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We consider holography of two pp-wave metrics in conformal gravity, their one-point functions, and
asymptotic symmetries. One of the metrics is a generalization of the standard pp waves in Einstein gravity
to conformal gravity. The holography of this metric shows that within conformal gravity one can have a
realized solution which has a nonvanishing partially massless response tensor even for a vanishing
subleading term in the Fefferman-Graham expansion (i.e., Neumann boundary conditions) and vice versa.
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I. INTRODUCTION

Conformal gravity (CG) is a higher derivative theory of
gravity which has a recurrent appearance in literature. It is
power-counting renormalizable and highly symmetric
which makes it interesting for studying [1,2]. The main
argument against the theory is its nonunitarity, which
manifests for example in two-point correlation functions
[3]. That issue is addressed via known methods [1,4], or the
theory is considered as a toy model for its symmetry
properties. From phenomenological aspects CG explains
galactic rotation curves without the addition of dark matteer
[5], and it was also stated to be an exact solution to
perturbative cosmology in the recombination era [6]. The
analysis of the asymptotic symmetries of CG in 3þ 1
dimensions allows for classification of the asymptotic
solutions [7]. There is no classification of the global
cosmological solutions in CG; however, a number of
Einstein gravity (EG) solutions have been generalized to
CG [8,9]. Four-dimensional cosmological Solutions of EG,
have of course been most studied [10], and most classified.
The most popular classifications to date are Bianchi
classification and Petrov [11] classification, which often
uses Newman-Penrose formalism. Here, we calculate two
general solutions of the pp wave with and without a
cylinder in CG and analyze their asymptotics.
CG holography has in the earlier studies showed that in

the framework of AdS=CFT there are two holographic
stress-energy tensors at the boundary. One of them is
analogous to the Brown-York stress-energy tensor and

another is called the partially massless response (PMR),
which does not have an analog in EG. Holographic
analyses of a Schwarzschild solution in EG, Manheimm-
Kazanas-Riegert solution in CG [5], and rotating black
hole solution in AdS with Rindler hair [8] showed that
their PMR vanishes when generalized Fefferman-Graham
boundary conditions reduce to standard Fefferman-Graham
boundary conditions used in EG.1 The pp-wave solutions
which we analyze here show that it is possible to have
vanishing PMR for the generalized Fefferman-Graham
(FG) boundary conditions and that it is possible to have
nonvanishing PMR for standard FG boundary conditions.
Vanishing of the PMR also implies vanishing of the
corresponding two-point correlation functions. Besides
the holography of the solution, we consider its Killing
vectors, charges, and asymmptotic symmetry algebra (ASA)
as well as speculate the possibility of using the metric as a
cosmological background for string quantization.

II. CONFORMAL GRAVITY

Given a manifold M and the coordinates xi which
we take to be ðu; v; x; rÞ, action of conformal gravity is
defined by

SCG ¼ αCG

Z
M

d4x
ffiffiffiffiffiffi
−g

p
Cα

βγρCα
βγρ ð2:1Þ

for the Cα
βγρ Weyl term, αCG the dimensionless constant,

and gμν the conformally invariant metric. The equation of
motion of the action (2.1) is called the Bach equation,�

∇δ∇γ þ
1

2
Rδ

γ

�
Cγ
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1Generalized Fefferman-Graham boundary conditions allow
for the subleading term in the expansion in a holographic
coordinate, around the boundary of the manifold. In standard
Fefferman-Graham expansion this term is set to zero [9].
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The equation is fourth order in derivatives, and as a subset,
it contains solutions of Einstein gravity. We want to
consider the pp-wave metric which solves (2.2). A similar
global solution of (2.2) from [7] showed that there can be
interesting holography directly related to unitarity of the
theory.

A. Ansätze 1 and 2

We consider a metric of the form

ds2 ¼ fðrÞ
hðrÞ du

2 þ 2

hðrÞ dudvþ kðrÞdr2 þ kðrÞdx2 ð2:3Þ

which solves the Bach equation for

k ¼ c2e−c1r

hðrÞ and

f ¼ c1c2 − 2c3 þ rc3c1
c31

þ e−c1rðc4 þ rc5Þ; ð2:4Þ

where one can recognize the 1
hðrÞ as a conformal factor. Due

to conformal invariance of the Bach equation, each metric
with an arbitrary conformal factor is also a solution. To
investigate symmetries of this solution we examine its
Killing vectors (KV). For arbitrary hðrÞ the conformal
Killing equation ∇μξν þ∇νξμ ¼ 1

2
gμν∇αξ

α is satisfied by
KVs of translations

ξx ¼ ð0; 0; 1; 0Þ; ξu ¼ ð1; 0; 0; 0Þ ξv ¼ ð0; 1; 0; 0Þ;
ð2:5Þ

while in the special case of a conformally flat metric, when
c1 ¼ 1, c3 ¼ 0, c5 ¼ 0 (Ansatz 2), there are two additional
KVs,

ξ1 ¼ a1

�
0; e

1
2
ðuþrÞ cos

�
1

2
x

�
;−e1

2
ðu−rÞ sin

�
1

2
x

�
;

− e
1
2
ðu−rÞ cos

�
1

2
x

��
;

ξ2 ¼ a1

�
0;−e1

2
ðuþrÞ sin

�
1

2
x

�
;

− e
1
2
ðu−rÞ cos

�
1

2
x

�
; e

1
2
ðu−rÞ sin

�
1

2
x

��
: ð2:6Þ

This indicates that the solution in that special case becomes
a plane wave. The KVs define commutation relations

½ξx;ξ2�¼
1

2
ξ1; ½ξx;ξ1�¼

1

2
ξ2; ½ξu;ξ2�¼

1

2
ξ2; ½ξu;ξ1�¼

1

2
ξ1

ð2:7Þ
which can be recognized as two separate algebras.
Redefining ξ̃x ¼ 2ξx the first two commutation relations
in (2.7) close Bianchi Valgebra [12], while using ξ̃u ¼ 2ξu

the latter two close the Bianchi VII algebra. Some examples
of Bianchi universes of the type V can be found in [13], and
types IV, VIh, VIIh in [14]. For comparison to other Bianchi
types, one can look at type I in [15], type III in [16], and
type II, VIII, IX in [17].
The solution (2.3) is a type N solution in the Petrov

classification which we calculate using the Mathematica
program RGTC.2 Conformal gravity solutions, particularly
of Petrov N type, have been studied in [18]. The studies of
the gravitational waves in quadratic curvature gravity using
Newman-Penrose formulation have been studied for Petrov
D solutions in [19].

III. ASYMPTOTIC ANALYSIS

To analyze holography of (2.3) we transform coordinates
u→ aq − cy and v→ bqþ dy, and take hðrÞ ¼ r2,
obtaining the metric

ds2 ¼ 1

r2
ðc2dr2 þ dqdyð2HðrÞ þ 2a2e−c1rðc5r − 1ÞÞ

þ dq2ðHðrÞ þ e−c1rða2ðc5r − 1Þ − 1ÞÞ
þ dy2ðHðrÞ þ e−c1rða2ðc5r − 1Þ þ 1ÞÞ þ c2dx2Þ

ð3:1Þ
where HðrÞ ¼ a2ðc3rc2

1

þ c2
c2
1

− 2c3
c3
1

Þ. The metric has a Ricci

scalar equal to R ¼ − 3ðc2
1
r2þ4c1rþ8Þ
2c2

which cannot take a
Ricci flat form by suitable choice of parameters. The Ricci
scalar is inversely proportional to c2 which if sent to infinity
would cause the metric to diverge. We expand (3.1) to a
Fefferman-Graham form ds2 ¼ 1

r2 ðdr2 þ γijdxidxjÞ, for
the γij metric at the boundary, and r the holographic
coordinate. The metric at the boundary is expanded in
terms of the small perturbations around r ¼ 0, such that
γij ¼ γð0Þij þ γð1Þij rþ γð2Þij r2 þ γð3Þij r3, for γðIÞij , I ¼ 0, 1, 2, 3

matrices given in the expansion. When b→ − a2ðc4þ1Þþ1

2a ,
d→ − 1

2
aðc4 þ 1Þ þ 1

2a, and c→ −a we can choose the

matrix γð0Þij ¼ diagð−1; 1; 1Þ to be a Minkowski metric,

where the time coordinate is q. That defines the γð1Þij matrix
to be

γð1Þij ¼

0
BB@

ðc1−c3c2
1

þ c5Þa2 þ c1
a2ðc5c21þc1−c3Þ

c2
1

0

a2ðc5c21þc1−c3Þ
c2
1

a2ðc1−c3c2
1

þ c5Þ − c1 0

0 0 0

1
CCA:

ð3:2Þ
This matrix can be compared with the γð1Þij term from the FG
expansion for the Manheimm-Kazanas-Riegert (MKR)

2RGTC denotes Riemannian Geometry & Tensor Calculus
program for Mathematica.
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solution [20–22]. The MKR solution is different from (3.1);
however, we can use its properties to better understand the
meaning of parameters which appear in our case. In the FG
expansion of the MKR solution, the γð1Þij matrix depends
entirely on the term that describes Rindler acceleration. If
we are drawing an analogous conclusion in (3.2), this role

is played by the combination of c1, c3, c5 parameters.
Parameter a from (3.1) can be absorbed in the coordinate,
so it does not carry physical meaning. The γð2Þij matrix of
MKR solution does not show explicit dependence on the
mass parameter when the Rindler acceleration parameter
vanishes, so we consider matrix γð3Þij

γð3Þij ¼

0
BB@

c31 þ a2ð3c5c21 þ c1 − 2c3Þ a2ð3c5c21 þ c1 − 2c3Þ 0

a2ð3c5c21 þ c1 − 2c3Þ a2ð3c5c21 þ c1 − 2c3Þ − c31 0

0 0 0

1
CCA: ð3:3Þ

If the Rindler parameter in the MKR solution is zero, its γð3Þij matrix is given solely in terms of the mass parameter [22]. This
implies that the combination of parameters in (3.3) carries physical meanings of mass and Rindler acceleration. Now, one

can compute the holographic stress-energy tensors of (3.1) τij and Pij by inserting γ
ð1Þ
ij ; γ

ð2Þ
ij , and γ

ð3Þ
ij in the τij and Pij [22].

The stress-energy tensor τij and PMR are given by

τij ¼ a2c21c5

0
B@

1 1 0

1 1 0

0 0 0

1
CA; Pij ¼

a2ðc21c5 − c3Þ
c1

0
B@

1 1 0

1 1 0

0 0 0

1
CA ð3:4Þ

respectively. The Ward identity of CG is satisfied with 2τijγ
ð0Þij þ Pijγ

ð1Þij ¼ 0. For χð0Þk asymptotic KV, the current

Ji ¼ Qijχð0Þj is conserved DiJi ¼ 0. The corresponding charge Qij ¼ 2τij þ Pikγ
ð1Þk

j þ Pkiγ
ð1Þk
j for (3.1)

Qij ¼ 2a2c3

0
B@

1 1 0

1 1 0

0 0 0

1
CA ð3:5Þ

is given in terms of c3. For the specific case of the metric

ds2 ¼ 1

r2
ðc2dr2 þ 2a2ðc2 − e−rÞdqdyþ dq2ða2c2 − ða2 þ 1Þe−rÞ þ dy2ðc2ða2 þ 1Þ þ ð1 − a2Þe−rÞ þ c2dx2Þ; ð3:6Þ

with five KVs (2.5)–(2.6), when c1 ¼ 1; c3 ¼ c5 ¼ 0, the
stress tensors τij ¼ Pij ¼ Qij ¼ 0 and charges exactly
vanish, as we can see from the general expressions for
the stress-energy tensors (3.4) and charge (3.5). This is
expected from the highly symmetric solution, which also
describes the conformally flat metric. That choice of
parameters still does not give a metric which satisfies
Einstein equations. Interestingly, there is no such choice of
parameters which would make solution (3.1) satisfy Ein-
stein vacuum equation.
It is well known that conformal gravity is nonunitary. In

[3] the nonunitarity of conformal gravity was shown via
two-point correlation functions. It manifests through the
negative sign of the correlation function with PMR. Since
PMR is zero for (3.6), that issue is avoided. However, we
have also vanishing τij and a vanishing Qij. The conformal
flatness means that the entropy of the solution (visible also

from Weyl squared) is going to be zero. From (3.4) we see
that Pij will vanish for c3 ¼ c5 when c1 ¼ 1. This choice of
metric has only three global KVs and it is not conformally
flat. The stress-energy tensor τij and charge Qij are visible
from (3.4) and (3.5) and they do not vanish. This appears as
well in [22] for the example of a rotating black hole [8],

where γð1Þij does not vanish while Pij vanishes. If in our

example (3.1) we demand γð1Þij to be zero, that implies Pij

(3.4) is as well zero. The vanishing of γð1Þij , however, does
not always automatically imply vanishing of the Pij. On the
example of the pp-wave solution [7],

ds2 ¼ 1

r2
ðdr2 þ ð−1þ fðrÞÞdx2 þ 2fðrÞdxdy

þ ð1þ fðrÞÞdy2 þ dz2Þ; ð3:7Þ
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where fðrÞ ¼ c1 þ c2rþ c3r2 þ c4r3 one can fix the γð1Þij

to be zero (setting c2 ¼ 0), without affecting the Pij which

becomes defined solely by the γð2Þij and c3.
The charges that we calculated express stress-energy

tensors and charge in a sense of [23] which differ from the
other such charges (for example those defined by the
Hamiltonian method as in [24]) only by a “constant offset”
determined by boundary fields alone. The algebra gener-
ated by the charges in conformal gravity is equivalent to the
Lie algebra of the transformations preserving boundary
conditions, i.e., asymptotic symmetry algebra [25].
Asymptotic symmetry algebra for conformal gravity has

been studied in [7].To obtain ASA for (3.1) one has to study
the expansion of the conformal Killing equation (CKE) in
the coordinate r. The metric at the boundary was chosen to

be γð0Þij ¼ diagð−1; 1; 1Þ Minkowski metric, which leads to
full conformal algebra in the leading order of expansion of
the CKE. The subleading order of the CKE equation [7]

£ξð0Þγ
ð1Þ
ij ¼ 1

3
Dkξ

k
ð0Þγ

ð1Þ
ij ð3:8Þ

defines the ASA

½ξt; ξL1
� ¼ ξx; ½ξt; ξL2

� ¼ ξy þ
1

2
ξt;

½ξy; ξL1
� ¼ −ξx; ½ξy; ξL2

� ¼ 1

2
ξt þ ξy; ð3:9Þ

½ξx; ξL1
� ¼ ξt þ ξy; ½ξx; ξL2

� ¼ ξx; ½ξL1
; ξL2

� ¼ 1

2
ξL1

ð3:10Þ

with KVs

ξt ¼ ð1; 0; 0Þ; ξx ¼ ð0; 0; 1Þ ξy ¼ ð0; 1; 0Þ ð3:11Þ

ξL1
¼ ðx; x; t − yÞ ξL2

¼
�
tþ 1

2
y;
1

2
tþ y; x

�
: ð3:12Þ

The ASA is unaffected by the choice of the parameters ci,
i ¼ 1;…; 5, and it is equal for each of the special cases of
the solution (3.1). It belongs to the ASA aa5;4 for a ¼ 1

2
from

[26]. The classes of five-dimensional ASAs have been
encountered in CG [7].

A. Applications of the metric

If we look at the metric as an Einstein solution with
additional matter, we can have the following considera-
tions. After the transformation of coordinates ec1r=2 → z
and choice for conformal factor hðrÞ ¼ 1=ð4z2 lnðzÞÞ and
c1 ¼ 1, one can relate the metric (2.3) with the metric

ds2 ¼ 2dudvþ fðzÞdu2 þ z2dx2 þ dz2 ð3:13Þ

which solves the Bach equation for fðzÞ ¼ ð1
4
− 2c3Þz2 þ

c4 þ 2c5 log zþ 2z2c3 log z, and c2 ¼ 1
4
; x ¼ 2x̃, where we

omit “∼” for simplicity. This solution is similar to the
metric considered in [27]. There, the metric

ds2 ¼ 2dudv − λðuÞx2du2 þ dxidxi ð3:14Þ

was studied for the propagation of string modes and a first-
quantized point particle in this time-dependent background,
where dxidxi ¼ dx2 þ dz2 is the Euclidean metric.

B. Ansatz 3

Generalization of the metric (3.13) by multiplying fðzÞ
with λðuÞ does not influence the solvability of the Bach
equation. One may wonder if further simple generalizations
are possible. We consider the metric

ds2 ¼ 2dudvþ fðu; x; zÞdu2 þ dx2 þ dz2 ð3:15Þ

where we immediately crossed from cylindrical to
Euclidean coordinates. The generalization by introducing
the dependency on z so that fðzÞ→ fðx; zÞ in (3.13) leads
to the fourth-order equation which can be decomposed into
ð−∂z þ i∂xÞ2ð∂z þ i∂xÞ2fðx; zÞ ¼ 0. The solution to this
equation is

fðx; zÞ→ ðd1 þ d2xþ d3zÞf1ð−ixþ zÞ
þ ðd4 þ d5xþ d5zÞf2ðixþ zÞ ð3:16Þ

and it can obviously become of the interesting form for
trigonometric and exponential functions (we will mention
specific cases later).3

The generalization of the function fðx; zÞ so that it also
has dependency on u, fðx; zÞ→ fðu; x; zÞ will generalize
the solution (3.16) into

fðu; x; zÞ ¼ ðd1 þ d2xþ d3zÞf1ðu;−ixþ zÞ
þ ðd4 þ d5xþ d5zÞf2ðu; ixþ zÞ; ð3:18Þ

where we took into account that each of the functions
depending on ðx; zÞ can be multiplied by an arbitrary

3We can bring the solution (3.18) to the form of the metric
studied in [14] by considering the transformation x→ ix1 þ i

2
x2

and z→ x1 þ 1
2
x2. The obtained metric reads

ds2 ¼ H1ðx1; x2Þdu2 þ 2dudv − 2dx1dx2: ð3:17Þ
The general form of the solution obtained from the Bach equation
would lead to H1 ¼ f1ðx2Þ þ x1f2ðx1Þ þ f3ðx1Þ þ x2f4ðx1Þ.
Only keeping f1 and f3 satisfies the Einstein solution and can
be cast into the form studied in [14], while the CG solution
involves all four functions.
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function of u. The metric (3.15) is completely equal to the
Ansatz metric in [28] after appropriate transformation of
the coordinates. The statement that Einstein equations in
vacuum are satisfied for every harmonic function f which
is a function of x and z, whatever was the dependence on u,
is now generalized. The Bach equations in vacuum are
satisfied for every harmonic function f which is a function
of x and z multiplied by an arbitrary function of u and by
the (d1 þ d2xþ d3z) or (d4 þ d5xþ d6z) for d1, d2, d3, d4,
d5, d6 which are arbitrary, or defined, depending on
the function we want to express. For example, note the
following:

(i) fðu; x; zÞ ¼ 2ðd1 þ d2xþ d3zÞ arctanðzxÞ, for f1 ¼
i logðx − izÞ, f2 ¼ i logðx − izÞ, and d1 ¼ −d4;
d2 ¼ −d5 and d3 ¼ −d6. This is a term from
rotation of a metric analogous to (3.13) from a
cylindrical to a Euclidean coordinate system.

(ii) fðu; x; zÞ ¼ b2ðx2 þ z2Þ logðx2 þ z2Þ, for f1 ¼
ðx − izÞ logðx − izÞ, f2 ¼ ðxþ izÞ logðxþ izÞ, and
d3 ¼ id2; d5 ¼ d2, and d6 ¼ −id2. This is an addi-
tional term in generalization of a plane wave metric
(3.14) [27].

The above metric (3.15) conserves only one KV, that is
∂v. If one would like to consider the solution (3.15) [with
fðu; x; zÞ from (3.18)] as the background for the string
propagation, they need to transform it to Rosen coordi-
nates, following the procedure of [27]. For functions f1 and
f2 such that the metric (3.15) is lðuÞðx2 þ z2Þ reduces to a
case studied earlier in [27]. Here we focus on the study
of the situation when f1, f2 are more general. In the
asymptotic analysis we are going to keep writing fðu; x; zÞ
in terms of functions dependent on xþ iz and x − iz;
however, this is only to keep the functional dependence.
One needs to keep in mind that for each specific case the
metric needs to be of course real.

C. Asymptotic analysis

Transformations u→− 1
2a3

ðqþ yÞ, v→ a3ðq − yÞ where
we can choose for simplicity a3 ¼ − 1

2
, lead from (3.15) and

(3.18) to

ds2 ¼ 1

z2
ðð−1þ g1ðqþ y; x; zÞÞdq2 þ 2g1ðqþ y; x; zÞdydq

þ ð1þ g1ðqþ y; x; zÞÞdy2 þ dx2 þ dz2Þ ð3:19Þ

for g1ðqþ y; x; zÞ ¼ ðd1 þ d2xþ d3zÞf1ðqþ y; x − izÞ þ
ðd3 þ d5xþ d6zÞf2ðqþ y; xþ izÞ. The Ricci scalar of
the metric is −12, while it is zero for the metric (3.15).
The FG expansion of the metric (3.19) in a z coordinate,
done analogously to the expansion of (3.1), requires d1 ¼
d3; d5 ¼ d2 and f1ðqþ y; xÞ ¼ −f2ðqþ y; xÞ, and it

results with the γð1Þij and γð2Þij matrices

γð1Þij ¼

0
B@

h1 h1 0

h1 h1 0

0 0 0

1
CA; γð2Þij ¼

0
B@

0 0 0

0 h2 0

0 0 0

1
CA ð3:20Þ

for h1≡h1ðqþy;xÞ¼ðd6−d3Þf2ðqþy;xÞ−2iðd5xþd4Þ×
f2ð0;1Þðqþy;xÞ and h2 ≡ h2ðqþ y; xÞ ¼ 1

3
iðd3 þ d6Þ×

f2ð0;3Þðqþ y; xÞ. From h1 and h2 and comparison to
(3.2) and (A1), respectively, we can see that the Rindler
parameter and mass are given by a combination of the
parameters d6, d3, d5, and d4. Expressing the stress tensors
in terms of the function f2ðqþ y; xÞ and its derivatives
allows one to see functional dependence from the metric
directly in the response functions and charge. The stress
tensor τij is given by

τij ¼

0
B@

h1h2 þ h3 − 6
7
h1h2 0

− 6
7
h1h2 − 3

4
h1h2 þ 3

2
h3 0

0 0 6
5
h1h2 þ 6

5
h3

1
CA

ð3:21Þ

for h3 ≡ h3ðqþ y; xÞ ¼ 1
60
ð5ðd6 − d3Þf2ð0;4Þðqþ y; xÞ−

2iðd4 þ d5xÞf2ð0;5Þðqþ y; xÞÞ and

Pij ¼ −
1

3
h2; ð3:22Þ

while definition of the charge is given in terms of h1, h2,
and h3; see Eq. (A2). It is important to notice that for this
metric, one can choose d6 ¼ d3 and d5 ¼ d4 ¼ 0 which

will lead to vanishing of the γð1Þij , while the PMR tensor will

not vanish. This is due to proportionality of Pij to γð2Þij and

nonvanishing γð2Þij . This is a specific property of the
solution, observed only for the pp-wave solution in [7].
By choosing g1ðqþ y; x; zÞ ¼ −4zfðqþ y; x; zÞ we can

set the metric (3.19) to become

ds2 ¼ 1

z2
ð−ð1þ 4zfðqþ y; x; zÞÞdq2

− 8zfðqþ y; x; zÞdqdy
þ ð1 − 4zfðqþ y; x; zÞÞdy2 þ dx2 þ dz2Þ: ð3:23Þ

Further specification fðqþy;x;zÞ¼bð5x4−10z2x2þz4Þ×
cosðqþyÞ leads to a metric that has stress-energy tensor

τij ¼ diagð−8b cosðqþ yÞ;
− 16b cosðqþ yÞ; 8b cosðqþ yÞÞ

defined only from nonvanishing matrices in the FG

expansion, γð1Þij and γð3Þij [given in Eq. (A3)]. Since γð2Þij is
zero, the partially massless response tensor Pij vanishes,

HOLOGRAPHY OF PP WAVES IN CONFORMAL GRAVITY PHYS. REV. D 103, 064073 (2021)

064073-5



which results with Qij ¼ 2τij. For the only parameter b
which we have here, we can conclude to have a role similar
to the Rindler parameter.
The asymptotic symmetry algebra for this metric is

three dimensional, consisting of KVs ξ1 ¼ ð0; 0; 2a1Þ,
ξ2 ¼ ð−a2; a2; 0Þ, ξ3 ¼ ð− x

2
; x
2
;− a3

2
ðqþ yÞÞ closing the

algebra ½ξ1; ξ2� ¼ a1
a2
ξ3. For a1 ¼ a2 ¼ 1 that defines

Bianchi II algebra, which is also called Heisenberg-Weyl
algebra.
Metric (3.19) can be reduced to a Ricci flat metric by

multiplying it with z2. That metric can be transformed to a
flat metric which one can naturally write in the Rosen form.

IV. CONCLUSION

We have studied the pp-wave solution of conformal
gravity and its symmetries. The most general form of the
solution admits three translational Killing vectors, while by
choosing specific parameters the symmetries can be
increased to five KVs. Via asymptotic analysis we calculate
holographic stress-energy tensors of conformal gravity. The
most symmetric solution has both stress-energy tensors
vanishing, as well as vanishingWeyl tensor and charge. For
the specific choice of parameters we find vanishing PMR
for a metric which is not conformally flat, and does not
have vanishing charge or a Brown-York stress tensor. Zero
PMR does not imply that the global solution becomes an
Einstein solution. The interesting thing is that nonunitarity
of the conformal gravity manifests through PMR; when

PMR is zero, this is not the case, which renders this solution
important. The second pp-wave solution we study is also
the most general solution of its respective form, and it is a
generalization of the pp waves in Einstein gravity studied
in [28]. The holography of this solution shows that one
can have a vanishing subleading term in the FG expansion
and nonvanishing PMR, which makes it one of the first
examples of its kind.
We also considered possible application of these pp-

wave metrics. In future studies it would be interesting to
use these metrics as a background for the calculations as
string propagation. This is based on the fact that the
supersymmetric analog of conformal gravity appears in
twistor string theory [29]. It would be also interesting to use
pp-wave metrics considered here, on the calculation as in
[4]; i.e., it would be interesting to see if one could impose
restrictions on a partially massless response function in
order to avoid presence of the ghost.
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APPENDIX: QUANTITIES AT THE BOUNDARY

The matrix γð2Þij in the FG expansion of (3.1) is

γð2Þij ¼

0
B@

a2ð2c3c1
− 2c1c5 − 1Þ − c21 − a2ð2c5c21þc1−2c3Þ

c1
0

− a2ð2c5c21þc1−2c3Þ
c1

ð2c3c1
− 2c1c5 − 1Þa2 þ c21 0

0 0 0

1
CA: ðA1Þ

The charge defined by the (3.21) and (3.22) is

Qij ¼

0
B@

− 3
4
h2h1 þ 3

2
h3 − 3

11
h2h1 0

− 3
11
h2h1 − 1

4
h2h1 þ h3 0

0 0 3
5
h2h1 þ h3

1
CA: ðA2Þ

The γðkÞij for k ¼ 1, 3 matrices for the metric (3.23) are given by

γð1Þij ¼ −20bx4 cosðqþ yÞ

0
B@

1 1 0

1 1 0

0 0 0

1
CA; γð3Þij ¼ −24b cosðqþ yÞ

0
B@

0 0 0

0 1 0

0 0 0

1
CA: ðA3Þ
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