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We present an implementation of the dual foliation generalized harmonic gauge (DF-GHG) formulation
within the pseudospectral code BAMPS. The formalism promises to give greater freedom in the choice
of coordinates that can be used in numerical relativity. As a specific application we focus here on the
treatment of black holes in spherical symmetry. Existing approaches to black hole excision in numerical
relativity are susceptible to failure if the boundary fails to remain outflow. We present a method, called
DF-excision, to avoid this failure. Our approach relies on carefully choosing coordinates in which the
coordinate lightspeeds are under strict control so that the excision boundary must remain outflow. These
coordinates are then combined with the DF-GHG formulation. After performing a set of validation tests in a
simple setting, we study the accretion of large pulses of scalar field matter on to a spherical black hole.
We compare the results of DF-excision with a naive setup. DF-excision proves reliable even when the
previous approach fails.
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I. INTRODUCTION

Free-evolution formulations of GR for numerical rela-
tivity (NR) are built with a number of requirements in mind.
Foremost in this list is that the specific partial differential
equation (PDE) problem to be solved must be well posed.
The easiest way to guarantee well-posedness of the initial
value problem is to try and render the equations hyperbolic
so that textbook theorems may be applied. This, in turn,
requires a choice of gauge. Considering the popular
harmonic gauge choice □Xα ¼ 0 we see already that such
a choice requires a choice of coordinates. But, in case we
already have a choice of coordinates in mind that do not
satisfy this condition, the latter may be problematic. It turns
out that what is really required for hyperbolicity is a
sensible choice of tensor basis. If, with this tensor basis
fixed we change coordinates it turns out that in many cases
the equations remain hyperbolic. This strategy is regularly

used within the SPEC numerical relativity code [1,2] to treat
compact binary systems with coordinates that are approx-
imately corotating with the system, but always with a single
foliation of spacetime by a time coordinate T. To overcome
this restriction one may turn to the dual-foliation (DF)
formalism which, as first presented in [3], allows us to
employ a tensor basis associated with coordinates
Xα ¼ ðT; XiÞ whilst actually working in coordinates
xα ¼ ðt; xiÞ. The DF formalism has been used in a number
of places in the literature [4–11] for mathematical
analysis and is under active investigation for the treat-
ment of future null infinity.
In this paper, we present the first implementation of the

dual-foliation generalized harmonic gauge (DF-GHG)
formulation of GR, which was made in our pseudospectral
code BAMPS [12,13]. In performing the implementation we
have made a number of validation tests, a few of which are
presented below. But to try and demonstrate the potential
of the formalism, we concentrate primarily on the specific
use case of black hole excision. The numerical binary black
hole breakthrough [14–16] rests, loosely speaking, on the
backs of two different approaches for treating the strong-
field region, black hole excision and the moving-puncture
method. Each has strengths and weaknesses. Excision, as
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suggested by Unruh to Thornburg [17] and developed by
many authors, see [18–26] for a selection, relies on the idea
that nothing can escape from the black hole region, so it
should be possible to simply remove that region from the
computational domain without affecting the domain of
outer communication whatsoever. This has the advantage
that the most violent spacetime region is not treated, and
the remaining solution may be reasonably expected to be
smooth. There are, however, two important requirements
to overcome. First, the intuitive idea that nothing can
escape needs to be encoded in a formal sense within the
equations. This is not trivial because if the excision
boundary flaps around wildly and fails to remain an
outflow boundary, then we need to give boundary con-
ditions. Even in the Minkowski spacetime it is possible to
introduce an excision boundary that satisfies the first
condition, by simply taking a sphere and expanding it
radially at the speed of light. Second therefore, we must
guarantee that the physical domain is not discarded at the
speed of light. For this we need to ensure that a small part
of the black hole region stays within the computational
domain. Assuming that the apparent horizon remains
inside spatial slices of the event horizon, this could be
done by making sure that the apparent horizon remains
on the grid. Achieving both properties with closed form
coordinates can be subtle even in the stationary setting
[27]. A final, less fundamental, but nevertheless desirable
property is to control the coordinate position of the
apparent horizon within the domain.
Within the SPEC code these necessary conditions for

excision are enforced by choosing spatial coordinates xi

with a control system [28] that monitors the position of the
apparent horizon and drives the coordinates in a desirable
direction. This approach is very effective in practice, but
as far as we are aware is not guaranteed never to fail, even
in spherical symmetry. Since the apparent horizon is
quasilocal, it is not obvious that textbook well-posedness
results can be applied directly. In this paper we use the
DF-GHG formulation with coordinates carefully chosen
for excision. Although we work in the very restrictive
spherical setting we believe that it may eventually be
possible to use the key ingredients of our method in a
more general context, subsuming our coordinate choice
within the control system setup. Unsurprisingly the core
point of our coordinate choice is the use of an area-locking
radial coordinate which, combined with insights from the
dynamical horizons framework [29,30] guarantees the
first two properties mentioned above. In the near future
the development presented here also has the important use
that it will allow us to generalize our earlier perturbative
work [31] on the spherical scalar field within a fixed
Schwarzschild background to treat perturbations robustly
in the fully nonlinear setting, which the naive approach
of [32] was incapable of. These results will be reported
upon elsewhere.

We begin in Sec. II with an overview of the DF-GHG
formulation. In Sec. III we then describe, at the continuum
level, each of the coordinate choices that we test in our
implementation. In Sec. IV we give a brief overview of
the BAMPS code, before presenting our results in Sec. V.
Finally we conclude in Sec. VI. Geometric units are used
throughout.

II. THE DUAL FOLIATION FORMULATION

In this section, we provide a brief summary of the dual
foliation (DF) formalism. Readers interested in a more
detailed approach to the topic may look at [3,5]. The
principal idea behind the DF approach is to consider
two coordinate systems defined in the same region of
spacetime xμ ¼ ðt; xiÞ and Xμ ¼ ðT; XiÞ, hereby referred
to as the lower case and upper case coordinates respec-
tively. They are shown in Fig. 1. As a matter of
convention, Greek indices go over space and time,
Latin indices a, b, c, d, e stand for abstract indices,
whereas i, j, k, l, m, p represent spatial components in
the xμ basis, and when underlined stand for spatial
components in the Xμ basis.
The two time coordinates t and T define two foliations of

spacetime, the lower case and upper case foliation respec-
tively. In practical applications of the DF formalism we
aim to exploit good properties of each coordinate system.
As mentioned in the Introduction, in our specific setting,
this will mean choosing the upper case coordinates (and
their associated tensor basis) to be generalized harmonic

FIG. 1. The DF approach: a spacetime with two different
slicings and two coordinate systems, the upper case coordinates
ðT; XiÞ and the lower case coordinates ðt; xiÞ. Na and na denote
the timelike unit normal vectors for the two slices, the inner
product of which is the Lorentz factor W ¼ −ðNanaÞ. Va ¼
1
W

ðNÞ⊥b
anb and va ¼ 1

W⊥b
aNb denote the two boost vectors.
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□Xα ¼ Hα, which is then used to guarantee symmetric
hyperbolicity of the field equations we solve. In later
sections we will see that we can then choose the lower
case coordinates xμ in a variety of ways, including choices
that are useful for black hole excision.
In the lower case foliation, we can define the lapse,

normal vector, time vector, projection operator and shift
vector as

α ¼ ð−∇at∇atÞ−1
2; na ¼ −α∇at;

ta∇at≡ 1; ⊥a
b ¼ δab þ nanb;

βa ¼ ⊥b
atb; βi ¼ −αna∇axi: ð1Þ

Similar quantities may be defined in the upper case
foliation:

A ¼ ð−∇aT∇aTÞ−1
2; Na ¼ −A∇aT;

Ta∇aT ≡ 1; ðNÞ⊥a
b ¼ δab þ NaNb;

Ba ¼ ðNÞ⊥b
aTb; Bi ¼ −ANa∇aXi: ð2Þ

The projection operator ⊥a
b with two indices downstairs is

the natural induced metric γab on the lower case foliation
and a similar result follows for the upper case foliation
where the naturally induced metric is denoted by ðNÞγab. The
covariant derivative associated with γab is denoted by D
and the corresponding connection is denoted by Γ. For the
upper case spatial metric ðNÞγab, the associated covariant
derivative is ðNÞD and the corresponding connection is ðNÞΓ.
The relationship between the upper case and the lower

case unit normal vector is given by

Na ¼ Wðna þ vaÞ; na ¼ WðNa þ VaÞ; ð3Þ

where W is called the Lorentz factor and is defined as

W ¼ −ðNanaÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − vivi
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ViVi
q ; ð4Þ

and Va and va are the upper case and lower case boost
vectors defined as

va ¼
1

W
⊥b

aNb; Va ¼
1

W
ðNÞ⊥b

anb: ð5Þ

The Jacobian matrix, defined as Jμμ ≡ ∂Xμ=∂xμ can be
decomposed in the 3þ 1 form

nαJααNα ¼ −W; nαJiα ≡ πi;

JαiNα ¼ Wvi; Jii ≡ ϕi
i: ð6Þ

In matrix form, the Jacobian can be represented as

J ¼
�
A−1Wðα − βiviÞ απi þ βiϕi

i

−A−1Wvi ϕi
i

�
; ð7Þ

with the inverse being

J−1 ¼
� α−1WðA − BiViÞ AΠi þ BiΦi

i

−α−1WVi Φi
i

�
: ð8Þ

Note that the quantities πi and Πi can be written in terms of
the lapse, shift and boost vectors

πi ¼ WVi −WA−1Bi; Πi ¼ Wvi −Wα−1βi: ð9Þ

Another important result we will need is that for a first
order evolution system in upper case coordinates of the
form

∂Tu ¼ ðAAp þ Bp1Þ∂puþ AS; ð10Þ

where u is the state vector, Ap are the principal matrices,
and S contains the source terms, can be rewritten in terms of
the lower case coordinates as

ð1þ AVÞ∂tu ¼ αW−1ðApðφ−1Þpp − ð1þ AVÞΠpÞ∂pu

þ αW−1S; ð11Þ

where φi
i ¼ ðNÞγiμJ

μ
i is called the projected Jacobian

and AV ≡ AiVi.

A. DF in the generalized harmonic formulation

In this subsection, we look at the generalized harmonic
formalism employed using the dual foliation approach. Our
discussion will closely follow [5] but with the addition of
the γ1 parameter, which because of the subtle asymptotics
on hyperboloidal slices was earlier hard coded to vanish.
We start essentially with the first order GHG equations of
[33] which are in turn based on earlier work of Garfinkle
[34]. With the γ1 parameter turned back on, they read

∂Tgμν ¼ ð1þ γ1ÞBi∂igμν þ ASðgÞμν ;

∂TΦiμν ¼ Bj∂jΦiμν − A∂iΠμν þ γ2A∂igμν þ ASðΦÞ
iμν ;

∂TΠμν ¼ γ1γ2Bi∂igμν þ Bi∂iΠμν − AðNÞγij∂iΦjμν þ ASðΠÞμν ;

ð12Þ

where the source terms are given by
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SðgÞμν ¼ −Πμν − γ1A−1BiΦiμν;

SðΦÞ
iμν ¼ −γ2Φiμν þ

1

2
NαNβΦiαβΠμν þ ðNÞγjkNαΦijαΦkμν;

SðΠÞμν ¼ 2gαβððNÞγijΦiαμΦjβν − ΠαμΠβν − gδγΓμαδΓνβγÞ

− 2

�
∇ðμHνÞ þ γ3Γ

α
μνCα −

1

2
γ4gμνΓαCα

�

−
1

2
NαNβΠαβΠμν − NαðNÞγijΠαiΦjμν

þ γ0½2δαðμNνÞ − gμνNα�Cα − γ1γ2A−1BiΦiμν; ð13Þ

where we have

Γαμν ≡ ðNÞγiðμjΦijνÞα −
1

2
ðNÞγiαΦiμν þ NðμΠνÞα −

1

2
NαΠμν;

ð14Þ

and the equations are subject to both the reduction
constraints

Ciμν ¼ ∂igμν −Φiμν; ð15Þ

and the GHG constraints

Cμ ¼ gαβΓμαβ þHμ ¼ 0: ð16Þ

The functions Hμ are called the gauge source functions

which are functions of the coordinates and the metric. Now,
considering these evolution equations to be in the standard
form of Eq. (10), we can easily obtain the Ap matrices
which is a slight modification from that given in [5]

Ap ¼

0
BB@

γ1A−1Bp 0 0

γ2δ
p
i 0 −δ

p
i

γ1γ2A−1Bp −ðNÞγpj 0

1
CCA: ð17Þ

To avoid repeating the calculation in [5], we observe that by
inclusion of the γ1 terms within the coordinate change (11)
is straightforwardly done by modifying the form given
in [5] with the Sherman-Morrison formula. Doing so we
arrive at the lower case time evolution equations

∂tgμν ¼
�
βp − αvp þ γ1αB

p

WðAþ BVÞ ðφ
−1Þpp

�
∂pgμν

þ αW−1sðgÞμν ;

dtΦiμν ¼ ðβpδji − αvpδji þ αW2viðg−1ÞpjÞdpΦjμν

þ αW−1gp
iðγ2∂pgμν − ∂pΠμνÞ þ αW−1sðΦÞ

iμν ;

∂tΠμν ¼ βp∂pΠμν − αWðg−1ÞpidpΦiμν þ αW−1sðΠÞμν

− γ2

�
αvp −

γ1αB
p

WðAþ BVÞ ðφ
−1Þpp

�
∂pgμν: ð18Þ

We use a shorthand notation which abbreviates the con-
traction with the projected Jacobian

dμΦiμν ¼ φi
i∂μΦiμν; ð19Þ

and write BV ¼ BpVp. The boost metric is

gij ¼ γij þW2vivj: ð20Þ

In terms of the upper case sources, the lower case sources
can be written as

sðgÞμν ¼ SðgÞμν

1þ γ1A−1BV ;

sðΦÞ
iμν ¼ SðΦÞ

iμν þW2ViðVjSðΦÞ
jμν − γ2S

ðgÞ
μν þ SðΠÞμν Þ;

sðΠÞμν ¼ γ2S
ðgÞ
μν

1þ γ1A−1BV þW2ðVjSðΦÞ
jμν − γ2S

ðgÞ
μν þ SðΠÞμν Þ: ð21Þ

We take si to be an arbitrary spatial vector of unit
magnitude with respect to it ðg−1Þijsisj ¼ 1 and define
a projection operator orthogonal to si by

q⊥i
j ¼ γij − ðg−1Þiksksj: ð22Þ

The characteristic variables of the system are given by

u0̂μν ¼ gμν;

uB̂iμν ¼ q⊥j
iΦjμν þWq⊥j

ivjðΠμν − γ2gμνÞ;

u�̂μν ¼ Πμν ∓ Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðvsÞ2

p ðg−1ÞijsjΦiμν − γ2gμν; ð23Þ
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with the corresponding characteristic speeds

βs − αvs þ γ1
Bpðφ−1Þppsp
Aþ γ1BV ;

βs − αvs;

βs � α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðvsÞ2

q
: ð24Þ

B. DF scalar field

For completeness, in this section, we compute the field
equations for the scalar field implementation employing
the DF formalism. This calculation is directly analogous
to that in the last subsection. We start with the first order
form of the scalar field equations written in the upper case
coordinates

∂TΦ ¼ Bi∂iΦþ ASðΦÞ;

∂Tχi ¼ Bj∂jχi þ A∂iΠþ γA∂iΦþ ASðχÞi ;

∂TΠ ¼ Bi∂iΠþ AðNÞγij∂jχi þ ASðΠÞ; ð25Þ

where the source terms are given by

SðΦÞ ¼ Π;

SðχÞi ¼ A−1χj∂iB
j þ A−1Π∂iA − γχi;

SðΠÞ ¼ KΠþ A−1χi
ðNÞγij∂jA − ðNÞγijð3ÞΓk

ijχk: ð26Þ

The first order system is of the form given in Eq. (10),
therefore we can construct the principal matrices as

Ap ¼

0
BB@

0 0 0

γδpi 0 δpi

0 ðNÞγpj 0

1
CCA: ð27Þ

As mentioned in [5], when the Lorentz factor W is
bounded, it is possible to invert the coefficient ð1þAVÞ,
which gives

ð1þAVÞ−1 ¼

0
B@

1 0 0

−γW2Vi
ðNÞgj

i W2Vi

−γðW2 − 1Þ W2Vj W2

1
CA; ð28Þ

where ðNÞgj
i ¼ ðNÞγji þW2VjVi. Using this information in

Eq. (11), we arrive at the evolution equation for the scalar
field variables in the lower case coordinates:

∂tΦ ¼ ðβp − αvpÞ∂pΦþ αW−1sðΦÞ;

dtχi ¼ ðβpδji − αvpδji þ αW2viðg−1ÞpjÞdpχj
þ αW−1gp

iðγ∂pΦþ ∂pΠÞ þ αW−1sðχÞi ;

∂tΠ ¼ βp∂pΠþ γαvp∂pΦþ αWðg−1Þdpχi þ αW−1sðΠÞ:

ð29Þ
Here again we use a shorthand notation which abbreviates
contraction with the projected Jacobian

dμχi ¼ φi
i∂μχi: ð30Þ

In terms of the upper case sources the lower case sources
become

sðΦÞ ¼ SðΦÞ;

sðχÞi ¼ SðχÞi þW2ViðVjSðχÞj − γSðΦÞ − SðΠÞÞ;
sðΠÞ ¼ −γSðΦÞ −W2ðVjSðχÞj − γSðΦÞ − SðΠÞÞ: ð31Þ

The characteristic variables of the system are given by

u0̂ ¼ Φ;

uB̂j ¼ q⊥i
jχi −Wq⊥i

jviΠ;

u�̂ ¼ −Π ∓ Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðvsÞ2

p ðg−1Þijsjχi − γΦ; ð32Þ

with the corresponding characteristic speeds

βs − αvs; βs − αvs; βs � α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðvsÞ2

q
: ð33Þ

Here s again denotes an arbitrary unit vector which is
normalized against the boost metric and is spatial with
respect to na.

III. DF JACOBIANS

In this paper, we are going to present the first numerical
tests with DF-GHG with an aim to not only change the
spatial coordinates [28] but also the foliation. DF-GHG is
implemented in 3d but for now we focus on spherical tests.
To demonstrate that everything in the code is correct, we
implement a list of Jacobians, some analytic and some that
require the evolution of additional fields. As a sanity check,
the simplest Jacobian that we implement is the identity
Jacobian

t ¼ T; xi ¼ Xi; ð34Þ

which of course gives the correct result that we would
expect in a run without DF when the same gamma
parameters are chosen for the job. Although these
Jacobians are primarily built for use in spherically
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symmetric spacetimes, the implementation itself is made in
our fully 3d code. This has the twin advantages that, using
the Cartoon method [25,35] for symmetry reduction, we
can develop and turn around simulations very quickly, but
simultaneously end up with code that can be used in a more
general context. In the following subsections we consider:

Analytic Jacobians In these tests the two sets of
coordinates are related by given closed form expres-
sions. The new aspect is that in the past all simulations
were performed under the simplifying assumption
T ¼ t.

Vanishing shift Jacobian Close to the threshold of black
hole formation in vacuum there are indications [32]
that popular choices of generalized harmonic coor-
dinates form coordinate singularities. It is known that
asymptotically flat spacetimes can always be foliated
using a vanishing shift, which this Jacobian choice
enforces.

Areal radius Jacobian In spherical symmetry there is a
close relationship between the geometric radial coor-
dinate and the null expansion. In this Jacobian we
exploit this relationship to build coordinates in which
(as long as we excise close enough to the apparent
horizon) the excision boundary remains outflow for
sure, and for which the apparent horizon is guaranteed
to stay in the computational domain.

DF-excision Jacobian This Jacobian is an adjustment to
the previous setup in which we use a solution to the
eikonal equation to get tight control also over the
incoming coordinate light speeds.

Alternative choices will be presented in future work.

A. Analytic Jacobians

First we consider the analytic Jacobian described by the
following relations:

t ¼ T; xi ¼ fðt; rÞXi: ð35Þ

Here we choose f1ðt; rÞ such that at t ¼ 0 and for large
radius, the upper case and the lower case coordinates match
with each other. We do not yet have provisions for the
applying outer boundary conditions in the DF case, so at
large radius we require the coordinates to change back
to GHG where the usual GHG boundary conditions in
BAMPS can be applied. A choice for f which satisfies these
conditions is given by

fðt; rÞ ¼ 1þ t2A1e−ðr−r0Þ
2

e−ðt−t0Þ2 ; ð36Þ

where the Gaussian is centered such that its values
approximately reach machine precision or less near the
outer boundary. Likewise, we consider another Jacobian
which is described by the following relations:

t ¼ fðt; rÞT; xi ¼ Xi: ð37Þ

B. Vanishing shift Jacobian

The vanishing shift Jacobian keeps the lower case shift
zero at all times. Such a choice of coordinates may be
useful when performing simulations of gravitational
collapse. First we choose

t ¼ T; ð38Þ

which makes some other quantities trivial, that is

W ¼ 1; α ¼ A; Vi ¼ 0; vi ¼ 0: ð39Þ

With these choices, we can write down the first of Eq. (9) as

πi ¼ −A−1Bi: ð40Þ

This also simplifies the evolution equation for ϕi
i in Eq. (7)

which can be obtained using Cartan’s magic formula [3]

∂tϕ
i
i ¼ −DiBi þ Lβϕ

i
i: ð41Þ

The first term in the right-hand side of the above equation
can be considered a source term, because by addition of the
reduction constraints, given in Eq. (15), all first derivatives
of metric components can be replaced by evolved variables,
whereas the second term should be ideally zero since we
want the lower case lapse to be zero. However, since we do
not yet have outer boundary conditions in the lower case
coordinates, we will employ a transition function approach.
In this approach, we choose

βi ¼ ΩðrÞBi; ð42Þ

where Ω is zero at small radii and transitions to one at large
radii. This allows us to apply the standard GHG boundary
conditions for the outer boundary.
The first source term in Eq. (41) can be written as

∂iBi ¼ Jki∂kBi: ð43Þ

The upper case spatial derivatives of the upper case shift
can then be written down in terms of the lapse, shift,
extrinsic curvature and the Christoffel symbols, the expres-
sions for which are given below [36]:

∂mBl ¼ Γl
m0 þ BlΓ0

m0 þ AKl
m − BnΓl

mn − BlBnΓ0
mn;

ð44Þ

where further we use the expressions for the extrinsic
curvature

Kij ¼ −AΓ0
ij: ð45Þ
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The Lie derivative term in Eq. (41) is only nonvanishing for
the subpatch where the transition happens and for all outer
subpatches. It can be written down as

Lβϕ
i
i ¼ ΩBk∂kϕ

i
i þ ϕi

j∂iβ
j; ð46Þ

where

∂iβ
j ¼ ð∂rΩÞΘiBj þΩð∂iB

jÞ; ð47Þ

whereΘi are functions of the angular coordinates which are
the same for both the upper case and lower case coordinates
and are related to the Cartesian coordinates by the relation

xj ¼ rΘj; Xj ¼ RΘj; Θi ¼ δiiΘi: ð48Þ

Putting all of this together, we can construct the required
Jacobian from which the inverse Jacobian can be computed
numerically:

J ¼
�
1 −Bi þΩBjδjjϕ

i
j

0 ϕi
i

�
: ð49Þ

C. Areal radius Jacobian

In this setup, we choose the Jacobian such that the lower
case radial coordinate is the areal radius. With this choice,
we can show that the position of the apparent horizon is
located at the zero crossing of the outgoing radial coor-
dinate lightspeed. Now, since the position of the apparent
horizon in spherical symmetry in these coordinates can
only increase as the simulation progresses [29,30], if the
apparent horizon appears on the grid at the beginning of the
simulation, it must do so at later times. Consequently, as a
result of the weak cosmic censorship conjecture, the event
horizon stays on the numerical domain at all times. This
ensures a successful “excision” strategy.
Consider the upper case foliation whose spatial line

element is given by

ds2 ¼ L2dR2 þ ðNÞγTR2dΩ2: ð50Þ
Here L is called the length scalar, which is to the 2þ 1 split
what the lapse is to the 3þ 1 case. The relationship
between the upper case and the lower case radial coordinate
is given by

r ¼ ηðr; ðNÞγTÞR; ð51Þ
where η is a function chosen such that for small r the lower
case radial coordinate becomes the areal radius coordinate
whereas for large values of r, it becomes the standard radial
coordinate as given by GHG. This ensures that normal
GHG outer boundary conditions can be applied for the
system. A possible choice of η is of the form

η ¼
ffiffiffiffiffiffiffiffiffiffi
ðNÞγT

q
χðrÞ þ 1ð1 − χðrÞÞ; ð52Þ

where χðrÞ is any suitable transition function varying from
zero to one with increasing r. In principle, a hyperbolic
tangent function would serve the purpose but for reasons of
rapid convergence, we choose a low order polynomial
function which transitions at the penultimate subpatch. The
functional form of χðrÞ which transitions from one to zero
between r ¼ r0 and r ¼ r1 can be given by

χðrÞ ¼
8<
:

1; r < r0;

1 − 3a2ðr − r0Þ2 − 2a3ðr − r0Þ3; r0 ≤ r ≤ r1;

0; r > r1;

ð53Þ
where a ¼ −1=ðr1 − r0Þ. The derivatives of η are given by

∂̃rη ¼
ffiffiffiffiffiffiffiffiffiffi
ðNÞγT

q
χ0ðrÞ − χ0ðrÞ; ∂̃ððNÞγTÞη ¼

χðrÞ
2

ffiffiffiffiffiffiffiffiffiffiðNÞγT
p : ð54Þ

Here the tilde on the partial derivatives means that the
derivative must be taken keeping the other argument
constant. We shall now construct the various components
of the inverse Jacobian by noting that in this case

α ¼ A Vi ¼ 0; W ¼ 1: ð55Þ
This information can be used to construct the ðJ−1Þ0i
components of the inverse Jacobian. The spatial compo-
nents of the inverse Jacobian as given in Eq. (8) can be
computed following the relation given below,

Φi
j ¼ ∂ixj ¼ Θj∂irþ r∂iΘj; ð56Þ

using the relationship between r and Θj as specified in
Eq. (48). The two terms of the above equation can be
evaluated using the fact that

∂ir ¼
Θiηþ ðr∂̃ððNÞγT Þη∂i

ðNÞγT Þ=η
κ

; ð57Þ

where

κðr; ðNÞγTÞ≡ 1 −
r∂̃rη

η
; ð58Þ

where we use Eq. (51) and the fact that ∂iR ¼ Θi. For the
second term, we have

∂iX
j ¼ δi

j ¼ ð∂iRÞΘj þ R∂iΘj; ð59Þ

which gives
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∂iΘj ¼ η

r
ðδij − ΘiΘjÞ: ð60Þ

We will now calculate the ðJ−1Þi0 component which can
then be used to construct the time-space part of the inverse
Jacobian in Eq. (8):

ðJ−1Þi0 ¼ ∂Txi ¼ Θi∂Tr; Πj ¼ Θj∂Tr − BiΦj
i

A
: ð61Þ

Now, the upper case time derivative of r can be computed
from Eq. (51) in a straightforward manner:

∂Tr ¼
ðr=ηÞ∂̃ððNÞγT Þη∂T

ðNÞγT
κ

: ð62Þ

For the sake of completeness, we also provide the
upper case time and spatial derivatives of ðNÞγT which
are needed to construct the above quantities. An expression
for ðNÞγT can be written down in terms of the lapse, the
determinant of the Cartesian form of the metric and the
length scalar as

ffiffiffiffiffiffiffiffiffiffiffi−gsph
p ¼ AL

ffiffiffi
q

p
; ð63Þ

where gsph is the determinant of the metric in spherical
coordinates and q is the determinant of the two metric
given by

�
R2ðNÞγT 0

0 R2sin2θðNÞγT

�
: ð64Þ

Using the fact that

ffiffiffiffiffiffiffiffiffiffiffi−gsph
p ¼ R2 sin θ

ffiffiffiffiffiffiffiffiffiffiffi
−gcart

p
; ð65Þ

we obtain an expression for ðNÞγT where the reference to
the Cartesian form of the metric is suppressed for the sake
of brevity:

ðNÞγT ¼
ffiffiffiffiffiffi−gp
AL

: ð66Þ

From here, the upper case time and spatial derivatives of
ðNÞγT can be obtained in a straightforward manner by using
the derivatives of

ffiffiffiffiffiffi−gp
, A and L. Using standard results

from the literature [36], we can compute time and spatial
derivatives of the square root of the determinant of the
metric

∂T
ffiffiffiffiffiffi
−g

p ¼ ffiffiffiffiffiffi
−g

p
Γμ

0μ; ∂i
ffiffiffiffiffiffi
−g

p ¼ ffiffiffiffiffiffi
−g

p
Γμ

iμ; ð67Þ

and also for the lapse

∂TA ¼ AðΓ0
00 − BmΓ0

0mÞ; ∂iA ¼ AðΓ0
0i − BmΓ0

imÞ:
ð68Þ

The derivatives of the upper case length scalar L can be
computed from its definition

L−2 ¼ ðNÞγijΘiΘj: ð69Þ

To see that the apparent horizon is located at the zero
crossing of the outgoing radial coordinate lightspeed in area
locking coordinates, we consider the expression for the
expansion which can be written as [36]

H ¼ 1

L

�
2

R
þ 1

ðNÞγT
∂R

ðNÞγT

�
− 2ðNÞKθ

θ; ð70Þ

where ðNÞKij is the extrinsic curvature in the upper case

foliation. A similar expression of course holds in an
arbitrary foliation. We have

H ∝ ð∂T þ CRþ∂RÞR2ðNÞγT; ð71Þ

where CRþ is called the outgoing radial coordinate light-
speed and is defined as Cþ ¼ −BR þ A=L where here
and in the following we suppress the label R. Now

introducing area locking coordinates ðT∘ ; R∘ ¼ R
ffiffiffiffiffiffiffiffiffiffiðNÞγT

p
Þ,

we can write

H ∝ ð∂
T
∘ þ cR

∘
þ∂R

∘ ÞR∘ 2;

∝ 2cR
∘
þR

∘
: ð72Þ

From the above expression, we see that in the case of the

apparent horizon, where the expansion is zero, cR
∘
þ ¼ 0 as R

∘

is greater than zero.

D. Dual frame excision Jacobian

As an addition to the previous strategy, which ensures the
correct sign of the outgoing radial coordinate lightspeed cþ
at the inner boundary of the simulation provided that
we excise close enough to the apparent horizon, we would
like to exactly control the incoming radial coordinate
lightspeed c−, at least near the black hole. If c− can be
set to −1 exactly, this would avoid any “artificial” coor-
dinate redshift or blueshift as matter falls into the event
horizon. In this setup, the upper case coordinates ðT; XiÞ
are the generalized harmonic coordinates whereas the lower
case coordinates ðt; xiÞ are defined by the Jacobian to be
described shortly. The angular coordinates are kept to be
the same in both cases. The relationship between the upper
case and lower case radial coordinate is kept the same as

the previous strategy. Furthermore, a new coordinate v
∘
is

introduced:
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r ¼ ηðr; ðNÞγTÞR; v
∘ ¼ T

∘ þ r; ð73Þ

where T
∘ ¼

ffiffiffiffiffiffiffiffiffiffiðNÞγT
p

T. The only condition that we impose on

v
∘
is that it be a null coordinate, that is, it satisfies the eikonal

equation

gab∇av
∘∇bv

∘ ¼ 0: ð74Þ

The eikonal equation inside the transition region where

T
∘ ¼ t can be expanded using the expression for the
coordinate lightspeeds along the radial direction

c� ¼ −βr � α=l; ð75Þ

keeping in mind that l−2 ¼ γrr:

1

α2
ð1þ cþÞð1þ c−Þ ¼ 0: ð76Þ

From the above expression, it can be clearly seen that when
cþ is not equal to −1, c− takes the value of −1.
We have to ensure that near the outer boundary, the lower

case time coordinate reduces to the upper case time
coordinate. This can be achieved in a similar way as in
the relationship between the radial coordinates,

t ¼ ηðr; ðNÞγTÞT;
¼ T

∘
χðrÞ þ 1ð1 − χðrÞÞT: ð77Þ

Using Eq. (73), we arrive at the final relation between the
upper case and the lower case time coordinate,

t ¼ v
∘
χ − rχ þ ð1 − χÞT: ð78Þ

It is clear from the above expression that we have to

evolve derivatives of v
∘
and T to obtain the different

components of the inverse Jacobian. Instead of the com-
ponents of the Jacobian, we can choose to evolve an
equivalent set of quantities which are known as the “optical
Jacobians”

V−
i ≡ −∂iv

∘
; E− ≡ Nμ∂μv

∘
: ð79Þ

In terms of these new variables, it is straightforward to
show that the eikonal equation in Eq. (74) can be
rewritten as

E2
− ¼ ðNÞγijV−

i V
−
j : ð80Þ

It is clear from the above expressions that the evolution
equation for E− can be completely dropped in favor of V−

i .

However, we choose to keep them since V−
j and E− satisfy

the eikonal equation, which can be used to construct a
constraint monitor.
We ask the reader to refer to [5] for a complete derivation

for the equations of motion for the optical Jacobians and
only provide a brief summary of the final equations here.
The evolution equations in the upper case coordinates can
be written as a set of advection equations such that this
subsystem is minimally coupled to the first order GHG
system:

∂TV−
i ¼ ðBj − ASj−Þ∂jV−

i þ ASðV
−Þ

i ;

∂T lnE− ¼ ðBj − ASj−Þ∂j lnE− þ ASðE−Þ; ð81Þ

where Sj− ¼ E−1
− Vj

− and the source terms are given by

SðV
−Þ

i ¼ A−1V−
j ∂iB

j þ Sj−
ð3ÞΓk

ijV
−
k − A−1E−∂iA;

SðE−Þ ¼ KS−S− − LS− lnA: ð82Þ

Since our objective is to evolve the optical Jacobians in the
lower case “Cartesian” coordinates, we must transform
the evolution equations in Eq. (81) using Eqs. (10) and (11).
To do this, we compute ðφ−1Þii which can be written down

in terms of Φi
i, Πi and Vi,

ðφ−1Þii ¼ Φi
i þ ΠiVi: ð83Þ

The complete principal matrixAp associated with the GHG
variables and our new variables can be expressed as

Ap ¼
�Λ1 0

0 Λ2

�
; ð84Þ

where

Λ1 ¼

0
B@

γ1A−1Bp 0 0

γ2δ
p
i 0 −δpi

γ1γ2A−1Bp −ðNÞγpj 0

1
CA; ð85Þ

and

Λ2 ¼
�−S

p
− 0

0 −S
p
−

�
: ð86Þ

Using the above expressions and Eq. (11), the evolution
equations in the lower case coordinates can be written as

∂tV−
i ¼ ðβj − αsj−Þ∂jV−

i þ αW−1sðV
−Þ

i ;

∂t lnE− ¼ ðβj − αsj−Þ∂j lnE− þ αW−1sðE−Þ; ð87Þ
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where

si− ¼ ðφ−1ÞiiSi−
Wð1þWvjðφ−1ÞjiSi−Þ

þ vi; ð88Þ

and the lower case source terms are related to the upper case
sources as

sðV
−Þ

i ¼ ð1þWvjðφ−1ÞjjSj−Þ−1SðV
−Þ

i ;

sðE−Þ ¼ ð1þWvjðφ−1ÞjjSj−Þ−1SðE−Þ: ð89Þ

It is straightforward to obtain the equations of motion for
the other two variables:

∂tR ¼ J00; ∂tv
∘ ¼ α

W
E− − biWVi − biφj

iV−
j ; ð90Þ

where bi ¼ −αvi þ βi. Finally, we can use the above
information to construct the different components of the
optical Jacobian. The Φj

i components are evaluated in the
same way as the previous case. Now

ðJ−1Þ00 ¼ ∂Tt;

¼ ðAE− − BjV−
j Þχ þ v

∘∂rχ∂Tr − χ∂Tr

− r∂rχ∂Tr − T∂rχ∂Trþ ð1 − χÞ;
ðJ−1Þ0i ¼ ∂Txi ¼ Θi∂Tr;

ðJ−1Þi0 ¼ ∂it ¼ −V−
i χ þ v

∘∂iχ − ð∂irÞχ − r∂iχ − T∂iχ;

ð91Þ

where

∂iχ ¼ ð∂rχÞΘiΦi
i: ð92Þ

The ∂Tr term in these equations can be simplified using
Eq. (62). To initialize the evolved quantities at the begin-
ning, we propose a choice which leads to the Jacobian
being identity initially. A choice of the evolved quantities is

V−
i ¼ −∂ir; v

∘ ¼ r; T ¼ 0: ð93Þ

The choice of E− is not independent but follows from the
eikonal equation.
Another important point to note is that we employ the

Cartoon method to compute the y and z derivatives using
Killing vectors. The formula for doing this is provided
below:

∂yV−
i ¼ hðxÞðδxiδjy − δyiδ

j
xÞV−

j ;

∂zV−
i ¼ −hðxÞðδxiδjz − δziδ

j
xÞV−

j : ð94Þ

Note that hðxÞ ¼ 1 for the on-axis case and hðxÞ ¼ 1=x
otherwise.
Lastly, we briefly describe the constraint preserving

outer boundary conditions, the constraint being Eq. (80).
At the outer boundary, we choose _V−

i to be equal to zero.

This requires a choice of _E− which is given by

_E− ¼ −
V−
i V

−
j

2E−

ðNÞγikðNÞγjl∂T ðNÞγkl: ð95Þ

IV. CODE SETUP

In this section we describe our numerical setup, initial
data and postprocessing tools.

A. Code overview

The BAMPS code [12,32,37,38] is built for large scale,
parallel numerical evolutions of hyperbolic systems.
Several different approximation schemes are implemented,
including discontinuous Galerkkin (DG) schemes [37], but
here we use exclusively a multidomain pseudospectral
method to solve our first order symmetric hyperbolic
PDEs described in the previous sections. Each individual
numerical domain is called a subpatch. Within each
subpatch spatial derivatives are approximated using
Chebyshev polynomials implemented, as usual, by matrix
multiplication. Data are communicated between patches
using a penalty method which is applied to the incoming
characteristic variables at each subpatch boundary. Our
domain always has a smooth timelike outer boundary at a
fixed radial coordinate r. Because of this we need to apply
boundary conditions. These need to be constraint preserv-
ing, to control undesirable gauge effects, and to control the
physical behavior at the boundary [39]. For now, to avoid
introducing too many new complications into the code at
once, we choose Jacobians that transition to the identity in a
neighborhood of the outer boundary. This allows us to
recycle our boundary conditions for the GHG formulation,
essentially those of Rinne [40], directly. For evolution in
time we use a fourth order Runge-Kutta method. Because
we will be treating spherical spacetimes we use the Cartoon
method [25,35] to suppress two spatial dimensions. With
this reduction our tests are very fast, the longest taking
just a few minutes on a large desktop machine. We have
tested the implementation by evolving our spherical data
with the full 3d setup and obtain perfectly consistent
results, and so do not discuss these slower computations
further. For a deeper technical description of the code we
direct the reader to [32].
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B. Initial data

Our system involves a scalar field minimally coupled to
the metric. To evolve such a system, we must first solve for
constraint preserving initial data which can then be evolved
using a combination of DF-GHG and DF scalar field code.
We shall provide the necessary coupled ordinary differ-
ential equations for the sake of completeness. Consider the
coordinates ðr; θ;ϕÞ in which the line element of the spatial
metric can be written as

ds2 ¼ lðrÞ2dr2 þ r2dΩ2; ð96Þ

where l is the lower case length scalar. The form of the
extrinsic curvature follows in a straightforward manner:

Kij ¼

0
B@

KrrðrÞ 0 0

0 r2KTðrÞ 0

0 0 r2 sin2 θKTðrÞ

1
CA: ð97Þ

We can now use this to obtain the Hamiltonian and
the momentum constraints which are given below
respectively:

4KTK − 6K2
T þ 2ð2rl0 þ l3 − lÞ

r2l3
¼ 8π

�
Φ02

l2
þ Π2

�
;

2ðrK0
T þ 3KT − KÞ

r
¼ 8πΠΦ0; ð98Þ

where K is the trace of the extrinsic curvature, Φ is the
scalar field and Π is related to the time derivative of the
scalar field as

Π ¼ −
1

α
ð∂tΦ − βi∂iΦÞ: ð99Þ

From the Hamiltonian and momentum constraints we arrive
at the ordinary differential equations (ODEs) that we can
solve using a Runge-Kutta method:

dl
dr

¼ l
2r

ð−2r2KTl2K þ 3r2K2
Tl

2 þ 4πr2l2Π2

− l2 þ 4πr2Φ02 þ 1Þ;
dKT

dr
¼ −3KT þ 4πrΠΦ0 þ K

r
: ð100Þ

This ODE is solved using an iterative method, with the
trace of the extrinsic curvature taken to be that in
Schwarzschild with the MADM mass taken to be one.
The values of lðrÞ obtained in the first iteration are then
used to construct the new ADM mass, defined by

MADM ¼ 1

2
rðlðrÞ2 − 1Þ; r → ∞: ð101Þ

This is continued until the difference between the last
and the second last evaluation of the ADM mass meets a
tolerance level. The spatial metric quantities can then be
reconstructed using Eq. (96), while the coordinate light-
speed Cþ constructed from

Cþ ¼ r − 2MADM

rþ 2MADM
ð102Þ

can be used to reconstruct the lapse and the shift

FIG. 2. Left: an example of constrained solved initial data with the blue line representing data corresponding to a nonzero scalar field
and the green line representing the pure Schwarzschild case. The inset shows the values of MADM which are generated during the
iterative solve. Right: a comparison between the output of the event horizon locator and apparent horizon locator for a simulation with a
lapse perturbation in the Schwarzschild spacetime. The deviation in the two outputs at later times demonstrates the event horizon locator
trying to “find” the horizon. Here this effect is exaggerated because we chose a poor initial guess for the position of the event horizon on
purpose.
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α ¼ lþ Cþl
2

; βr ¼
1 − Cþ

2
: ð103Þ

An example of the initial data solver in action is shown in
the left plot of Fig. 2.

C. Apparent and event horizon finders

We require diagnostic tools for postprocessing to
ensure that the excised region of spacetime remains
inside the black hole event horizon at all times during
the numerical evolution. For this purpose we use two
tools, the apparent horizon, defined locally on a given
hypersurface, and the event horizon which is a global
property of the spacetime.
The apparent horizon is defined as the outermost

marginally outer trapped surface on a given spatial hyper-
surface, that is, it is defined by the vanishing of the
expansion parameter of the outgoing null geodesics. In
spherical symmetry, the condition for the apparent horizon
is given by [36]

H ¼ 1

l

�
2

r
þ 1

γT
∂rγT

�
− 2Kθ

θ ¼ 0; ð104Þ

where the metric is represented in the lower case basis. This
is implemented in the AHloc feature of BAMPS. An alter-
native and simpler way to find the apparent horizon in the
area locking coordinates is that the zero crossing of the
lower case outgoing coordinate lightspeed cþ corresponds
to the position of the apparent horizon.
We will now describe the implementation of a new

event horizon finder EHloc for BAMPS. The event horizon in
general is a 2þ 1 null surface which is the boundary of the
black hole region from which no future pointing null
geodesics can escape to null infinity Iþ [41]. Hence,
one way to obtain approximations of event horizons in
numerical spacetimes is to integrate null geodesics forward
in time all over the numerical domain. One of the
disadvantages of this method is that this requires a careful
choice of the initial conditions [42]. A more efficient
algorithm is to integrate outgoing null geodesics or null
surfaces backwards in time, since then the event horizon
acts as an attractor of null geodesics [42,43].
The geodesic method for integrating backwards in time

is considered to be the most accurate method and problems
mentioned in the literature like tangential drifting are not
seen in practice [44]. Hence, this is the method we have
used for EHloc.
Unlike AHloc, it is essential for EHloc to be run in

postprocessing when the black hole is no longer ringing
but is rather close to Schwarzschild. In such cases, we can
start from the last numerical slice and integrate the geodesic
equation backwards,

d2xα

dλ2
þ Γα

βγ
dxβ

dλ
dxγ

dλ
¼ 0; ð105Þ

where λ is the affine parameter and xα is the 4-position of
the geodesic. The initial conditions for the geodesic are so
chosen that it is outgoing. In spherical symmetry, the
geodesic equation can be represented by a set of coupled
ordinary differential equations [45]:

dΠr

dt
¼ −α;r þ ðα;rΠr − αKrrΠrΠrÞΠr þ βr;rΠr

−
1

2
αγrr;rΠrΠr;

dr
dt

¼ αΠr − βr: ð106Þ

Here α, βi are the lapse and shift respectively, Kij is the
extrinsic curvature and γij is the inverse of the spatial
metric. All quantities mentioned here are represented in the
lower case basis. The intermediate variable Πr is related to
the momentum pr ¼ dxr=dλ as

Πr ≡ prffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijpipj

q : ð107Þ

A Runge-Kutta integrator is used for performing the time
stepping while the data is loaded and then interpolated
using Chebyshev functions. A brief description of the grid
and interpolation setup is provided in the Appendix.
As sanity checks, we test the event horizon finder with a

multipatch simulation of the Schwarzschild spacetime and
another with a gauge perturbation. These results have also
been compared with the output of the apparent horizon
finder and seen to be in good agreement. The gauge
perturbation case with both EHloc and AHloc outputs are
shown in the right plot of Fig. 2.

V. NUMERICAL RESULTS

A. Tests with analytic Jacobians

We begin our numerical experiments by first testing out
our implementation of the analytic Jacobians. As initial
data, we choose the metric components to be those of
the Schwarzschild spacetime in Kerr-Schild coordinates.
We perform simulations for both the analytic Jacobians
keeping the function f to be

f ¼ 1þ 0.0001t2e−ðr−100Þ2e−ðt−5Þ2 : ð108Þ

The numerical domain for these simulations is from
r ∈ ½1.8; 201.8� and they are performed at four different
resolutions starting from 20 patches, 11 points and increas-
ing the number of points by ten in each case. We finally plot
the harmonic constraints
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Cα ¼ Hα þ gβγΓαβγ; ð109Þ

with radius at four different resolutions and find that the
constraints converge with increasing resolution. A plot of
such a convergence test is provided in Fig. 3. We also
perform tests of the time derivatives of the harmonic
constraints given by

Fα ≃ ∂NHα þ gβγ∂NΓαβγ − Γα
βγ∂Ngβγ; ð110Þ

where ≃ denotes equality up to the combinations of the
reduction constraints and ∂N ≡ Nα∂α (see [13,33] for

details). We find that they also converge with increasing
resolution.

B. Tests with the vanishing shift Jacobian

Another numerical experiment we perform is to keep the
lower case shift to be zero by a suitable choice of Jacobian.
This experiment is performed on the Minkowski spacetime
by adding a Gaussian gauge wave of the form

α ¼ 1þ G0e−w0ðr−r0Þ2 ; ð111Þ

where the parameters of the perturbation are given by

FIG. 4. A snapshot of the upper case shift and the lower case shift at three different times given by t ≃ 7.7, 13.5 and 18.5 (in units of
M). In the first figure, we see as expected irrespective of the upper case shift, the lower case shift is vanishingly small inside the transition
region. In the second figure, we demonstrate the effect of the transition region on the lower case shift. In the third figure, we see the form
of the lower case shift mostly outside the transition region where it is expected to agree with its upper case counterpart.

FIG. 3. Left: a convergence test performed with the time component of the harmonic constraints when the analytic Jacobian given in
Eq. (37) is considered. The numbers in the legend correspond to the number of points per patch considered. Right: a comparison
between the lower case and the upper case lapse at time t ≃ 5 for the same set of simulations.
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G0 ¼ 0.2; r0 ¼ 0; w0 ¼ 1: ð112Þ

As has been demonstrated in the calculations of Sec. III, the
upper case and the lower case coordinates match in the
outermost subpatch of the simulation while the penultimate
subpatch serves as the transition region. This can be seen
clearly in the plots of Fig. 4 where the upper case shift is
represented by the blue curve and the lower case shift is
represented by the green curve. The lower case shift
is successfully kept to zero in patches inside the transition
zone, while outside the transition zone, it is seen to agree
with the upper case shift. A convergence test is also

performed considering the reduction constraints, the har-
monic constraints and the time derivatives of the harmonic
constraints and we see convergence with increase in
resolution, as is expected.

C. Tests with the areal radius Jacobian

We now perform simulations of a massless scalar field
minimally coupled to general relativity in spherical sym-
metry. As a first try, we evolve the spacetime in generalized
harmonic coordinates [33] using the old excision setup,
that is, there are no boundary conditions placed at the inner

FIG. 5. Top row, left: a convergence test performed with the XTT component of the reduction constraints at t ¼ 30M performed at
three different resolutions, the number of points per patch being mentioned in the legend. These simulations are performed with the
GHG, DF and scalar field projects. Top row, right: the position of the apparent horizon and the event horizon as a function of time in one
of these simulations with DF, GHG and scalar field. The position of the apparent horizon, also where cþ crosses zero is seen to increase
monotonically as a function of time. Bottom row, left: a plot showing the value of the outgoing radial coordinate lightspeed cþ at the
inner boundary of two simulations, one performed with DF excision and another performed without it. The simulation performed with
DF excision switched on has a negative value of cþ at the inner boundary throughout the simulation while the non-DF simulation fails in
maintaining that. Similar behavior can be obtained without the scalar field by placing a perturbation on the initial lapse. Bottom row,
right: the time evolution of the scalar field along with the position of the event horizon and the apparent horizon with area locking radius.
Although not shown in the plot, as expected in this setup with t ¼ T, the zeros of the expansion agree well whether we work in the upper
or lower case basis.

MAITRAYA K. BHATTACHARYYA et al. PHYS. REV. D 103, 064072 (2021)

064072-14



boundary which is expected to be outflow at the beginning
of the simulation. We also monitor the signs of the two
radial coordinate lightspeeds as given in Eq. (75) at the
inner boundary of the simulation at all times. We set the
scalar field data initially to be of the following profile:

Φ ¼ C
r
e−ðr−r0Þ2=σ2 ;

Π ¼ −
2C
rσ2

ðr − r0Þe−ðr−r0Þ2=σ2 : ð113Þ

The specific parameters which are chosen for the run are

C ¼ 0.1; r0 ¼ 11.9; σ ¼ 1: ð114Þ

Using these parameters, we then solve for the spatial
metric, extrinsic curvature, lapse and shift in the initial
data using the method prescribed in Sec. IV B.
A plot of the outgoing radial coordinate lightspeed Cþ,

as can be seen in the left panel on the bottom row in Fig. 5,
shows that it assumes a positive sign at the inner boundary
for some time during the simulation. This indicates that
the excision strategy has failed as the inner boundary
has not remained an outflow boundary during those times.
This experiment clearly demonstrates that for certain
configurations of the matter content, the existing excision
strategy is unsuccessful.
We now perform the same experiment, but this time we

switch on DF and the areal radius Jacobian as described in
Sec. III. As described before, the use of the areal radius
ensures that the position of the apparent horizon can only
monotonically increase with time, which ensures that if it is
initially located inside the numerical domain, it shall do so

at all times. Like before, the lightspeeds at the inner
boundary are monitored at all times. It can be clearly seen,
from the green line in the left panel on the bottom row in
Fig. 5, that the value of Cþ at the inner boundary remains
negative at all times during the simulation thereby indicat-
ing that the new excision strategy is successful. Although
not seen in the plot, the C− lightspeed, while its value
fluctuates, remains negative at all times for both the DF and
the non-DF case. This fact can be seen from Eq. (75) which
shows that if Cþ remains negative at all times, so must the
value of C−. We also perform simulations with different
quantities of scalar field content and find many other cases
where the new method proves to be successful where the
old one does not.
With the parameters which have been provided above,

we perform simulations at three different resolutions,
having 29, 37 and 45 points per patch and plot the reduction
constraints which are defined by (15) and can be computed
in the lower case coordinates from

Ciαβ ¼ ðφ−1Þki∂kgαβ þ ViΠαβ −Φiαβ; ð115Þ

as a function of space for a given value of time. We see
convergence with increase in resolution, as can be seen in
the top left plot of Fig. 5.
We also employ our event horizon and apparent horizon

finders to track the location of the horizons. A super-
position of the output of the two finders is provided at
the top right of Fig. 5. As expected the apparent horizon
grows monotonically with time from 2M to ≃2.35M. The
event horizon also shows a monotonic behavior in these
coordinates.

FIG. 6. Left: a demonstration of the fact that the position of the apparent horizon does not change when hit by a lapse perturbation. In
the figure, the outgoing radial coordinate lightspeed cþ is shown at two different times and it is seen that the zero crossing remains at 2M
throughout the simulation. The inset shows the lapse perturbation in the initial data. Right: a convergence plot of the XTT component of
the reduction constraints performed with five different resolutions of the same lapse perturbation simulation. The legend shows the
number of points per patch.
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Another experiment we perform involves evolving the
Schwarzschild spacetime with a lapse perturbation

α ¼ α0 þH0e−w0ðr−r0Þ2 ;

∂iα ¼ ∂iα
0 − 2H0w0ðr − r0Þe−w0ðr−r0Þ2 xi

r
; ð116Þ

where α0 is the natural lapse associated with the
Schwarzschild metric in Kerr-Schild coordinates. The spe-
cific parameters which are chosen for this experiment are

H0 ¼ 1; r0 ¼ 10; w0 ¼ 1: ð117Þ

The lapse perturbation is shown in the inset of Fig. 6.
We observe the zero crossing of the outgoing radial
coordinate lightspeed Cþ as this corresponds to the position
of the apparent horizon. At the beginning of the simulation,
this stays at 2M and continues to remain so throughout the
entire duration of the simulation. This is shown by the blue
and green lines in the left plot of Fig. 6 which correspond to
the lightspeed at the beginning and at the end of the
simulation. This is indeed the desired behavior since the
position of the apparent horizon should not change as there is
no physical perturbation.

D. Tests with the DF-excision Jacobian

Finally, we perform numerical experiments with the
dual foliation eikonal Jacobian. The numerical setup again
consists of a massless scalar field minimally coupled to
general relativity. Control of the Cþ radial coordinate
lightspeed is borrowed from the treatment in the previous
section. In this section, our goal is also to control the

ingoing radial coordinate lightspeed C− to be identically
−1 inside the transition region. This would prevent any
redshift or blueshift of the scalar field pulse as it falls into
the event horizon. We prepare initial data using our initial
data solver for scalar field of the type given by Eq. (113)
with the parameters given by

C ¼ 0.21; r0 ¼ 15; σ ¼ 1: ð118Þ

Our principal objective in this experiment is to grow the
apparent horizon as much as possible by letting the
accreting scalar field fall into the black hole horizon.
For this specific choice of parameters, we see that the
apparent horizon position grows from ≃2M to 4.03M
thereby registering ≃101% increase. This increase, which
is monotonic with time is demonstrated clearly in the left
plot of Fig. 7. Interestingly we find empirically that the
position of the lower and upper case apparent horizons
agrees well even in this case with t ≠ T. We also perform
convergence tests by considering simulations with 11, 21,
31 and 41 points per patch and with each simulation
containing ten patches. Plots of the reduction constraints,
harmonic constraints and the time derivatives of the
harmonic constraints all demonstrate convergence with
increasing resolution as is expected. As a demonstration,
the inset of the right-hand side of Fig. 7 shows the
convergence of the harmonic constraints.
Finally, we look at the outgoing radial coordinate light-

speed in both the upper case and the lower case coordinates,
as can be seen from the right plot of Fig. 7. The upper case
C− is seen to vary freely while our method ensures that the
lower case c− is strictly kept to be equal to −1 throughout

FIG. 7. Left: a demonstration showing the growth of the apparent horizon by ≃101% by accreting scalar field into the black hole. The
inset shows a convergence test with the time component of the harmonic constraint. The legend shows the number of points per patch.
Right: a plot of the incoming radial coordinate lightspeed C−=c− in both the upper case and the lower case coordinates with the lower
case result shown to be −1 inside the transition region. The inset zooms in on the transition region and shows that the upper case and
lower case speeds agree at the outermost subpatch.
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the entire simulation inside the transition region. As can be
seen from the inset of the same figure, the two lightspeeds
disagree in the transition patch but they do agree in the
outermost patch as expected.

VI. CONCLUSIONS

In this paper, we have presented the first implementation
of the DF-GHG formulation, together with the DF-scalar
field. The implementation was made within the BAMPS

code. We performed a battery of tests involving several
Jacobians, but with an emphasis on black hole excision.
Although the tests performed are in spherical symmetry as
proof of concept and also for reasons of efficiency, the
whole implementation itself was made in the full 3þ 1
setting. In addition to this, we introduced our event horizon
finding code EHloc.
To test the newly written DF-GHG project, we have

performed elementary tests with two analytic Jacobians, in
one of which we consider two different foliations for the
upper case and lower case coordinates. After this, we tested
the vanishing shift Jacobian, another important case in
which the lower case shift is kept zero at all times, which
we expect to be helpful while considering cases of
gravitational collapse and black hole formation.
Finally, we considered the two most important Jacobians

for our black hole excision work, the areal radius Jacobian
and the DF-excision Jacobian. In the areal locking case, we
saw that when the lower case coordinates are made to
include the areal radius, the apparent horizon is located at
the zero crossing of the outgoing radial coordinate light-
speed cþ. By basic results for dynamical horizons, these
coordinates also have the special property that the position
of the apparent horizon cannot decrease. Thus if the
apparent horizon is initially located on the numerical grid,
it stays so throughout the simulation. Assuming the weak
cosmic censorship conjecture, we then ensure that the event
horizon, being located outside the apparent horizon, also
remains on the numerical grid. In the case of the DF-
excision Jacobian, we carefully control the ingoing radial
coordinate lightspeed c− to be equal to −1 identically while
enforcing the previous condition for the outgoing speed.
Controlling c− to be a constant everywhere on the numeri-
cal grid, barring the transition region and outside, ensures
that the redshift or blueshift that potentially arises out of
using artificial coordinates is avoided. We performed a
series of tests on the Minkowski spacetime with lapse
perturbations or perturbed Schwarzschild spacetimes by
employing a combination of the DF, DF-GHG and DF-
scalar field projects. These tests were validated by perform-
ing several convergence tests, which demonstrate clean
spectral convergence.
The excision setup presented here is of course highly

specialized when compared with the full control system
approach used in the SPEC code. That said it provides
precisely the functionality needed for our near-term work,

and has the advantage that we use only pointwise, rather
than quasilocal manipulation of our variables in construct-
ing the Jacobians. Therefore, at the continuum level, basic
theorems can be trivially applied to our formulation. To
avoid coupling through derivatives between the Jacobian
and evolution equations, which would require a more
careful mathematical analysis, it was crucial that we could
replace first derivatives of the metric using the reduction
constraints. This works because the expansion contains at
most one derivative of the metric. Since this fact remains
true even in the absence of spherical symmetry we hope,
eventually, to generalize the DF-excision strategy to the full
3þ 1 setting. For now it is unclear whether or not this will
pan out, since there is a qualitative difference between 1d
and 3d excision that cannot be overlooked. But if success-
ful the generalization would provide an improved moving
excision strategy for binary black holes within a pseudo-
spectral code.
In order to perform our numerical tests, appropriate

boundary conditions at the outer boundary must be pro-
vided. At present, we do not yet have outer boundary
conditions in the code for the DF projects. To overcome this
problem at the outer boundary, we ensure that the Jacobian
transitions into the identity Jacobian at the outermost
subpatch. This is achieved by using a low order polynomial
transition function, which works remarkably well in prac-
tice when the transition is placed at the two ends of the
penultimate subpatch, and we expect that various alter-
native configurations would behave similarly. A desirable
alternative would be to implement outer boundary con-
ditions in the code that take care of the full DF infra-
structure, including the management of two time
coordinates. Work on this will be reported on in the near
future. An immediate goal is to use the methods developed
here to study systematically, in the spherical context, the
transition from the linear regime we studied in [31] to the
case with arbitrary nonlinear perturbations.
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APPENDIX: DESCRIPTION OF GRID AND
INTERPOLATION SETUP FOR EHloc

In this Appendix we describe the data setup for our event
horizon finder EHloc. The data is written on every patch at
the Gauss-Lobatto points,

xα ¼ − cos

�
πβ

N − 1

�
; ðA1Þ

where N is the number of points on each grid and
β ¼ 0;…; N − 1. Chebyshev polynomials are used to
perform the spectral interpolation

TnðxÞ ¼ cosðn cos−1 xÞ: ðA2Þ

These polynomials are defined in the interval ½a; b� by a
change of variable:

y≡ x − 1
2
ðbþ aÞ

1
2
ðb − aÞ : ðA3Þ

The coefficients of interpolation a0;…; an−1 are found out
by solving

0
BB@

T0ðx0Þ … TN−1ðx0Þ
..
. . .

.

T0ðxn−1Þ TN−1ðxN−1Þ

1
CCA

0
BB@

a0

..

.

aN−1

1
CCA ¼

0
BB@

u0

..

.

uN−1

1
CCA;

ðA4Þ

where u0;…; uN−1 are the given values at the N points.
The spatial derivatives are computed by a matrix multipli-
cation [13]:

ð∂xuÞα ¼
XN−1

k¼0

Dαkuk; ðA5Þ

where Dαβ is the Gauss-Lobatto derivative matrix given by

Dαβ ¼

8>>>>>><
>>>>>>:

−2ðN−1Þ2þ1

6
; α ¼ β ¼ 0;

qαð−1Þαþβ

qβðxα−xβÞ ; α ≠ β;

− xβ
2ð1−x2βÞ

; α ¼ β ¼ 1;…; N − 1;

2ðN−1Þ2þ1

6
; α ¼ β ¼ N − 1;

ðA6Þ

where qα ¼ 2 at the boundary points and qα ¼ 1 elsewhere.
In practice, we do not compute the diagonal terms of the

derivative matrix but use the identity which gives the
derivative matrix better stability against rounding errors:

Dαα ¼ −
XN−1

k¼0;k≠α
Dαk: ðA7Þ

The time interpolation on the data is performed using a
linear interpolation algorithm and a judicious choice of
the number of points needs to be taken into account. The
number of data steps loaded into memory also affects
performance. However, both of these problems are hard-
ware specific and hence we do not go into detail here.
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