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We continue our study of the optical properties of the solar gravitational lens. Taking the next step
beyond representing it as an idealized monopole, we now characterize the gravitational field of the Sun
using an infinite series of multipole moments. We consider the propagation of electromagnetic (EM) waves
in this gravitational field within the first post-Newtonian approximation of the general theory of relativity.
The problem is formulated within the Mie diffraction theory. We solve Maxwell’s equations for the EM
wave propagating in the background of a static gravitational field of an extended gravitating body, while
accounting for multipole contributions. Using a wave-theoretical approach and the eikonal approximation,
we find an exact closed form solution for the Debye potentials and determine the EM field at an image
plane in the strong interference region of the lens. The resulting EM field is characterized by a new
diffraction integral. We study this solution and show how the presence of multipoles affects the optical
properties of the lens, resulting in distinct diffraction patterns. We identify the gravitational deflection angle
with the individual contributions due to each of the multipoles. Treating the Sun as an extended,
axisymmetric, rotating body, we show that each zonal harmonics causes light to diffract into an area whose
boundary is a caustic of a particular shape. The appearance of the caustics modifies the point-spread
function of the lens, thus affecting its optical properties. The new wave-theoretical solution allows the study
of gravitational lensing by a realistic lens that possesses an arbitrary number of gravitational multipoles.
This angular eikonal method represents an improved treatment of realistic gravitational lensing. It may be
used for a wave-optical description of many astrophysical lenses.
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I. INTRODUCTION

Studied for over a century [1,2], gravitational lensing
today is well understood [3–5]. It occurs when light travels
in the vicinity of a gravitating body. In the post-Newtonian
limit of the general theory of relativity, the gravitational
field serves as a refracting medium [6,7] that deflects light
rays towards the body.
Following a methodical approach, we began our inves-

tigation by treating the solar gravitational field as a
spherically symmetric field of a gravitational monopole,
or point mass [8,9]. After passing by such a monopole, light
rays are focused in what we call the region of strong
interference (Fig. 1), with impressive optical properties
including significant light amplification. However, even
gravitational monopole lenses are subject to optical aber-
rations. As the deflection angle is inversely proportional to
the impact parameter, light rays with larger impact param-
eters with respect to the lens are focused at larger distances
from it. This causes spherical aberration, leading to blurred
images and the requirement to employ appropriately
designed deconvolution algorithms [10].
With this model, we were able to establish the basic

properties of the solar gravitational lens (SGL) and

understand image formation and image recovery. We
considered gravitational lensing by the Sun as the means
to obtain high-resolution images of faint objects, such a
exoplanets. To enable practical applications of the SGL, we
developed a wave-optical treatment of the diffraction of
light in the presence of the solar gravity field. We studied
the impact of the solar corona on light propagation in the
vicinity of the Sun. We showed that diffraction in the solar
atmosphere defocuses EM waves for wavelengths greater
than 1 mm, but its impact is negligible at optical and IR
wavelengths [12,13]. We extended our formulation to the
case of extended sources at large but finite distances [11].
We studied image formation with the SGL [14,15] and
addressed the realistic sensitivity of prospective imaging
observations [10]. In addition, we studied the image
recovery process and have shown that the SGL may be
used for multipixel imaging of exoplanets [16] that may be
conducted in the context of a realistic space mission [17].
The next step is dictated by the realization that nothing is

perfect in life, not even the Sun. Its rotation, the resulting
oblateness, and its internal mass distribution result in a
gravitational field that deviates from the idealized monop-
ole. These deviations are small (in fact, the Sun is almost
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perfect), but given the distance and length scales involved,
their impact cannot be neglected. The dimensionless
magnitude of corrections due to deviations from the
monopole is ofOð10−7Þ. This is not much until we consider
that deflection of light by the SGL amounts to displacing a
ray of light by at least as much as the solar radius by the
time that ray approaches the focal region. An Oð10−7Þ
correction on this scale amounts to an additional deflection
by tens if not hundreds of meters, which is quite significant
when compared to the scale (typically, 1–10 km across) of
the projected image size of a desired target.
Therefore, it is necessary to develop a formalism to

modify the point-spread function (PSF) of the SGL, taking
into account that, on the one hand, we deal with very large
distances [measured in light years for distant imaging
targets or in many hundreds of astronomical units (AU)
when it comes to the distance of the focal region from
the Sun] and, on the other hand, distances measured on the
scale of meters or less [such as the telescope aperture or the
centimeter-scale Airy pattern that appears in the image
plane, itself a result of observing a signal with a wavelength
of Oð1 μmÞ]. Consequently, even higher-order multipole
moments (octupole, dodecapole, hexadecapole moments)
of the Sun may have to be considered for accurate image
modeling and reconstruction of some exoplanetary targets.
These moments break the azimuthal symmetry of the PSF,
introducing caustics instead of the regular Bessel J0 pattern
[9]. This is why we are turning the page on the chapter
dealing with monopole gravitational lenses. With the
present paper, we open a new, exciting area of investigation,
aimed at developing a comprehensive description of
realistic gravitational lenses possessing an arbitrary number
of gravitational multipole moments.
This paper is organized as follows: In Sec. II we discuss

the solution of Maxwell’s equations in the curved space-
time of the solar gravitational field, described at the first
post-Newtonian approximation of the general theory of
relativity. We develop a solution for the Debye potential
using the eikonal approximation. In Sec. III, we formulate a
generic solution for EM waves in the field of a static,
extended gravitational lens. In Sec. IV we develop a general
solution for the EM field, characterizing the scattering of
EM waves on an extended lens. In Sec. V, we study the EM
field in the interference region. We develop a new integral

formulation that describes light diffraction in the strong
interference region. In Sec. VI we discuss the results
obtained and the next steps in our investigation. To aid
with the flow of material in this paper, we placed some
important derivations in appendixes. Appendix A discusses
an approach to Maxwell’s equations for EM waves propa-
gating on the background of the static gravitational field of
an extended lens. In Appendix B, we discuss the eikonal
phase for (i) a generic axisymmetric gravitating body
whose gravitational potential is given by a set of gravita-
tional multipoles, and (ii) generic spatial-trace free tensors
representing bodies with arbitrary gravitational fields.
Finally, in Appendix C, we explore the connection between
our results and the path integral formalism.

II. ELECTROMAGNETIC WAVES IN A STATIC
GRAVITATIONAL FIELD

To describe the optical properties of the solar gravita-
tional lens, we use a static harmonic metric1 in the first
post-Newtonian approximation of the general theory of
relativity. The line element for this metric may be given, in
spherical coordinates ðr; θ;ϕÞ, as [6,18]

ds2 ¼ u−2c2dt2 − u2ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ; ð1Þ

where, to the accuracy sufficient to describe light propa-
gation in the Solar System, the quantity u can be given in
terms of the Newtonian potential U as

u¼ 1þ c−2UþOðc−4Þ; where UðxÞ ¼G
Z

ρðx0Þd3x0
jx− x0j ;

ð2Þ

and ρðxÞ is the mass density that is the source of the
gravitational field.

FIG. 1. The different optical regions of the SGL (from [11])
with the strong interference region formed beyond 547.8 AU.

1The notational conventions used in this paper are the same as
in [7,18]: Latin indices (i; j; k;…) are spacetime indices that run
from 0 to 3. Greek indices α; β;… are spatial indices that run
from 1 to 3. In case of repeated indices in products, the Einstein
summation rule applies: e.g., ambm ¼ P

3
m¼0 amb

m. Bold letters
denote spatial (three-dimensional) vectors: e.g., a ¼ ða1; a2; a3Þ,
b ¼ ðb1; b2; b3Þ. The dot (·) and cross (×) are used to indicate the
Euclidean inner product and cross product of spatial vectors;
following the convention of [6], these are enclosed in round and
square brackets, respectively. Latin indices are raised and lowered
using the metric gmn. The Minkowski (flat) spacetime metric is
given by γmn ¼ diagð1;−1;−1;−1Þ, so that γμνaμbν ¼ −ða · bÞ.
We use powers of the inverse of the speed of light, c−1, and the
gravitational constant,G, as bookkeeping devices for order terms:
in the low-velocity (v ≪ c), weak-field (rg=r ¼ 2GM=rc2 ≪ 1)
approximation, a quantity of Oðc−2Þ ≃OðGÞ, for instance, has a
magnitude comparable to v2=c2 or GM=c2r. The notation
Oðak; blÞ is used to indicate that the preceding expression is
free of terms containing powers of a greater than or equal to k,
and powers of b greater than or equal to l. Other notations are
explained in the paper.
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The metric (1)–(2) allows us to consider effects on the
propagation of light by the gravitational field of the Sun,
due to an arbitrary static gravitational field. Furthermore, it
was shown in [19] that to first order in the gravitational
constant G, a rotating and a nonrotating lens cannot be
distinguished. Thus, to the extent that it contributes to the
quadrupole moment, solar rotation is automatically
accounted for in our formalism.
The gravitational field of the Sun is weak: its potential is

GM=c2r≲ 2 × 10−6 everywhere in the Solar System. This
allows us to carry out calculations to the first post-
Newtonian order, while dropping higher-order terms.
We use the generally covariant form of Maxwell’s

equations for the electromagnetic (EM) field [7,9] and
consider the propagation of an EM wave in the vacuum in
the absence of charges and currents, i.e., jk ¼ ðρ; jÞ ¼ 0.
As we showed in [9,12], for the metric (1) we obtain the
following form for Maxwell’s equations:

curlD ¼ −u2
∂B
c∂tþOðG2Þ; divðu2DÞ ¼ OðG2Þ; ð3Þ

curlB ¼ u2
∂D
c∂tþOðG2Þ; divðu2BÞ ¼ OðG2Þ; ð4Þ

where the differential operators curlF and divF are with
respect to the usual 3-space Euclidean flat metric (see [9]
for technical details).

A. Representation of the EM field
in terms of Debye potentials

To describe the problem of an EM wave propagating in
the gravitational field of an extended lens that induces the
static gravitational field with metric (1), we follow the Mie
diffraction theory [20,21] that allows us to determine the
three-dimensional structure of the EM field diffracted on a
spherical obstruction. This technique is done based repre-
senting the Maxwell equations (3)–(4) in terms of the
Debye potentials (see [9,12] and references therein).
Relying on the approach that we previously developed

(see [9,12]), in Appendix Awe obtain the complete solution
of these equations in terms of the electric and magnetic
Debye potentials [21], eΠ and mΠ. We follow closely the
derivation in [9] (see Appendix E therein) and also in [12]
(see Appendix A therein).
We treat the lens as a compact gravitating body whose

gravitational potential admits a representation in the form
of an infinite series of zonal and tesseral harmonics [e.g., as
given by (B1)]. The result is a system of equations for the
components of a monochromatic EM field, characterized
by the wave number k ¼ ω=c:

D̂r ¼
1

u

� ∂2

∂r2
�
r eΠ
u

�
þ
�
k2u4 − u

�
1

u

�00��r eΠ
u

��
; ð5Þ

D̂θ ¼
1

u2r
∂2ðr eΠÞ
∂r∂θ þ ik

r sin θ
∂ðr mΠÞ
∂ϕ ; ð6Þ

D̂ϕ ¼ 1

u2r sin θ
∂2ðr eΠÞ
∂r∂ϕ −

ik
r
∂ðr mΠÞ

∂θ ; ð7Þ

B̂r ¼
1

u

� ∂2

∂r2
�
r mΠ
u

�
þ
�
k2u4 − u

�
1

u

�00��r mΠ
u

��
; ð8Þ

B̂θ ¼ −
ik

r sin θ
∂ðr eΠÞ
∂ϕ þ 1

u2r
∂2ðr mΠÞ
∂r∂θ ; ð9Þ

B̂ϕ ¼ ik
r
∂ðr eΠÞ
∂θ þ 1

u2r sin θ
∂2ðr mΠÞ
∂r∂ϕ ; ð10Þ

where the electric and magnetic Debye potentials ΠðrÞ ¼
ðeΠ; mΠÞ satisfy the following wave equation:

ðΔþ k2u4Þ
�
Π
u

�
¼ O

�
r2g;

J2
r3

Π
u

�
; ð11Þ

with the quantity u given by (2). The Newtonian potential
U in (2) at this point is unconstrained and can describe an
arbitrary (weak, static) gravitational field. Here, rg ¼
2GM=c2 is the Schwarzschild radius of the lens; J2
characterizes the quadrupole component of the gravita-
tional potential, U, of an extended gravitational lens.
Essentially the solution (5)–(10) together with (11) was

obtained under the thin lens or eikonal approximation
where the primary emphasis was on the effect of the
gravitational field on the phase of the EM wave rather than
its amplitude. This approximation is well justified as the
source and the image plane are at very large distances from
the lens. Our analysis showed that the effects of the higher
order gravitational multipoles, starting from J2, depend on
the distance to the lens and, thus, may be neglected.
As a result, the entire solution to Maxwell’s equations

describing light propagation in the weak gravitational field
with the post-Newtonian metric tensor (1) depends on the
solution of the wave equation for the Debye potential (11).
Using the expression for u from (2), this equation is given
as [see (A40)]�

Δþ k2
�
1þ 4U

c2

���
Π
u

�
¼ O

�
r2g;

J2
r3

Π
u

�
: ð12Þ

Expressions (5)–(10) together (12) represent the solution
of the Mie problem in terms of Debye potentials [20,21], in
the presence of the gravitational field of an extended
gravitating body, taken at the first post-Newtonian approxi-
mation of the general theory of relativity [8,9] under the
eikonal (or, essentially, the thin lens) approximation.
The set of equations (5)–(10) with (12) determines the

Debye potential for the entire problem. We see that the
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solution of (12) now depends on the entire Newtonian
potential, UðrÞ, that may have arbitrary complexity. No
exact solution of this time-independent Schrödinger equa-
tion exists. Thus, we need to develop an approximate
solution that is suitable for our situation. We found an
approach to develop such a solution using the eikonal
approximation.

B. Separating variables in the equation
for the Debye potential

To consider the eikonal approximation, we present the
Newtonian potential, U, as

UðrÞ ¼ GM
r

þ δUðrÞ; ð13Þ

where the first term is the spherically symmetric monopole
contribution and the second term, δUðrÞ, represents the
combined contribution of all the other terms in a suitable
expansion of UðrÞ.
If δUðrÞ is absent, (A40) reduces to the case of

diffraction of the EM waves by a gravitational monopole
(i.e., Schrödinger’s equation with a Coulomb potential—
see details in [9]):�

Δþ k2
�
1þ 2rg

r

���
Π0

u

�
¼ 0: ð14Þ

This equation describes light scattering that is dominated
by a spherical relativistic potential due to a gravitational
monopole (which is equivalent to an attractive Coulomb
potential, discussed in quantum mechanics [22–24]). In our
case, this equation describes the incident wave that travels
toward the lens from the source.
The solution to (14) is well known (see [9] for details). In

this case, Eq. (12) is typically solved by separating
variables [21], which, in spherical polar coordinates, takes
the form [9,13]:

Π0

u
¼ 1

r
RðrÞΘðθÞΦðϕÞ; ð15Þ

with integration constants and coefficients that are deter-
mined by boundary conditions. Direct substitution into (14)
reveals that the functions R, Θ and Φ must satisfy the
following ordinary differential equations:

d2R
dr2

þ
�
k2
�
1þ 2rg

r

�
−

α

r2

�
R ¼ Oðr2gÞ; ð16Þ

1

sin θ
d
dθ

�
sin θ

dΘ
dθ

�
þ
�
α −

β

sin2 θ

�
Θ ¼ Oðr2gÞ; ð17Þ

d2Φ
dϕ2

þ βΦ ¼ Oðr2gÞ: ð18Þ

As we discussed in [9], the solution to (18) is given as
usual [21,23]:

ΦmðϕÞ ¼ e�imϕ → ΦmðϕÞ
¼ am cosðmϕÞ þ bm sinðmϕÞ; ð19Þ

where β ¼ m2, m is an integer and am and bm are
integration constants.
Equation (17) is well known for spherical harmonics.

Single-valued solutions to this equation exist when α ¼
lðlþ 1Þ with (l > jmj, integer). With this condition, the
solution to (17) becomes

ΘlmðθÞ ¼ PðmÞ
l ðcos θÞ: ð20Þ

We now focus on the equation for the radial function
(16), where, because of (17), we have α ¼ lðlþ 1Þ. As a
result, (16) takes the form

d2R
dr2

þ
�
k2
�
1þ 2rg

r

�
−
lðlþ 1Þ

r2

�
R ¼ Oðr2gÞ: ð21Þ

The solution to this equation is given in the form of a
Coulomb function Flðkrg; krÞ [9].
Collecting results for ΦmðϕÞ, ΘlmðθÞ and Rl ¼

Flðkrg; krÞ, we can assemble the ultimate solution to
(14), as was done in [9,12]. This solution is used to
describe the electric and magnetic potentials of the incident
wave, eΠ0 and mΠ0, which may be given in terms of a single
potential Π0ðr; θÞ (see [9] for details):

� eΠ0

mΠ0

�
¼
�
cosϕ

sinϕ

�
Π0ðr;θÞ; where

Π0ðr;θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ1

lðlþ1Þe
iσlFlðkrg;krÞPð1Þ

l ðcosθÞ

þOðr2gÞ: ð22Þ

Therefore, in the case when deviations from the monop-
ole gravitational field represented by the term δUðrÞ in (13)
are absent, we can find a solution for the Debye potential
(14) by separating variables with the ansatz (15) that is used
to deal with the Coulomb potential [8,9]. The structure of
the resulting solution (22) reflects the spherical symmetry
that is preserved in this case. The presence of the monopole
is manifested by the potential term 2rg=r in the equation for
the radial function (16). Note that the other equations (17)
and (18) are not affected by gravity.
The situation changes drastically when the term δUðrÞ is

present in (13). In this case, (12) becomes highly nonlinear
and separation of variables (15) does not work. No exact
solution of this equation is known. However, in some
cases this equation may be solved using well-justified
approximation methods. One such method, the eikonal
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approximation, is particularly useful for high-energy
atomic scattering [25–27] and it is applicable in our case,
which corresponds to the high-energy approximation in
optical scattering [28–30].

C. Finding the Debye potential
with the eikonal approximation

We may now use the result (22) as the basis to find
solutions when U is not restricted to a monopole gravita-
tional field. We extend the discussion in the preceding
subsection by considering the complete post-Newtonian
potentialU of an extended body as the sum of two terms that
includes themonopole field,GM=r, which is long range [9],
and deviations from the monopole, which constitute a short-
range potential, VsrðrÞ ¼ δUðrÞ=c2. This yields the follow-
ing form for the potential term in (A40):

4U
c2

¼ 2rg
r

þ 4Vsr: ð23Þ

This decomposition allows us to proceedwith solving (A40)
that now takes the form�
Δþ k2

�
1þ 2rg

r
þ 4VsrðrÞ

��
ΠðrÞ ¼ O

�
r2g;

J2
r3

Π
�
;

ð24Þ
where Vsr is from (23). In explicit form this short-range
potential is given either by (B23) that is valid for any generic
gravitational field, or expressed in terms of zonal harmonic
coefficients Jn using (B10), which is more suitable to
describe the gravitational field of a rotating, axisymmetric
mass, such as the Sun.
To solve (24), we will treat VsrðrÞ as a perturbation to the

monopole term and will use the eikonal approximation
[7,21,29,31,32]. To implement this approach, we consider a
trial solution in the form

ΠðrÞ ¼ Π0ðrÞϕðrÞ; ð25Þ
whereΠ0ðrÞ is the “free” Debye potential for the monopole
gravitation given by (22) [9,12]. In other words, in the
eikonal approximation the Debye potential Π0ðrÞ, becomes
“distorted” in the presence of the potential Vsr given in
Eq. (B23), by ϕ, a slowly varying function of r, such that

j∇2ϕj ≪ kj∇ϕj: ð26Þ
When substituted into (24), the trial solution (25) yields�
ΔΠ0ðrÞ þ k2

�
1þ 2rg

r

�
Π0ðrÞ

�
ϕðrÞ þ Π0ðrÞΔϕðrÞ

þ 2ð∇Π0ðrÞ · ∇ϕðrÞÞ þ 4k2VsrðrÞΠ0ðrÞϕðrÞ

¼ O
�
r2g;

J2
r3

Π
�
: ð27Þ

As Π0ðrÞ is the solution of the homogeneous equation
for the monopole gravitational field (22) [9,12], the first
term in (27) is zero. Then, we neglect the second term,
Π0ðrÞΔϕðrÞ, because of (26). As a result, from the last two
terms we have

ð∇ lnΠ0ðrÞ · ∇ lnϕðrÞÞ ¼ −2k2VsrðrÞ þOðr2gÞ: ð28Þ

As we discussed above, we assume that contributions
from deviations from the monopole are small and it is
sufficient to keep only terms to Oðr2g; ðJ2=r3ÞΠÞ. Thus, to
formally solve (28) we may present the solution for Π0ðrÞ
at a large distance from the monopole, which yields the
well-known solution for the incident wave in the presence
of a gravitational monopole [see Eq. (23) in [9] ]:

Π0ðrÞ ¼ e�ikðz−rg ln kðr−zÞÞ þOðr2gÞ: ð29Þ

To compute the gradient of Π0ðrÞ, following [9], we
represent the unperturbed trajectory of a ray of light as

rðtÞ ¼ r0 þ kcðt − t0Þ þOðrgÞ; ð30Þ

where k is the unit vector in the incident direction of the
light ray’s propagation path and r0 represents the starting
point. Following [9,33,34], we define b ¼ ½½k × r0� × k� to
be the impact parameter of the unperturbed trajectory of the
light ray. The vector b is directed from the origin of the
coordinate system toward the point of the closest approach
of the unperturbed path of light ray to that origin.
With (30), we introduce the parameter τ ¼ τðtÞ along the

path of the light ray (see details in Appendix B in [9]):

τ ¼ ðk · rÞ ¼ ðk · r0Þ þ cðt − t0Þ; ð31Þ

which may be positive or negative. Note that τ ¼ z cos α
where α is the angle between ez and k. Furthermore, τ ¼ z
when the z axis of the chosen Cartesian coordinate system
is oriented along the incident direction of the light ray. We
can see that the quantity τ evolves from a negative value
(representing a source at a large distance from the lens,
α ≃ π), through τ ¼ 0 (the shortest distance from the lens
where α ¼ π=2), to positive values (with α ≃ 0 at the image
plane.) The parameter τ allows us to rewrite (30) as

rðτÞ ¼ bþ kτ þOðrgÞ; with

krðτÞk≡ rðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þOðrgÞ: ð32Þ

Using (32), the gradient of Πð1ÞðrÞ from (29) may be
computed as
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∇ lnΠ0ðrÞ ¼ �ik

�
k

�
1þ rg

r

�
−
rg
b2

b

�
1þ τ

r

��
þOðr2gÞ: ð33Þ

As a result, (28) takes the form

� ik

��
k

�
1þ rg

r

�
−
rg
b2

b

�
1þ τ

r

��
· ∇ lnϕðrÞ

�
¼ −2VsrðrÞ þOðr2gÞ: ð34Þ

As we want to identify the largest contribution from
corrections to the monopole to light propagation, we keep
only linear terms with respect to gravity. As a result,
neglecting the rg-dependent terms in (34), we may present
(28) as

�ikðk · ∇Þ lnϕ ¼ −2k2Vsr þOðr2gÞ: ð35Þ

We may now compute the eikonal phase due to the
short-range potential Vsr. Using the representation of the
light ray’s path as r ¼ ðb; τÞ given by (32), we observe that
(as was also shown in [9]) the gradient ∇ may be expressed
in terms of the variables along the path as ∇ ¼
∇b þ kd=dτ þOðrgÞ, where ∇b is the gradient along
the direction of the impact parameter b and τ being the
parameter taken along the path. Thus, the differential
operator on the left side of (35) is the derivative along
the light ray’s path, namely ðk · ∇Þ ¼ d=dτ.
As a result, for (35) we have

d lnϕ�

dτ
¼ �ik2Vsr þOðr2gÞ; ð36Þ

the solutions of which are

ϕ�ðb; τÞ ¼ exp

�
�ik

Z
τ

τ0

2Vsrðb; τ0Þdτ0
�
: ð37Þ

We therefore have the following two particular eikonal
solutions of (24) for ΠðrÞ:

ΠðrÞ ¼ Π0ðrÞ expð�iξbðb; τÞÞ þO
�
r2g;

J2
r3

Π
�
; ð38Þ

where we introduced the eikonal phase

ξbðb; τÞ ¼
k
2

Z
τ

τ0

2Vsrðb; τ0Þdτ0 þOðr2gÞ: ð39Þ

The solution given by (38)–(39) was obtained under the
eikonal condition (26) that allows us to consider the effect
of the short-range potential due to gravitational multipoles
[as shown in (23)–(24)] on the phase of the EM wave only,
and not on its amplitude. This is similar to the thin lens

approximation that is extensively used in the description of
many problems on modern optics [21] and gravitational
lensing [5]. That fact is captured by (39) where we assume
that light moves in a straight line before it reaches the lens
and then it changes direction at τ ¼ ðk · rÞ ¼ 0 and moves
again on a straight line towards the observer. Thus, the
phase shift (39) occurs only on the second part of the path.
Considering the structure of solutions (22) and (38), we

note that the eikonal phase, ξbðb; sÞ from (39), depends on
the vector of the impact parameter b and its orientation with
respect to the solar rotational axis. Thus, the presence of
ξbðb; sÞ in (38) is understood in the context of solution
(22), where the sum over l ¼ kb also acts on the
b-dependent eikonal phase. In general, this approach is
similar to that of the Born approximation [24–26,30] or
path integrals in quantum mechanics [35–38]. This point
will become more evident in Sec. V.
In Appendix B 1, we compute the eikonal phases for two

possible forms of the gravitational potential, valid in the
generic case. In the case of the spatial trace-free multipole
moments from (B5), the eikonal phase is given by (B27).
However, in the case of the SGL, the gravitational potential
of the Sun is that of an axisymmetric body best charac-
terized using zonal harmonics (B2) and may be expressed
[39,40] in terms of the usual dimensionless multipole
moments Jl:

U¼GM
r

�
1−

X∞
l¼2

Jl

�
R
r

�
l
Pl

�
s ·x
r

��
þOðc−4Þ; ð40Þ

where s denotes the unit vector along the x3 axis, Pl are the
Legendre polynomials and the quantities M; J2…; Jl cor-
respond to themultipolemoments.Note that, in the case of an
axisymmetric and rotating body with “north-south sym-
metry” (i.e., a body that is symmetric under a reflection with
respect to the plane of rotation), the expression (B2) contains
only the l ¼ 2; 4; 6; 8.:. even moments.
To determine the eikonal phase (39), we use a helio-

centric coordinate system with its z axis aligned with the
wave vector k, so that k ¼ ð0; 0; 1Þ. We introduce a unit
vector in the direction of the impact parameter, b ¼ bnξ,
coordinates on the image plane, x that is located at the
distance z from the Sun, and the unit vector in the direction
of the solar rotation axis, s:

b ¼ bðcosϕξ; sinϕξ; 0Þ; ð41Þ

x ¼ ρðcosϕ; sinϕ; 0Þ; ð42Þ

s ¼ ðsin βs cosϕs; sin βs sinϕs; cos βsÞ: ð43Þ

In this coordinate system, the eikonal phase shift (39)
accumulated by an EM wave propagating in the gravita-
tional field of an axisymmetric body takes an elegant form
[see discussion in Appendix B and the result (B21)]:
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ξbðb; sÞ ¼ −krg
X∞
n¼2

Jn
n

�
R⊙

b

�
n
sinnβs cos½nðϕξ − ϕsÞ�

þOðr2gÞ: ð44Þ

This result provides the context for our investigation below
as it shows the explicit dependencies of the eikonal phase
on the orientation of the vector of the impact parameter with
respect to the lens’ rotational axis.

III. ELECTROMAGNETIC WAVE IN THE FIELD
OF A STATIC EXTENDED GRAVITY LENS

Our next goal is to find a solution to the EM field in that
region. We accomplish this objective using the approach
developed for classical diffraction theory, by finding the set
of equations that determine the EM field via Debye
potentials and then matching these equations with the
incident wave.
At this point, we already have all the key components

needed to develop the solution for the Debye potentials in
the case of the long-range, spherically symmetric gravita-
tional field produced by the solar monopole, and the static
long-range gravitational field produced by deviations from
the monopole, characterized using zonal harmonics.
Following [9,12], a particular solution for the Debye
potential, Π, is obtained by combining results for ΦðϕÞ
from (19) and ΘðθÞ from (20). The solution for the Debye
potential takes the form

Π
u
¼ 1

r

X∞
l¼0

Xl
m¼−l

μlRlðr;bÞ½PðmÞ
l ðcos θÞ�½am cosðmϕÞ

þ bm sinðmϕÞ� þO
�
r2g;

J2
r3

Π
�
; ð45Þ

where the yet to be constructed Rlðr;bÞ is the radial
function and μl, am, bm are arbitrary and as yet unknown
constants. Note that the structure of the solution (45)
preserves the angular symmetries of the monopole case
given by ΦðϕÞ and ΘðθÞ. The presence of the gravitational
zonal harmonics is accounted for by the generalized radial
function Rlðr;bÞ that now depends on b via the eikonal
phase, as shown in (38).
In the vacuum, the solutions for the electric and magnetic

potentials of the incident wave, eΠ0 and mΠ0, were found to
be given in terms of a single potential Π0ðr; θÞ that is given
by (22). In other words, the incident EM wave is not
affected by the gravitational field from the zonal harmonics
of the extended Sun. Its form is identical to that of the free
EM wave propagating in monopole gravity, discussed
in [9].
Considering deviations from spherical symmetry, we

notice that, for large r, the potential VsrðrÞ in (24) can
be neglected in comparison to the Coulomb potential
UcðrÞ ¼ 2k2rg=r and this equation reduces to the

Coulomb equation discussed in [9] with the solution given
by (22). The solution of (24) that is regular at the origin can
thus be written asymptotically as a linear combination of
the regular and irregular Coulomb wave functions
Feðkrg; krÞ and Glðkrg; krÞ, respectively [12,25–27,41],
which are solutions of (24) in the absence of the potential
VsrðrÞ. Asymptotically, at large values of the argument
ðkrÞ, these functions behave as [9,12]

Flðkrg;krÞ∼ sin

�
kðrþ rg ln2krÞþ

lðlþ1Þ
2kr

−
πl
2
þσl

�
;

ð46Þ

Glðkrg;krÞ∼ cos

�
kðrþ rg ln2krÞþ

lðlþ1Þ
2kr

−
πl
2
þσl

�
:

ð47Þ

In the case of centrally symmetric potentials, since the
Coulomb potential falls off slower than the centrifugal
potential [i.e., the lðlþ 1Þ=r2 term in (46) and (47)] at
large distances, it dominates the asymptotic behavior of the
effective potential in every partial wave. Hence, we can
generally look for a solution satisfying the following
boundary conditions [27]:

RlðrÞ ∼
r→0

nrlþ1; ð48Þ

RlðrÞ ∼
r→∞

Flðkrg;krÞþ tanδlGlðkrg;krÞ

∝
kr→∞

sin

�
kðrþrg ln2krÞþ

lðlþ1Þ
2kr

−
πl
2
þσlþδl

�
;

ð49Þ

where n is a normalization factor and Flðkrg; krÞ and
Glðkrg; krÞ are solutions of (24) in the absence of
the potential VsrðrÞ, which, as we discussed above, are
respectively regular and irregular at the origin. The real
quantities δlðkÞ introduced by these equations are the phase
shifts due to the short-range potential VsrðrÞ (B23) in the
presence of the Coulomb potential UcðrÞ ¼ 2k2rg=r in
(24). We note that δlðkÞ fully describes the non-Coulombic
part of the scattering and vanishes when this short-range
potential is absent.
In the case of generic gravitational fields, we can satisfy

the conditions (48)–(49) by choosing the function RlðrÞ as
a linear combination of the two solutions (38), where
δlðkÞ is replaced by the eikonal phase, ξbðbÞ. One way to
do that is by relying on the two solutions to (38), taken in
the form of the incident and scattered waves [42], which are
correspondingly given by the functions H−

l ðkrg; krÞ and
Hþ

l ðkrg; krÞ, and to show explicit dependence on the
eikonal phase shift, ξbðbÞ, which can be captured in the
following form:
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Rlðr;bÞ ¼
1

2i
ðHþ

l ðkrg; krÞeiξbðbÞ −H−
l ðkrg; krÞe−iξbðbÞÞ;

ð50Þ

where the Coulomb-Hankel functions Hð�Þ
l are related to

the Coulomb functions by H�
l ðkrg; krÞ ¼ Glðkrg; krÞ �

iFlðkrg; krÞ (for discussion, see Appendix A of [9])
and their asymptotic behavior is given by (see
Appendix F of [9])

H�
l ðkrg;krÞ

∼
kr→∞

exp

�
�i

�
kðrþ rg ln2krÞþ

lðlþ 1Þ
2kr

−
πl
2
þ σl

��
;

ð51Þ

where ξbðbÞ in (50) is the eikonal phase shift that is
accumulated by the EM wave along its entire path. The
expression for this quantity is given by (39), which, for an
axisymmetric body, is computed by (44).
The form of the radial function Rl from (50) captures our

expectation that, in the presence of a potential Vsr from
(B23), the Coulomb-Hankel functions [which represent the
radial free-particle wave function solutions of the homo-
geneous equation (24)] become “distorted” by this short-
range potential due to the gravitational mass multipoles.
We can verify that Rl in the form of (50) also satisfies the
asymptotic boundary conditions (48)–(49). Indeed, as the
gravitational potential for the inner region of the Sun
vanishes, the eikonal phase ξb is zero for r < R⊙.
Therefore, as r → 0, the radial function (50) becomes
Rlðr;bÞ → Flðkrg; krÞ, where the function Flðkrg; krÞ
obeys the condition (48). Next, we consider another limit,
when r → ∞. Using the asymptotic behavior of H�

l from
(51), we see that, as r → ∞, the radial function obeys the
asymptotic condition (49) taking the form where the phase
shift δl is given by the eikonal phase ξb introduced by (39).
We may put the result (50) in the following equivalent

form:

Rlðr;bÞ ¼ cos ξbðbÞFlðkrg; krÞ þ sin ξbðbÞGlðkrg; krÞ;
ð52Þ

which explicitly shows the phase shift, ξbðbÞ, induced by
the short-range extended gravity potential, clearly satisfy-
ing the boundary condition (49) with the quantity ξðbÞ
from (39) being the anticipated phase shift.
To match the potentials (45) of the incident and scattered

waves outside, the latter must be expressed in a similar
form but with arbitrary coefficients. Only the function
Flðkrg; krÞ may be used in the expression for the potential
inside the sphere since Glðkrg; krÞ becomes infinite at the
origin. On the other hand, the scattered wave must vanish at
infinity. The Coulomb-Hankel functions Hþ

l ðkrg; krÞ are

characterized by precisely this property, which makes
them suitable as representations of scattered waves. For
large values of the argument kr, the result behaves as
eikðrþrg ln 2krÞ and the Debye potential Π ∝ eikðrþrg ln 2krÞ=r
for large r. Thus, at large distances from the sphere the
scattered wave is spherical (with the ln term in the phase
due to the modification by the Coulomb potential), with its
center at the origin r ¼ 0. Accordingly, we use it in the
expression for the scattered wave.
Collecting results for the functions ΦðϕÞ and ΘðθÞ,

respectively given by (19) and (20), and Rlðr;bÞ ¼
Hþ

l ðkrg; krÞeiξbðbÞ from (38), toOðr2g; ðJ2=r3ÞΠÞ, we obtain
the Debye potential for the scattered wave:

Πs ¼
u
r

X∞
l¼0

Xl
m¼−l

alH
þ
l ðkrg; krÞeiξbðbÞ½PðmÞ

l ðcos θÞ�

× ½a0m cosðmϕÞ þ b0m sinðmϕÞ�; ð53Þ

whereal, a0m, b0m are arbitrary and as yet unknown constants.
Representing the potential via Flðkrg; krÞ is appropriate.

The trial solution to (24) for the electric and magnetic
Debye potentials relies on the radial function Rlðr;bÞ
given by (52) and has the form

Πin ¼
u
r

X∞
l¼0

Xl
m¼−l

blfcos ξbðbÞFlðkrg; krÞ

þ sin ξbðbÞGlðkrg; krÞg½PðmÞ
l ðcos θÞ�

× ½am cosðmϕÞ þ bm sinðmϕÞ�; ð54Þ

where bl, am, bm are arbitrary and yet unknown constants.
The boundary (continuity) conditions (see discussion in

[9,21]), imposed on the quantities (A41) at some radius
r ¼ R⋆

⊙ ¼ R⊙ þ rg, are written in full as

∂
∂r

�
r eΠ0

u
þ r eΠsffiffiffi

ϵ
p

u

�				
r¼R⋆

⊙

¼ ∂
∂r

�
r eΠinffiffiffi

ϵ
p

u

�				
r¼R⋆

⊙

; ð55Þ

∂
∂r

�
r mΠ0

u
þ r mΠsffiffiffi

μ
p

u

�				
r¼R⋆

⊙

¼ ∂
∂r

�
r mΠinffiffiffi

μ
p

u

�				
r¼R⋆

⊙

; ð56Þ

�
r eΠ0

u
þ r eΠsffiffiffi

ϵ
p

u

�				
r¼R⋆

⊙

¼
�
r eΠinffiffiffi

ϵ
p

u

�				
r¼R⋆

⊙

; ð57Þ

�
r mΠ0

u
þ

mΠsffiffiffi
μ

p
u

�				
r¼R⋆

⊙

¼
�
r mΠinffiffiffi

μ
p

u

�				
r¼R⋆

⊙

: ð58Þ

We now make use of the symmetry of the geometry of
the problem [21] and by applying the boundary conditions
(55)–(58). We recall that we can use a single Debye
potential Π in (53) and (54) to represent electric and
magnetic fields. We find that the constants am and bm
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for the electric Debye potentials are a1 ¼ 1, b1 ¼ 0 and
am ¼ bm ¼ 0 for m ≥ 2. For the magnetic Debye poten-
tials, we obtain a1 ¼ 0, b1 ¼ 1 and am ¼ bm ¼ 0 for
m ≥ 2. The values are identical for a0m and b0m.
As a result, the solutions for the electric and magnetic

potentials of the scattered wave, eΠs and mΠs, may be given
in terms of a single potential Πsðr; θÞ (see [9] for details),
which, to Oðr2g; ðJ2=r3ÞΠÞ, is given by

� eΠs
mΠs

�
¼

�
cosϕ

sinϕ

�
Πsðr; θÞ; where

Πsðr; θÞ ¼
u
r

X∞
l¼1

alH
þ
l ðkrg; krÞeiξbðbÞPð1Þ

l ðcos θÞ: ð59Þ

In a relevant scattering scenario, the EM wave and the
Sun are well separated initially, so the Debye potential for
the incident wave can be expected to have the same form as
for the pure monopole case that includes only the Coulomb

potential that is given by (22). Therefore, the Debye
potential for the inner region has the form:

� eΠin
mΠin

�
¼

�
cosϕ

sinϕ

�
Πinðr; θÞ; ð60Þ

with the potential Πin given, to Oðr2g; ðJ2=r3ÞΠÞ, as

Πinðr; θÞ ¼
u
r

X∞
l¼1

blfcos ξbðbÞFlðkrg; krÞ

þ sin ξbðbÞGlðkrg; krÞgPð1Þ
l ðcos θÞ: ð61Þ

We thus expressed all the potentials in the series (45) and
any unknown constants can now be determined easily. If we
now substitute the expressions (22), (59) and (60)–(61) into
the boundary conditions (55)–(58), we obtain the following
linear relationships between the coefficients al and bl:

�
E0

k2
il−1

2lþ 1

lðlþ 1Þ e
iσlF0

lðkrg; krÞ þ alðHþ
l ðkrg; krÞeiξbðbÞÞ0

�				
r¼R⋆

⊙

¼ blR0
lðr;bÞjr¼R⋆

⊙
; ð62Þ

�
E0

k2
il−1

2lþ 1

lðlþ 1Þ e
iσlFlðkrg; krÞ þ alH

þ
l ðkrg; krÞeiξbðbÞ

�				
r¼R⋆

⊙

¼ blRlðr;bÞjr¼R⋆
⊙
; ð63Þ

where RlðrÞ is from (52) and 0 ¼ d=dr. We now define, for
convenience, αl and βl as

al ¼ E0

k2
il−1

2lþ 1

lðlþ 1Þ e
iσlαl and

bl ¼ E0

k2
il−1

2lþ 1

lðlþ 1Þ e
iσlβl: ð64Þ

From (62)–(63), we have

F0
lðR⋆

⊙Þ þ αlH
þ
l
0ðR⋆

⊙ÞeiξbðbÞ ¼ βlR0
lðR⋆

⊙;bÞ; ð65Þ

FlðR⋆
⊙Þ þ αlH

þ
l ðR⋆

⊙ÞeiξbðbÞ ¼ βlRlðR⋆
⊙;bÞ; ð66Þ

whereFlðR⋆
⊙Þ¼Flðkrg;kR⋆

⊙Þ andHþ
l ðR⋆

⊙Þ¼Hþ
l ðkrg;kR⋆

⊙Þ
with similar definitions for the derivatives of these func-
tions. Equations (65)–(66) may now be solved to determine
the two sets of coefficients αl and βl:

αl ¼ e−iξbðbÞ
FlðR⋆

⊙ÞR0
lðR⋆

⊙;bÞ − F0
lðR⋆

⊙ÞRlðR⋆
⊙;bÞ

RlðR⋆
⊙;bÞHþ

l
0ðR⋆

⊙Þ − R0
lðR⋆

⊙;bÞHþ
l ðR⋆

⊙Þ
;

ð67Þ

βl ¼ FlðR⋆
⊙ÞHþ0

lðR⋆
⊙Þ − F0

lðR⋆
⊙ÞHþ

l ðR⋆
⊙Þ

RlðR⋆
⊙;bÞHþ

l
0ðR⋆

⊙Þ − R0
lðR⋆

⊙ÞHþ
l ðR⋆

⊙;bÞ
: ð68Þ

Taking into account the asymptotic behavior of all the
functions involved, namely (51) for Hþ

l and (46)–(47)
for Fl and Gl, we have the following solution for the
coefficients αl and βl:

αl ¼ sin ξbðbÞ; βl ¼ eiξbðbÞ; ð69Þ
where ξbðbÞ is the phase shift induced by the gravitational
multipoles to the phase of the EM wave propagating
through the Solar System.
Therefore, using the value for al from (64), together with

αl from (69), we determine that the solution for the
scattered potential (59) takes the form

Πsðr;θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þe
iσl sin ξbðbÞHþ

l ðkrg; krÞ

× eiξbðbÞPð1Þ
l ðcosθÞ; ð70Þ

which we can present as

Πsðr; θÞ ¼
E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlHþ

l ðkrg; krÞ

× ðe2iξbðbÞ − 1ÞPð1Þ
l ðcos θÞ: ð71Þ

In the region outside the Sun, r > R⋆
⊙, we may take the

asymptotic form for the Coulomb-Hankel function and
present (71) as
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Πsðr; θÞ ¼ −
E0

2k2
u
r
eikðrþrg ln 2krÞ

X∞
l¼1

2lþ 1

lðlþ 1Þ
× eið2σlþ

lðlþ1Þ
2kr Þðe2iξbðbÞ − 1ÞPð1Þ

l ðcos θÞ: ð72Þ

As a result, using (22) and (71), we present the Debye
potential in the region outside the Sun, r > R⊙, in the
following form:

Πoutðr; θÞ ¼ Π0ðr; θÞ þ Πsðr; θÞ

¼ E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσl

�
Flðkrg; krÞ

þ 1

2i
ðe2iξbðbÞ − 1ÞHþ

l ðkrg; krÞ
�
Pð1Þ
l ðcos θÞ:

ð73Þ

Similarly, substituting the value for bl from (64),
together with βl from (69), we determine the solution
for the inner Debye potential (69) in the form

Πinðr;θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þe
iðσlþξbðbÞÞ

× fcosξbðbÞFlðkrg;krÞþ sinξbðbÞGlðkrg;krÞg
×Pð1Þ

l ðcosθÞ: ð74Þ

As solar gravity is rather weak, we may use the
asymptotic expressions for Fl, Gl and H�

l for r ≥ R⊙.
Therefore, the radial function Rlðr;bÞ from (50) [or,
equivalently, from (52)] may be given as

Rlðr;bÞ

¼ 1

2i
ðHþ

l ðkrg; krÞeiξbðbÞ −H−
l ðkrg; krÞe−iξbðbÞÞ

¼ e−iξbðbÞ
�
Flðkrg; krÞ þ

1

2i
ðe2iξbðbÞ − 1ÞHþ

l ðkrg; krÞ
�
;

ð75Þ

where ξb ¼ ξbðbÞ is the eikonal phase.
As a result, outside the Sun, we may present (74) in the

following equivalent form:

Πinðr; θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσl

�
Flðkrg; krÞ

þ 1

2i
ðe2iξbðbÞ − 1ÞHþ

l ðkrg; krÞ
�
Pð1Þ
l ðcos θÞ:

ð76Þ

The solution for the Debye potential, Πðr; θÞ from (76),
describing the propagation of the EM wave on the

background of the static gravitational monopole and the
short-range multipole gravitational field takes the form

Πinðr;θÞ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ1

lðlþ1Þe
iσlFlðkrg;krÞPð1Þ

l ðcosθÞ

þ E0

2ik2
u
r

X∞
l¼1

il−1
2lþ1

lðlþ1Þe
iσlðe2iξbðbÞ−1Þ

×HðþÞ
l ðkrg;krÞPð1Þ

l ðcosθÞþO
�
r2g;

J2
r3
Π
�
: ð77Þ

The first term in (76) is the Debye potential of an EM
wave propagating in a vacuum but modified by the gravity
of extended Sun. The second term represents the effect of
the solar gravitational multipoles on the propagation of the
EM waves. Notice that, as the distance increases, this term
approaches the form of the Debye potential Πs for the
scattered EM field given by (72).
Thus, we have identified all the Debye potentials

involved in the Mie problem [20], namely the potential
Π0 given by (22) representing the incident EM field, the
potential Πs from (72) describing the scattered EM field,
and the potential Πin from (76) total field.

IV. GENERAL SOLUTION FOR THE EM FIELD

To describe the scattering of light by the extended Sun,
we use solutions for the Debye potential representing the
scattered EM wave (72) and the EM wave (77). The
presence of the Sun itself is not yet captured. For this,
we need to set additional boundary conditions that describe
the interaction of the Sun with the incident radiation.
Similarly to [9,13], we apply the fully absorbing boundary
conditions that represent the physical size and the surface
properties of the Sun [12,43].
We begin with the area that lies outside the Sun where

three regions are present, namely (i) the shadow region,
(ii) the geometric optics region, and (iii) the interference
region. Clearly, as far as imaging with the SGL is con-
cerned, the interference region is of the greatest importance.
This is where the SGL focuses light coming from a distant
object, forming an image.

A. Fully absorbing boundary conditions

Boundary conditions representing the opaque Sun were
introduced in [44] and were used in [9,13]. Here we use
these conditions again. Specifically, to set the boundary
conditions, we rely on the semiclassical analogy between
the partial momentum, l, and the impact parameter, b, that
is given as l ¼ kb [23,24].
To set the boundary conditions, we require that rays with

impact parameters b ≤ R⋆
⊙ ¼ R⊙ þ rg are completely

absorbed by the Sun [9]. Thus, the fully absorbing
boundary condition signifies that all the radiation inter-
cepted by the body of the Sun is fully absorbed by it and no
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reflection or coherent reemission occurs. All intercepted
radiation is transformed into some other forms of energy,
notably heat. Thus, we require that no scattered waves exist
with impact parameter b ≪ R⋆

⊙ or, equivalently, for
l ≤ kR⋆

⊙. Such formulation relies on the concept of the
semiclassical impact parameter b and its relationship with
the partial momentum, l, as l ¼ kb. (A relevant discussion
on this relation between l and b is on p. 29 of [45] with
reference to [46].) In terms of the boundary conditions, this
means that we need to subtract the scattered waves from the
incident wave for l ≤ kR⋆

⊙, as was discussed in [9].
Furthermore, as it was shown in [43], the fully absorbing
boundary conditions introduce a fictitious EM field that
precisely compensates the incident field in the area behind
the Sun. This area has the shape of a rotational hyperboloid
that starts directly at the solar surface behind the Sun
and extends to the vertex of the hyperboloid at z0 ¼
R2
⊙=2rg ≃ 547.8 AU.

B. The Debye potential for the region
outside the Sun

To implement the boundary conditions for the EM wave
outside the Sun, we realize that the total EM field in this
region is given as the sum of the incident and scattered
waves, Π ¼ Π0 þ Πs, with these two potentials given by
(22) and (72), correspondingly. Accordingly, we use (73),

which represents the Debye potential in the region of
interest and is given as

Πðr;θÞ¼Π0ðr;θÞþΠsðr;θÞ

¼E0

k2
u
r

X∞
l¼1

il−1
2lþ1

lðlþ1Þe
iσl

�
Flðkrg;krÞ

þ 1

2i
ðe2iξbðbÞ−1ÞHþ

l ðkrg;krÞ
�
Pð1Þ
l ðcosθÞ: ð78Þ

Next, relying on the representation of the regular
Coulomb function Fl via incoming Hþ

l and outgoing
H−

l waves as Fl ¼ ðHþ
l −H−

l Þ=2i [discussed in [9] and
also by the expression given after (50)], we may express the
Debye potential (78) as

Πðr; θÞ ¼ E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlfe2iξbðbÞHþ

l ðkrg; krÞ

−H−
l ðkrg; krÞgPð1Þ

l ðcos θÞ: ð79Þ

This form of the combined Debye potential is convenient
for implementing the fully absorbing boundary conditions
discussed in Sec. IVA. Specifically, subtracting from (79)
the outgoing wave (i.e., ∝HðþÞ

l ) for the impact parameters
b ≤ R⋆

⊙ or equivalently for l ∈ ½1; kR⋆
⊙�, we have

Πðr; θÞ ¼ E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlfe2iξbðbÞHþ

l ðkrg; krÞ −H−
l ðkrg; krÞgPð1Þ

l ðcos θÞ

−
E0

2ik2
u
r

XkR⋆
⊙

l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσle2iξbðbÞHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ; ð80Þ

or, equivalently, coming back to the form (78),

Πðr; θÞ ¼ Π0ðr; θÞ þ
E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlðe2iξbðbÞ − 1ÞHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ

−
E0

2ik2
u
r

XkR⋆
⊙

l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσle2iξbðbÞHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ: ð81Þ

This is a rather complex expression. It requires the tools
of numerical analysis to fully explore its behavior and the
resulting EM field [45–47]. However, in most practically
important applications, we need to know the field in the
forward direction. Furthermore, our main interest is to
study the largest impact of the extended gravity on light
propagation, which corresponds to the smallest values of
the impact parameter. In this situation, we may simplify the
result (81) by taking into account the asymptotic behavior
of the function Hþ

l ðkrg; krÞ, considering the field at large
heliocentric distances, such that kr ≫ l, where l is the

order of the Coulomb function (see p. 631 of [48]). For
kr → ∞ and also for r ≫ rt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

=k (see [9,13]),
such an expression is given in the form [12]:

lim
kr→∞

H�
l ðkrg; krÞ

∼ exp

�
�i

�
kðrþ rg ln 2krÞ þ

lðlþ 1Þ
2kr

þ σl −
πl
2

��
þOððkrÞ−2; r2gÞ; ð82Þ
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which includes the contribution from the centrifugal poten-
tial in the radial equation (21) (see e.g., Appendix C of [12],
Appendix A in [49] or [47]). In fact, expression (82) extends
the argument of (51) to shorter distances, closer to the
turning point of the potential (see the relevant discussion in
Appendix F of [9]). By including the extended centrifugal
term in (82) [i.e., shown by the terms with various powers of

lðlþ 1Þ=2kr], we can now better describe the bending of
the trajectory of a light ray under the combined influence of
extended gravity.
We use the approximate behavior of Hþ

l given by (82)
and use it in (81) to present the solution for the Debye
potential in the following form:

Πðr; θÞ ¼ Π0ðr; θÞ þ
ueikðrþrg ln 2krÞ

r

�
E0

2k2
XkR⋆

⊙

l¼1

2lþ 1

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr ÞPð1Þ
l ðcos θÞ

−
E0

2k2
X∞

l¼kR⋆
⊙

2lþ 1

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr Þðei2ξbðbÞ − 1ÞPð1Þ
l ðcos θÞ

�
þO

�
r2g;

J2
r3

Π
�

¼ Π0ðr; θÞ þ Πbcðr; θÞ þ ΠGðr; θÞ: ð83Þ

The first term in (83),Π0ðr; θÞ, is the Debye potential that
represents the incident EM wave propagating in the vacuum
on the background of a post-Newtonian gravity field pro-
duced by a gravitational monopole. The solution forΠ0ðr; θÞ
is known and is given by (22) in the form of infinite series
with respect to partial momenta, l (see [9,12]).
The second term in (83), Πbcðr; θÞ, is due to the physical

obscuration introduced by the Sun and was derived by
applying the fully absorbing boundary conditions. This term
is responsible for the geometric shadow behind the Sun.
The third term in (83), ΠGðr; θÞ, quantifies the contri-

bution of the extended gravitational field to the scattering of
the EM wave.
With the solution for the Debye potential given by (83),

and with the help of (5)–(10) (also see [9]), we may now
compute the EM field in the various regions involved.
Given the smallness of the ratio rgJ2R2

⊙=r3, we may neglect
the distance-dependent effects of the solar extended gravity
on the amplitude of the EM wave. Thus, the extended
gravity contributes to the delay of the EM wave and is fully
accounted for by the solution for the Debye potentials.
Therefore, we can use the following expressions to con-
struct the EM field in the static, gravity field produced by
an extended gravity (see details in [9,12]):

�
D̂r

B̂r

�
¼

�
cosϕ

sinϕ

�
e−iωtαðr; θ;ϕÞ;

�
D̂θ

B̂θ

�
¼

�
cosϕ

sinϕ

�
e−iωtβðr; θ;ϕÞ;

�
D̂ϕ

B̂ϕ

�
¼

�− sinϕ

cosϕ

�
e−iωtγðr; θ;ϕÞ; ð84Þ

with the quantities α, β and γ computed from the known
Debye potential, Π, as

αðr; θ;ϕÞ ¼ 1

u

� ∂2

∂r2
�
rΠ
u

�
þ k2u4

�
rΠ
u

��
þO

��
1

u

�00�
;

ð85Þ

βðr; θ;ϕÞ ¼ 1

u2r
∂2ðrΠÞ
∂r∂θ þ ikðrΠÞ

r sin θ
; ð86Þ

γðr; θ;ϕÞ ¼ 1

u2r sin θ
∂ðrΠÞ
∂r þ ik

r
∂ðrΠÞ
∂θ : ð87Þ

This completes the solution for the Debye potentials on
the background of a spherically symmetric, static gravita-
tional field of the Sun. We will use (84)–(87) to compute
the relevant EM fields.

C. EM field in the shadow region

In the shadow behind the Sun (i.e., for impact parameters
b ≤ R⋆

⊙) the EM field is represented by the Debye potential
of the shadow, Πsh, which is given as

Πshðr;θÞ¼Π0ðr;θÞþ
ueikðrþrg ln2krÞ

r
E0

2k2
XkR⋆

⊙

l¼1

2lþ1

lðlþ1Þ

×eið2σlþ
lðlþ1Þ
2kr ÞPð1Þ

l ðcosθÞþO
�
r2g;

J2
r3
Π
�
; ð88Þ

where Π0ðr; θÞ is well represented by (22). As discussed in
[9,43], the potential (88) produces no EM field. In other
words, there is no light in the shadow. Furthermore, as the
solar boundary is rather diffuse, there is no expectation for a
Poisson-Arago bright spot to form in this region.
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D. EM field outside the shadow

In the region behind the Sun but outside the solar shadow
(i.e., for light rays with impact parameters b > R⊙) which
includes both the geometric optics and interference regions
(in the immediate vicinity of the focal line), the EM field is
derived from the Debye potential given by the remaining
terms in (83) to Oðr2g; J2=r3Þ as

Πðr; θÞ ¼ Π0ðr; θÞ −
ueikðrþrg ln 2krÞ

r
E0

2k2
X∞

l¼kR⋆
⊙

2lþ 1

lðlþ 1Þ

× eið2σlþ
lðlþ1Þ
2kr Þðei2ξbðbÞ − 1ÞPð1Þ

l ðcos θÞ; ð89Þ

where for the geometric optics region the potential Π0ðr; θÞ
is well represented by (22).
Expression (89) is our main result for the regions outside

the shadow region, i.e., b ≥ R⋆
⊙. It contains all the infor-

mation needed to describe the total EM field originating
from an incident Coulomb-modified plane wave that passed
through the region of the extended solar gravity field,
characterized by the distance dependence that diminishes as
r−3 or faster.
To evaluate the total solution for the Debye potential

(89), we present it in the following compact form:

Πðr; θÞ ¼ Π0ðr; θÞ þ E0fGðr; θ;ϕÞ
ueikðrþrg ln 2krÞ

r
; ð90Þ

where the extended gravity scattering amplitude fGðr; θ;ϕÞ
is given by

fGðr; θ;ϕÞ ¼ −
1

2k2
X∞

l¼kR⋆
⊙

2lþ 1

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr Þ

× ðei2ξbðbÞ − 1ÞPð1Þ
l ðcos θÞ þO

�
r2g;

J2
r3

Π
�
:

ð91Þ

We note that because of the contribution from the
centrifugal potential in (82), the scattering amplitude
fpðr; θÞ is now also a function of the heliocentric distance
[13]. This is not the case in typical problems describing
nuclear and atomic scattering [23,24,50,51]. However, as
we observed in [9,13,49], when we are interested in the
trajectories of light rays, the presence of such dependence
and especially the ∝ 1=r term in the phase of the scattering
amplitude (91) allows us to properly describe the bending
of the light rays in the presence of gravity together with the
contribution from deviations from spherical symmetry.
As a result, the Debye potential takes the form

ΠGðr; θÞ ¼ E0fGðr; θ;ϕÞ
ueikðrþrg ln 2krÞ

r
; ð92Þ

with the extended gravity scattering amplitude fGðr; θÞ
given by (91). We use these expressions to derive the
components of the EM field produced by this wave. For
this, we substitute (92)–(91) in the expressions (85)–(87) to
derive the factors αðr; θ;ϕÞ, βðr; θ;ϕÞ and γðr; θ;ϕÞ, which
to Oðr2g; J2=r3Þ are computed to be

αðr; θ;ϕÞ ¼ −E0

ueikðrþrg ln 2krÞ

k2r2
X∞

l¼kR⋆
⊙

�
lþ 1

2

�
eið2σlþ

lðlþ1Þ
2kr Þðei2ξbðbÞ − 1ÞPð1Þ

l ðcos θÞ
�
1 −

lðlþ 1Þ
4k2r2

�
; ð93Þ

βðr; θ;ϕÞ ¼ E0

ueikðrþrg ln 2krÞ

ikr

×
X∞

l¼kR⋆
⊙

lþ 1
2

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr Þðei2ξbðbÞ − 1Þ
�∂Pð1Þ

l ðcos θÞ
∂θ

�
1 −

lðlþ 1Þ
2u2k2r2

�
þ Pð1Þ

l ðcos θÞ
sin θ

�
; ð94Þ

γðr; θ;ϕÞ ¼ E0

ueikðrþrg ln 2krÞ

ikr

×
X∞

l¼kR⋆
⊙

lþ 1
2

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr Þðei2ξbðbÞ − 1Þ
�∂Pð1Þ

l ðcos θÞ
∂θ þ Pð1Þ

l ðcos θÞ
sin θ

�
1 −

lðlþ 1Þ
2u2k2r2

��
; ð95Þ

where we neglected small terms that behave as ∝ i=ðu2krÞ;
terms ∝ ikrg=l2 were also omitted because of the large
partial momenta involved, l ≥ kR⋆

⊙. Terms in both of these
groups are negligibly small when compared to the leading

terms in each of these expressions above (a similar
conclusion was reached in [12,13]).
This is an important result as it allows us to describe the

EM field in all the regions of interest for the SGL, namely
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the strong and weak interference regions and the region of
geometric optics.

V. EM FIELD IN THE INTERFERENCE REGION

Results from the previous section allow us to study
optical properties of the SGL in the case of extended
gravitational lens. Our primary concern is the strong

interference region: the area behind the Sun, reachable
by light rays with impact parameters b > R⋆

⊙. The focal
region of the SGL begins where r > 2b2=2rg and
0 ≤ θ ≃

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
. The EM field is derived from the

Debye potential (90)–(91), given by the factors α, β and
γ from (93)–(95). In the strong interference region, these
expressions take the following form [9,11,12]:

αðr; θ;ϕÞ ¼ −E0

ueikðrþrg ln 2krÞ

k2r2
X∞

l¼kR⋆
⊙

�
lþ 1

2

�
eið2σlþ

lðlþ1Þ
2kr Þðei2ξbðbÞ − 1ÞPð1Þ

l ðcos θÞ
�
1þO

�
rg
r
; r2g; J2

��
; ð96Þ

γðr; θ;ϕÞ ¼ βðr; θ;ϕÞ ¼ E0

ueikðrþrg ln 2krÞ

ikr

×
X∞

l¼kR⋆
⊙

lþ 1
2

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr Þðei2ξbðbÞ − 1Þ
�∂Pð1Þ

l ðcos θÞ
∂θ þ Pð1Þ

l ðcos θÞ
sin θ

��
1þO

�
rg
r
; r2g; J2

��
: ð97Þ

We recognize that (96)–(97) represent the scattered EM
field in the interference region. As is evident in the structure
of the expression (90), the term ðei2ξbðbÞ − 1Þ present in
these expressions leads to formation of twowaves—the one
that is ∝ ei2ξbðbÞ is the EM wave due to diffraction of light
by the gravitational multipoles, while the ∝ −1 results in
the term that cancels the incident wave (see [9,12]). Thus,
without loss of generality we may drop the term∝ −1 in the

term ðei2ξbðbÞ − 1Þ. This will directly yield the solution with
the corresponding scattering amplitude that can be used to
characterize the EM field that was diffracted on the
extended solar gravitational field.
At this point, we may replace the sums in (96)–(97) with

an integral [accounting for the fact that l ≫ 1 and keeping
the terms up to OðθÞ] to be evaluated with the method of
stationary phase [with βðr; θ;ϕÞ ¼ γðr; θ;ϕÞ]:

αðr; θ;ϕÞ ¼ −E0

ueikðrþrg ln 2krÞ

k2r2

Z
∞

l¼kR⋆
⊙

ldleið2σlþl2
2krþ2ξbðbÞÞPð1Þ

l ðcos θÞ
�
1þO

�
θ;
rg
r
; r2g; J2

��
; ð98Þ

γðr; θ;ϕÞ ¼ E0

ueikðrþrg ln 2krÞ

ikr

Z
∞

l¼kR⋆
⊙

dl
l

eið2σlþl2
2krþ2ξbðbÞÞ

�∂Pð1Þ
l ðcos θÞ
∂θ þ Pð1Þ

l ðcos θÞ
sin θ

��
1þO

�
θ;
rg
r
; r2g; J2

��
: ð99Þ

To evaluate these expressions in the interference region and for 0 ≤ θ ≃
ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
, we use the asymptotic representation

for Plðcos θÞ and l ≫ 1 from [47,52–54]

Plðcos θÞ ¼
ffiffiffiffiffiffiffiffiffi
θ

sin θ

r
J0ðlθÞ þOðθ2Þ: ð100Þ

For an improved explicit two-term uniformly valid asymptotic form of this expression, check [55]. We use the expression

Pð1Þ
l ðcos θÞ ¼ −

∂Plðcos θÞ
∂θ ¼ lJ1ðlθÞ þ

1

6
θJ0ðlθÞ þOðθ2Þ; ð101Þ

to derive

Pð1Þ
l ðcos θÞ
sin θ

¼ 1

2
l2ðJ0ðlθÞ þ J2ðlθÞÞ;

dPð1Þ
l ðcos θÞ
dθ

¼ 1

2
l2ðJ0ðlθÞ − J2ðlθÞÞ: ð102Þ
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Using expressions (101) and (102) in (98)–(99), we have

αðr; θ;ϕÞ ¼ −E0

ueikðrþrg ln 2krÞ

k2r2

Z
∞

l¼kR⋆
⊙

l2dlJ1ðlθÞeið2σlþl2
2krþ2ξbðbÞÞ

�
1þO

�
θ;
rg
r
; r2g; J2

��
; ð103Þ

γðr; θ;ϕÞ ¼ E0

ueikðrþrg ln 2krÞ

ikr

Z
∞

l¼kR⋆
⊙

ldlJ0ðlθÞeið2σlþl2
2krþ2ξbðbÞÞ

�
1þO

�
θ;
rg
r
; r2g; J2

��
: ð104Þ

In the case of a pure gravitational monopole, the eikonal
phase ξbðbÞ in (103)–(104) is absent. In that case, these
integrals can be evaluated using the method of stationary
phase, leading to the well-known result [9,12,56] with the
PSF ∝ J20 of a monopole (i.e., a point mass or spherically-
symmetric) lens.
However, in the presence of ξbðbÞ, the method of

stationary phase is not applicable as the expressions
(103)–(104) now have angular dependence that is not
captured by the integrals. Therefore, we need a method
that can address this by transforming these integrals into an
appropriate form that captures such a dependence.
To evaluate these integrals, we developed what we call

the angular eikonal method. This approach entails replac-
ing the Bessel functions J0 and J1 with their integral
representations2:

J0ðlθÞ ¼
1

2π

Z
2π

0

dϕξe−ilθ cosðϕξ−ϕÞ;

J1ðlθÞ ¼
i
2π

Z
2π

0

dϕξ cosðϕξ − ϕÞe−ilθ cosðϕξ−ϕÞ: ð105Þ

These expressions recognize the fact that, to describe the
geometry of the problem, we selected a heliocentric
coordinate system whose z axis is colinear with the wave
vector k of the incident EM wave. The expressions in (105)
are integrals over the azimuthal angle ϕξ, representing the
orientation of the unit vector of the impact parameter b, as
given by (43). The expressions (105) allow us to rewrite
(103)–(104), to Oðθ; rg=r; r2gÞ, in the following two-
dimensional form:

αðr; θ;ϕÞ ¼ E0

ueikðrþrg ln 2krÞ

ik2r2
1

2π

Z
2π

0

dϕξ cosðϕξ − ϕÞ

×
Z

∞

l¼kR⋆
⊙

l2dleið2σlþl2
2krþ2ξbðbÞ−lθ cosðϕξ−ϕÞÞ;

ð106Þ

γðr; θ;ϕÞ ¼ E0

ueikðrþrg ln 2krÞ

ikr
1

2π

Z
2π

0

dϕξ

×
Z

∞

l¼kR⋆
⊙

ldleið2σlþl2
2krþ2ξbðbÞ−lθ cosðϕξ−ϕÞÞ:

ð107Þ

The step presented above correctly captures the func-
tional form of the integrand, which is azimuthally perturbed
by the eikonal phase shift, 2ξbðbÞ, whose presence breaks
the spherical symmetry present in the case of a gravitational
monopole. Technically, this step could have been done
much earlier, in the Debye potential of the incident wave
(22) that still possesses the symmetries representative of
Coulomb-scattering. However, doing it that early would
obscure the presentation of the overall solution. As it is
known, solving the time-independent Schrödinger equation
in the presence of the Coulomb potential (representing a
point source) is a well-posed problem. As demonstrated by
(15)–(22), this problem reduces to solving the relevant
wave equation by implementing separation of variables that
results in a well-known solution [9]. In the case when the
scattering potential is not spherically symmetric, separation
of variables, in general, is not possible. Thus, other
methods are needed.
For gravitational lensing in a weak gravitational field,

characterized by a scattering potential with only small
deviations from spherical symmetry, we may use the
eikonal approximation to identify the eikonal phase shift
that corresponds to that particular scattering potential (see
details in Sec. II C). This eikonal phase shift is effectively a
representation of the well-known thin lens approximation
[5]. However, our variables in (103)–(104) were still given
in terms of the monopole case. This is where we recognized
that the integral expressions (105) may be used to solve the
problem for small deviations from spherical symmetry,
which was done in (106)–(107). At this point, it is clear that
the integrals over dϕξ in (106)–(107) act not only the
monopole part of the phase, −lθ cosðϕξ − ϕÞ as in (103)–
(104), but on the entire phase, which now includes the
eikonal phase shift term 2ξbðbÞ due to the gravitational
multipoles. This outlines the logic behind the angular
eikonal method.
Lastly, we mentioned that the resulting quantities (106)–

(107) determine the EM field in the strong interference

2Note that we can use the same representations of these
functions with positive sign in the phase. The result is identical
as it only replaces the integrand with its complex conjugate, but it
leaves the real-valued result unaffected.
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region of the SGL. Below, we find that these expressions
can be evaluated using the method of stationary phase.
Furthermore, as we know [9,12], in the interference region
the factor α determining the radial components of the
EM field is very small, behaving as αðr; θ;ϕÞ≃ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
γðr; θ;ϕÞ. Thus, this factor will yield a negligible

contribution to the Poynting vector and it may be omitted.
Therefore, in the discussion below we focus on the factor
βðr; θ;ϕÞ only.

A. Integral over the vector impact parameter

As we mentioned above, the integral over dϕξ in (107)
properly acts not only on the monopole term of the phase,
−lθ cosðϕξ − ϕÞ, but on the entire phase 2σl þ l2

2kr̃ þ
2ξb − lθ cosðϕξ − ϕÞ, that now includes the contributions
from the parts that perturb the spherically symmetric
gravitational potential via the eikonal phase, ξb. In the
case of an axisymmetric gravitational field, this perturba-
tion is given by (B21)

ξbðbÞ¼−krg
X∞
n¼2

Jn
n

�
R⊙

b

�
n
sinnβs cos½nðϕξ−ϕsÞ�: ð108Þ

For convenience, we introduce

ξbðbÞ ¼ −krgψðbÞ;

ψðbÞ ¼
X∞
n¼2

Jn
n

�
R⊙

b

�
n
sinnβs cos½nðϕξ − ϕsÞ�: ð109Þ

Furthermore, for l ≫ krg, we evaluate σl as [43]

σl ¼ −krg lnl: ð110Þ

This form agrees with the other known forms of σl [57,58]
that are approximated for large l.
We rely on the semiclassical approximation that connects

the partial momentum, l, to the impact parameter,
b for small angles θ (or large distances from the Sun,
R⊙=r < b=r ≪ 1—see [9] for details). Using a semiclass-
ical form that connects the partial momentum and the
impact parameter [9,22–24]

l ≃ kb; ð111Þ

we obtain

φðbÞ ¼ 2σl þ
l2

2kr
þ 2ξbðbÞ − lθ cosðϕξ − ϕÞÞ

¼ k

�
b2

2r
− bθ cosðϕξ − ϕÞ − 2rg

�
ln kbþ

X∞
n¼2

Jn
n

�
R⊙

b

�
n
sinnβs cos½nðϕξ − ϕsÞ�

��
; ð112Þ

or, compactly, using (109):

φðbÞ ¼ k

�
b2

2r
− bθ cosðϕξ − ϕÞ − 2rgðln kbþ ψðbÞÞ

�
:

ð113Þ

We recognize that the vector of the impact parameter has
the form b ¼ bðcosϕξ; sinϕξ; 0Þ. Also, we define the
vector θ to a point on the image plane with coordinates
ðr; θ;ϕÞ that has the form θ ¼ θðcosϕ; sinϕ; 0Þ. With
these definitions, we see that bθ cosðϕξ − ϕÞ ¼ ðb · θÞ;
therefore,

φðbÞ¼ k

�
1

2r
ðb2−2brθcosðϕξ−ϕÞÞ−2rgðlnkbþψðbÞÞ

�

¼≃k
�
1

2r
ðb− rθÞ2−2rgðlnkbþψðbÞÞ

�
: ð114Þ

Thus, the phase φðbÞ represents the Fermat potential that
governs the gravitational lensing phenomena [3–5,59].

As a result, we can present (107) as

γðr;θ;ϕÞ ¼E0ueikðzþrg ln2krÞ k
ir

1

2π

Z
d2b

×exp

�
ik

�
1

2r
ðb− rθÞ2− 2rgðlnkbþψðbÞÞ

��
:

ð115Þ

The integral in (115) is known rather well. It was
obtained using different methods and tools by several
authors. For instance, a similar integral formula for the
lensed wave amplitude was obtained using the scalar theory
of light in [56,60–62], by using the Fresnel-Kirchhoff
diffraction formula [21], and it was also obtained using
the path integral formalism [35,36] in [37,38]. However, all
previous efforts discussed primarily a monopole case. Our
expression (115) generalizes these previously obtained
results via the presence of the eikonal phase shift term,
−2rgψðbÞ, to the case of a lens with arbitrary multipole
structure, which is explicitly captured by (109).
We also note that all the previous results were obtained

using the scalar theory, considering only the amplitude of
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the EM wave. A unique feature of our approach is that we
are able to reconstruct the entire vector structure of the EM
field [e.g., using (84) together with (85)–(87)]. This is
an important capability when we consider the three-
dimensional behavior of a vector theory, for instance,
polarization of the EM wave as it propagates through a
refractive medium without spherical symmetry. Thus, our
approach supersedes and generalizes all previous results
obtained for gravitation lensing in post-Newtonian gravity.
To put the entire problem in the proper context related to

the geometry of light propagation in the vicinity of a
gravitating body, we consider the total gravitational delay,
dðbÞ, acquired by the EM wave as it travels in the gravity
field of the extended lens. This delay contributes to the
phase shift ξbðbÞ ¼ kdðbÞ and using (112) is identified as

dðbÞ¼−2rg
�
lnkbþ

X∞
n¼2

Jn
n

�
R⊙

b

�
n
sinnβscos½nðϕξ−ϕsÞ�

�
:

ð116Þ

This is the generalization of the classic Shapiro time delay
to the case of an extended axisymmetric gravitational lens.
This delay corresponds to the total gravitational deflection
angle acquired by a light ray or, equivalently, rotation of the
wavefront of the EM wave. Using the expression (32) for
the radius vector of the EM wave, together with b given by
(41), we compute this angle as

θg ¼ −∇dðbÞ ¼ −
�
eb

∂dðbÞ
∂b þ eϕξ

∂dðbÞ
b∂ϕξ

þ k
∂dðbÞ
∂τ

�
;

ð117Þ

where the basis vector eb is the unit vector in the direction
of the vector of the impact parameter b and eϕξ

is the unit
vector in the azimuthal direction and is orthogonal to b and
k (Fig. 2).
Note that expression (108) for the eikonal phase

obtained in Appendix 2 a was derived under the thin lens

approximation where the distances traveled by the EM
wave from the source to the lens, τ0 ¼ ðk · r0Þ, and from
the lens to the observer, τ ¼ ðk · rÞ, are much larger than
the impact parameter, namely b=jτ0j ≪ 1 and b=jτj ≪ 1.
This is the reason why (116) does not depend on τ, thus
yielding a vanishing derivative with respect to τ in (117).
With these considerations in mind, we compute the

vector of the total angle of the gravitational deflection of
light as the light ray passes in the vicinity of an extended
axisymmetric lens:

θg ¼
2rg
b

�
eb −

X∞
n¼2

Jn

�
R⊙

b

�
n
sinnβsðeb cos½nðϕξ − ϕsÞ�

þ eϕξ
sin½nðϕξ − ϕsÞ�Þ

�
: ð118Þ

The first term in (118) is the Einstein deflection angle in
the gravity field of a spherically symmetric matter distri-
bution (i.e., in the presence of a monopole or point mass).
The second term with Jn describes the effect of the
multipole moments as a sum of (a) an additional deflection
toward or away from the optical axis (the line parallel to the
incoming ray of light that intersects the lens at the center),
and (b) a deflection away from the plane defined by the
incoming ray and the center of the lens.
To further appreciate the geometry that is represented by

this eϕξ
term, consider the J2 case, when n ¼ 2. There are

four principal directions (which depend on the orientation
of the impact parameter given by the angle ϕξ) for which
this second term is zero. These directions correspond to the
cusps well-known astroid caustic of the quadrupole lens
(see Sec. V E below). For all other angles, light is deflected
away from the optical axis, lifted out of the plane spanned
by the direction of the incident light ray and the center of
the lens (Fig. 2). These rays of light never intersect
the optical axis; therefore, an observer at the optical axis
sees only light from the principal directions. Thus we can
instantly see how Eq. (118) gives rise to the famous

FIG. 2. The basis vectors used to characterize the vector deflection angle. eb and k are in the plane spanned by the incident light ray
and the center of the lens; eϕξ

is normal to this plane. The multipole moments change the amount by which the incident ray is deflected
compared to the effect of the monopole (dashed arrow), but also lift the ray out of the plane spanned by the incident ray and the center of
the lens.
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Einstein cross that appears in images formed by gravita-
tional lenses that do not possess spherical symmetry. This
result demonstrates the utility and power of the angular
eikonal method.
Result (118) is new. It correctly accounts for the vector

nature of the impact parameter and its orientation with
respect to the body’s rotational axis. Its magnitude is
consistent with that reported in [40] where a different
approach was used. Equation (118) generalizes previous
expressions that characterized the deflection of light by the
gravitational field of a compact object. These earlier results
mostly dealt with the monopole [44,63,64], (see [65] and
references therein), and with the quadrupole contributions
[66–68]. Our expression describes the deflection of light in
the presence of an axisymmetric gravitational field with
an arbitrary set of zonal harmonics and for an arbitrary
direction of the impact parameter vector.

B. Reducing the double integral using the method
of stationary phase

We continue to work with the integral (115). We evaluate
one of the two integrals using the method of stationary
phase. We deal with the integral over the magnitude of the

impact parameter, b. Introducing θ ¼ ρ=r, we see that
(115) has the following explicit form that is useful for
practical consideration:

γðr; θ;ϕÞ ¼ E0ueikðrþrg ln2krÞ k
ir

1

2π

Z
2π

0

dϕξ

×
Z

∞

b¼R⋆
⊙

bdbeikð 12rðb2−2bρ cosðϕξ−ϕÞÞ−2rgðln kbþψðbÞÞÞ:

ð119Þ

We recognize that (119) is a double integral with respect
to the impact parameter, b: namely, db2 ¼ dϕξbdb. One
may be tempted to try to evaluate this integral using the
two-dimensional method of stationary phase. However, the
presence of higher multipoles leads to appearance of
caustics so that such a stationary phase solution will not
be accurate, especially at the cusps. Thus, only one of the
two integrals in (119) should be approximate using the
method of stationary phase. We choose to approximate the
integral over db, leaving the integral over dϕξ unchanged.
Considering (119), we see that the points of stationary

phase, where dφðbÞ=db ¼ 0, are given by the equation

dφ
db

¼ k

�
1

r
ðb − ρ cosðϕξ − ϕÞÞ − 2rg

b

�
1 −

X∞
n¼2

Jn

�
R⊙

b

�
n
sinnβs cos½nðϕξ − ϕsÞ�

��
¼ 0; ð120Þ

which may be transformed as

b2 − bρ cosðϕξ − ϕÞ − 2rgr

�
1 −

X∞
n¼2

Jn

�
R⊙

b

�
n
sinnβs cos½nðϕξ − ϕsÞ�

�
¼ 0: ð121Þ

We solve this equation iteratively, by presenting the
impact parameter as b ¼ b½0� þ b½1�, where b½0� is the
solution involving only the monopole term, while b½1� is
due to the eikonal phase. Substituting this trial solution in
(121) and equating same orders we get:

b½0�2 − b½0�ρ cosðϕξ − ϕÞ − 2rgr ¼ 0; ð122Þ

b½1�ð2b½0�−ρcosðϕξ−ϕÞÞ

þ2rgr
X∞
n¼2

Jn

�
R⊙

b½0�

�
n
sinnβs cos½nðϕξ−ϕsÞ� ¼ 0: ð123Þ

From (122), we have

b½0� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rgrþ

�
1

2
ρ cosðϕξ − ϕÞ

�
2

s
þ 1

2
ρ cosðϕξ − ϕÞ:

ð124Þ

In the region of strong interference, the relations 0 ≤
θ ≃

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
are satisfied, so that this solution may be given

only to Oðρ2Þ. Also, as the magnitude of the impact
parameter may only be positive, we choose the positive
sign in (124), which yields

b½0� ¼ ffiffiffiffiffiffiffiffiffi
2rgr

p þ 1

2
ρ cosðϕξ − ϕÞ þOðρ2Þ: ð125Þ

Substituting this solution into (123), we get

b½1�
ffiffiffiffiffiffiffiffiffi
2rgr

p
þrgr

X∞
n¼2

Jn

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs cos½nðϕξ−ϕsÞ�¼0: ð126Þ

Thus, we have
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b½1� ¼ −
1

2

ffiffiffiffiffiffiffiffiffi
2rgr

p X∞
n¼2

Jn

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs cos½nðϕξ − ϕsÞ� þO

�
ρffiffiffiffiffiffiffiffiffi
2rgr

p Jn

�
: ð127Þ

Ultimately, we have the following solution for the impact parameter, b ¼ b½0� þ b½1� þOðr2g; ρ2; ρJn=
ffiffiffiffiffiffiffiffiffi
2rgr

p Þ:

b ¼ ffiffiffiffiffiffiffiffiffi
2rgr

p þ 1

2
ρ cosðϕξ − ϕÞ − 1

2

ffiffiffiffiffiffiffiffiffi
2rgr

p X∞
n¼2

Jn

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs cos½nðϕξ − ϕsÞ�: ð128Þ

We compute the stationary phase, φðbÞ from (113) for the values of b given by (128):

φðbÞ ¼ k

�
rg − 2rg ln k

ffiffiffiffiffiffiffiffiffi
2rgr

p
−

ffiffiffiffiffiffiffi
2rg
r

r �
ρ cosðϕξ − ϕÞ þ ffiffiffiffiffiffiffiffiffi

2rgr
p X∞

n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs cos½nðϕξ − ϕsÞ�

��
: ð129Þ

Computing the second derivative of the phase φðbÞ from (120) with respect to b, we have [as we do not account for the
impact of the multipoles on the amplitude of the EM field, we need to know this quantity only to OðJnÞ]

d2φ
db2

¼ k

�
1

r
þ 2rg

b2
þOðJnÞ

�
: ð130Þ

Now, using b from (128), to Oðr2g; ρ2; JnÞ, we have

φ00ðb0Þ ¼
2k
r

�
1 −

1

2

ρ cosðϕξ − ϕÞffiffiffiffiffiffiffiffiffi
2rgr

p �
⇒

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jφ00ðb0Þj

s
¼

ffiffiffiffiffi
πr
k

r �
1þ 1

4

ρ cosðϕξ − ϕÞffiffiffiffiffiffiffiffiffi
2rgr

p �
: ð131Þ

We now may compute the amplitude of the integrand in (119), which for b from (128) may be given as

Aðb0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

jφ00ðb0Þj

s
¼ b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jφ00ðl0Þj

s
¼ ffiffiffiffiffiffiffiffiffi

2rgr
p �

1þ 1

2

ρ cosðϕξ − ϕÞffiffiffiffiffiffiffiffiffi
2rgr

p � ffiffiffiffiffi
πr
k

r �
1þ 1

4

ρ cosðϕξ − ϕÞffiffiffiffiffiffiffiffiffi
2rgr

p �

¼ ffiffiffiffiffiffiffiffiffi
2rgr

p ffiffiffiffiffi
πr
k

r �
1þO

�
r2g;

ρffiffiffiffiffiffiffiffiffi
2rgr

p ; Jn

��
: ð132Þ

As a result, the expression for the factor γðr; θ;ϕÞ given by (119) takes the form

γðr; θ;ϕÞ ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0eikz

×
1

2π

Z
2π

0

dϕξ exp

�
−ik

ffiffiffiffiffiffiffi
2rg
r

r �
ρ cosðϕξ − ϕÞ þ ffiffiffiffiffiffiffiffiffi

2rgr
p X∞

n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs cos½nðϕξ − ϕsÞ�

��
; ð133Þ

valid to the order of Oðr2g; ρ=
ffiffiffiffiffiffiffiffiffi
2rgr

p
; ðJ2=r3ÞΠÞ and the constant σ0 ¼ −krg lnðkrg=eÞ − π

4
(see [9,12] for details).

We can present expression (133) in the following compact form:

γðr; θ;ϕÞ ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0eikzBðρ;ϕÞ þO

�
r2g;

ρffiffiffiffiffiffiffiffiffi
2rgr

p ;
J2
r3

Π
�
; ð134Þ

where Bðρ;ϕÞ ¼ BðxÞ, with x ¼ ρðcosϕ; sinϕ; 0Þ being the coordinates on the image plane, is the complex amplitude of
the EM field that has the form

BðxÞ ¼ 1

2π

Z
2π

0

dϕξ exp

�
−ik

� ffiffiffiffiffiffiffi
2rg
r

r
ρ cosðϕξ − ϕÞ þ 2rg

X∞
n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs cos½nðϕξ − ϕsÞ�

��
: ð135Þ
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The quantity BðxÞ is the complex amplitude of the EM
field after it scatters on the gravitational field of an extended
axisymmetric lens that is represented by a set of gravita-
tional multipoles. If the presence of the gravitational zonal
harmonics is neglected, the result (135) reduces to the
familiar form for the monopole (see [9] and references
therein), J0ðk

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
ρÞ. Equation (135) is a new diffrac-

tion integral formula that extends the previous wave-
theoretical description of gravitational lensing phenomena
to the case of a lens with an arbitrary axisymmetric
gravitational potential. This result offers a new, powerful
tool to study gravitational lensing in the limit of weak
gravitational fields, at the first post-Newtonian approxima-
tion of the general theory of relativity.

C. The EM field in the interference region

Now we are ready to present the components of the EM
field in the interference region. The total field in accord
with (84) to Oðr2g; rg=rÞ has the form

�
D̂θ

B̂θ

�
¼

�
B̂ϕ

−D̂ϕ

�

¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0Bðρ;ϕÞeiðkz−ωtÞ

�
cosϕ

sinϕ

�
; ð136Þ

with radial components of the EM field behaving as
ðD̂r; B̂rÞ ≃Oðr2g; rg=rÞ. The radial components of the
EM field are negligibly small compared to the other two
components, which is consistent with the fact that while
passing through the gravity field of higher multipoles the
EM wave preserves its transverse structure.
Expression (136) describes the EM field in the interfer-

ence region of the SGL in the spherical coordinate system.
To study this field in the image plane, we need to transform
this result to a cylindrical coordinate system. To do that, we
follow the approach demonstrated in [9], where instead of
spherical coordinates ðr; θ;ϕÞ, we introduced a cylindrical
coordinate system ðρ;ϕ; zÞ, more convenient for these
purposes. In the region r ≫ rg, this was done by defining
R ¼ ur ¼ rþ rg=2þOðr2gÞ and introducing the coordi-
nate transformations ρ ¼ R sin θ, z ¼ R cos θ, which, from
(1), result in the following line element:

ds2¼u−2c2dt2−u2ðdr2þr2ðdθ2þsin2θdϕ2ÞÞ
¼u−2c2dt2−ðdρ2þρ2dϕ2þnu2dz2ÞþOðr2gÞ: ð137Þ

As a result, using (136), for a high-frequency EM wave
[i.e., neglecting terms ∝ ðkrÞ−1] and for r ≫ rg, we derive
the field near the optical axis, which up to terms of
Oðρ2=z2Þ, takes the form

�
Eρ

Hρ

�
¼
�

Hϕ

−Eϕ

�

¼E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0Bðρ;ϕÞeiðkz−ωtÞ

�
cosϕ

sinϕ

�
; ð138Þ

with ðEz;HzÞ ¼ Oðρ=zÞ and where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p
¼

zð1þ ρ2=2z2Þ ¼ zþOðρ2=zÞ) and θ ¼ ρ=zþOðρ2=z2Þ.
Note that these expressions were obtained using the
approximations (102) and are valid for forward scattering
when θ ≤

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
, or when ρ ≤ rg. For completeness, one

may obtain a more general expression that will be valid for
much larger deviations from the optical axis, say ρ ∼ R⊙.
This work is ongoing and results will be reported.
Considering the image plane, we see that the quantity

Bðρ;ϕÞ in (138) given by (135) is a function of the
coordinates on the image plane, x ¼ ρðcosϕ; sinϕ; 0Þ.
Therefore, the entire amplitude of the EM wave, as a
function of the coordinates on the image plane
Bðρ;ϕÞ≡ BðxÞ, is given by a single integral (135).
This is our main result. It determines the amplitude of the

EM field in the image plane in the strong interference
region of the SGL. This function determines the structure of
the point-spread function of the SGL, which governs the
optical properties of the SGL as far as imaging is
concerned. This expression describes light from a distant
point source, projected onto the image plane by the SGL.
Furthermore, it is presented in a form using units and
parameters that relate directly to physically relevant quan-
tities, making the result readily applicable to study gravi-
tational lensing by real astrophysical objects, such as
the Sun.

D. Multipole contributions

Using the result (138), we may now compute the energy
flux in the image region of the lens. With an overline and
brackets denoting time-averaging and ensemble averaging,
the relevant components of the time-averaged Poynting
vector for the EM field in the image volume may be given
in the following form (see [9,10,12] for details):

SzðxÞ ¼
c
4π

h½ReE × ReH�zi

¼ c
4π

E2
02πkrghðRe½BðxÞeiðkz−ωtÞ�Þ2i; ð139Þ

with S̄ρ ¼ S̄ϕ ¼ 0 for all practical purposes. Defining the
light amplification as usual [9,10,12], μzðxÞ¼SzðxÞ=jS0ðxÞj,
where S0ðxÞ being the Poynting vector carried by a plane
wave in a vacuum in a flat space-time, we have the light
amplification factor of the lens that, for short wavelengths
(i.e., krg ≫ 1) is given as

μzðxÞ ¼ 2πkrgjBðxÞj2; ð140Þ
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with jBðxÞj2 ¼ BðxÞB�ðxÞ, whereB�ðxÞ is the complex conjugate ofBðxÞ, given by (135) that we repeat here for convenience:

BðxÞ ¼ 1

2π

Z
2π

0

dϕξ exp
�
−ik

� ffiffiffiffiffiffiffi
2rg
r

r
ρ cosðϕξ − ϕÞ þ 2rg

X∞
n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs cos½nðϕξ − ϕsÞ�

��
: ð141Þ

FIG. 3. Even and odd caustics representing individual contributions of the multipoles of a gravitational field to the PSF of the extended
axisymmetric gravitational lens, obtained through numerical integration of PSF ¼ jBðxÞj2 with BðxÞ from (141). Images of a point
source formed in the image plane of the lens. From top left, clockwise: (a) J2, J4, J6 and J8; (b) monopole, J3, J5 and J7. For the odd-
numbered caustics, a change in sign flips the image in the north-south direction.

FIG. 4. Interaction between caustics and the effects of sign, calculated by numerically integrating jBðxÞj2 using (141). Top row depicts
the effect of J3, distorting the J2 astroid starting with a negative value similar in magnitude to J2, going through 0 and reaching a positive
value. Bottom row depicts the effect of J4 on J2 in a similar fashion. These images demonstrate that the sign of the J3 caustic reverses its
vertical, “north-south” orientation, whereas the sign of the J4 caustic determines if it is the astroid’s vertical or horizontal pair of cusps
that are “split” as the astroid is stretched in the horizontal vs vertical direction.
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As we see, the amplification of the lens is driven by the
factor 2πkrg in (140). However, in the case of the
monopole, the complex amplitude of the EM field (141)
was ∝ J0ð

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
ρÞ; thus it was reaching its maximum of

1 on the optical axis, ρ ¼ 0. In the case of an extended
gravitating body, the complex amplitude is given by (141),
where BðxÞ, in general, is a complex quantity whose
magnitude is jBðxÞj < 1. As we see in Fig. 3, it reaches
its maximum value not on the optical axis, but on the
caustic that is formed in the image plane. For lenses
dominated by the contribution of a single multipole
moment, these caustics acquire the shapes of hypocycloids
(e.g., the astroid, characterizing the J2 quadrupole).
However, when several multipole moments are present,
their interaction results in more complex shapes; see Fig. 4
for some examples. In general, all the light from an
extended source is still present in the image plane, but
now it is scrambled. Image reconstruction will require
deconvolution tools.
The quantity jBðxÞj2 is the point-spread function that

characterizes the optical properties of the gravitational lens
and can be used to assess its imaging capabilities. The PSF
of the lens is extended from the J20ðk

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
ρÞ form for the

monopole lens, discussed in [9] and takes the form of
jBðρ;ϕÞj2 that now provides a complete description of the
intensity distribution in the image plane and accounts for
gravitational lensing by an arbitrary axisymmetric gravi-
tational potential.

E. Extended Sun contribution to image formation

When applying these results to the SGL, we need to
recognize the fact that the Sun axisymmetric rotating body
that also has north-south symmetry. As such, it will have
only even multipole moments J2n. The solar multipole
moments are determined using available tracking data from
interplanetary spacecraft: J2 ¼ ð2.25� 0.09Þ × 10−7 [69],
and J4 ¼ −4.44 × 10−9, J6 ¼ −2.79 × 10−10, J8 ¼ 1.48 ×
10−11 [39]. The deflection of light by these multipoles may
lead to light rays missing the optical axis by many meters,
resulting in large caustics on the image plane in the strong
interference region of the SGL. With the contribution from
J2 being the dominant one to consider (see Fig. 5),
depending on the target’s position with respect to the solar
rotational axis (captured by the angle βs), some of these
multipoles may be needed for developing a comprehensive
physical model needed for image deconvolution. The
multipole moments of the Sun may also be varying
temporally [70], which requires further analysis. On the
other hand, the magnitudes of light deflection due to J10
and higher multipoles are very small at IR, optical or longer
wavelengths. These fall within the diffraction pattern of the
solar monopole, and thus may be omitted.
With these considerations in mind, the most compre-

hensive form of the complex amplitude of the EM field in
the strong interference region of the SGL is given by (141)
were multipole summation is from n ¼ 2 to n ¼ 8, which is
correct to the order of OðJ10Þ.

FIG. 5. The PSF of the SGL with multipole gravitational moments, obtained by integrating jBðxÞj2 using (141), using realistic solar
parameters. These examples show light from a λ ¼ 1 μm point source, projected by the SGL to 650 AU from the Sun. Left: sin βs ¼ 0.1
(i.e., βs ∼ 5.74° from the solar axis of rotation) in an 8 × 8 meter area; at a resolution of 4 mm, fine details due to diffraction are visible
both inside and outside the caustic boundary. Right: sin βs ¼ 0.387 (βs ∼ 22.78°) in a 120 × 120 m area, at 6 cm resolution.
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Clearly, there is no closed-form analytical solution for
this integral. It can, however, be readily evaluated using
numerical methods. It is also clear that, as J4, J6, J8 are
small, the resulting diffraction pattern will be dominated by
the quadrupole with other multipoles contributing only
small corrections (see Fig. 5).
The result (141) depends on the wavelength of incident

light. However, the geometric shape of the resulting caustic
is wavelength-independent. This becomes evident when
we evaluate (141) in multiple wavelengths (Fig. 6).
Wavelength-dependent features (represented by approxi-
mate RGB color in this figure) are clearly evident both
inside and outside the caustic boundary. However, the
caustic boundary’s location does not change, and the cusps,
in particular, are achromatic white.
Finally, we mention that expression (141) may be easily

generalized to the case of extended sources at large but
finite distances from the Sun. Examining this integral, we
see that it contains the expression ρ cosðϕξ − ϕÞ, which
may be transformed as

ρcosðϕξ−ϕÞ¼ðnξ ·xÞ; wherex¼ρðcosϕ;sinϕ;0Þ: ð142Þ

The form (141) allows us to extend the new formulation
to the case of sources at large but finite distances, z0. A
formal way to extend the result (141) to the case of

extended source is to rotate the coordinate system by a
small angle ðz̄=z0Þx0, as discussed in [11], where z̄ is the
heliocentric distance to the image in the strong interference
region of the SGL, z0 is the heliocentric distance to the
source plane and x0 is a particular point on that source
plane. As a result, to deal with extended sources we start
with (141) and extend the argument as follows:

x ⇒ xþ z̄
z0
x0; where x0 ¼ ρ0ðcosϕ0; sinϕ0; 0Þ; ð143Þ

which, equivalently, may be expressed as ðnξ · xÞ →
ðnξ · xÞ þ ðz̄=z0Þðnξ · x0Þ, where nξ ¼ ðcosϕξ; sin ξξ; 0Þ.
As a result, this rotation leads to a modification of the
expression (141) for the amplitude of the EM field, which
now takes the form

Bðx;x0Þ¼ 1

2π

Z
2π

0

dϕξexp

�
−ik

� ffiffiffiffiffiffiffi
2rg
z̄

r �
nξ ·

�
xþ z̄

z0
x0
��

þ2rg
X∞
n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
n
sinnβs cos½nðϕξ−ϕsÞ�

��
:

ð144Þ

This expression allows us to consider imaging of
extended bodies that are positioned at large, but finite
distances from the SGL, with the SGL now treated as that
produced by a gravitating body that is axisymmetric and
rotating thus admitting characterization of its external
gravitational field by zonal harmonics.

VI. DISCUSSION AND CONCLUSIONS

This paper represents a continuation of our efforts to
provide a reliable, accurate, complete theoretical descrip-
tion of the image formation capabilities of gravitational
lenses within the post-Newtonian approximation of the
general theory of relativity. This work is especially relevant
to our ongoing work on the study of the optical properties
of the SGL in the context of use for a resolved imaging of
distant faint sources.
In previous papers [8,9], we offered a complete wave-

theoretical description of the SGL under the simplifying
assumption that the Sun’s gravitational field is accurately
represented as a gravitational monopole that was modeled
as a point mass. Clearly, this is not exactly the case: the
actual gravitational field of the Sun deviates from the
monopole slightly. Though the effect is very small com-
pared to the size of the Solar System, it has considerable
impact on the image formation capabilities of the SGL.
Therefore, an accurate and complete description of the SGL
must properly take into account these small deviations from
spherical symmetry.
It was long understood that the tools of geometric

optics are limited when it comes to caustics and the full

FIG. 6. The PSF of the SGL in color, evaluated in multiple
wavelengths between 400 and 675 nm in 25 nm increments, each
assigned an approximate RGB color. The parameters used are
sin βs ¼ 0.05 (βs ∼ 2.87°) at 650 AU from the Sun, ϕs ¼ 30°; a
2 × 2 meter area is depicted at 1 mm resolution. Whereas a
rainbow pattern is visible in many parts of the image, the cusps
are achromatic white, indicating that their position and appear-
ance is not wavelength dependent.
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wave-optical treatment is required [71,72]. It was in light of
this limitation that we developed our new method to
describe gravitational lensing within the weak-field and
slow motion (i.e., a post-Newtonian) approximation of the
general theory of relativity. The new method addresses light
propagation in a weak gravitational field of arbitrary shape,
not restricted by spherical symmetry. Our formalism allows
us to describe the contribution of deviations from spherical
symmetry on the optical properties of corresponding lens
using the language of spherical harmonics. In particular, we
can use zonal harmonics in the case of an axisymmetric
body, such as the Sun.
Key to our approach is what we dubbed the angular

eikonal method: a convolution of the eikonal phase (which
is used to characterize deviations from spherical symmetry)
and integral representations of Bessel functions (that rely
on the symmetries that exist in the case of a monopole lens).
This allows us to correctly capture the functional depend-
ence of the integrand and, in effect, to solve the wave
equations within a slightly modified symmetry that is
extended from spherical to an azimuthally perturbed one
(that is due to the presence of the multipole moments). The
method is consistent with the thin lens or eikonal approx-
imations used within the scalar theory of diffraction
[7,21,28–30] that are frequently used to describe gravita-
tional lensing.
Our method preserves the structure and vector nature of

the EM field and allows us to treat the diffracted EM field
using regular tools of modern optics [21]. The entire
diffraction behavior is captured in the form of a single
integral (141), which extends the set of analytical tools
developed for gravitational lenses. The approach that we
present and the resulting expressions are applicable to a
wide variety of astrophysical lenses. Applying the method
to the case of an axisymmetric body, represented using
zonal harmonics, we arrive at our main result, Eq. (144),
which reduces the problem of the finding the EM field in
the image plane placed in the string interference region of
the SGL. This solution preserves the vector nature of the
EM field, thus, going beyond the approaches relying on the
scalar theories.
An important outcome of the new solution is that it allows

us to evaluate the behavior of the PSF of an extended
gravitating lens. Applying this method to the SGL, we treat
the solar gravitational field as that produced by an axisym-
metric rotating body whose external gravity field is deter-
mined by the infinite set of zonal spherical harmonics. The
PSF of the SGL is now determined by a single, well-behaved
integral that can be readily evaluated using numerical
methods, especially near the optical axis of the gravitational
lens in what we call the region of strong interference.
Concerning the imaging of extended sources with the

SGL of the extended Sun, we note that the total energy
deposited in the image plane is still almost the same as it
was in the case of the monopole SGL. However, the PSF of

the extended SGL scrambles light on the image plane more
than it did in the case of treating the Sun as the point mass.
This will adversely affect the signal-to-noise ratio as far as
the realistic imaging capabilities of the extended SGL are
concerned. The impact on the observing scenario and the
integration time are being investigated.
Concluding, we note that the new method can be used to

investigate image formation processes for extended sources
by the SGL, at a variety of wavelengths, using physically
realistic observational scenarios. The approach that we
presented may also be used in reverse: observing astro-
physical lensing of distant objects may allow one to
reconstruct the multipoles of the gravitational field of
the lens and infer its mass distribution, possibly offering
a new practical method in modern astrophysics. Our
solution may also help in other areas, such as the modeling
of particle collisions in high-energy particle physics experi-
ments on potentials with complex structure. Results of our
studies in these and other directions, once available, will be
published elsewhere.
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APPENDIX A: REPRESENTATION OF THE
FIELD IN TERMS OF DEBYE POTENTIALS

To represent the EM field equations in terms of Debye
potentials, we start with (3)–(4), where we treat gravity to
be static, thus _u ¼ 0. Assuming, as usual (we follow closely
the discussion presented in [9,12,21], adapted for the
gravitational lens), the time dependence of the field in
the form expð−iωtÞ where k ¼ ω=c, the time-independent
parts of the electric and magnetic vectors satisfy Maxwell’s
equations:

curlD ¼ iku2BþOðG2Þ; ðA1Þ

curlB ¼ −iku2DþOðG2Þ: ðA2Þ

As shown in [9], in spherical coordinates, the field
equations (A1)–(A2) to OðG2Þ become

−iku2D̂r ¼
1

r2 sin θ

� ∂
∂θ ðr sin θB̂ϕÞ −

∂
∂ϕ ðrB̂θÞ

�
; ðA3Þ

−iku2D̂θ ¼
1

r sin θ

�∂B̂r

∂ϕ −
∂
∂r ðr sin θB̂ϕÞ

�
; ðA4Þ

−iku2D̂ϕ ¼ 1

r

� ∂
∂r ðrB̂θÞ −

∂B̂r

∂θ
�
; ðA5Þ
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iku2B̂r ¼
1

r2 sin θ

� ∂
∂θ ðr sin θD̂ϕÞ −

∂
∂ϕ ðrD̂θÞ

�
; ðA6Þ

iku2B̂θ ¼
1

r sin θ

�∂D̂r

∂ϕ −
∂
∂r ðr sin θD̂ϕÞ

�
; ðA7Þ

iku2B̂ϕ ¼ 1

r

� ∂
∂r ðrD̂θÞ −

∂D̂r

∂θ
�
; ðA8Þ

while the remaining two equations from Eq. (3)–(4) take
the form

∂
∂r ðu

2r2 sin θBrÞ þ
∂
∂θ ðu

2r sin θBθÞ þ
∂
∂ϕ ðu2rBϕÞ ¼ 0;

ðA9Þ
∂
∂r ðu

2r2 sin θDrÞ þ
∂
∂θ ðu

2r sin θDθÞ þ
∂
∂ϕ ðu2rDϕÞ ¼ 0:

ðA10Þ
Our goal is to find a general solution to these equations in

the form of a superposition of two linearly independent
solutions ðeD; eBÞ and ðmD; mBÞ that satisfy the following
relationships:

eD̂r ¼ D̂r;
eB̂r ¼ 0; ðA11Þ

mD̂r ¼ 0; mB̂r ¼ B̂r: ðA12Þ

With B̂r ¼ eB̂r ¼ 0, (A4) and (A5) become

iku2eD̂θ ¼
1

r
∂
∂r ðr

eB̂ϕÞ; ðA13Þ

iku2eD̂ϕ ¼ −
1

r
∂
∂r ðr

eB̂θÞ: ðA14Þ

Substituting these relationships into (A7) and (A8) we
obtain

∂
∂r

�
1

u2
∂
∂r ðr

eB̂θÞ
�
þ k2u2ðreB̂θÞ ¼ −

ik
sin θ

∂eD̂r

∂ϕ ; ðA15Þ

∂
∂r

�
1

u2
∂
∂r ðr

eB̂ϕÞ
�
þ k2u2ðreB̂ϕÞ ¼ ik

∂eD̂r

∂θ : ðA16Þ

From divðu2eBÞ ¼ 0 given by Eq. (4) [which in the
expanded form is given by Eq. (A9)] and using our
assumption that eB̂r ¼ 0, we have

∂
∂θ ðu

2 sin θeB̂θÞ þ
∂
∂ϕ ðu2eB̂ϕÞ ¼ 0; ðA17Þ

which ensures that (A6) is also satisfied at the needed level
of accuracy. As we know, this equation is valid for a
spherically symmetric gravitational field. Terms that char-
acterize deviations from the monopole in the generic form
of the Newtonian potential, U, lack spherical symmetry.
For these terms, the condition (A17) may be satisfied only
approximately. Indeed, after substitution from (A13),
(A14), in (A6), we have

1

r2 sin θ

� ∂
∂θ ðr sin θ

eD̂ϕÞ −
∂
∂ϕ ðreD̂θÞ

�

¼ −
1

iku2r2 sin θ

� ∂
∂r

�
r
u2

� ∂
∂θ ðu

2 sin θeB̂θÞ þ
∂
∂ϕ ðu2eB̂ϕÞ

��

þ 2
∂
∂r

�
r

�
sin θeB̂θ

∂ ln u2
∂θ þ eB̂ϕ

∂ ln u2
∂ϕ

��
− r

�
sin θeB̂θ

∂2 ln u2

∂r∂θ þ eB̂ϕ
∂2 ln u2

∂r∂ϕ
��

¼ 1

iku2r2 sin θ

�
2
∂
∂r

�
r

�
sin θeB̂θ

∂ ln u2
∂θ þ eB̂ϕ

∂ ln u2
∂ϕ

��
− r

�
sin θeB̂θ

∂2 ln u2

∂r∂θ þ eB̂ϕ
∂2 ln u2

∂r∂ϕ
��

: ðA18Þ

The first term in this expression vanishes because of (A17) (as it was in the case of a monopole, see [9]). Considering the
remaining terms, and taking into account the form of u from (2) with the Newtonian potential, U, given either (B5) or (B4),
we see that the following relation is true:

∂
∂θ ðr sin θ

eD̂ϕÞ −
∂
∂ϕ ðreD̂θÞ

¼ 1

iku2

�
2
∂
∂r

�
r

�
sin θeB̂θ

∂ ln u2
∂θ þ eB̂ϕ

∂ ln u2
∂ϕ

��
− r

�
sin θeB̂θ

∂2 ln u2

∂r∂θ þ eB̂ϕ
∂2 ln u2

∂r∂ϕ
��

≃
1

iku2
O
�
J2R2

⊙

r3

�
; ðA19Þ
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where J2 is the gravitational quadrupole moment of the
mass distribution inside the lens (which typically is the
largest term after the monopole). Clearly, as r gets larger,
this expression vanishes, justifying the validity of (A6),
namely

lim
r→∞

1

r2 sin θ

� ∂
∂θ ðr sin θ

eD̂ϕÞ −
∂
∂ϕ ðreD̂θÞ

�

≃
1

iku2
1

r2 sin θ
O
�
J2R2

⊙

r3

�
→ 0: ðA20Þ

In all practical scenarios, the limit (A20) is satisfied for
r≳ R⊙. Thus, for scenarios relevant for the SGL, (A18) is
equal to 0. As a result, when describing the SGL and
considering light propagation in a weak gravitational field,
we may neglect the effect of the gravitational field on the
amplitude of the EMwave. In this case, our primary interest
is the phase of the wave, thus this expression constitutes the
condition consistent with the eikonal approximation. The
complementary case with mD̂r ¼ 0 is treated identically, in
accordance with (A12).
When the radial magnetic field vanishes, the solution is

called the electric wave (or transverse magnetic wave);
correspondingly, when the radial electric field vanishes, the
solution is called the magnetic wave (or transverse electric
wave). These can both be derived from the corresponding
Debye scalar potentials eΠ and mΠ.
Given eB̂r ¼ 0, eD̂ϕ and eD̂θ in (A6) can be represented

as a scalar field’s gradient:

eD̂ϕ ¼ 1

r sin θ
∂U
∂ϕ þ 1

iku2
1

r sin θ
O
�
J2R2

⊙

r3

�
;

eD̂θ ¼
1

r
∂U
∂θ þ 1

iku2
1

r
O
�
J2R2

⊙

r3

�
; ðA21Þ

where U is some function. Introducing the electric Debye
potential eΠ that relates to U as

U ¼ 1

u2
∂
∂r ðr

eΠÞ: ðA22Þ

We use this expression in (A21) and obtain

eD̂θ ¼
1

u2r

�∂2ðr eΠÞ
∂r∂θ −

∂ ln u2
∂θ

∂
∂r ðr

eΠÞ
�
;

eD̂ϕ ¼ 1

u2r sin θ

�∂2ðr eΠÞ
∂r∂ϕ −

∂ ln u2
∂ϕ

∂
∂r ðr

eΠÞ
�
; ðA23Þ

which satisfy Eq. (A6) with eB̂r ¼ 0 and thus also (A19).

It can be seen that (A13) and (A14) are satisfied by

eB̂ϕ ¼ ik
r
∂ðr eΠÞ
∂θ þO

�
J2
r3

eΠ
�
;

eB̂θ ¼ −
ik

r sin θ
∂ðr eΠÞ
∂ϕ þO

�
J2
r3

eΠ
�
: ðA24Þ

If we substitute both of (A24) into (A3) we obtain

eD̂r ¼ −
1

u2r2 sin θ

� ∂
∂θ

�
sin θ

∂ðr eΠÞ
∂θ

�
þ 1

sin θ
∂2ðr eΠÞ
∂ϕ2

�

þO
�
J2
r3

eΠ
�
: ðA25Þ

Substituting expressions (A24) into (A15)–(A16) yields

−ik
sinθ

∂
∂ϕ

� ∂
∂r

�
1

u2
∂
∂rðr

eΠÞ
�
þk2u2ðreΠÞ−eD̂r

�
¼O

�
J2
r3

eΠ
�
;

ðA26Þ

ik
∂
∂θ

� ∂
∂r

�
1

u2
∂
∂rðr

eΠÞ
�
þk2u2ðreΠÞ− eD̂r

�
¼O

�
J2
r3

eΠ
�
;

ðA27Þ

i.e., the derivative of the same expression with respect to
both ϕ and θ vanishes. This is clearly satisfied if we set the
expression itself to OððJ2=r3ÞeΠÞ. Dividing by u2 and
using (A25) leads to

1

u2
∂
∂r

�
1

u2
∂ðr eΠÞ
∂r

�

þ 1

u4r2 sin θ

� ∂
∂θ

�
sin θ

∂ðr eΠÞ
∂θ

�
þ 1

sin θ
∂2ðr eΠÞ
∂ϕ2

�

þ k2ðr eΠÞ ¼ O
�
J2
r3

eΠ
�
: ðA28Þ

Defining u0 ¼ ∂u=∂r and u00 ¼ ∂2u=∂r2, this equation
may be rewritten as

1

r2
∂
∂r

�
r2

∂
∂r

�eΠ
u

��

þ 1

r2 sin θ

� ∂
∂θ

�
sin θ

∂
∂θ

�eΠ
u

��
þ 1

sin θ
∂2

∂ϕ2

�eΠ
u

��

þ
�
k2u4 − u

�
1

u

�00��eΠ
u

�
¼ O

�
J2
r3

eΠ
u

�
; ðA29Þ

which is the wave equation for the quantity eΠ=u:
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�
Δþ k2u4 − u

�
1

u

�00��eΠ
u

�
¼ O

�
r2g;

J2
r3

eΠ
u

�
: ðA30Þ

We are concerned only with the field produced by the
extended gravitational field. Thus, the quantity u has the
form uðrÞ ¼ 1þ U=c2 þOðc−4Þ, as given by (2). With
this, we can rewrite (A30) as�
Δþ k2

�
1þ 4U

c2

�
− u

�
1

u

�00��eΠ
u

�
¼ O

�
r2g;

J2
r3

eΠ
u

�
:

ðA31Þ

Equation (A31) is similar to the Schrödinger equation of
quantum mechanics, used to describe scattering on the
Coulomb potential. However, this equation has an extra
potential of −uðu−1Þ00 ≃ rg=r3. It is known [24] that the
presence of potentials of ∝ 1=r3 in (A31) does not alter
the asymptotic behavior of the solutions. Neglecting the
uðu−1Þ00 ≃ r−3 term in (A31) reduces this equation to the
form of a time-independent Schrödinger equation that
describes scattering in a Newtonian potential:�

Δþ k2
�
1þ 4U

c2

���eΠ
u

�
¼ O

�
r2g;

J2
r3

eΠ
u

�
: ðA32Þ

In the case of the SGL, we will always be at distances that
are much larger than the Sun’s Schwarzschild radius.
Therefore, we may neglect the term uðu−1Þ00 ≃ rg=r3 in
(A31). We use (A32) for the purposes of establishing the
properties of the EM wave diffracted by the solar gravi-
tational lens. An identical equation may be obtained for mΠ.
This solution is consistent with the eikonal approximation,
the use of which to describe the scattering of high-energy
particles or processes related to the diffraction of light is
well justified.
By means of (A28), Eq. (A25) may be written as

eD̂r ¼
∂
∂r

�
1

u2
∂ðr eΠÞ
∂r

�
þ k2u2ðr eΠÞ þO

�
J2
r3

eΠ
u

�
: ðA33Þ

It can be verified by substituting (A23)–(A28) and (A33)
into (A3)–(A8) that we have obtained a solution of our set
of equations. In a similar way, we may consider the
magnetic wave. We find that this wave can be derived
from a potential mΠ which satisfies the same differential
equation (A28) as eΠ.
The complete solution of the EM field equations is

obtained by adding the two fields (as discussed in
[20,21,47]), namely D ¼ eDþ mD; and B ¼ eBþ mB.
This yields, to Oðr2g; ðJ2=r3ÞðeΠ=uÞÞ,

D̂r ¼
1

u

� ∂2

∂r2
�
r eΠ
u

�
þ
�
k2u4 −u

�
1

u

�00��r eΠ
u

��
; ðA34Þ

D̂θ ¼
1

u2r
∂2ðr eΠÞ
∂r∂θ þ ik

r sin θ
∂ðr mΠÞ
∂ϕ ; ðA35Þ

D̂ϕ ¼ 1

u2r sin θ
∂2ðr eΠÞ
∂r∂ϕ −

ik
r
∂ðr mΠÞ

∂θ ; ðA36Þ

B̂r¼
1

u

� ∂2

∂r2
�
rmΠ
u

�
þ
�
k2u4−u

�
1

u

�00��rmΠ
u

��
; ðA37Þ

B̂θ ¼ −
ik

r sin θ
∂ðr eΠÞ
∂ϕ þ 1

u2r
∂2ðr mΠÞ
∂r∂θ ; ðA38Þ

B̂ϕ ¼ ik
r
∂ðr eΠÞ
∂θ þ 1

u2r sin θ
∂2ðr eΠÞ
∂r∂ϕ : ðA39Þ

Both potentials Π ¼ ðeΠ; mΠÞ are solutions of the differ-
ential equation (A30), which, in the case of the weak
gravity characteristic for the SGL, is given by (A32) and in
terms of potential Π takes the form:

�
Δþ k2

�
1þ 4U

c2

���
Π
u

�
¼ O

�
r2g;

J2
r3

Π
u

�
: ðA40Þ

This completes decomposition of the Maxwell
equations (3)–(4) on the curved background in the weak
gravitational field of the Solar System. Equations (A34)–
(A39) together with (A40) is our primary result that we will
use throughout this paper. Again, note that in (A40), we
discarded the term uðu−1Þ00 ∼ 1=r3, representing the tail of
the gravitational potential, as insignificant (see discussions
in Appendix F of Ref. [9] and in Appendix C of [12]).
Finally, for the components D̂θ, D̂ϕ and B̂θ, B̂ϕ to be

continuous over a spherical surface at some large distance
from the origin, r ¼ R⋆, it is evidently sufficient that the
four quantities [9]

ϵðr eΠÞ; μðr mΠÞ; ∂ðr eΠÞ
∂r ;

∂ðr mΠÞ
∂r ðA41Þ

shall also be continuous over this surface. Thus, our
boundary conditions also split into independent conditions
on eΠ and mΠ. Our problem is thus reduced to the problem
of finding two mutually independent solutions of the
equations (A28) with prescribed boundary conditions.

APPENDIX B: COMPUTING THE
EIKONAL PHASE

1. Different forms of the gravitational potential

Before we proceed with solving (A40), we recognize that
the gravitational potential U from (2) in spherical coor-
dinates ðr≡ jxj;ϕ; θÞ may be given in the most general
case in the form of spherical harmonics:
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U ¼ G
Z

ρðx0Þd3x0
jx − x0j þOðc−4Þ

¼ GM
r

�
1þ

X∞
l¼2

Xþl

k¼0

�
R
r

�
l
Plkðcos θÞ

× ðClk cos kϕþ Slk sin kϕÞ
�
þOðc−4Þ; ðB1Þ

where ρðxÞ is the mass density inside the body, M is its
mass, R is its radius, Plk are the Legendre polynomials,
while Clk and Slk are relativistic normalized spherical
harmonic coefficients that characterize the body.
In the case of an axisymmetric body (i.e., the Sun), its

external gravitational potential is reduced to the k ¼ 0
zonal harmonics and may be expressed [39,40] in terms of
the usual dimensionless multipole moments Jl:

U ¼ GM
r

�
1 −

X∞
l¼2

Jl

�
R
r

�
l
Pl

�
k3 · x
r

��

þOðc−4Þ; ðB2Þ

where k3 denotes the unit vector along the x3-axis,
Pl are the Legendre polynomials [73,74]. Furthermore,
in the case of an axisymmetric and rotating body with
“north-south symmetry,” such as the Sun, the expression
(B2) contains only the l ¼ 2; 4; 6; 8… even moments [39].
Following [75], we take into account the identity

∂l

∂zl
�
1

r

�
¼ ð−1Þll!

r1þl Pl

�
k3 · x
r

�
; z ¼ x3; ðB3Þ

and present U as the following expansion in a series of
derivatives of 1=r

U¼GM

�
1

r
−
X∞
l¼2

ð−1Þl
l!

JlRl ∂l

∂zl
�
1

r

��
þOðc−4Þ: ðB4Þ

As we shall see below, this form is much more convenient
for the computation of integrals involving U.
Considering the generic case, it was shown [76] that the

scalar gravitational potential (B1) may equivalently be
given in the following form:

U ¼ GM

�
1

r
þ
X∞
l¼2

ð−1Þl
l!

T ha1…ali ∂l

∂xha1…∂xali
�
1

r

��

þOðc−4Þ; ðB5Þ

where r ¼ jxj, M is the post-Newtonian mass of the body,
and T ha1…ali are the symmetric trace-free (STF) mass
multipole moments of the body [33,73,74,77] defined as

M ¼
Z
V
d3xρðxÞ;

T ha1…ali ¼ 1

M

Z
V
d3xρðxÞxha1…ali; ðB6Þ

where xha1…ali ¼ xha1xa2…xali, the angle brackets h…i
denote the STF operator, and V means the total volume
of the isolated gravitating body under consideration. The
dipole moment T a is absent in the expansion (B5) since we
took the origin of the coordinates to be at the center of mass
of the body.

2. Computing the eikonal phase

Based on the form of the post-Newtonian potentials
(B1), (B5) and (B4), it is convenient to separate the
monopole term from the rest of the multipoles. As we
know [9], the action of the monopole term is similar to that
of the Coulomb potential which is a long-range potential
that is felt as far as the source. The remaining multipole
terms form the short-range potential, Vsrc2, yielding the
decomposition U=c2 ¼ rg=2rþ Vsr for the Newtonian
potential, which allows us to present the potential term
in (A40) in the following form:

4U
c2

¼ 2rg
r

þ 4Vsr: ðB7Þ

The short-range potential forms the eikonal phase given by
(39) that has the form

ξbðτÞ ¼
k
2

Z
τ

τ0

2Vsrðb; τ0Þdτ0 þOðr2gÞ: ðB8Þ

a. Computing the eikonal phase for an
axisymmetric body

Here we develop an expression for the eikonal phase in
the case of an axisymmetric body, with its potential given
by (B4). In this case, the decomposition of the post-
Newtonian potential takes the from

4U
c2

¼ 2rg
r

− 2rg
X∞
l¼2

ð−1Þl
l!

JlRl ∂l

∂sl
�
1

r

�
: ðB9Þ

In the case the short-range potential, Vsr from (B5) is
given as

Vsr ¼ −
rg
2

X∞
l¼2

ð−1Þl
l!

JlRl ∂l

∂sl
�
1

r

�
: ðB10Þ

We now compute the leading term of this expansion.
For that, we define the vector s to be a unit vector in
the direction of the axis of rotation. Remembering that
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þOðrgÞ from (32), we evaluate directional

derivatives ∂=∂s along s≡ k3, which have the form
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∂
∂s ¼ ðs · ∇Þ ¼

�
s ·

∂
∂r

�
: ðB11Þ

This relation allows us to compute the relevant partial derivatives for the leading terms in (B4):

∂
∂s

1

r
¼ −

ðs · rÞ
r3

;
∂2

∂s2
1

r
¼ 3ðs · rÞ2

r5
−

1

r3
;

∂3

∂s3
1

r
¼ −3

�
5ðs · rÞ3

r7
−
3ðs · rÞ

r5

�
; ðB12Þ

∂4

∂s4
1

r
¼ 3

�
35ðs · rÞ4

r9
−
30ðs · rÞ2

r7
þ 3

r5

�
;

∂5

∂s5
1

r
¼ −15

�
63ðs · rÞ5

r11
−
70ðs · rÞ3

r9
þ 15ðs · rÞ

r7

�
; ðB13Þ

∂6

∂s6
1

r
¼ 45

�
231ðs · rÞ6

r13
−
315ðs · rÞ4

r11
þ 105ðs · rÞ2

r9
−

5

r7

�
; ðB14Þ

∂7

∂s7
1

r
¼ −315

�
429ðs · rÞ7

r15
−
693ðs · rÞ5

r13
þ 315ðs · rÞ3

r11
−
35ðs · rÞ

r9

�
; ðB15Þ

∂8

∂s8
1

r
¼ 315

�
6435ðs · rÞ8

r17
−
12012ðs · rÞ6

r15
þ 6930ðs · rÞ4

r13
−
1260ðs · rÞ2

r11
þ 35

r9

�
: ðB16Þ

Using these expressions in (B10), we have

2Vsrðb; τÞ ¼ −rg
�
J2R2

1

2

�
3ðs · rÞ2

r5
−

1

r3

�
þ J3R3

1

2

�
5ðs · rÞ3

r7
−
3ðs · rÞ

r5

�

þ J4R4
1

8

�
35ðs · rÞ4

r9
−
30ðs · rÞ2

r7
þ 3

r5

�
þ J5R5

1

8

�
63ðs · rÞ5

r11
−
70ðs · rÞ3

r9
þ 15ðs · rÞ

r7

�

þ J6R6
1

16

�
231ðs · rÞ6

r13
−
315ðs · rÞ4

r11
þ 105ðs · rÞ2

r9
−

5

r7

�

þ J7R7
1

16

�
429ðs · rÞ7

r15
−
693ðs · rÞ5

r13
þ 315ðs · rÞ3

r11
−
35ðs · rÞ

r9

�

þ J8R8
1

128

�
6435ðs · rÞ8

r17
−
12012ðs · rÞ6

r15
þ 6930ðs · rÞ4

r13
−
1260ðs · rÞ2

r11
þ 35

r9

�

þ
X∞
l¼9

ð−1Þl
l!

JlRl ∂l

∂sl
�
1

r

��
: ðB17Þ

We can now substitute result (B17) into expression (B8)
and integrate it. We observe that, technically, it is more
straightforward to compute the eikonal phase shift inte-
gration along the entire path from τ0 to τ. Note that this
way one computes the double shift, 2ξbðτÞ. This integration
results in many terms that depend on the distance to the
source, r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
, and that to the image plane,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
. The resulting expression is greatly simpli-

fied in the case when both the source and the observer on
the image plane are located at very large distances from
the lens and the following inequalities are satisfied:

b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
≃ b=τ ≪ 1 and b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
≃ b=τ0 ≪ 1.

This step, essentially, constitutes the thin lens approxima-
tion.3 This allows us to greatly simplify the result of the
integration, yielding

3If needed, one can use all those terms to evaluate the eikonal
phase, ξbðτÞ, for shorter distances, when τ ∼ τ0 ≃ b. For problems
related to gravitational lensing this is unnecessary, but may be
needed for some Solar System spacecraft tracking applications
[78–80].
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ξbðτÞ ¼ −krg
�
J2

�
R
b

�
2 1

2

�
2ðs · bÞ2 1

b2
þ ðs · kÞ2 − 1

�
þ J3

�
R
b

�
3 1

3

�ðs · bÞ
b

ð4ðs · bÞ2 1

b2
þ 3ðs · kÞ2 − 3Þ

�

þ J4

�
R
b

�
4 1

4

��
ðs · bÞ2 1

b2
þ ðs · kÞ2 − 1

�
ðs · bÞ2 8

b2
þ ððs · kÞ2 − 1Þ2

�

þ J5

�
R
b

�
5 1

5

�ðs · bÞ
b

�
ðs · bÞ4 16

b4
þ ððs · kÞ2 − 1Þðs · bÞ2 20

b2
þ 5ððs · kÞ2 − 1Þ2

��

þ J6

�
R
b

�
6 1

6

�
ðs · bÞ6 32

b6
þ ððs · kÞ2 − 1Þðs · bÞ4 48

b4
þ ððs · kÞ2 − 1Þ2ðs · bÞ2 18

b2
þ ððs · kÞ2 − 1Þ3

�

þ J7

�
R
b

�
7 1

7

�ðs · bÞ
b

�
ðs · bÞ6 64

b6
þ ððs · kÞ2 − 1Þðs · bÞ4 112

b4
þ ððs · kÞ2 − 1Þ2ðs · bÞ2 56

b2
þ 7ððs · kÞ2 − 1Þ3

��

þ J8

�
R
b

�
8 1

8

�
ðs · bÞ8 128

b8
þ ððs · kÞ2 − 1Þðs · bÞ6 256

b6
þ ððs · kÞ2 − 1Þ2ðs · bÞ4 160

b4

þ ððs · kÞ2 − 1Þ3ðs · bÞ2 32
b2

þ ððs · kÞ2 − 1Þ4
�

þ
X∞
l¼9

ð−1Þl
2l!

JlRl

Z
τ

τ0

∂l

∂sl
�
1

r

�
dτ0

�
þOðr2gÞ: ðB18Þ

Note that a similar result for the quadrupole J2 term was obtained in [66–68]. Expression (B18) extends all the previous
computations to the higher order terms including J8.
We use the heliocentric spherical coordinate system and define the vectors of impact parameter, b, the wave vector, k, and

the unit vector long the solar rotational axis, s, as follows:

b ¼ bðcosϕξ; sinϕξ; 0Þ; k ¼ ð0; 0; 1Þ; s ¼ ðsin βs cosϕs; sin βs sinϕs; cos βsÞ: ðB19Þ

With these definitions, the eikonal phase (B24) for the case of an axisymmetric body whose gravitational potential is given
by (B4) reads as4

ξbðrÞ ¼ −krg
�
J2

1

2

�
R⊙

b

�
2

sin2βs cos½2ðϕξ − ϕsÞ� þ J3
1

3

�
R⊙

b

�
3

sin3βs cos½3ðϕξ − ϕsÞ�

þ J4
1

4

�
R⊙

b

�
4

sin4βs cos½4ðϕξ − ϕsÞ� þ J5
1

5

�
R⊙

b

�
5

sin5βs cos½5ðϕξ − ϕsÞ�

þ J6
1

6

�
R⊙

b

�
6

sin6βs cos½6ðϕξ − ϕsÞ� þ J7
1

7

�
R⊙

b

�
7

sin7βs cos½7ðϕξ − ϕsÞ�

þ J8
1

8

�
R⊙

b

�
8

sin8βs cos½8ðϕξ − ϕsÞ� þ
X∞
n¼9

1

n
Jn

�
R⊙

b

�
n
sinnβs cos½nðϕξ − ϕsÞ�

�
þOðr2gÞ: ðB20Þ

Assuming that the pattern evident in these expressions continues for higher multipoles, we obtain the following compact
expression for the eikonal phase:

ξbðb; sÞ ¼ −krg
X∞
n¼2

Jn
n

�
R⊙

b

�
n
sinnβs cos½nðϕξ − ϕsÞ� þOðr2gÞ: ðB21Þ

Note that the sum in (B21) contains contributions from all multipole moments, n ¼ 2; 3; 4; 5.:. and is valid for any
axisymmetric body with respect to the z ¼ x3 axis represented by s. If in addition to being axisymmetric, that body also has
“north-south” symmetry (symmetry under a reflection with respect to the plane of rotation), that sum contains only even
terms, n ¼ 2; 4; 6; 8.::, [39].

4To derive the results in a compact form we used multiple angle formulas [81].
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b. Computing the eikonal phase using STF tensors

Using the representations (B1), (B5) or (B4), it is
convenient to separate the monopole term in the potential
U. In fact, to determine the solution to (A40), similarly to
[12,13], we first separate the monopole contribution and
present the U-dependent term in (A40) as

4U
c2

¼ 2rg
r

þ 2rg
X∞
l¼2

ð−1Þl
l!

T ha1…ali ∂l

∂xha1…∂xali
�
1

r

�
;

ðB22Þ

where rg ¼ 2GM=c2 is the Schwarzschild radius of
the body and the short-range potential Vsr from (B5) is
given by

Vsr ¼
rg
2

X∞
l¼2

ð−1Þl
l!

T ha1…ali ∂l

∂xha1…∂xali
�
1

r

�
: ðB23Þ

As such, this form is valid for any deviation from spherical
symmetry in the gravitational field.
Given VsrðrÞ from (B23), we reduced the problem to

evaluating a single integral to determine the Debye poten-
tial ΠðrÞ from (25), which is a great simplification. Given

the fact that b is constant and by taking the short-range
potential VsrðrÞ from (B23), we evaluate (39) as

ξbðrÞ ¼ krg
X∞
l¼2

ð−1Þl
2l!

T ha1…ali
Z

τ

τ0

∂l

∂xha1…∂xali
�
1

r

�
dτ0:

ðB24Þ

In fact, we may generalize the expression ∇ ¼
∇b þ kd=dτ þOðrgÞ and write

∂l

∂xha1…∂xali ≡ ∇ha1…:∇ali

¼
Xl
p¼0

l!
p!ðl − pÞ! kha1…kap∂apþ1

…∂ali
∂p

∂τp
þOðrgÞ; ðB25Þ

where a new shorthand notation ∂a ≡ ∂=∂ba has been used
and τ is defined by (31).
Using representation (B25), we can compute the relevant

integral (with r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þτ2

p
and r0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þτ20

p
, as discussed

in Sec. II C)

Z
τ

τ0

∂l

∂xha1:::∂xali
�
1

r

�
dτ0 ¼

Xl
p¼0

l!
p!ðl − pÞ! kha1 :::kap∂apþ1

:::∂ali

� ∂p

∂τp ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ

b

�
þ ∂p

∂τp0 ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ20
p

þ jτ0j
b

��

¼ ∂ha1 :::∂ali

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ

b

�
þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ jτ0j

b

��
þ

þ
Xl
p¼1

l!
p!ðl − pÞ! kha1 :::kap∂apþ1

:::∂ali

� ∂p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p þ ∂p−1

∂τp−10

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p �
. ðB26Þ

As a result, the eikonal phase (B24) takes the form:

2ξbðrÞ ¼ krg
X∞
l¼2

ð−1Þl
l!

T ha1:::ali∂ha1 :::∂ali

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ

b

�
þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
þ jτ0j

b

��
þ

þ
Xl
p¼1

l!
p!ðl − pÞ! kha1 :::kap∂apþ1

:::∂ali

� ∂p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p þ ∂p−1

∂τp−10

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p �
ðB27Þ

Applying the same approximations used to derive (B18),
namely b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
≃ b=τ ≪ 1 and b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
≃

b=τ0 ≪ 1, (B27) takes a much simplified form:

ξbðrÞ ¼ −krg
X∞
l¼2

ð−1Þl
l!

T ha1:::ali∂ha1 :::∂ali ln kb: ðB28Þ

We observe that in the case of an axisymmetric gravi-
tational field, the result (B28) reduces to (B21). Note that

expression (B28) is derived for an arbitrary gravitational
field. We may use this result to derive the eikonal phase for
any of the terms in the Newtonian potential (B1). Such a
generic potential can be used to analyze gravitational
lensing by an arbitrary mass distribution.
Note that expression (B27) is derived for an arbitrary

matter distribution within a gravitating body. One may
use this result to derive the eikonal phase for any of the
terms in the Newtonian potential (B1). Such a generic

DIFFRACTION OF ELECTROMAGNETIC WAVES BY AN … PHYS. REV. D 103, 064076 (2021)

064076-31



potential may be suitable for analysis of the gravitational
lensing by a lens with an arbitrary intrinsic matter
distribution.

APPENDIX C: USING THE PATH
INTEGRAL FORMALISM

As we mentioned before, Eq. (12) is nearly identical
to the time-independent Schrödinger equation that in
nuclear physics describes the scattering problem on a
potential U [24,82,83]. Here we further explore this
analogy. For that, we note that in the absence of the
scattering potential, U, solution (12) may be given in the
from of a plane EM wave given as ψ0ðrÞ ¼ E0eik·k. Next,
we introduce a cylindrical coordinate system ðρ;ϕ; zÞ,
whose z axis is directed along the wave vector k. Then,
by defining the amplification factor due to scattering on
the gravitational potential U of the lens as μðrÞ ¼
½ΠðrÞ=u�=ψ0ðrÞ, we rewrite (12) as

fΔψ0ðrÞþk2ψ0ðrÞgμðrÞþψ0ðrÞΔμðrÞþ2ð∇ψ0ðrÞ ·∇μðrÞÞ

þk2
4UðrÞ
c2

μðrÞψ0ðrÞ¼0: ðC1Þ

As ψ0ðrÞ is the solution of the homogeneous wave equation
in flat, vacuum spacetime, the first term in (C1) is zero.
Then, we can divide the remaining terms of (C1) by ψ0ðrÞ,
which yields

ΔμðrÞþ2ð∇ lnψ0ðrÞ ·∇μðrÞÞþk2
4UðrÞ
c2

μðrÞ¼ 0: ðC2Þ

Clearly, ∇ lnψ0ðrÞ ¼ ikk, where k ¼ ω=c is the wave
number and k is the unit vector in the direction of the
wave vector. From the discussion in Sec. II C, we know that
ðk · ∇Þ ¼ d=dτ. We remember the form of the Laplacian in
the cylindrical coordinate system ðρ; zÞ that in our case is
given as

ΔμðrÞ ¼ ΔρμðrÞ þ
∂2μðrÞ
∂z2 ; where

ΔρμðrÞ ¼
1

ρ

∂
∂ρ

�
ρ
∂μðrÞ
∂ρ

�
þ 1

ρ2
∂2μðrÞ
∂ϕ2

: ðC3Þ

Substituting these results into (C2), we have

∂2μðrÞ
∂z2 þ ΔρμðrÞ þ 2ik

dμðrÞ
dτ

þ k2
4UðrÞ
c2

μðrÞ ¼ 0: ðC4Þ

We assume that k=j∂ ln μ=∂zj ∼ ðscale at which μ variesÞ=
ðwavelengthÞ ≫ 1, we neglect the first term compared with
the second term, which constitutes the eikonal approxima-
tion. Then Eq. (C4) takes a familiar form:

i
dμðτ; ρÞ

dτ
¼

�
−

1

2k
Δρ −

2kUðτ; ρÞ
c2

�
μðτ; ρÞ; ðC5Þ

which is the Schrödinger equation with the “time” coor-
dinate τ, the “particle mass” k, and the “time-dependent
potential” −2kc−2Uðτ; ρÞ. The corresponding Lagrangian
that yields the classical equation of motion is given as

Lðτ; ρ; _ρÞ ¼ k

�
1

2
_ρ2 þ 2c−2Uðτ; ρÞ

�
; ðC6Þ

where _ρ ¼ dρ=dτ. This Lagrangian describes the motion of
a pendulum in a gravity field with potential −2kc−2Uðτ; ρÞ.
This is a mechanical analogy for forming the caustics on the
image plane of the SGL. This is similar to a motion of a
connected pendulum where each of the multipoles char-
acterized by a unique natural spacial frequency, affects the
motion of the entire pendulum in a carefully prescribed
fashion [84].
In the path integral formulation [36], the solution to (C5)

may formally be written as

μðrÞ ¼
Z

DρðτÞ exp
�
i
Z

τ

τ0

Lðτ; ρ; _ρÞdτ
�
: ðC7Þ

Following the established rules of evaluating path integrals
[36,85], we have

Z
τ

τ0

k
1

2
_ρ2dτ ¼ k

2τ
ðρðτÞ − ρð0ÞÞ2 ≃ k

2r
ðb − rθÞ2; ðC8Þ

with ρðτÞ ¼ rθ, ρð0Þ ¼ b and where we realize that for
very small angles θ ¼ ρ=r, τ ¼ ðk · xÞ ≃ r is a valid
approximation. Integrating (C8), we also use a thin lens
approximation while assuming that the effect of the lens on
light is instantaneous and affects light only after it has
passed through the lens. Initially the light continues on a
straight line, so that ρð0Þ − ρðτ0Þ ¼ 0, then, there is
a sudden path change after which the light continues on
a different straight line until it reaches the observer on
the image plane. Integrating the potential terms, we use
representation (23), that is, 4U=c2 ¼ 2rg=rþ 4Vsr and the
approach presented in Appendix 2 a, which yields

Z
τ

τ0

k2c−2Uðτ;ρÞdτ

¼ krg ln2krþkrg ln2kr0−2krgðlnkbþψðbÞÞ; ðC9Þ

where ψðbÞ is given by (109). As a result, after applying the
appropriate normalization factor A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=2πir
p

to each of
the two dimensions involved [36,85], the expression (C7)
results in
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μðrÞ ¼ E0eikrg ln 2kr
k
ir

1

2π

Z
d2b

× exp

�
ik

�
1

2r
ðb − rθÞ2 − 2rgðln kbþ ψðbÞÞ

��
:

ðC10Þ

Combining this expression with ψ0ðrÞ ¼ E0eik·r, we get
for the Debye potential ΠðrÞ an expression that is equiv-
alent to (115) for the factor γðr; θ;ϕÞ, providing the
connection between the two different methods used to
derive this result.

The derivation presented here shows a deep connection
between various methods of modern theoretical physics
used to provide a wave-optical description of diffraction of
light, namely the Kirchhoff-Fresnel diffraction formula
[7,21,61], the path integrals [35–38,85], the Mie theory
[9,20,21] relying on the Debye potentials and the eikonal
approximation [28–30]. The approach that we presented in
this paper has the advantage as it can be used to evaluate the
vector nature of the EM field diffracted by the gravity field
of an extended lens. This connection will be investigated
further.
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