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We construct a large class of spacetimes that are smoothly matched to homogeneous, spherically
symmetric clouds of matter. The evolution of the clouds is left arbitrary to allow for the incorporation of
modifications by quantum effects, which can in particular lead to bounces. We further discuss two simple
yet illustrative examples of these spacetimes, both in general terms and for a specific form of the bounce,
with a focus on horizon behavior and relevant time scales.
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I. INTRODUCTION

It is widely believed that the singularities of general
relativity will be cured in some form by quantizing the
theory. Since such a theory of quantum gravity is not
available as of yet, this claim can only be investigated in
reduced models constructed in accordance with various
approaches to a full theory. Most commonly used are
cosmological models and black holes, the latter including
both collapse models and eternal black holes.
A result that has emerged in many such investigations in

some variation is an avoidance of the classical singularity
by a bounce: in cosmological and collapse models, instead
of originating or terminating in a singularity, the dynamics
transition from collapse to expansion [1–15]. Likewise,
eternal black holes have been shown to decay into white
holes; see e.g., Refs. [16,17]. Although some of these
results have recently been called into question [18–20], we
believe that the pervasiveness of the bounce across various
models and approaches to quantum gravity is noteworthy.
Here we are interested in bouncing collapse models.

They are typically derived by considering a simple matter
distribution, either shells or homogeneous clouds. This then
allows for a symmetry reduction of the system, making
quantization tractable. The reduction also includes the
degrees of freedom of the geometry exterior to the matter
configuration, which is then essentially presumed to be
completely classical, most often Schwarzschild.
Unfortunately, some of the most interesting questions

concerning bouncing collapse involve the exterior; without
it, we know nothing of the behavior of horizons outside of
the matter distribution. How do they transition from
trapping to antitrapping, and how long might they be
visible to a far-away observer? What does the shadow of
such a bouncing compact object look like? These questions
have been discussed in the literature on conceptual grounds

[4,21–29], but they ultimately require an effective exterior
geometry to the bouncing object.
For a more complete review of bouncing collapse and the

aforementioned open questions, see the review [30] and
references therein. Further, we want to note that there have
been previous investigations of how quantum effects affect
collapse models where the exterior has been explicitly
included; see e.g., Refs. [13,31,32].
In this paper, we want to restrict ourselves to homo-

geneous dust clouds, described by a Friedman-Lemaître-
Robertson-Walker (FLRW) geometry, modified by quan-
tum effects to bounce. We present here a large class of
exteriors smoothly matched to the dust cloud at its surface.
The exact trajectory of the surface is left open, such that
these exteriors can be adapted to many bouncing collapse
models. Further we discuss two simple yet illustrative
examples for such exteriors, both in general and for the
specific bouncing trajectory from Refs. [1,2].
Previously, similar exteriors have been investigated for

bouncing null shells [29,33,34]. Therein regions in the
exterior were identified where departures from the classical
geometry are unavoidable, in particular outside of the
horizon. These exteriors were further used to investigate
the effects of Hawking radiation on the bouncing null shells
in Ref. [35]. The necessity of quantum modifications
outside of the horizon was also noted in Ref. [36], where
black hole and white hole spacetimes were matched across
a spacelike hypersurface. Therein it was found that without
these modifications the causal structure of the exterior has
to be nontrivial.
In Refs. [37–39], exteriors were discussed in very

general terms, allowing modified gravity theories and
distributional contributions to the energy-momentum ten-
sor on the matching surface. However, specific examples
were restricted to static spacetimes or ones in which no
horizons form at all. The same class of static exteriors was
investigated also in Ref. [40], where the discussion cen-
tered on specific loop quantum gravity models for the*tschmitz@thp.uni-koeln.de
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bounce. Here we aim to specifically illustrate aspects of
dynamic exteriors, with horizons that expand and shrink.
Finally, we want to note that these exteriors might share

properties with but need not match the various regularized
black hole solutions available in the literature; see e.g.,
Refs. [41–43]. These spacetimes are more or less ad hoc
modifications of black hole solutions, smoothing out the
geometry near the would-be singularity. This is not neces-
sary for bouncing collapse, since there matter never collap-
ses far enough to reach and uncover these singularities.
We proceed here as follows. In Sec. II, we present the

construction of our exteriors and then discuss two specific
examples. In Sec. III, we investigate these examples further
for the specific bouncing trajectory from Refs. [1,2],
especially with regard to horizons and relevant time scales,
before we conclude in Sec. IV. Throughout we use units
where G ¼ c ¼ 1.

II. GENERAL CONSTRUCTION

We assume that the geometry of the interior of the
collapsing body can be described by a FLRW line element,

ds2 ¼ −dτ2 þ a2ðτÞ
�

dr2

1 − kr2
þ r2dΩ2

�
;

where k ∈ f�1; 0g as usual controls the curvature of spatial
slices. The surface of the body can be characterized in the
interior by r ¼ rS ¼ const. Note that for a closed interior,
k ¼ þ1, one has to restrict rS < 1.
It turns out to be convenient to work in adapted

coordinates and replace the radial coordinate r by
ρ ¼ r=rS ≤ 1. The line element then takes the form

ds2 ¼ −dτ2 þ R2
SðτÞ

�
dρ2

1 − kSρ2
þ ρ2dΩ2

�
; ð1Þ

where kS ¼ kr2S and RSðτÞ describes the trajectory of the
collapsing body’s surface at ρ ¼ 1. At this point, we will
not restrict RSðτÞ in any way, and in particular not assume
any equations of motion for it. Later we will impose that the
collapsing body bounces and expands out again.
To construct exteriors smoothly matched to this interior,

it turns out to be helpful to first consider a more general
metric that contains both the quantum corrected Friedmann
model and possible exteriors as special cases, in analogy to
the classical Lemaître-Tolman-Bondi (LTB) metric. We
have previously discussed quantization of the LTB model
in Ref. [1]. Hence, we choose an ansatz in LTB form,

ds2 ¼ −dτ2 þ
ð∂R∂ρÞ2

1þ 2EðρÞ dρ
2 þ R2ðρ; τÞdΩ2: ð2Þ

We interpret the radial coordinate ρ as is usual for LTB as a
label for the spherically symmetric dust shells making up

the model, but take it to be rescaled with respect to the
surface of the collapsing body in line with Eq. (1). It is easy
to see that for ρ < 1 one can reclaim the metric in Eq. (1) by
identifying

Rðρ; τÞ ¼ RSðτÞρ;

EðρÞ ¼ −
1

2
kSρ2:

To find an exterior smoothly matched to the interior
across ρ ¼ 1, we hence choose the functions Rðρ; τÞ and
EðρÞ for ρ ≥ 1 such that

Rð1; τÞ ¼ RSðτÞ; ð3Þ

∂R
∂τ ¼ F ðRSðτÞ; Rðρ; τÞÞ; ð4Þ

EðρÞ ¼ −
1

2
kS; ð5Þ

where we have introduced the functionF . At this point, this
function is arbitrary, except at ρ ¼ 1: from Eqs. (3) and (4),
it follows that there F is directly determined by the
equation of motion,

F ðRSðτÞ; Rð1; τÞÞ ¼
∂R
∂τ

����
ρ¼1

¼ _RS; ð6Þ

where a dot denotes a derivative with respect to τ, and we
assume that the equations of motion for RS are such that _RS
can be expressed solely through RS itself.
The above allows us to make a coordinate transformation

introducing the curvature radius Rðρ; τÞ as the radial
coordinate,

∂R
∂ρ dρ ¼ dR −

∂R
∂τ dτ ¼ dR − F ðRSðτÞ; RÞdτ;

which brings our metric from Eq. (2) into the form

ds2 ¼ −
1− kS −F 2

1− kS
dτ2 −

2F
1− kS

dτdRþ dR2

1− kS
þR2dΩ2:

ð7Þ

In Appendix A, we show explicitly that the above and the
line element (1) are indeed matched smoothly across the
dust cloud’s surface.
As a consistency check, we can see that the

above reduces to the Schwarzschild metric for classical
Oppenheimer-Snyder collapse, where F 2 ¼ 2M=R − kS.
We recognize then for kS ¼ 0 the Schwarzschild metric in
Painlevé-Gullstrand coordinates. The same observation
also holds for Painlevé-Gullstrand coordinates generalized
to kS ≠ 0; compare for kS < 0 with Eq. (3.5) in Ref. [44]
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(apart from a constant rescaling of τ), where we can identify
p ¼ 1=ð1 − kSÞ, and for kS > 0 with Eq. (10) in Ref. [45],
with the identification Ri ¼ 2M=kS. Note that the latter
coordinates are only valid for R < Ri < 2M.
There is of course a great amount of freedom in choosing

the functionF , since the matching only determines it on the
dust cloud’s surface. For the remainder of this section, we
will explore some specific choices for this function, and see
what kind of exterior they lead to.
Furthermore, we want to point out that we did not choose

the most general ansatz for exteriors. One could generalize
E to vary with ρ and only fulfill Eq. (5) at ρ ¼ 1. We have
not done so here because such exteriors turn out to be
somewhat further removed from Schwarzschild when
inserting specific equations of motion.
A further generalization to Eðτ; ρÞ would be needed to

exhaust all possible spherically symmetric exteriors: a
general such geometry is characterized by two functions
of both τ and ρ.

A. Static exteriors

Let us now be more specific and assume that the
quantum corrected equation of motion can be given in
the form

_R2
S ¼ FðRSÞ; ð8Þ

R̈S ¼
1

2
F0ðRSÞ: ð9Þ

Since we want the resulting trajectory to bounce at some
minimal radius R0, where _RS ¼ 0 and R̈S > 0, we can
impose FðR0Þ ¼ 0 and F0ðR0Þ > 0. Further assuming that
this trajectory approaches the classical one far away from
the singularity, we can impose that FðRSÞ ∼ 2M=RS − kS
for large RS, where M is the total mass of the dust cloud.
First, we want to consider a static exterior analogous to a

Schwarzschild black hole; Hence, we choose

F ðRSðτÞ; RÞ ¼ F ðRÞ:

F is then immediately determined by the equation of
motion,

F ðRÞ ¼ η
ffiffiffiffiffiffiffiffiffiffiffi
FðRÞ

p
;

where η ¼ sgn _RS. Despite the appearance of η, the result-
ing exterior geometry is still static. The easiest way to see
that is to bring the line element into the form

ds2 ¼ −fðRÞdT2 þ dR2

fðRÞ þ R2dΩ2; ð10Þ

with the help of the coordinate transformation

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kS

p
T − η

Z
dR

ffiffiffiffiffiffiffiffiffiffiffi
FðRÞp
fðRÞ ;

where

fðRÞ ¼ 1 − FðRÞ − kS:

We can immediately say that the resulting exterior
spacetime approaches Schwarzschild for large curvature
radii. How far away from the collapsing body the quantum
corrections are still noticeable depends on the specific
quantum corrected equation of motion.
Of particular interest is the emergence of horizons in this

exterior. To this end, we follow Ref. [46] and identify
apparent horizons by fðRÞ ¼ 0. They separate untrapped
regions, where fðRÞ > 0, from (anti-)trapped regions,
where fðRÞ < 0. In the following, we will assume that
all real roots of fðRÞ are simple. From the behavior of FðRÞ
discussed above, we can say that at the radius of the bounce
we have

fðR0Þ ¼ 1 − kS > 0;

and hence the bounce takes place in an untrapped region.
The region R < R0 is of no further importance here, since it
is always covered by the collapsing dust cloud. Due to the
asymptotic behavior of FðRÞ, the exterior is asymptotically
flat and hence untrapped at large R as well. Depending on
the number of roots of fðRÞ, these two untrapped regions
might be separated from each other by alternating (anti-)
trapped and untrapped regions.
These results match the more general discussion in

Refs. [37–39]. There it was found for a much wider range
of models that the bounce always takes place in an
untrapped region of the exterior, making it necessary for
a potential outer horizon always to be paired up with an
inner horizon.
Since we want to compare the comoving with the

exterior observer, we want to find the trajectory of the
dust cloud’s surface in Killing time T given by

�
dR
dT

�
2

¼
_R2
S

_T
2
¼ FðRÞ2 fðRÞ

2

1 − kS
;

where an overline denotes a quantity on the surface of the
dust cloud, such that for a function qðR; τÞ we have
q ¼ qðRSðτÞ; τÞ. Expanding this equation of motion near
the horizons, should there be any, we can say fðRÞ ¼
ðR − RhÞf̃ðRhÞ with f̃ðRhÞ ≠ 0, since the roots of fðRÞ are
simple. Keeping in mind that fðRÞ and FðRÞ differ by an
additive constant and can thus never share roots, we can
then say that near the horizons
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�
dR
dT

�
2

∝ ðR − RhÞ2:

We can then read off that RðTÞ only approaches the
horizons asymptotically and never crosses them in finite
Killing time, in analogy with a Schwarzschild exterior.
The fact that the exterior observer then never observes

the bounce itself when horizons are present, but the dust
cloud in fact expands out again hints toward the necessity
of the existence of other asymptotically flat regions in the
maximal extension of this static exterior; the dust cloud
then reexpands toward a different asymptotic infinity than it
started its collapse from. The static exterior’s causal
structure has to be complex enough to accommodate this
process.
This we will discuss in more detail in Sec. III at the

example of a particular quantum corrected equation of
motion; see Fig. 1 for the corresponding causal structure.

Another example for this behavior can also be found in
Ref. [40], illustrated with the Penrose diagram in Fig. 14.
While this construction is in principle a consistent

description of bouncing collapse, we find the necessity
of a more involved causal structure and the unobservability
of the bounce for an exterior observer undesirable. It seems
thus unavoidable to consider dynamic exteriors to have
both a bounce and horizons. This assertion that there should
be a unique asymptotic region has also been expressed in
Ref. [4], although from a technical rather than conceptual
standpoint.
We want to briefly note that the aforementioned unob-

servability of the bounce might be broken by further
quantum effects in the exterior not considered here; the
two relevant asymptotically flat regions might e.g., be
quantum gravitationally entangled. A more detailed dis-
cussion of this is beyond the scope of our current efforts.
Before moving on to dynamic exteriors, we want to

emphasize that we do not exclude the possibility of
consistent static exteriors completely. By relaxing the
assumption that the roots of fðRÞ be simple, it might be
possible for the exterior to have apparent horizons that can
be crossed in finite Killing time. Should one insist on a
static exterior, this can be understood as a restriction on
possible quantum corrected equations of motion.

B. Time-dependent-mass exteriors

To overcome the problems of static exteriors, we want to
construct a possible dynamic exterior. Here we will con-
sider a very simple and hopefully instructive case. We do
not claim that this specific exterior gives a realistic model of
a bouncing black hole. In fact, as we will see shortly, since
its Arnowitt-Deser-Misner (ADM) mass changes in time
and even vanishes at the moment of the bounce, it will most
likely exhibit some of the undesirable properties described
in Refs. [47,48]. We still believe that a closer investigation
of this simple example will be helpful for later, more
systematic searches for a consistent bouncing black
hole model.
The smaller class of solutions we consider here are

restricted to kS ¼ 0 and fulfill

F ðRSðτÞ; RÞ ¼ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðRSðτÞÞ

R

r
;

where η ¼ sgn _RS. These solutions describe a generaliza-
tion of Schwarzschild in Painlevé-Gullstrand form, where
the mass varies with comoving time. It follows from Eq. (6)
that this mass is determined by the quantum corrected
equation of motion as

MðRSÞ ¼
1

2
RS

_R2
S: ð11Þ

In Painlevé-Gullstrand form, the metric is then

FIG. 1. Penrose diagram for the static exterior given by Eq. (15)
with 2

5
3R0 < 3M0. Thick lines denote null infinities, thin lines

horizons, and wavy lines singularities.
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ds2 ¼ −
�
1 −

2MðRSÞ
R

�
dτ2

− 2η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðRSÞ

R

r
dτdRþ dR2 þ R2dΩ2:

We consider here only the flat case for simplicity.
A generalization especially to the closed case kS > 0
requires some care, since it needs to involve an extension
of the ðτ; RÞ coordinates past the aforementioned restriction
R < 2MðRSÞ.
First, we want to discuss apparent horizons. Following

Ref. [46], the expansions of outgoing null geodesics Θþ
and ingoing null geodesics Θ− are given by

Θ� ¼ � 2

R

�
1� η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðRSÞ

R

r �
:

There is thus only one apparent horizon, determined by
Θþ ¼ 0 or Θ− ¼ 0, at R ¼ 2MðRSÞ, in contrast to the static
exteriors discussed in the last section. It separates the
untrapped asymptotic region R > 2MðRSÞ, where Θþ > 0
and Θ− < 0, from the region R < 2MðRSÞ that is either
trapped or antitrapped depending on η: before the bounce,
η ¼ −1, this region is trapped since Θ� < 0, and after the
bounce, η ¼ þ1, it is antitrapped since Θ� > 0. The
transition from trapped to antitrapped is facilitated by
the horizon withdrawing into the origin R ¼ 0 at the instant
of the bounce,

2MðRSÞ ¼ RS
_R2
S ¼_RS¼0

0:

Whether the horizon is outside of the collapsing body at
any given time can be determined by the sign of the
function RS − RS

_R2
S. The attentive reader might have

spotted that this is the same function we used to determine
whether a region in the static exterior is (anti-)trapped or
untrapped in Sec. II A. We can thus apply those results
here, making the same assumptions about _RS given by
Eqs. (8) and (9): for early and late times, where RSðτÞ is
large, the body’s surface is outside of the horizon.
Approaching the bounce, surface and horizon cross through
each other an even number of times such that at the bounce
the horizon is inside of the collapsing body. Note that a
similar picture has also emerged in Refs. [14,15], although
there the exterior metric has not been given explicitly.
Last, we want to discuss two more properties of this

exterior: its matter content and the Kretschmann scalar to
check for curvature singularities. We start with the latter. It
is given by

K ¼ RμνρλRμνρλ

¼ 48M2

R6
−

24Mffiffiffiffiffiffiffiffiffiffiffi
R9RS

p ∂M
∂RS

þ 9

R3RS

�∂M
∂RS

�
2

;

where Rμνρλ is the Riemann tensor. As is apparent, there is
a singularity at R ¼ 0. This is of no further importance,
since when matched with the bouncing interior this
singularity never appears in the full spacetime. Since for
a bouncing collapse RS never vanishes, the Kretschmann
scalar does not diverge anywhere else as long as the
derivative of M is well behaved. Through Eq. (11), this
derivative can be found as

∂M
∂RS

¼ 1

2
ð _R2

S þ 2RSR̈SÞ: ð12Þ

Hence, it is not too much of a restriction on the quantum
corrected equation of motion that this should stay finite.
Computing the Einstein tensor and imposing the Einstein

field equations, we further find that the energy momentum
tensor generating this exterior can be expressed as

Tμν ¼ ptðuμuν þ gμνÞ þ ðpr − ptÞnμnν;

where uμdxμ ¼ dτ is the unit covector in direction of the
comoving time and

nμdxμ ¼ dR − η

ffiffiffiffiffiffiffi
2M
R

r
dτ

is the unit covector normal to the collapsing body’s surface.
The quantities pr and pt can thus be interpreted as
pressures radial and tangential to the surface, respectively,
and are given by

8πpr ¼ −
2

R2

ffiffiffiffiffiffi
R
RS

s
∂M
∂RS

;

8πpt ¼ −
1

2R2

ffiffiffiffiffiffi
R
RS

s
∂M
∂RS

:

The matter content can thus be regarded as an ideal fluid
with vanishing energy density and anisotropic pressure. As
one can see from Eq. (12), at the bounce, where _RS ¼ 0 and
R̈S > 0, the pressures are negative. This matches our results
concerning the effective matter of quantum corrected LTB
collapse in [1]; see also Ref. [15]. As already discussed
there, the violation of various energy conditions is an
advantage rather than a flaw of the model, since it allows us
to evade the Penrose-Hawking singularity theorems.
Just as the Kretschmann scalar, the energy momentum

tensor is well behaved. In conclusion, we can say that this
dynamic exterior seems to be free of possible pathologies in
these regards and also evades the unfavorable causal
structure of the static exterior. Below we will explore it
in more detail by specifying a quantum corrected equation
of motion.
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There we will also discuss how the bounce looks from
the perspective of an exterior observer. Of special impor-
tance is the time that the horizons are visible for. This is not
straightforward in our nonstatic exterior, since with staticity
we have lost an important criterion to single out the exterior
observer. To circumvent this problem, we will make use of
a more operational standpoint to determine the lifetime. For
details, see Sec. III B.

III. A SPECIFIC EQUATION OF MOTION

For the remainder of this paper, we want to focus on one
specific quantum corrected equation of motion for kS ¼ 0,

_R2
S ¼

2M0

RS

�
1 −

R3
0

R3
S

�
; ð13Þ

with the solutions

RSðτÞ ¼
�
R3
0 þ

9M0

2
ðτ − τ0Þ2

�1
3

; ð14Þ

where M0 is the initial total mass of the collapsing body
and R0 the minimal radius of the bounce reached at τ ¼ τ0.
We have found and discussed this equation and its
solutions in Refs. [2,49], where we constructed a quantum
Oppenheimer-Snyder model, and also in Ref. [1] where it
emerged for a quantum Lemaître-Tolman-Bondi model.
There we have also seen that R3

0 ¼ ℏ2δ=M0, where δ is a
parameter determined by quantization ambiguities.

A. Static exterior

Following the general procedure laid out in Sec. II A, the
static exterior corresponding to Eq. (13) is given by the line
element (10) with

fðRÞ ¼ 1 −
2M0

R

�
1 −

R3
0

R3

�
: ð15Þ

To find the horizons of this exterior, and with this its causal
structure, we need to find the roots of fðRÞ.
To this end, we note that for both R → 0 and R → ∞, the

function fðRÞ is positive, and that it has a local minimum at
R ¼ 2

2
3R0 where it takes the value

fð22
3R0Þ ¼ 1 −

3M0

2
5
3R0

:

fðRÞ has real roots only when this value is nonpositive.
Thus, we see that for 2

5
3R0 > 3M0, there are no roots and

hence the exterior has no horizons.
More interesting is the case 2

5
3R0 < 3M0, for which fðRÞ

has two roots and thus two horizons, inner and outer,
emerge. The inner horizon’s position we can estimate as

Rinner < 2
2
3R0 < 3

2
M0, and the outer horizon’s position,

noting fð2M0Þ > 0, as 2
2
3R0 < Router < 2M0. This con-

figuration of the horizons is reminiscent of that of a
Reissner-Nordström black hole and so is its causal struc-
ture. We can illustrate this with the Penrose diagram for this
exterior; see Fig. 1. Details of its construction following
Ref. [50] can be found in Appendix B.
For 2

5
3R0 ¼ 3M0, when fðRÞ has a single root, the

exterior assumes an extremal configuration in further
analogy with the Reissner-Nordström black hole. Since
this root is not simple anymore, discussion of the causal
structure is more complicated and will not be undertaken
here.
In Ref. [40], Fig. 14, a comparable Penrose diagram was

found, although there the black hole and white hole blocks
in the diagram are condensed into a single block with a
transition surface in between, and no singularities are
present.

B. Time-dependent-mass exterior

Following Sec. II B, we can construct a dynamic exterior
with line element

ds2 ¼ −
�
1 −

2MðRSÞ
R

�
dτ2

− 2η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðRSÞ

R

r
dτdRþ dR2 þ R2dΩ2;

where the time-dependent mass is

MðRSðτÞÞ ¼ M0

�
1 −

R3
0

R3
SðτÞ

�
: ð16Þ

For τ → �∞, where RS → ∞, we have MðRSÞ → M0. For
early and late times, away from the bounce, this exterior is
thus approximately Schwarzschild with mass M0. When
the collapsing body’s surface approaches the minimal
radius, MðRSÞ decreases until it vanishes at the time of
the bounce and increases again during expansion.

1. Horizons

With the mass also the horizon at R ¼ 2MðRSÞ first
contracts and then expands again. To determine whether the
horizon is outside of the body’s surface at any given time
we can, as discussed in Sec. II B, largely adapt our analysis
of the horizons in the last section: for 2

5
3R0 > 3M0, the

horizon never emerges from the collapsing matter. For
2
5
3R0 < 3M0 it does emerge during the collapse when
RSðτÞ ¼ Router, where 2

2
3R0 < Router < 2M0, and disap-

pears again at RSðτÞ ¼ Rinner < 2
2
3R0. During the expan-

sion, this is repeated in reverse.
We illustrate this process as seen by the comoving

observer schematically in Fig. 2, using τ as the time
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coordinate. Note that for astrophysical scales the disap-
pearance and reemergence of the horizon, its transition
from black hole to white hole horizon, could happen much
more rapidly than the figure suggests. A convenient notion
for the time scale of this process is the duration that
RSðτÞ < 2

2
3R0, since from previous considerations we know

that at RSðτÞ ¼ 2
2
3R0 the horizon is always in the exterior.

A short calculation gives for this time scale

Δτtrans ¼
ffiffiffiffiffiffiffiffiffi
8R3

0

3M0

s
:

Assuming a solar mass collapsing body we find that
for R0 at the Planck scale, Δτtrans ∼ 10−19tp ∼ 10−44s.
The transition of the horizon would then take place on
a sub-Planckian time scale. For Δτtrans to be higher one,
also has to choose a larger R0, but there is an upper bound:
since 2

5
3R0 < 3M0, we have Δτhor < 3

2
M0. For M0 again

being the solar mass, this upper bound is of the order of
microseconds.
We want to note here that light rays can still escape the

trapping region or penetrate the antitrapping region due to
the movement of the horizon. We illustrate this in Fig. 3,
where we plotted numerically computed ingoing null
geodesics in our exterior; the light rays momentarily stop
at the antitrapping horizon, but the outwardly expanding
horizon swallows them up regardless. Light rays emitted

from the collapsing body’s surface inside of the trapping
region can escape to infinity in the same way. Note that in
Fig. 3 we use rescaled quantities t and r defined by 4M0t ¼
3τ and R ¼ 2M0r. More on null geodesics later.
It would certainly be interesting to investigate how this

behavior influences possible observational signatures of
this bouncing black hole: do closed geodesics behave
similarly, and if yes how does this imprint on the black

FIG. 2. The quantum corrected trajectory given by Eq. (14)
(dashed blue line) as compared to the horizon R ¼ 2MðRSðτÞÞ as
given by Eq. (16) (full red line) for R0 ¼ 1.5 and M0 ¼ 2 in
Planck units. Hatching denotes the (anti-)trapped regions in the
exterior.

FIG. 3. The rescaled quantum corrected trajectory RS=2M0, see
Eq. (14), (dashed blue line) as compared to the horizon (full red
line) and a family of ingoing light rays (dotted green lines) for
different values of R0=2M0. Hatching denotes the (anti-)trapped
regions in the exterior.
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hole shadow? Do signals escaping from the trapped region
show special characteristics that could be identified in
astrophysical data? We leave a closer discussion of this for
future work. Here we only want to note that any observa-
tional signatures should be connected to Δτtrans, since the
horizons still trap light rays when they are close to
stationary.

2. Black hole lifetime

What we want to investigate in the following is the black
hole lifetime. Note that this lifetime is different from the
Δτtrans discussed above; Δτtrans tells us how rapid the
transition from black hole to white hole is. The lifetime
we discuss now instead determines how long the (anti-)
trapped regions are present in the exterior at all, from the
viewpoint of the exterior observer. What characterizes this
observer is that they remain at a fixed curvature radius, and
that their proper time coincides with our comoving time τ
when this radius is taken to infinity.
To compute the lifetime of the horizon for this observer,

we hence make the following construction. We identify
the first and last moments where the horizon exists
by RSð�τouterÞ ¼ Router, where τouter > 0. Then we trace
ingoing light rays from these events backward in time,
and determine at which times τ1 and τ2, τ1 < τ2, those two
light rays originated from a fixed Robs. We then find the
lifetime as

Δτext ¼ lim
Robs→∞

τ2 − τ1: ð17Þ

This lifetime hence roughly speaking characterizes for how
long light rays are absorbed by the collapsing object’s
horizon.
When one parametrizes null geodesics in this exterior by

comoving time τ, they can be described by R�ðτÞ fulfilling

_R� ¼ R�
2

Θ� ¼ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðRSÞ

R�

s
� 1

¼ 3M0τffiffiffiffiffiffi
R�

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
0 þ 9M0

2
τ2

q � 1;

where the upper sign denotes outgoing light rays and the
lower sign ingoing ones. For our purposes here, the latter
suffices. As mentioned above, it turns out to be convenient
to rescale the quantities involved as R− ¼ 2M0r and
4M0t ¼ 3τ, which gives

3

2

dr
dt

¼ tffiffiffi
r

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð R0

2M0
Þ3 þ t2

q − 1:

We see that in this form of the equation, the two free
parameters from Eq. (13) R0 and M0 only enter as their
quotient.

To follow our construction as outlined above, we now
have to find two solutions r1ðtÞ and r2ðtÞ to this equation,
respectively, with the initial (or rather final) conditions
r1ð−touterÞ ¼ router and r2ðtouterÞ ¼ router. Then we find t1
and t2 from which the lifetime is inferred from r1ðt1Þ ¼
r2ðt2Þ ¼ robs for robs → ∞. Unfortunately, this cannot be
done analytically.
We can, however, estimate the result when R0=2M0 is

small. As noted before, in our quantumOppenheimer-Snyder
model the minimal radius is given byR3

0 ¼ ℏ2δ=M0, where δ
is determined by quantization ambiguities. Hence, this
estimate can be understood either as approaching the classical
limit ℏ → 0, or the limit of large masses M0 → ∞.
Equation (17) can then be approximated to first order as

3

2

dr
dt

≈
sgntffiffiffi

r
p − 1: ð18Þ

Further, we find Router ¼ 2M0 and τouter ¼ 4M0=3, giving
us router ¼ 1 and touter ¼ 1. In this limit, one can thus
imagine our full bouncing collapse model, interior with
dynamic exterior, as classical Oppenheimer-Snyder col-
lapse reaching the singularity at τ ¼ 0, glued to a time
reversed copy of itself across τ ¼ 0. Our full model with
R0 ≠ 0 can then be understood as a smoothing out of this
very primitive, quasiclassical model for bouncing collapse.
Let us now consider our two light rays: the first reaches

r ¼ 1 at t ¼ −1 unimpeded. The second light ray is more
interesting. Since for t > 0 the horizon is antitrapping, light
rays can only approach it asymptotically. The only way an
ingoing light ray can then reach r ¼ 1 at t ¼ 1 is for it to
get caught on the horizon just as it transitions from trapping
to antitrapping. The light ray we are looking for thus
reaches r ¼ 1 already at t ¼ 0. When we restrict to t < 0,
Eq. (18) does not directly depend on t. Hence, both light
rays follow the same trajectory, just shifted in t, when
approaching r ¼ 1 from infinity. From this follows directly
that this time shift between the two trajectories at equal R
remains constant. We can hence conclude that in this limit
the lifetime is given by Δtext ≈ 1, or

Δτext ≈
4M0

3
: ð19Þ

The discussion above additionally implies that Δτext
defined in this way is not very sensitive to the antitrapping
phase of the horizon: if the expansion of the collapsing
object is delayed and the antitrapping horizon is present in
the exterior for a longer time, the second light ray is simply
stuck on the horizon for longer. The lifetime is then not
affected, at least in the limit we are currently considering.
One can analogously define a Δτext that is more sensitive

to the antitrapping horizon by using outgoing instead of
ingoing light rays. Of course, this does not make a
difference for our purposes here, since our exterior is
symmetric with respect to time reversal.
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Investigating the lifetime numerically, starting from the
full null geodesic equation (17), confirms that our result
(19) is valid for low R0=2M0; see Fig. 4. When R0=2M0

approaches its maximum value 3 × 2−8=3 ≈ 0.47, the life-
time even decreases further.
To understand how this happens, it is useful to distin-

guish between two different contributions to the lifetime,
both depending on R0=2M0: first, nonzero values of this
parameter cause light rays originating at the trapping
horizon to escape earlier, since the horizon moves inward.
This increases the lifetime. Second, increasing R0=2M0

decreases touter, the time where the horizon disappears back
into the dust cloud. This decreases the lifetime, since the
two light rays are emitted in shorter succession. Comparing
touter with Δtext clearly shows that the second contribution
is much more relevant than the first one, overall leading to a
drastic decrease in lifetime for higher R0=2M0.
Figure 5 illustrates how different values of R0=2M0

influence the two light rays. As is apparent, increasing
R0=2M0 does allow the light ray emitted during collapse to
escape to infinity earlier, but not early enough to outweigh
the fact that the second light ray is also emitted earlier.
Unfortunately, this lifetime is much too short to agree

with astrophysical observations for any value of R0=2M0. It
is notable that our approximate result Δτext ∝ M0 was
found before in several different approaches to bouncing
collapse; see e.g., [21–23,26].
To find Δτext ≈

4M0

3
in the limit M0 ≪ R0, we have only

used that the exterior approaches the quasiclassical black
hole to white hole transition described above. It seems
therefore plausible that this result also applies to other
choices of F and more generally to other equations of
motion than Eq. (13). The result Δτext ∝ M0 appears to be
quite generic, and a significantly longer lifetime can only
emerge for special cases.

Note that this conclusion can be circumvented when one
softens the matching conditions to allow the collapsing
body’s surface to carry energy. See for an example
Ref. [13], where during collapse the interior is smoothly
matched to an exterior, but after the bounce the reexpansion
is accompanied by a shockwave. It was then found that the
lifetime is proportional to M2

0.

FIG. 4. The rescaled lifetime Δtext (full blue line) as a function
of R0=2M0 for robs ¼ 103, compared to the approximated result
Δtext ¼ 1 (dotted green line) and touter (dashed red line).

FIG. 5. The rescaled quantum corrected trajectory RS=2M0, see
Eq. (14), (dashed blue line) as compared to the horizon (full red
line) and the two light rays following Eq. (17) (dotted green lines)
for different values of R0=2M0. Hatching denotes the (anti-)
trapped regions in the exterior.
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It has been proposed e.g., in Ref. [26] that Eardley’s
white hole instability could alleviate the lifetime problem,
either by prolonging the lifetime or by introducing a
new equilibrium configuration at the end of bouncing
collapse. Eardley’s instability, discussed among others in
Refs. [51–56], can be summarized as follows: matter
accreted onto a white hole can never pass the horizon,
but only asymptotically approach it. If enough matter is
accumulated close enough to the horizon such that the
combined object, white hole and accreted matter, is smaller
than twice its total mass, a trapping region forms just
outside of the white hole. It thus effectively turns into a
black hole. This phenomenon has been explored mostly for
null dust as accreting matter.
In light of our discussion above that light rays in the

antitrapping region can escape the horizon due to its
outward expansion, it becomes clear that whether or not
Eardley’s instability plays a role depends on our two time
scalesΔτtrans andΔτhor. The light rays cannot accumulate at
the horizon during its transition; they are rather swallowed
up by its outward expansion until they hit the reexpanding
dust cloud; see Fig. 3. As a result, for the effect to come into
play, one needs to maximize the time the exterior white
hole horizon is close to stationary: Δτhor needs to be large
and Δτtrans small.
It seems thus unlikely that Eardley’s instability can be

used to increase our Δτhor, since this time scale already
needs to be comparatively large for the instability to come
into effect. Note that a similar point was made in Ref. [25],
but there the authors used it to argue for small Δτhor to
make the bouncing scenario robust against white hole
instabilities.

IV. CONCLUSIONS

In this paper, we have investigated possible exterior
geometries to a quantum corrected bouncing dust cloud.
We have demonstrated a straightforward way to construct
such exteriors via an LTB-like construction, and we have
discussed two particular examples.
The first of these was a static exterior. Under some mild

assumptions about the quantum corrected equation of
motion of the dust cloud, we have shown that the causal
structure of this exterior necessarily needs to be nontrivial:
the dust cloud cannot reexpand toward the same asymptotic
infinity it started its collapse from, it bounces into a
different universe. As an example, for the specific equation
of motion from Refs. [1,2], the causal structure of the static
exterior matches that of a Reissner-Nordström black hole.
Conceptually, this is somewhat unsatisfying, since it would
make the bounce unobservable.
To circumvent this problem, one has to consider

dynamic exteriors. The particular case we have looked at
is a time-dependent-mass exterior: a generalization of a
Schwarzschild black hole in Painlevé-Gullstrand form
where the mass varies with comoving time. This leads

to the position of the horizon varying with time: it emerges
from the dust cloud during the collapse as in the classical
case but then shrinks back into the cloud before the bounce,
and reemerges from it afterward. In this way, the horizon
transitions from trapping to antitrapping.
We have introduced two relevant time scales character-

izing this process: Δτtrans tells us how long the transition
described above takes, andΔτext determines how long there
are horizons in the exterior as seen by a far away stationary
observer. Especially the second one, the black hole lifetime,
is of great importance for comparison with observations.
The method to compute it we employed here might be
useful for future investigations. It circumvents the absence
of a timelike Killing vector in the dynamic exteriors we
discuss, which is usually used to characterize the observer
relevant for the lifetime.
For the bouncing collapse from Refs. [1,2], both of the

aforementioned times have an upper bound proportional to
the initial mass of the dust cloud. This is reasonable for
Δτtrans but is much too short for Δτext. In the light of these
results, we cannot claim that our time-dependent-mass
exterior describes consistent bounces in an astrophysical
setting. We nevertheless believe that our investigation here
is useful, because it informs a more systematic search for
more reasonable such candidates in the future.
For example, we have found indications that this result

for Δτext should also hold for other dynamic exteriors with
a similar behavior of the horizon, at least when the minimal
radius of the bounce is much smaller than the initial mass.
This indicates that a more reasonable exterior needs to have
a more complicated horizon structure. In particular, such an
exterior needs to have a different quasiclassical limit than
our time-dependent-mass solution.
Furthermore, one can investigate other avenues to pro-

long the lifetime. We have already briefly touched on
Eardley’s white hole instability in Sec. III B: it can only
significantly influence the bouncing scenario when the
white hole horizon is present and approximately stationary
long enough for matter to accrete, and hence requires an
already large lifetime and short transition time. A further
option to explore is Hawking radiation. As a starting point,
one could compute particle creation in the time-dependent-
mass background, and discuss what impact backreaction
could have.
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APPENDIX A: MATCHING CONDITIONS

Here we want to demonstrate that the exteriors con-
structed in Sec. II given by (7) are indeed matched
smoothly to the dust cloud’s interior. For clarity, we
reproduce here the line element for this interior (1),
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ds2− ¼ −dτ2 þ R2
SðτÞ

�
dρ2

1 − kSρ2
þ ρ2dΩ2

�
:

The surface of the collapsing body will be the matching
surface. We denote it by Σ, and on it we use τ as well as the
two angular coordinates θ and ϕ as a coordinate frame.
First, we compute here the matching conditions between

the interior and a generic spherically symmetric spacetime
given by

ds2þ ¼ −ehðR;TÞfðR; TÞdT2 þ dR2

fðR; TÞ þ R2dΩ2: ðA1Þ

Later we will bring the line element (7) into this form and
show that it fulfills the matching conditions.
In the exterior, the matching surface Σ can be described

by R ¼ RðTÞ. On Σ, we can further impose a coordinate
transformation to the coordinates on Σ by setting T ¼ TðτÞ.
At this point, the function TðτÞ is arbitrary, but it will be
determined by the matching procedure.
For the matching procedure, we follow Ref. [57]. The

first matching condition we impose is

ds2−jΣ ¼ ds2þjΣ:
Matching the angular components of the metrics on Σ
leads to

RðTðτÞÞ ¼ RSðτÞ: ðA2Þ
With this, one can write the remaining condition from the
ττ components of the metrics as

1 ¼ ehðτÞfðτÞ _T2ðτÞ −
_R2
SðτÞ
fðτÞ ; ðA3Þ

where a dot denotes a derivative with regard to τ. An
overline over a function means it is evaluated on Σ; for a
function qðR; TÞ, we have q ¼ qðRðTðτÞÞ; TðτÞÞ. In the
following, we will for clarity not explicitly denote the τ
dependency of quantities on Σ. With the exterior metric and
the equation of motion _RS fixed, this determines TðτÞ.
For the second matching condition, we need to compute

the extrinsic curvature of Σ from both sides. To this end, we
note that the unit normal covectors to Σ in the interior and
exterior are

n−μdxμ− ¼ RSðτÞdρffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kS

p ;

nþμ dx
μ
þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijfðR; TÞjp ðdR − dR
dT dTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jf2ðR; TÞ − e−hðR;TÞðdRdTÞ2j
q ;

where xμ� denote the coordinates in the exterior and interior,
respectively. With ya being our coordinates on Σ, the
extrinsic curvature tensors are then

K�
ab ¼

∂xμ�
∂ya

∂xν�
∂yb ∇μn�ν ¼ ∂xμ�

∂ya
∂xν�
∂yb ð∂μn�ν − Γσ

μνn�σ Þ

¼ −n�σ
� ∂2xσ�
∂yb∂ya þ Γ�σ

μν
∂xν�
∂yb

∂xμ�
∂ya

�
;

where Γ�σ
μν are the Christoffel symbols with regard to the

interior and exterior metric, respectively, and we have used
that by definition the normal vectors are orthogonal to the
projectors onto Σ,

n�μ
∂xμ�
∂ya ¼ 0:

The nonvanishing components of the extrinsic curvature
tensor in the interior are then

K−
θθ ¼ RS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kS

p
;

K−
ϕϕ ¼ K−

θθsin
2θ:

In the exterior, we consider first the angular components

Kþ
θθ ¼ NþRSf and Kþ

ϕϕ ¼ Kþ
θθsin

2θ;

where

Nþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� f _T

2

f2 _T
2 − e−h _R2

S

����
vuut :

We have also replaced dR
dT with the help of the identity _RS ¼

dR
dT

_T following from Eq. (A2).
We assume that quantum corrections do not lead to a

distinguished distributional contribution to the energy
momentum tensor on the surface of the collapsing body,
meaning that we can impose Kþ

ab ¼ K−
ab as further match-

ing conditions. Matching the angular components of K�
ab

gives then with Eq. (A2) the condition

Nþf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kS

p
; ðA4Þ

which can be simplified with Eq. (A3) to

_T
2 ¼ ð1 − kSÞ

e−h

f2
: ðA5Þ

Plugging this into Eq. (A3) and using condition (A2)
differentiated with respect to τ, we find

_R2
S ¼ 1 − kS − f: ðA6Þ

As a consistency check, it is straightforward to see that for a
Schwarzschild exterior this matching condition gives us the
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first Friedmann equation with dust as matter, where one can
identify M ¼ 4π

3
ϵR3

S and ϵ is the dust density.
With the help of the conditions (A2) and (A4)–(A6), the

last nonvanishing component of Kþ
ab, and with it the last

matching condition, can be expressed as

−
Nþ

2

�
1 − kS þ _R2

S

1 − kS

�
2R̈S þ

∂f
∂R

�
þ f

∂h
∂R

�
¼ 0: ðA7Þ

For a Schwarzschild exterior, this is equivalent to the
second Friedmann equation for dust.
In summary, we can say that the matching conditions

here take the form of Eqs. (A2) and (A5)–(A7).
We now want to demonstrate that the metric (7) fulfills

these conditions. To this end, we first have to bring it into
the form (A1). In analogy with Schwarzschild, this can be
achieved by a coordinate transformation τðT; RÞ, where

∂τ
∂R ¼ −

F
1 − kS − F 2

: ðA8Þ

This gives us

ds2 ¼ −
1 − kS − F 2

1 − kS

�∂τ
∂T

�
2

dT2 þ dR2

1 − kS − F 2
þ R2dΩ2;

ðA9Þ

from which we can identify

f ¼ 1 − kS − F 2;

eh ¼ 1

1 − kS

�∂τ
∂T

�
2

:

Now we can check the matching conditions one by one.
The matching surface Σ is defined by ρ ¼ 1, or according to
Eq. (3) equivalently by R ¼ RSðτÞ. Together with our
previous characterization of Σ in diagonal coordinates by
R ¼ RðTÞ, this directly implies matching condition (A2).
On the matching surface, we further have

F ¼ F ðRS; RSÞ ¼
∂R
∂τ

����
ρ¼1

¼ _RS;

as already mentioned in Sec. II. With this, we can show that
the matching condition (A6) is fulfilled,

_R2
S ¼ F 2 ¼ 1 − kS − f:

Inverting the coordinate transformation given by
Eq. (A8), we find

∂T
∂τ ¼

�∂τ
∂T

�
−1
;

∂T
∂R ¼ F

ð1 − kS − F 2Þ ∂τ
∂T

:

On Σ, we thus have, using Eq. (6),

_T ¼ ∂T
∂τ þ ∂T

∂R _RS ¼
�∂τ
∂T

�−1 1 − kS
1 − kS − F 2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kS

p e−
h
2

f
;

which is identical to the matching condition (A5).
The last condition to check is Eq. (A7). To this end, we

first compute

2R̈S þ
∂f
∂R ¼ −

∂f
∂T

_T
_RS

¼ 2F
∂F
∂RS

1 − kS
1 − kS − F 2

;

f
∂h
∂R ¼ 2f

�∂τ
∂T

�−1 ∂2τ

∂T∂R
¼ −2F

∂F
∂RS

1 − kS þ F 2

1 − kS − F 2
:

Plugging this into Eq. (A7) shows that this last matching
condition is also fulfilled. The metric given in Eq. (7) or
equivalently Eq. (A9) thus can be smoothly matched to our
quantum corrected FLRW metric.

APPENDIX B: PENROSE DIAGRAM

Here we want to discuss the construction of the Penrose
diagram in Fig. 1 to the static exterior following Ref. [50].
To start with, we want to note that we technically do not
draw a Penrose diagram according to its definition in
Ref. [50], since we do not explicitly construct a global
coordinate frame for the maximal extension of the space-
time. We rather settle for what is called in Ref. [50] a block
diagram, which lacks the coordinate frame but still illus-
trates the global causal structure of the spacetime. In an
abuse of terminology, we will still refer to it as a Penrose
diagram, as is common in the literature.
Central to what we will do in the following is the

introduction of double null coordinates U ¼ T − R� and
V ¼ T þ R�, where

R�ðRÞ ¼
Z

dR
fðRÞ ;

where fðRÞ is given by Eq. (15). The behavior of R� and in
particular its divergences determine the structure of the
Penrose diagram. Recall that the roots of fðRÞ determine
the position of horizons in the spacetime. Since we have
assumed that these roots are simple, we can say that R�
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diverges there and behaves monotonically in between. In
these intervals between two roots, U and V span thus the
whole of R2, and hence these intervals can be identified
with full diamonds in the block diagram. In this way, all
intervals of R, between roots of fðRÞ and also R → 0 and
R → ∞, correspond to blocks in the diagram, with their
shape determined by the behavior of R� at the interval’s
boundaries.
In our case, R�ðRÞ can be given in analytic form.

Factorizing fðRÞ according to its roots, and decomposing
the fraction into a sum, we find

R�ðRÞ ¼ R −
X

Ri∶fðRiÞ¼0

ln jR − Rij
f0ðRiÞ

:

We restrict ourselves here to the case 2
5
3R0 < 3M0, for

which fðRÞ has two real roots Rinner < Router. Since
fðR → 0Þ → ∞ and fðR → ∞Þ → 1, we know that
f0ðRinnerÞ < 0 and f0ðRouterÞ > 0. We have then
R�ðR → RinnerÞ → ∞ and R�ðR → RouterÞ → −∞, and
hence this interval in R is associated with a full diamond
in the block diagram bounded by the horizons Rinner and
Router. Since we further have fðRÞ < 0 there, this region is
trapped or antitrapped and the lower two edges of the
diamond are given by the horizon Rinner and the upper ones
by Router, or the other way around. In Fig. 6(a), we draw this
block in its two orientations.
With R�ðR → ∞Þ → ∞, we can analogously proceed for

Router < R < ∞. Since this region is untrapped, the dia-
mond is bounded by the horizon on the left and the null
infinities on the right, or the other way around. We illustrate
how this block looks in Fig. 6(b).
In the last interval, 0 < R < Rinner, we find that

R�ðR → 0Þ → const and hence U and V cannot fill the
whole diamond; V −U is bounded from above, and the

corresponding block is only half of a diamond terminating
in the singularity R → 0; see Fig. 6(c).
To find our Penrose diagram in Fig. 1, we now need to fit

these blocks together at matching horizons until there is no
horizon left to be matched. This construction is for our case
unique and leads to a maximally extended spacetime that is
formed by an infinite chain of blocks, similar to a Reissner-
Nordström black hole.
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