related with spectrum bifurcation
observed for near extremal Kerr BHs [36].
Our results are obtained numerically, by using a pseu-

dospectral method [37]. This method is a robust numeric
approach, and has been applied widely in BH physics,
ranging from numerical relativity [38] to BH perturbation
theory [39]. It is particularly efficient to solve QNMs by
using the pseudospectral method since an initial guess
value is not necessary, and it has been successfully
employed to obtain a novel set of purely imaginary modes
of scalar fields on Schwarzschild–de Sitter BHs [40].
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This paper is organized as follows. In Sec. II we
introduce the background geometry, i.e., Schwarzschild–
AdS BHs both without and with a global monopole, and
derive the Maxwell equations and the corresponding
boundary conditions on the aforementioned background,
in the Regge–Wheeler–Zerilli formalism. In Sec. III we
first introduce a numeric pseudospectral method, and then
apply it to look for the Maxwell quasinormal spectrum and,
in particular, demonstrate the mode split effect. Final
remarks and conclusions are presented in Sec. IV.

II. BACKGROUND GEOMETRY, MAXWELL
EQUATIONS AND BOUNDARY CONDITIONS

In this section, we briefly review the background
geometry of Schwarzschild–AdS BHs both without and
with a global monopole, present equations of motion for the
Maxwell fields in the Regge–Wheeler–Zerilli formalism
and derive the corresponding boundary conditions.

A. The line element

We start by considering the following spherically sym-
metric line element [41,42]:

ds2 ¼ Δr

r2
dt2 −

r2

Δr
dr2 − r2ðdθ2 þ sin2 θdφ2Þ; ð1Þ

with the metric function

Δr ≡ r2
�
η̃2 þ r2

L2

�
− 2Mr; ð2Þ

where L is the AdS radius,M is the mass parameter and the
event horizon rþ is determined by the nonzero real root of
ΔrðrþÞ ¼ 0. Here the dimensionless parameter η̃2 is
defined by η̃2 ≡ 1–8πη2, where η represents the global
monopole and its effects have been explored in various
contexts, see e.g., [42–46]. In the limit of η2 ¼ 0,
Schwarzschild–AdS spacetimes may be recovered.
The asymptotic structure of the spacetime, given by

Eq. (1), can be obtained by taking the limit r → ∞,

ds2 ¼
�
1þ r̃2

L2

�
dt̃2 −

�
1þ r̃2

L2

�−1
dr̃2

− η̃2r̃2ðdθ2 þ sin2 θdφ2Þ; ð3Þ

where t̃ ¼ η̃t; r̃ ¼ r
η̃ and which describes a pure AdS

spacetime with a solid deficit angle 4πη̃2.

B. Equations of motion in the
Regge–Wheeler–Zerilli formalism

In a spherically symmetric background, one may obtain
variable separated and degrees of freedom decoupled

Maxwell equations in the Regge–Wheeler–Zerilli formal-
ism [32,33].
We start from the Maxwell equations

∇νFμν ¼ 0; ð4Þ

where the field strength tensor is defined as Fμν ¼∂μAν − ∂νAμ. We then expand the vector potential Aμ in
terms of the scalar and vector spherical harmonics [47],

Aμ ¼ e−iωt
X
l;m

0
B@
2
64

0

0

almðrÞSlm

3
75þ

2
64
jlmðrÞYlm

hlmðrÞYlm

klmðrÞYlm

3
75
1
CA; ð5Þ

with the definition of the vector spherical harmonics,

Slm ¼
� 1

sin θ ∂φYlm

− sin θ∂θYlm

�
; Ylm ¼

� ∂θYlm

∂φYlm

�
;

where Ylm are the scalar spherical harmonics, ω is the
frequency, m is the azimuthal number and l is the angular
momentum quantum number. Note that the first term in the
right-hand side of Eq. (5) has parity ð−1Þlþ1 and the second
term has parity ð−1Þl, and we shall call the former (latter)
the axial (polar) modes. By substituting Eq. (5) into Eq. (4),
one obtains the Schrodinger-like radial wave equation,

�
d2

dr2�
þ ω2 − lðlþ 1ÞΔr

r4

�
ΨðrÞ ¼ 0; ð6Þ

where the tortoise coordinate is defined as

dr�
dr

¼ r2

Δr
; ð7Þ

with ΨðrÞ ¼ almðrÞ for axial modes, and

ΨðrÞ ¼ r2

lðlþ 1Þ
�
−iωhlmðrÞ − djlmðrÞ

dr

�
;

for polar modes.

C. Boundary conditions

In order to solve the radial equation (6), we impose an
ingoing wave boundary condition at the horizon, as usual.
At infinity, we require that energy flux should be vanished
at asymptotic infinity, following a generic principle we
proposed in [15] (see also [16,19]).
We start from the energy–momentum tensor of the

Maxwell field, which is given by

Tμν ¼ FμσFσ
ν þ

1

4
gμνF2: ð8Þ
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Then the spatial part of the radial energy flux may be
calculated as

F jr ∝
Δr

r2
ΨðrÞΨ0ðrÞ; ð9Þ

where 0 denotes a derivative with respect to r. By
expanding Eq. (6) asymptotically,

Ψ ∼ c0 þ
c1
r
þO

�
1

r2

�
; ð10Þ

Eq. (9) becomes F jr;∞ ∝ c0c1.
Then the vanishing energy flux principle, i.e.,F jr;∞ ¼ 0,

leads to the following two solutions:

c0 ¼ 0; ð11Þ

c1 ¼ 0: ð12Þ

III. NUMERICS

In order to study the Maxwell QNMs thoroughly in a full
parameter space, we resort to numeric methods. In this part,
we first introduce a numeric pseudospectral method [37],
and then present a few selected results obtained by this
method and, in particular, illustrate the mode split effect.

A. Method

For numeric convenience, we first transform Eq. (6) from
a quadratic eigenvalue problem into a linear eigenvalue
problem by

Ψ ¼ e−iωr�ϕ; ð13Þ

where the tortoise coordinate r� is defined in Eq. (7). Then
changing the coordinate from r to z through

z ¼ 1 −
2rþ
r

; ð14Þ

which brings the integration domain from r ∈ ½rþ;∞� to
z ∈ ½−1;þ1�, Eq. (6) turns into the following form:

B0ðzÞϕðzÞ þ B1ðz;ωÞϕ0ðzÞ þ B2ðzÞϕ00ðzÞ ¼ 0; ð15Þ

where 0 denotes a derivative with respect to z. Here each of
the functions Bj (j ¼ 0, 1, 2) can be derived straightfor-
wardly by substituting Eqs. (13) and (14) into Eq. (6), and
B1 is linear in ω, i.e., B1ðz;ωÞ ¼ B1;0ðzÞ þ ωB1;1ðzÞ.
The pseudospectral method solves a differential equation

by replacing a continuous variable with a set of discrete grid
points. For that purpose, we introduce the Chebyshev
points

zj ¼ cos

�
jπ
n

�
; j ¼ 0; 1;…; n; ð16Þ

where n denotes the number of grid points. One may
construct the Chebyshev differentiation matrices Dð1Þ by
using these points [37] and applying them to differentiate
ϕðzÞ. Then Eq. (15) becomes a standard eigenvalue
problem,

ðM0 þ ωM1ÞϕðzÞ ¼ 0; ð17Þ

where M0 and M1 are matrices, ðM0Þij ¼ B0ðziÞδijþ
B1;0ðziÞDð1Þ

ij þ B2ðziÞDð2Þ
ij , and similarly for M1. For sim-

plicity, we define the second order Chebyshev differential
matrix Dð2Þ by squaring the first order Chebyshev differ-
ential matrix Dð1Þ [37].
To solve the eigenvalue equation (17), we impose a

regular boundary condition at the horizon, since from
Eq. (13) an ingoing wave boundary condition is satisfied
automatically for ϕ. At infinity, from Eqs. (13) and (10),
one obtains

ϕ ¼ 0;
ϕ0

ϕ
¼ iωL2

2rþ
; ð18Þ

corresponding to the boundary conditions given by
Eqs. (11) and (12), respectively, and where 0 again denotes
a derivative with respect to z.

B. Results

In the numerical calculations all physical quantities are
measured by the AdS radius L so that we take L ¼ 1. The
results presented below are computed by the pseudospectral
method described in the above subsection, and they are
double checked by a direct integration and the Horowitz–
Hubeny approaches adapted from our previous works
[17,18,48–50]. Note that we use ω1 (ω2) to represent
QNMs corresponding to the first (second) boundary con-
dition, given by Eq. (11) [Eq. (12)]. Moreover, l and N are
introduced to denote the angular momentum quantum
number and the overtone number.

1. Without a global monopole

We first present both real and imaginary parts of the
Maxwell QNMs in terms of the BH size rþ in Fig. 1, by
taking l ¼ 1, 2 and N ¼ 0 as examples, and for both
boundary conditions.
A striking feature one may observe is that when the BH

size rþ is larger than the critical BH radius rcþ, the real part
of QNMs turns into zerowhile the imaginary part branches
off into two sets of modes. This phenomenon, as far as we
know, has never been reported in the literature and is thus
dubbed the mode split effect.
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More precisely, it is shown clearly in Fig. 1 that, for both
boundary conditions, when the BH size is smaller than the
critical BH radius, the magnitude of the imaginary part of
the QNMs increases as rþ increases and it scales almost

linearly with rþ. When the BH size is larger than the critical
BH radius, since the mode branches off, we dub, in
magnitude, the larger one the upper mode and the smaller
one the lower mode. The upper mode, for both boundary

FIG. 2. The critical BH radius, denoted by rcþ1 (r
c
þ2) for the first (second) boundary condition, versus the overtone number N (left)

with fixed l ¼ 1 and the angular momentum quantum number l (right) with fixed N ¼ 0. Note that in the left panel, we use the
logarithmic scale in the vertical axis.

FIG. 1. Real (top) and imaginary (bottom) parts of the Maxwell QNMs on Schwarzschild–AdS BHs vs BH size rþ for l ¼ 1, 2 and
N ¼ 0, with the first (left) and second (right) boundary conditions. The critical BH radius with the first (second) boundary condition is
rcþ1 ≈ 4.24057 (rcþ2 ≈ 2.50330) for l ¼ 1 and is rcþ1 ≈ 7.26167 (rcþ2 ≈ 4.37526) for l ¼ 2. Precisely at the critical BH radius, the real
part of the QNMs vanishes and the imaginary part splits into two branches.
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conditions, always increases as rþ increases and it scales
linearly with rþ when the BH size is away from the critical
BH radius. The lower mode, on the other hand, first
decreases and then increases (decreases) as rþ increases
and it scales linearly with rþ (scales with rþ as 1=rþ) when
the BH size is away from the critical BH radius, for the first
(second) boundary condition.

The mode split effect does exist for various values of l
and N. Since the qualitative behavior of the QNMs, by
fixing l and N as other values, is quite similar to the cases
shown in Fig. 1, we instead show the critical BH radius by
varying N and l in Fig. 2. In the left panel, we present the
critical BH radius, denoted by rcþ1 (rcþ2) for the first
(second) boundary condition, by varying N in the

FIG. 3. The critical BH radius (rcþ) versus the monopole parameter (8πη2), with fixed l ¼ 1 and N ¼ 0 for the first (left) and second
(right) boundary conditions.

FIG. 4. Real (top) and imaginary (bottom) parts of the QNMs for Maxwell fields on global monopole–Schwarzschild–AdS BHs vs the
monopole parameter 8πη2, with fixed l ¼ 1, N ¼ 0, rþ1 ≈ 4.237 for the first (left) and rþ2 ≈ 2.505 for the second (right) boundary
conditions.
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semilogarithmic coordinate, and it indicates that critical BH
radius for excited modes grows exponentially with N, i.e.,
in the semilogarithmic coordinate scales linear with N, and
shares the same slope for both boundary conditions. In the
right panel, we display the critical BH radius with l, and it
indicates clearly that the critical BH radius scales linearly
with l for both boundary conditions but grows faster with
the first boundary condition.

2. With a global monopole

By turning on and fixing the monopole parameter 8πη2,
the mode split effect still holds. To further analyze this
effect for the monopole case, we calculate the critical BH
radius, with fixed N ¼ 0 and l ¼ 1, by varying the
monopole parameter 8πη2, and the corresponding results
are presented in Fig. 3. As one may observe, the critical BH
radius with the first (second) boundary condition decreases
(increases) as 8πη2 increases, and for both cases the critical
BH radius scales linearly with 8πη2.
The property shown in Fig. 3 leads directly to a

consequence that the monopole parameter itself may trigger
(terminate) the mode split effect with the first (second)
boundary condition. To make this point clear, we present
the Maxwell QNMs in Fig. 4 by varying 8πη2, with fixed
N ¼ 0, l ¼ 1 and rþ1 ≈ 4.237 (rþ2 ≈ 2.505) for the first
(second) boundary condition. These BH radii are taken as
the critical BH radii of 8πη2 ¼ 0.05 for both boundary
conditions. From Fig. 4, it is shown evidently that the mode
with the first (second) boundary condition branches off
(merges) when 8πη2 > 0.05 since the rþ1 (rþ2) we took is
greater (smaller) than the critical BH radius.

IV. DISCUSSION AND FINAL REMARKS

In this paper, we have established that the Maxwell
quasinormal spectrum may bifurcate on asymptotically
AdS BHs. To be specific, by taking Schwarzschild–AdS

BHs both without and with a global monopole as examples,
we unveil that when the BH radius is greater than the
critical BH size, the real part of the Maxwell QNMs
vanishes while the imaginary part branches off. This feature
is coined as the mode split effect, and is held for both
boundary conditions.
For the case of Schwarzschild–AdS BHs, we further

explored the mode split effect by calculating the critical BH
radius with respect to the overtone number N and the
angular momentum quantum number l. We observed that,
for both boundary conditions, the critical BH radius
increases as either N or l increases, and it scales exponen-
tially with N but linearly with l.
An interesting aspect that appeared for the monopole

case is that, by increasing the monopole parameter, the
critical BH radius decreases (increases) for the first
(second) boundary condition. This property leads directly
to a consequence that, by fixing a proper BH radius, the
first (second) boundary condition may trigger (terminate)
the mode split effect.
To understand the universality and scrutinize the origin

of the mode split effect, it is thus very interesting to extend
this work to other asymptotically AdS BHs and the BH-
mirror systems. Work along these directions is underway
and we hope to report on them soon [51].
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