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The interest in the implications that astrophysical observations have for the understanding of the
structure of black holes has grown since the first detection of gravitational waves. Many arguments that are
put forward in order to constrain alternative black hole models rely on substantial assumptions such as
perfect spherical symmetry, which implies absence of rotation. However, given that astrophysical black
holes will generally exhibit nonzero angular momentum, realistic constraints must take into account the
effects of rotation. In this work we analyze the gravitational effect that rotation has on the emission from the
surface of ultracompact objects, by studying how angular momentum affects the propagation of light rays.
This allows us to evaluate the reliability of the constraints derived for supermassive black holes (more
specifically, Sagittarius A* and M87*) assuming lack of rotation [as presented in A. E. Broderick, A. Loeb,
and R. Narayan, Astrophys. J. 701, 1357 (2009); A. E. Broderick et al. Astrophys. J. 805, 179 (2015)].
We find that for rapidly spinning objects rotation can significantly affect the escaping probability of a
photon emitted from the surface of the object, with a significant increase at the equatorial regions and a
decrease at the poles with respect to the nonrotating case. For not so rapidly spinning black hole candidates
like Sagittarius A*, such modifications do not affect significantly the present constraints, which are
nevertheless weaker than originally supposed due to the relativistic lensing here considered and additional
phenomenological parameters that describe basic processes such as absorption. However, taking into
account the angular dependence of the superficial emission of rapidly spinning black hole mimickers will
be necessary for future studies of objects like e.g., M87*.
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I. INTRODUCTION

Our knowledge about astrophysical black holes1 is
expanding at a rapid pace. Just a few years ago, astro-
nomical observations could only characterize the environ-
ment of supermassive black holes, at distances that were
still far away from the expected location of their bounda-
ries, where general relativity predicts the existence of
trapping horizons.2 The resulting constraints that could
be placed on deviations from general relativity were
therefore quite coarse; see [4] for a recent discussion. As
a consequence, theoretical studies of alternatives to black

holes aimed at addressing known issues in the framework
of general relativity (in [5–7], for instance) were widely
seen as purely mathematical studies far from testable
outcomes; this did not hinder the steady growth of the
number of models available in the literature (see [8] for a
recent review). There were nevertheless some exceptions to
this perspective [9], some of them being [10–15] the subject
of this paper.
The advent of gravitational-wave astronomy [16] has

led to a shift in perspective, as black hole candidates
in different ranges of masses can be now explored.
Improvements in sensitivity will allow one to understand
the spacetime structure closer and closer (although not
arbitrarily close) to their horizons [17]. The Event Horizon
Telescope [18] has also provided quantitative and qualita-
tive improvements with respect to previous observations
using electromagnetic waves. These advances allow
broader tests of alternatives to black holes [4,8], although
these tests are limited by the lack of knowledge of certain
key properties (including their dynamical formation mecha-
nism), as well as the complexities associated with modeling

1Note that throughout the paper we use the adjective astro-
physical to distinguish between astronomical sources and the
mathematical notion of a black hole as a solution to the Einstein
field equations.

2While this issue is almost always neglected in the literature, it
is important to keep in mind that the notion of event horizon is not
observable by its own definition [1]. Hence, when talking about
observations one must resort to quasilocal definitions of horizons
(see e.g., [2,3] for reviews).
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realistic situations that include all the ingredients necessary
to represent realistic astrophysical situations.
Our paper presents a contribution towards a more

accurate modeling of alternative models, often known as
black hole mimickers, in which astrophysical black holes
are modeled as ultracompact objects with a physical sur-
face. The compactness of these objects is one of the
relevant parameters that controls the observational features
associated with the existence of a physical surface [4].
Physical intuition indicates that black hole mimickers that
are sufficiently compact must have observational features
that are arbitrarily close to that of proper black holes, which
in particular implies that so far observations cannot dis-
tinguish between these possibilities [8].
In this paper we revisit a well-known argument [10–15]

that is often invoked when discussing the viability of such
alternatives. This argument asserts that equilibrium con-
ditions that are thought to be attained between the super-
massive black holes at the center of galaxies such as ours
and their accretion disks imply that the presence of a
physical surface must be accompanied by a faint emission
that is nevertheless incompatible with observations of Sgr
A* and M87*.3 However, the calculations in [10–15]
assumed lack of rotation, which makes not possible to
apply directly these arguments to physical systems in which
non-negligible angular momentum is present (including in
particular Sgr A* and M87*). The main goal of this paper is
updating these calculations in order to include angular
momentum and evaluating whether the resulting constraints
are substantially modified. In general, taking into account
rotation when discussing alternatives to black holes
involves a number of technical complications, some of
them being associated with the lack of knowledge of the
surrounding vacuum spacetime (while in spherical sym-
metry Birkhoff’s theorem determines completely the geom-
etry in the external vacuum region, the results cannot be
extended in the presence of rotation). These complications,
and their possible impact on the argument described in
[10–15], are briefly discussed in Sec. II, where we also
explain the assumptions that are necessary for our sub-
sequent analysis, which is presented in Sec. III. In Sec. IV
we applied our analysis to the particular case of Sagittarius
A*. Our conclusions are discussed in Sec. V.

II. BACKGROUND AND ASSUMPTIONS

The original argument in [10–15] formulated for spheri-
cally symmetric situations, as well as possible extensions,
has been recently reviewed in [4,8]. Hence, here we will

only summarize the main points that are relevant for our
discussion below.
The gist of the argument is that any horizonless alter-

native to a black hole will emit in response to an accretion a
certain amount of light, which depends on the emission and
reflection coefficients on its surface, on the amount and
spectral properties of the incoming light, and on the effect
that the gravitational field has on propagating light rays
(which, in turn, depends on the position of the surface). If
the emitted amount of light can be calculated reliably, then
it could be compared with observations in order to con-
strain the reflection coefficient or the position of the
surface. As shown in [10–15], the total amount of emitted
light can be calculated in spherical symmetry under the
following assumptions:
(1) Accretion disk in steady state: in the presence of an

accretion disk, it is reasonable to expect that the
compound system of the disk and the black hole
alternative will reach a steady state if the latter is also
emitting radiation as long as the interaction time is
long enough.

(2) Thermality of the surface: the spectral properties of
black hole alternatives would be model dependent.
However, if their exterior surface is assumed to be in
thermal equilibrium, then the number of parameters
that determine the spectrum of the emitted light is
reduced down to a single parameter describing the
total power radiated.

In spherical symmetry, one can see explicitly that there is a
trade-off between the two assumptions above, depending
on the value of the radius of the black hole alternative (or,
which is equivalent, its compactness). As discussed origi-
nally in [10–15], gravitational lensing increases the number
of interactions between different points on the surface,
through light that is emitted at a given point but does not
escape, being lensed back to a different point; the more
compact the object is, the stronger this lensing effect
becomes. Hence, it is reasonable to assume that the surface
of compact enough objects will display a thermal behavior.
On the other hand, these authors failed to notice that lensing
also has a side effect that goes against the steady state
assumption: as gravitational lensing becomes stronger, a
smaller fraction of light rays can escape from the surface. In
other words, the compactness of the black hole alternative
determines the strength of the interaction between the disk
and the object so that, if the latter is compact enough, this
interaction could be so weak that the timescale to reach the
steady state would be huge. Taking this second conse-
quence of lensing into account is indispensable in order to
extract meaningful constraints on the parameters describing
the black hole alternative [4,8].
When considering rotation the situation is more subtle.

For instance, it is not straightforward to determine the
interplay among the two assumptions above, the well-
known phenomenon of superradiance (see e.g., [22]), and

3Let us stress however that the original conclusions in these
papers have been shown to be somewhat premature, as these
studies were not taking into account the effect of gravitational
lensing [4,8,19–21], which leads to weaker constraints e.g., on
the viable compactness of the observed black hole candidates.
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the associated instabilities of ultracompact objects with an
ergoregion [23,24] (note that the existence of horizonless
rotating black hole mimickers is not ruled out by this
instability [25–27]). Moreover, the spacetime around hori-
zonless alternatives to black holes will generally differ from
the Kerr solution, although it has been shown that similar
results to the well-known no-hair theorems should hold for
compact enough objects [28,29].
A definitive answer to these issues will probably be

obtained only through numerical simulations describing the
interaction between ultracompact objects and radiation.
Given that there are several important obstacles in the path
towards these simulations, for instance the lack of known
dynamical theories leading to the formation of these
ultracompact alternatives, here we take a different approach
and analyze the kinematical effects of rotation as a first step
toward understanding the role that angular momentum may
have for the constraints proposed in [10–15]; from this
perspective, our work is a followup (and a generalization)
of [30].
In practice, this means that we will assume that the Kerr

solutions provides a reasonable approximation for the
purpose of extracting the leading-order effects of rotation
on the trajectories of light (which is supported by the results
of [28,29]), while we will implicitly assume that the steady
state and thermality assumptions described above still hold
(as we will see, in the presence of rotation one would expect
that the temperature on the surface has an angular depend-
ence, although thermalization can be assumed in the case of
slow rotation). Further scrutiny on the validity of these
assumptions is deferred to future works, but we will still be
able to understand whether the kinematical effects asso-
ciated with angular momentum are enough to change the
main constraints that can be obtained following the argu-
ments in [4,8,10–15,19–21].

III. OUR ANALYSIS

A. Basic elements of the Kerr metric

While we are missing the analog of Birkhoff’s theorem
for axisymmetric solutions, as discussed above and sug-
gested by recent results regarding generalized no-hair
theorems [28,29] it is reasonable to approximate the
spacetime outside an ultracompact object very close to
form a horizon as the one of a rotating GR black hole.4 In
the following we will work with the Kerr metric [32,33], in
Boyer-Lindquist coordinates. The explicit form of the line
element is given by

ds2 ¼ −
ΣΔ
A

dt2 þ Σ
Δ
dr2 þ Σdθ2

þ A
Σ
sin2θ

�
dφ −

aðr2 þ a2 − ΔÞ
A

dt

�
2

; ð1Þ

where φ is the azimuthal angle, t is the coordinate over
which the metric is stationary, r and θ have the same
meaning that in spherical symmetry, and, as usual, we have
defined the functions

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 − 2Mrþ a2;

A ¼ ðr2 þ a2Þ2 − a2Δsin2θ: ð2Þ

As it is well known, this metric depends on two parameters,
mass M and spin a. The spin parameter a is related to the
angular momentum J with respect to the rotation axis by
a ¼ J=M. Without loss of generality, we assume that
a ≥ 0. Note that we use units in which c ¼ 1 and G ¼ 1.
For M > a the function Δ has two zeroes

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð3Þ

which are coordinate singularities that correspond to the
external and internal horizon, respectively. In addition to
the horizons, the Kerr metric has also outer and inner
ergospheres, determined by the condition that on them the
norm of the Killing vector ξ ¼ ∂t vanishes (in the follow-
ing, we will denote by ψ the Killing vector ∂φ). We will use
the term ergosphere referring to the outer ergosphere rþE :

r�E ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2 θ

p
; ð4Þ

that is tangent to the outer horizon rþ at θ ¼ 0; π but it lies
outside the horizon for other values of θ. Thus, the
ergoregion is defined by rþ < r < rþE and it corresponds
to the region where ξ can become spacelike.
As said, our motivation to analyze the Kerr spacetime is

that it should provide a reasonable approximation for the
external spacetime surrounding a rotating ultracompact
object [28,29], without a trapping horizon. In fact, we will
assume that spacetime is not vacuum inside a region
defined by r ≤ r⋆, where r⋆ ¼ rþð1þ μÞ. The surface of
the ultracompact object can be arbitrarily close to rþ as
μ → 0. This is the natural generalization of analyses
assuming spherical symmetry [4,8,10–15,19–21].
The surface at r ¼ r⋆ will generally have an ellipsoidal

shape. Let us now consider the set of two-dimensional
surfaces formed by fixing the t and r coordinate, with the
last taking the specified fixed value r ¼ r⋆, and letting the
other two angular coordinates (θ,φ) run over their respec-
tive ranges. On these two-dimensional surfaces the induced
metric results to be

4It is nevertheless interesting to point out that considering non-
Kerr metrics (see e.g., the discussion and references in [31])
would generally lead to modifications of the emission proba-
bilities calculated below which, depending of their size, might
allow one to formulate new tests of no-hair theorems.

ELECTROMAGNETIC TESTS OF HORIZONLESS ROTATING … PHYS. REV. D 103, 064071 (2021)

064071-3



ds22−surface ¼ Σdθ2 þ A
Σ
sin2θdφ2: ð5Þ

We need to calculate the determinant of this 2-metric,
which is given by

g̃ ¼ detðgijÞ2−surface ¼ A sin2 θ

¼ ½ðr2 þ a2Þ2 − a2Δ sin2 θ� sin2 θ: ð6Þ

From the square root of Eq. (6) we can obtain the surface
element of the ellipsoid at r ¼ r⋆:

dS ¼
ffiffiffĩ
g

p
dθdφ ¼

ffiffiffiffi
A

p
sin θdθdφ ð7Þ

and also their total surface:

S ¼
Z ffiffiffiffi

A
p

sin θdθdφ ð8Þ

which will be useful for the discussion in the following
sections.

B. Geodesic equations and escape
of a photon to infinity

In order to analyze the role of the aforementioned lensing
effects, let us review the equations for null geodesics in the
Kerr spacetime. Let kμ be the 4-momentum of a photon;
using the Hamilton-Jacobi method as discussed in [34] it is
possible to derive its components as

kt ¼ 1

Σ

�
aðL − aEsin2θÞ þ a2 þ r2

Δ
½ðr2 þ a2ÞE − aL�

�
;

kr ¼ σr
Σ

ffiffiffiffi
R

p
;

kθ ¼ σθ
Σ

ffiffiffiffi
Θ

p
;

kφ ¼ 1

Σ

�
L

sin2θ
− aEþ a

Δ
½ðr2 þ a2ÞE − aL�

�
; ð9Þ

where σr, σθ ¼ � and

R ¼ ½ðr2 þ a2ÞE − aL�2 − Δ½ðL − aEÞ2 þQ�; ð10Þ

Θ ¼ Q − cos2θ

�
L2

sin2θ
− a2E2

�
: ð11Þ

Here E ¼ −ξμkμ, L ¼ ψμkμ, and Q are respectively the
conserved energy, angular momentum, and Carter constant
along the geodesic. R and Θ have been chosen so as to
separate the radial equation from the angular one. Indeed, R
represents the function governing the motion in the r
direction and Θ represents the function governing the
motion of the θ coordinate and it is related to the angular
polar component of the photon momentum.

Let us now introduce the locally nonrotating frame
(LNRF) that is a tetrad basis associated with observers
who corotate with the background spacetime. The basis
one-forms are given by

e0 ¼
ffiffiffiffiffiffiffi
ΣΔ
A

r
dt;

e1 ¼
ffiffiffiffi
Σ
Δ

r
dr;

e2 ¼
ffiffiffi
Σ

p
dθ;

e3 ¼
ffiffiffiffi
A
Σ

r
sin θdφ −

aðr2 þ a2 − ΔÞ sin θffiffiffiffiffiffiffi
ΣA

p dt; ð12Þ

and satisfy gμν ¼ ηabeaμebν, where ηab ¼ diagð−1; 1; 1; 1Þ,
and the a, b indices run from 0 to 3. Using Eq. (9), the
tetrad components of the 4-momentum, ka ¼ eaμkμ, are then
given by

k0 ¼
ffiffiffiffiffiffiffi
Δ
ΣA

r �
aðL− aEsin2θÞ þ r2 þ a2

Δ
½ðr2 þ a2ÞE− aL�

�
;

k1 ¼ σr

ffiffiffiffiffiffiffi
R
ΣΔ

r
;

k2 ¼ σθ

ffiffiffiffi
Θ
Σ

r
;

k3 ¼ L
sinθ

ffiffiffiffi
Σ
A

r
: ð13Þ

We can now follow the analysis in [30] in order to
determine which light rays emitted at r ¼ r⋆ escape at
infinity, and which ones are lensed back to the surface due
to the strong gravitational fields.
We consider the emission of a photon near the surface

r ¼ r⋆ to infinity. We adopt units in which M ¼ 1 and
assume that a ≠ 0 in what follows.5

We study constant radius orbits as they can provide
useful information to understand which photons can escape
to infinity. Let us stress out that a constant-r motion does
not necessarily imply a constant-θ motion [since Eq. (10) is
independent of the angular parameter and vice versa
Eq. (11) is independent of the radial parameter], so motion
at constant radius can take place on a spatially bidimen-
sional hypersurface in θ and φ. Spherical orbits are orbits at
constant radii living in these bidimensional hypersurfaces
and that therefore are not necessarily confined to the
equatorial plane. Such orbits represent a nontrivial gener-
alization of the two circular orbits that instead lie in the
equatorial plane [35].

5The case a ¼ 0 is considered as the limit case to be recovered
for null rotation.
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We investigate the radial turning points to get an intuition
of the region where photons with given energy and angular
momentum are trapped, and cannot escape to infinity.
In turn, this also allows us to understand which photons
can be seen by a distant observer.
Let us introduce the dimensionless parameters

b ¼ L
E
; q ¼ Q

E2
ð14Þ

and

R̂ ¼ R
E2

¼ ½ðr2 þ a2Þ − ab�2 − Δ½ðb − aÞ2 þ q�;

Θ̂ ¼ Θ
E2

¼ q − cos2θ

�
b2

sin2θ
− a2

�
; ð15Þ

for E > 0 and, since we are looking for spherical orbits
with constant radius r, we can impose the condition
R̂ðrÞ ¼ 0. Solving this for b, we obtain

b ¼ b1;2ðrÞ ¼
−2ar�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ½r4 − qðΔ − a2Þ�

p
Δ − a2

: ð16Þ

We focus on extremum points of b1;2. The positions are
determined by the equations

b0iðrÞ ¼ 0; i ¼ 1; 2: ð17Þ

Solving these for q, we obtain two classes of solutions
parametrized in terms of r:

Class ðiÞ
(
b ¼ r2þa2

a

q ¼ − r4

a2

; ð18Þ

Class ðiiÞ
(
b ¼ − r3−3r2þa2rþa2

aðr−1Þ

q ¼ − r3ðr3−6r2þ9r−4a2Þ
a2ðr−1Þ2

: ð19Þ

Let us anticipate that indeed only one of these classes will
be physically relevant given that, as we shall see below,
Class (i) does not admit real values of q for which Θ̂ is non
negative as required by Eq. (13).
If we set u ¼ cos θ, then Eq. (16) can be rewritten as

�
Σ
E

�
2

_u2 ¼ Θ̃ðuÞ ¼ q − ðqþ b2 − a2Þu2 − a2u4: ð20Þ

This condition gives us the physically allowed ranges for
u that can be easily found imposing Θ̃ðuÞ ¼ 0 and solving
the resulting quadratic equation in u2. Three cases should
be distinguished according to the sign of q.
When q > 0, a situation that can only be realized in

Class (ii), there is only one positive root and it is given by

u20 ¼
ða2 − q − b2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − q − b2Þ2 þ 4a2q

p
2a2

: ð21Þ

The physically allowed range for u in this case is between
�ju0j, meaning that such orbits cross the equatorial plane
repeatedly at points that are referred to as nodes of the orbit.
This behavior corresponds to a radius lying in the range
r1;min ≤ r ≤ r2;min, where r1;min and r2;min are the two radii
at which q ¼ qmin and qmin is the value for which Eq. (16)
vanishes.
When q < 0, the right-hand side of Eq. (16) is non-

negative only if

a2 − q − b2 > 0 ð22Þ
holds.
It turns out that Class (i) can immediately be ruled out in

this case, since by Eq. (19), a2 − q − b2 ¼ −2r2 < 0. For
Class (ii) q can be negative but note that, in general, one can
show that

a2 − q − b2 ¼ −
2rðr3 − 3rþ 2a2Þ

ðr − 1Þ2 < 0 ð23Þ

for any r ≥ rþ ≥ 1. This can be done by proving that
r3 − 3rþ 2a2 ≥ 0. Let us then consider r ¼ rþ þ δ with
δ ≥ 0, we can write

r3− 3rþ 2a2 ¼ ðrþ þ δÞ3− 3ðrþ þ δÞþ 2a2

¼ r3þ þ 3r2þδþ 3rþδ2þ δ3 −3rþ− 3δþ 2a2

¼ r3þ þ 3δðr2þ −1Þþ 3rþδ2þ δ3− 3rþ þ 2a2

≥ r3þ− 3rþ þ 2a2

¼ ð1−a2Þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

p �
≥ 0: ð24Þ

So the case q < 0 is irrelevant for us, in the sense that there
are no spherical orbits with q < 0 (in other words, there are
no turning points for these trajectories). This does not imply
that there are no escaping trajectories with q < 0, which are
naturally included in our discussion below.
When q ¼ 0, the two roots are u20 ¼ 0 and 1 − b2=a2.

These cases describe equatorial orbits: for b2 ≥ a2, there is
only one relevant root (u20 ¼ 0), but for b2 < a2 they are
both relevant.
Given the above analysis we shall now focus on the

properties of Class (ii). Let us then start from Eq. (20)
expressing q as a function of r

q ¼ fðrÞ ¼ −
r3ðr3 − 6r2 þ 9r − 4a2Þ

a2ðr − 1Þ2 : ð25Þ

As said, for positive q, one gets that q is bounded from
below with qmin determined by the vanishing of the
quantity in Eq. (16). So that

ELECTROMAGNETIC TESTS OF HORIZONLESS ROTATING … PHYS. REV. D 103, 064071 (2021)

064071-5



q ≥ qmin ¼ cos2θ

�
b2

sin2θ
− a2

�
: ð26Þ

Moregenerally,q satisfy the inequalitiesminðq1;min; q2;minÞ ≤
qmax,whereq1;min andq2;min (and the corresponding r1;min and
r2;min) are given by fðrÞ ¼ qmin. From Eq. (10), instead, we
obtain a condition on the maximum of q, that always

corresponds to a fixed value, qmax ¼ 27 for r ¼ rmax ¼ 3,
as we can see in Figs. 1–2.
At the would-be horizon, f takes the value

fðrþÞ ¼
	
4 − 1=a2 ¼ 3 ða ¼ 1Þ
−r4þ=a2 ð0 < a < 1Þ ð27Þ

which is always positive only for a ¼ 1.

FIG. 1. For a ¼ 1 typical numerical plots of fðrÞ (blue solid and dashed lines), bðrÞ (orange lines), and qmin (green lines) are shown.
The blue solid lines show fðrÞ in the range r > rþ and fðrþÞ < q < qmax for the case of θ ¼ π=2 (left) and in the range r > r1;min and
q1;min < q < qmax for a case away from the equatorial plane (θ ¼ π=4) (right).

FIG. 2. For 0 < a < 1 typical numerical plots of fðrÞ (blue solid and dashed lines), bðrÞ (orange lines), and qmin (green lines) are
shown. The blue solid lines show fðrÞ in the range r > rc;1 and fðrc;1Þ < q < qmax for the case of θ ¼ π=2 (left) and in the range
r > r1;min and q1;min < q < qmax for a case away from equatorial plane (θ ¼ π=4) (right).
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Two cases can be defined according to the value of fðrþÞ
and they correspond to a ¼ 1 and 0 < a < 1. In principle
we could also consider the case a > 1, as in a black hole
mimicker we expect the interior region to deviate from the
Kerr solution, and we could thus avoid the pathologies of
the Kerr metric. However, the existence of the Thorne limit
[36], suggests that it may not be easy to spin-up objects
beyond the a ¼ 1, and, therefore, we choose to restrict our
attention to a ≤ 1 in this work. Moreover, the case a ¼ 0 is
the Schwarzschild limit, which in this discussion is
considered only as the limiting case to be recovered in
the limit of null (very slow) rotation.
The classification introduced above enables us to inves-

tigate the roots of Eq. (26) outside the horizon, i.e., the radii
of spherical photon orbits.
We shall describe the possible cases as follows:
(1) Case a ¼ 1: It has some peculiarities because for this

case the position of r1;min changes with respect to the
position of the horizon and so it is convenient to
divide it into three different cases depending on the
values of θ with respect to θþ where θþ ≃ 47 has
been obtained imposing the necessary condition that
Θ̂ ≥ 0 in rþ.
(i) θ > θþ: Equation (26) in the range fðrþÞ <

q ≤ qmax has two roots riðqÞ (r1 ≤ r2) outside
the horizon. On the other hand, the equation
in the range 0 ≤ q ≤ fðrþÞ only has the largest
root r2ðqÞ outside the horizon, while the
root r1ðqÞ lies inside the horizon because
q1;min < fðrþÞ;

(ii) θ ¼ θþ: it corresponds to q1;min ¼ fðrþÞ.
Eq. (26) in this case has one of the two roots,
r1ðqÞ with r1 < r2, exactly on the horizon;

(iii) θ < θþ: it corresponds to the condition
q1;min > fðrþÞ. Equation (26) in the range
q1;min<q≤qmax has two roots riðqÞ (r1 ≤ r2)
outside the horizon.

(2) Case 0 < a < 1: Equation (26) in the range q1;min ≤
q ≤ qmax has the two roots riðqÞ (r1 ≤ r2) outside
the horizon. Notice that ri (i ¼ 1, 2) coincide with
rmax in the case q ¼ qmax. In particular, if q ¼ 0
(θ ¼ 90), the radii ri reduce to those of circular
photon orbits

rc;i ¼ riðq ¼ 0Þ: ð28Þ
The extremal values of bi become

bsi ¼ biðriÞjq¼fðriÞ ¼ −
r3 − 3r2 þ a2rþ a2

aðr − 1Þ ð29Þ

which are values of the impact parameter of photons on
spherical photon orbits. We need to determine the range of
b in which a photon can escape from r ¼ r⋆ to infinity. In
order to do this, we define three cases according to the
relative position of r1 with respect to rþ and r⋆:

Case ðaÞ∶ r1 < rþ < r⋆;
Case ðbÞ∶ rþ ≤ r1 < r⋆;
Case ðcÞ∶ rþ < r⋆ ≤ r1; ð30Þ

where r⋆ is defined in the range rþ < r⋆ ≤ rmax.
For Case (a), that appears only for a ¼ 1, as r increases

from rþ to ∞, b1 begins with b1ðrþÞ, given by

b1ðrþÞ ¼
(
2 ða ¼ 1Þ
2ð1þ

ffiffiffiffiffiffiffiffi
1−a2

p
Þ

a ð0 < a < 1Þ
ð31Þ

and monotonically increases to∞. For Cases (b) and (c), as
r increases from rþ to ∞, b1 starts from b1ðrþÞ, decreases
to a local minimum bs1 at r ¼ r1, and then increases to ∞.
We have not discussed explicitly trajectories with q < 0,

as these trajectories have no associated spherical orbits such
as the ones occurring for q > 0. This does not mean that we
are not taking into account trajectories with q < 0 that can
escape. Given that qmin (let us recall that the latter is defined
by the condition Θ̂ ¼ 0) can become negative for certain
values of b, our analysis includes automatically these
escaping trajectories. This can also be seen graphically,
for instance from the fact that the right panel in Fig. 1
includes a region in which qmin is negative. However, we
will see this even more explicitly in the calculation of
escape probabilities below.

C. Escape cone and critical angles

The photon emission angles (α, β) of a light ray with
respect to the LNRF are defined as follows [30] (see Fig. 3):

kajr¼r⋆ ∝ ð1; cos α sin β;− cos β; sin α sin βÞ; ð32Þ

where α ∈ ½−π; π� and β ∈ ½0; π�. Equivalently,

FIG. 3. Emission angles (α, β) in LNRF. The origin coincides
with the emission point (r⋆; θ).
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sin α ¼ k3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk3Þ2

p 




r¼r⋆

¼ bΣ
ffiffiffiffi
Δ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR̂sin2θ þ b2Σ2Δ

p 




r¼r⋆

;

cos α ¼ k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk3Þ2

p 




r¼r⋆

¼ σr
ffiffiffiffiffiffiffi
AR̂

p
sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AR̂sin2θ þ b2Σ2Δ
p 





r¼r⋆
;

sin β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk3Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2

p 




r¼r⋆

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R̂Asin2θ þ b2Σ2Δ
ðR̂þ ΔΘ̂ÞAsin2θ þ b2Σ2Δ

s 




r¼r⋆

;

cos β ¼ −k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2

p 




r¼r⋆

¼ −
σθ

ffiffiffiffiffiffiffiffiffiffi
Θ̂AΔ

p
sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR̂þ ΔΘ̂ÞAsin2θ þ b2Σ2Δ
q 





r¼r⋆
: ð33Þ

Thus α is the angle between e1 and k projected onto the
emission plane, which is positive in the direction e3, and β
is the angle between −e2 and k, where k is the projection of
kμ normal to e0.
We can define an escape cone S, in terms of α and β, as

the solid angle of emission that allows photons to escape to
infinity. Assuming that photons are emitted isotropically,
we can define the escape probability Pðr⋆Þ by

Pðr⋆Þ ¼
1

4π

Z
S
dαdβ sin β: ð34Þ

This is the same definition provided in [30], including the
normalization factor of 1=4π, which from a physical
perspective is a consequence of considering photons
emitted in all directions. As a consequence, our numerical
results below are, whenever comparable (namely in the
a → 1 limit and θ ¼ π=2 case), equivalent to the results in
[30] (see Tables III, IV and V in Appendix A). It is worth
mentioning that this implies that in the limit a → 0 there is
a mismatch with the analytical results valid for spherical
symmetry obtained in [4], as in the latter only the photons
emitted outwards where considered. Hence, our numerical
results will differ in a multiplicative factor of 1=2 with
respect to these analytical results.
Given that we are interested in evaluating P, we need to

determine the critical angles, marking the boundaries of the
escape cone S. There is a one-to-one correspondence
between the critical angles and the parameter set
ðσr; b; qÞ for photons that cannot marginally escape to
infinity. Such parameters sets are summarized in the last
column of Table I and they represent the boundary of the
ranges for photons that can escape to infinity. Therefore,
they are defined as the marginal pairs (see [30]).
Finally we obtain the critical angles (αi, βi) (i ¼ 1, 2)

relevant to marginal parameter values associated with bi
and their total set ∂S (i.e., the boundary of S) as follows:

∂S ¼ ⋃
i¼1;2

fðαi; βiÞjminfq1;min; q2;ming ≤ q ≤ qmaxg ð35Þ

where if q1;min < fðrþÞ for a ¼ 1 we get

ðα1; β1Þ ¼

8>><
>>:

ðα1ðaÞ; β1ðaÞÞ ¼ ðα; βÞjσr¼−;b¼b1ðrþÞ for q1;min ≤ q ≤ fðrþÞ ½Case ðaÞ�
ðα1ðbÞ; β1ðbÞÞ ¼ ðα; βÞjσr¼−;b¼bs

1
for fðrþÞ ≤ q ≤ fðr⋆Þ ½Case ðbÞ�

ðα1ðcÞ; β1ðcÞÞ ¼ ðα; βÞjσr¼þ;b¼bs
1

for fðr⋆Þ ≤ q ≤ qmax ½Case ðcÞ�
ð36Þ

if q1;min > fðrþÞ always for a ¼ 1

ðα1; β1Þ ¼
	 ðα1ðbÞ; β1ðbÞÞ ¼ ðα; βÞjσr¼−;b¼bs

1
for q1;min ≤ q ≤ fðr⋆Þ ½Case ðbÞ�

ðα1ðcÞ; β1ðcÞÞ ¼ ðα; βÞjσr¼þ;b¼bs
1

for fðr⋆Þ ≤ q ≤ qmax ½Case ðcÞ�
ð37Þ

for 0 < a < 1

TABLE I. Range of b in which a photon can escape from r ¼ r⋆ to infinity. The last column shows two pairs (σr; b) of the marginal
parameter values with which a photon cannot escape to infinity for each cases.

Cases for a ¼ 1 q σr ¼ þ σr ¼ − Marginal pairs of (σr; b)

(a): r1 < rþ < r⋆ q1;min ≤ q < fðrþÞ bs2 < b ≤ b1ðr⋆Þ b1ðrþÞ < b < b1ðr⋆Þ (þ; bs2) and (−; b1ðrþÞ)
(b): rþ < r1 < r⋆ fðrþÞ < q < fðr⋆Þ bs2 < b ≤ b1ðr⋆Þ bs1 < b < b1ðr⋆Þ (þ; bs2) and (−; bs1)
(c): rþ < r⋆ < r1 fðr⋆Þ < q < qmax bs2 < b ≤ bs1 n/a (þ; bs2) and (þ; bs1)

Cases for 0 < a < 1 q σr ¼ þ σr ¼ − marginal pairs of (σr; b)
(b): rþ < r1 < r⋆ q1;min < q < fðr⋆Þ bs2 < b ≤ b1ðr⋆Þ bs1 < b < b1ðr⋆Þ (þ; bs2) and (−; bs1)
(c): rþ < r⋆ < r1 fðr⋆Þ < q < qmax bs2 < b ≤ bs1 n/a (þ; bs2) and (þ; bs1)
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ðα1; β1Þ ¼
	 ðα1ðbÞ; β1ðbÞÞ ¼ ðα; βÞjσr¼−;b¼bs

1
for q1;min ≤ q ≤ fðr⋆Þ ½CaseðbÞ�

ðα1ðcÞ; β1ðcÞÞ ¼ ðα; βÞjσr¼þ;b¼bs
1

for fðr⋆Þ ≤ q ≤ qmax ½CaseðcÞ�
ð38Þ

and finally for 0 < a < 1 and a ¼ 1

ðα2; β2Þ ¼ ðα; βÞjσr¼þ;b¼bs
2

for q2;min ≤ q ≤ qmax ½CasesðaÞ–ðcÞ�: ð39Þ

Note that once we fix the value of r⋆, then the critical
angles (αi,βi) depend only on q, i.e., αi ¼ αiðqÞ and
βi ¼ βiðqÞ. In particular they depend only on the values
of ri for which fðrÞ ¼ q.
It is useful to look at numerical plots of the escape

angles in the α − β plane, see Figs. 4–8. First of all,
we can plot the critical angles in the extremal Kerr black
hole in order to check that we recover the main results

of [30]. Then, we can go a step beyond and generalize
the results of [30] for nonextremal rotation, showing in
particular that in the case of very slow rotation the
critical angles become symmetric as we expect in the
case of spherical symmetry. It is also interesting to
notice that for very small a the critical angles do not
vary much when θ varies, so the case of slow rotation
behaves similarly to the case of spherical symmetry for

FIG. 4. Critical angles in α − β plane in the extremal Kerr black hole (a ¼ 1). The red, green, blue, and orange lines show (α1ðaÞ,
β1ðaÞ), (α1ðbÞ, β1ðbÞ), (α1ðcÞ, β1ðcÞ), and (α2, β2), respectively. We set μ ¼ 10−3; 0.1; 0.3; 0.7 in this order. Let us stress that the seemingly
sharp transition in the first panel is actually smooth as the curves in the remaining panels, although zooming in is necessary in order to
appreciate it.
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which the emission probability does not depend on the
plane of emission.

D. Escape probability

We can now evaluate the escape probabilityP for a photon
in Eq. (35). Let αmin and αmax be the minimum and the

maximum of the critical angle α, and βminðαÞ and βmaxðαÞ be
the minimum and the maximum of the critical angle β for
each given α. Assuming that S is convex, we obtain

P ¼ 1

4π

Z
αmax

αmin

dα
Z

βmax

βmin

dβ sin β ¼ 1

2π

Z
αmax

αmin

dα cos βminðαÞ;

ð40Þ

FIG. 5. Critical angles in α − β plane in the Kerr black hole for different values of a (a ¼ 1; 0.7; 0.5; 0.3; 0.1; 10−5). The red, green,
blue, and orange lines show (α1ðaÞ, β1ðaÞ) (when it is present), (α1ðbÞ, β1ðbÞ), (α1ðcÞ, β1ðcÞ), and (α2, β2), respectively. We set μ ¼ 10−3. Let
us stress that the seemingly sharp transition in the first panel is actually smooth as the curves in the remaining panels, although zooming
in is necessary in order to appreciate it.

FIG. 6. Critical angles in the α − β plane in the extremal Kerr black hole (a ¼ 1). The red, green, blue, and orange lines show (α1ðaÞ,
β1ðaÞ), (α1ðbÞ, β1ðbÞ), (α1ðcÞ, β1ðcÞ), and (α2, β2), respectively. We set μ ¼ 10−3 and we change θ ¼ π=2; π=3; π=4; π=6; 0.017. Let us stress
that the seemingly sharp transitions in the first three panels are actually smooth as the curves in the remaining panels, although zooming
in is necessary in order to appreciate it.
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wherewe have used βmax ¼ π − βmin. In other words, we are
performing a change of variables from ðb; qÞ to the angles
ðα; βÞ through Eq. (34), and then integrating in the latter
variables. Figure 9 below provides a graphical representation
of this change of variables, togetherwith the different regions
inside the escape coneswithq > 0 andq < 0. This change of
variables is a two-dimensional mapping in which q ¼ qmin,
being defined by the condition Θ̂ ¼ 0, is mapped to a line of
constant angle β ¼ π=2 as it can be checked using Eq. (34).

It follows then that the integration in the ðα; βÞ variables is
exhaustive, in the sense that all the escaping trajectories are
taken into account, regardless of the sign of q.
Using the critical angles (αi, βi) and the relation between

q and ri given in Eq. (26), we can change the integration
variable α to ri as

P ¼ P1 þ P2; ð41Þ
where

FIG. 7. Critical angles in the α − β plane in the Kerr black hole (a ¼ 0.5). The green, blue, and orange lines show (α1ðbÞ, β1ðbÞ), (α1ðcÞ,
β1ðcÞ), and (α2, β2), respectively. We set μ ¼ 10−3 and we change θ ¼ π=2; π=3; π=4; π=6; 0.017.

FIG. 8. Critical angles in the α − β plane in the Kerr black hole (a ¼ 0.1). The green, blue, and orange lines show (α1ðbÞ, β1ðbÞ), (α1ðcÞ,
β1ðcÞ), and (α2, β2), respectively. We set μ ¼ 10−3 and we change θ ¼ π=2; π=3; π=4; π=6; 0.017.
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Pi ¼
ð−1Þi
2π

Z
qmax

qi;min

dq
dαi
dq

cos βi ¼
ð−1Þi
2π

Z
rmax

ri;min

dri
dαi
dri

cos βi: ð42Þ

In particular, using the definition of the critical angles we can reduce P1, if q1;min < fðrþÞ, as

P1 ¼
8<
:

− 1
2π

R
rþ
r1;min

dr1
dα1ðaÞ
dr1

cos β1ðaÞ − 1
2π

R
r⋆
rþ

dr1
dα1ðbÞ
dr1

cos β1ðbÞ − 1
2π

R
rmax
r⋆ dr1

dα1ðcÞ
dr1

cos β1ðcÞ ðfor a ¼ 1Þ
− 1

2π

R
r⋆
r1;min

dr1
dα1ðbÞ
dr1

cos β1ðbÞ − 1
2π

R
rmax
r⋆ dr1

dα1ðcÞ
dr1

cos β1ðcÞ ðfor 0 < a < 1Þ
ð43Þ

and, if q1;min > fðrþÞ as

P1 ¼
	− 1

2π

R
r⋆
r1;min

dr1
dα1ðbÞ
dr1

cos β1ðbÞ − 1
2π

R
rmax
r⋆ dr1

dα1ðcÞ
dr1

cos β1ðcÞ ðfor a ¼ 1Þ
− 1

2π

R
r⋆
r1;min

dr1
dα1ðbÞ
dr1

cos β1ðbÞ − 1
2π

R
rmax
r⋆ dr1

dα1ðcÞ
dr1

cos β1ðcÞ ðfor 0 < a < 1Þ
ð44Þ

where

dα1ðaÞ
dr1

¼ −
σr sin θ

2bðrþÞΣ
ffiffiffiffi
Δ

p
��

1ffiffiffiffiffiffiffi
R̂A

p −

ffiffiffiffiffiffiffi
R̂A

p
sin2θ

ðR̂Asin2θ þ b2ðrþÞΣ2ΔÞ

�
A
dR̂
dr1

�
ð45Þ

FIG. 9. Illustration of the change of variables from ðb; qÞ to ðα; βÞ used for the calculation of the escape probability, for both
nonextremal (a ¼ 0.8) and extremal (a ¼ 1) situations. The region in which trajectories have q < 0 is highlighted in each of these
figures.
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and it is useful to note that some of the integrands in the above integrals have a common form

hðxÞ ¼ −
σr sin θ

2bðr1ÞΣ
ffiffiffiffi
Δ

p
��

1ffiffiffiffiffiffiffi
R̂A

p −

ffiffiffiffiffiffiffi
R̂A

p
sin2θ

ðR̂Asin2θ þ bðr1Þ2Σ2ΔÞ

�
A
dR̂
dr1

− 2bðr1Þ
dbðr1Þ
dr1

Σ2Δ
ffiffiffiffiffiffiffi
R̂A

p

ðR̂Asin2θ þ bðr1Þ2Σ2ΔÞ

�
ð46Þ

where

hðxÞ ¼ dα1ðbÞ
dr1






r1¼x

¼ dα1ðcÞ
dr1






r1¼x

¼ dα2
dr2






r2¼x

ð47Þ

and

gðxÞ ¼ hðxÞ cos β1ðbÞ ¼ hðxÞ cos β1ðcÞ ¼ hðxÞ cos β2: ð48Þ

Finally from Eq. (41), if q1;min < fðrþÞ, P is given by

P ¼
	− 1

2π

R
rþ
r1;min

dr1
dα1ðaÞ
dr1

cos β1ðaÞ − 1
2π

R r2;min
rþ dxgðxÞ ðfor a ¼ 1Þ

− 1
2π

R r2;min
r1;min dxgðxÞ ðfor 0 < a < 1Þ

ð49Þ

while if q1;min > fðrþÞ is given by

P ¼ −
1

2π

Z
r2;min

r1;min

dxgðxÞ ðfor 0 < a < 1 and a ¼ 1Þ: ð50Þ

The expressions above can be evaluated numerically
for different values of a and θ, with the numerical
results being shown in Appendix A. Moreover, in
Figs. 10 and 11 we present some visualizations of the
obtained results. Color maps allow us to better visualize
the numerical data on the sphere that corresponds to the
representation of the r⋆ surface in Boyer-Lindquist
coordinates. All the visualizations are represented
for the case of μ ¼ 10−5 and present a color bar that
allows us to interpret the color scale on the base of
numerical results.
It is interesting to note that, if we take the (homo-

geneous) value of the nonrotating escape probability as
reference, the value of the escape probability becomes
smaller around the poles when a ≠ 0. This may seem
counterintuitive, given that one might expect that the
escape probability at the poles should have the same value
as in the nonrotating case. However, one must take into
account that the escape probability is not a property that is
defined along a single line, but rather is a property of the set
of light rays that are emitted isotropically at a given point
(in other words, it is a property defined on a two-dimen-
sional submanifold). Even if the point of the emission is
located on the axis of rotation, most of the emitted rays will
diverge from the rotation axis. The latter rays experience
the effect of angular momentum which, as we have
calculated, leads to the existence of turning points for a

fraction of these rays. This makes the escape cone nar-
rower, thus explaining why the escape probability around
the pole is smaller than in the nonrotating case.

E. Integration on the total surface

Until now we have obtained values of probability which
depend on the point of emission. Namely, we have chosen a
point on a surface at a fixed value of r ¼ r⋆ and θ. In this
section we consider the integrated emission from the
surface at r ¼ r⋆. In order to do this we just have to
integrate numerically in dθ all the values of probability that
we have obtained above. The algorithm that we apply is as
follows:
(1) We divide the angle range [1, 90] in n intervals of

length Δθ ¼ ðπ=2 − 0.017Þ=n.
(2) Note that we are not taking into account the angles in

the interval [0, 1].On the pole (θ ¼ 0), theKerrmetric
has a coordinate singularity and we cannot integrate
total probability from the pole to the equator in the
coordinate system that we are considering; for this
reasonwe start integrating from θ ¼ 1. In this waywe
introduce uncertainties due to the fact that we are
neglecting the contribution from angles in the range
[0, 1]. Assuming that the probability presents a
monotonous behavior with the angle, which is
verified in the interval [1, 90], an upper bound to
this error is given by ðθ1 − θ0Þjsin θΣðθÞPðθÞjθ¼θ⋆,
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FIG. 11. Visualizations of photon escape probability for different values of a, normalized to the same color scale. The value
P ¼ 1.6875 × 10−5 corresponds to the case a ¼ 0.

FIG. 10. Visualizations of photon escape probability for different values of a. Each panel has its own color bar, different from the
others. In particular the case of a ¼ 1 (central and right bottom panels) is presented both in normal and logarithmic color scale. The latter
clearly shows that even in the extremal case there is a region with the same value of probability of the nonrotating case and, moreover,
there is a region where the escape probability becomes smaller than this value.
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where θ⋆ corresponds to the maximum of this
expression.

(3) We evaluate a table of values, like the ones presented
in the previous section, but for a certain value of a
and r ¼ r⋆ fixed and for each value of θ in this
range. These values are multiplied by the corre-
sponding surface element dS in Eq. (7) and by Δθ.

(4) We calculate
P

θ PðθÞdSðθÞΔθ and divide it by the
total surface of these ellipsoids S [given by Eq. (8)]
to obtain the final value of total integrated proba-
bility on the surface:

Ptot ¼
P

θPðθÞdSðθÞΔθ
S

: ð51Þ

The values of this probability obtained for different values
of a, for μ ¼ 10−5 and for n ¼ 1000 are reported in
Table VI. We also calculated this probability for different
values of μ, namely μ ¼ 10−3 and μ ¼ 0.1 (see Tables VII
and VIII, respectively), in order to see if the integrated
probability behaves in the same way also for different
values of compactness. These results show that in slow
rotating case the integrated probability is compatible with
the zero rotation limit, showing that, as the rotation
decreases, the probability tends to be more and more
independent from the emission point on the surface.
However, as the spin parameter increases, the integrated
probability is dominated by the contribution coming from
the region around the equator, which is larger than in the
Schwarzschild case. Our analysis shows that such an
increase dominates over the decrease of the probability
in the polar regions. Until now, we have calculated the
integrated probability also for the case of extremal black
hole, the maximally rotating black hole, for which a ¼ 1,
albeit the aforementioned Thorne limit makes this case
more of theoretical interest than of astrophysical relevance.
Before ending this section let us provide a physical

interpretation of the numerical values obtained. It is well
known that in the case of a rotating Kerr black hole, there
are two unstable circular orbits that could exist in the
equatorial plane. As we have just understood, the behavior
of the integrated probability in the case of very fast rotation
is dominated by the equatorial contribution so we can focus
on what happens to these unstable orbits. Although such
orbits are unstable, they are nevertheless important from a
physical point of view because they define the boundary
between capture and noncapture of a cross section of light

rays by the Kerr black hole [37]. One of this circular orbits
is a prograde orbit moving in the same direction as the
black hole’s rotation, while the other is a retrograde orbit
moving against the black hole’s rotation. Their radii are,
respectively, given by [35]

r1 ¼ 2

�
1þ cos

�
2

3
arccosð−jajÞ

��
;

r2 ¼ 2

�
1þ cos

�
2

3
arccosðjajÞ

��
: ð52Þ

These are sometimes referred to as the Kerr geometry light
rings, which can in principle touch the surface of the
ultracompact object, so that photons departing from the
surface can be very near to the tip of the potential.
Assuming that to a good approximation the geometry
outside the object is given by Kerr geometry, we can study
for which value of a the internal light ring touches the
surface of the object, that corresponds to r⋆ ¼ rþð1þ μÞ,
with a given μ ≪ 1.
In other words, we search the value of a for which the

corotating light ring touches the surface, defined fixing a
certain value of μ, that means we are interested in
calculating the value of a for which r1 ¼ r⋆. The equation

f1ðaÞ ¼
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þð1þ μÞ

2
− 1

¼ cos
�
2

3
arccosð−jajÞ

�
¼ f2ðaÞ ð53Þ

can be solved using the bisection method, finding the
values of a for which the corotating circular orbit touches
the surface (see Table II).
These values correspond to the values of a for which

probability starts to decrease dramatically as we can see in
Fig. 12 (red dashed line corresponds to the value of a for
which corotating light ring touches the surface).

IV. SAGITTARIUS A*

Let us study the particular case of Sagittarius A*
(Sgr A*), the radio point-source associated with the dark
mass located at the center of the Milky Way. Near-infrared
(NIR) observations of massive stars in its vicinity have
provided direct mass and distance measurements, M ¼
ð4.5� 0.4Þ × 106 M⊙ and D ¼ 8.4� 0.4 kpc [14]. With a
luminosity of 1036 erg s−1, it is substantially underlumi-
nous relative to its limiting Eddington luminosity:

LEdd ¼ 3.3 × 104
M
M⊙

L⊙ ≃ 6 × 1044 erg s−1: ð54Þ

Providing measures about the spin of the nearest super-
massive black hole is more complicated. While mass
measurements can be made at a large distance from an

TABLE II. Values of a for which the corotating circular orbit
touches the surface.

μ a

10−5 0.9999999979118
10−3 0.9999792249829
10−1 0.8697788466062
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object, spin requires a probe which is close in, namely
within 10M. The standard approach is to identify the inner
edge of the accretion disk with the ISCO and then convert
that radius to spin. Another way to measure the mass and
spin of the black hole is quasiperiodic oscillations of the hot
plasma spots or clumps orbiting an accreting black hole that
contain information on these parameters. Their interpreta-
tion reveals the Kerr metric rotation parameter a ¼ 0.65�
0.05 for Sgr A* [38].
As briefly reviewed in Sec. II, if the two assumptions of

thermalization and steady state hold, the emission of the
ultracompact object can be calculated: it is given by a
thermal distribution with a temperature determined by the
accretion rate _M. It has been shown that the emission of
Sgr A* in the infrared is about 10−2 times this theoretical
estimate. It was then concluded [10–14] and often quoted in
literature that it is not possible that Sgr A* has a surface,
and therefore that it must have an horizon (however, this
conclusion has been substantially revised afterwards
[4,8,19–21]). In revising the above derivation an obvious
starting point is to reconsider the two assumptions pre-
sented before. In the case of Sgr A*, the object is not
rotating very fast so we can assume, in a first approxima-
tion, that the case of slow rotation behaves similarly to the
Schwarzschild case (Fig. 11 shows as the probability of
photon escape looks pretty close to be uniform all over the
emitting surface) and so we can assume thermalization. As
regards steady state assumption, even if black holes
explicitly violate this condition because of the unradiated
kinetic energy advected across the horizon and then added
to the mass of the object, it is reasonable to expect that any
black hole alternative will reach some sort of steady state if
given enough time [14]; the main question is then how
much time is needed for the assumption of the steady state
to be reasonable.
Let us now revise the calculation of the time at which the

steady state can be reached. The initial configuration is the
same presented in [4]: the accretion disk starts pumping
energy into the slow rotating ultracompact object, while the
energy emission of the latter is considered negligible before

accretion begins. We shall introduce _E as the amount of
energy emitted per unit time by the ultracompact object
measured at the location of the accretion disk r ¼ Rdisk. We
want to describe the evolution of the system and so we need
to take into account two effects. First of all, it is useful to
evaluate the time until the first ingoing radial null geo-
desics6 can bounce back at the surface r ¼ r⋆ and return to
the accretion disk because until this moment the energy
emitted _E remains negligible. We assume that in the case of
slow rotation this time is of the same order of magnitude of
Oð10Þ × rþ, in analogy with the Schwarzschild case.
Hence, this timescale is essentially the light-crossing time
of the ultracompact object.
Then, there is a second effect to take into account.

Outgoing null geodesics are strongly lensed, which implies
that a fraction of them do not escape and fall again onto the
surface of the ultracompact object. This effect is unavoid-
able due to the inherently inelastic nature of the process that
is necessary for thermalization to take place: the energy
falling from the accretion disk is absorbed by the ultra-
compact object in the first place, and then emitted. If the
probability of photon escape is uniform all over the surface,
like for Schwarzschild, then particles would fall onto the
surface of the object and then would be reemitted uniformly
and so the analysis of the process would not be affected, but
if the object is rapidly rotating we should take into account
this effect in a more rigorous way, following the process
step by step. In any case, for Sgr A* the remaining energy
follows highly curved trajectories and is reabsorbed by the
ultracompact object in a timescale that can be calculated
numerically and, in analogy with the Schwarzschild case,
we can assume it is controlled by the horizon radius, being
Oð10Þ × rþ. Then a repetition of this process takes place,
until eventually all the energy is radiated away.
In order to make the calculation tractable, we can

consider discrete intervals with their size given by
the characteristic timescale τs ¼ Oð10Þ × rþ starting a

FIG. 12. Total probability of photon escape from surfaces at fixed r ¼ r⋆ for μ ¼ 10−5; 10−3; 10−1 respectively. Error bars are not
visible because the uncertainties are very small.

6We assume that all propagating energy is carried along the
null geodesic.
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t ¼ Tbounce. During each of these intervals, the mass that the
accretion disk is ejecting into the object is given by _Mτs. In
the first interval after Tbounce, the amount of outgoing
energy that reaches the accretion disk is given by the
corresponding fraction of the first injection of energy,

E1 ¼ PðμÞ _Mτs; ð55Þ

where PðμÞ is the integrated probability obtained above.
During the second interval, one would get the same

fraction of the energy corresponding to the second injection
plus a fraction of the remaining energy from the first
injection:

E2 ¼ ½PðμÞ þ PðμÞð1 − PðμÞÞ� _Mτs

¼ E1 þ ð1 − PðμÞÞE1: ð56Þ

In general, one can show that

En ¼
Xn
k¼1

ϵk ð57Þ

where the particle energies can be determined from the
recurrence relation

ϵkþ1 ¼ ð1 − PðμÞÞϵk; k ≥ 1 ð58Þ

with the seed ϵ1 ¼ E1 given in Eq. (56). Summing the
geometric series, it follows then that

En ¼ PðμÞ _Mτs
Xn−1
k¼0

ð1 − PðμÞÞk

¼ _Mτs½1 − ð1 − PðμÞÞn�: ð59Þ

The accretion rate _M is obtained dividing the mass accreted
in each of these intervals by τs. Therefore, let us analo-
gously define _En ¼ En=τs. When τs ≪ T, the timescale
during which the accretion rate _M is roughly constant, we
can formally take the limit in which the size of the time
intervals goes to zero and therefore _En becomes a function
of a continuous variable, _EðtÞ, which can be written in
terms of the continuous variable t ∈ ½Tbounce; T� as

_EðtÞ
_M

¼ 1 − ½1 − PðμÞ�ðt−TbounceÞ=τs ð60Þ

In the limit r⋆ → rþ (μ → 0) one has _E= _M → 0. This limit
illustrates that a relativistic lensing effect cannot be ignored
for μ ≪ 1, and can indeed spoil the stabilization of the
composite system into a steady state. In particular, for
Sgr A* the typical timescale for the variation of its
accretion rate is set by the Eddington timescale

T ¼ Mc2

LEdd
≃ 3.8 × 108 yr ð61Þ

where LEdd is given by Eq. (55). Hence, given that the
emission of Sgr A* is at most 10−2 times that predicted
under steady state assumption, we can write

_E
_M






t¼T

¼ 1 − ½1 − PðμÞ�ðT−TbounceÞ=τs ≤ Oð10−2Þ: ð62Þ

We can evaluate this quantity for different values of μ and in
this way we obtain that

μ ≤ Oð10−16Þ: ð63Þ
In Fig. 13 we show the behavior of _E= _M for different

values of μ and we also plot the cases of a → 0 (see [4]) and
a ¼ 10−7. Figure 13 (right panel) show the same plot where
it has been increased the number of steps (the number of
values of μ) for which _E= _M has been calculated. This
allows us to check if its behavior is exactly the one of
Fig. 13 and so if the value for which the flux is O ≃ 10−2

then μ ≤ Oð10−16Þ.
In all this discussion, we have assumed that the prob-

ability of photons escaping from the ultracompact object
has always the same value all over the surface and it
corresponds to the integrated probability we have obtained
in Sec. III E. However, in previous sections we have shown
that probability changes with the angle respect to the pole
and, in particular for the case of fast rotation, probabilities
estimated on the pole and on the equatorial plane differ by
about 5 orders of magnitude. Let us now follow step by step
all the calculations of this last section, in order to estimate
the value of compactness for which _E= _M ≃Oð10−2Þ, in the
assumption that the probability on all the surface is equal to
the probability on the equatorial plane. The results are
shown in Fig. 14. As we can see, this assumption does not
change the results obtained above in a relevant way. The
value for which the flux is O ≃ 10−2 is still of the same
order of magnitude μ ≤ Oð10−16Þ. Finally, we should
compare results in Eq. (64) with theoretical values of μ,
obtained relating μ with the distance between the surface
and the would-be horizon. In spherical symmetry, for
μ ≪ 1 and for a proper radial distance l ≪ rs of the
surface form rs, the relation is given by

μ ≃
1

4

�
l
rs

�
2

≃ 10−78
�

M
M⊙

�
2
�
l
lP

�
2

: ð64Þ

For Sgr A*, considering for instance l ∼ lP, the value of μ
is given by μ ∼ 10−91. So, Eq. (64) should be improved by
about 75 orders of magnitude in order to rule out these
theoretical values on the basis of this argument alone (for
complementary constraints that follow from a different
argument, see [21]). Moreover, we have not taken into
account explicitly other phenomenological parameters that
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describe, for instance, absorption of electromagnetic
waves. When these additional parameters are taken into
account, the corresponding constraints become even
weaker (in some cases, insignificantly weak) [4].
It is interesting to compare our results with the recent

event horizon telescope (EHT) observations [18]. Even if
the EHT observations of Sgr A* are not available yet, the
arguments made below apply equally to M87* (as well as
any other supermassive black hole). Our main observation
is that contrasting our estimate with these observations
entails comparing our equations above for _E= _M with the
relative brightness of the central depression measured by

the EHT, which for M87* has a relative value of 10−1 when
compared with the bright disk in these images [18]. Let us
assume that the brightness of this disk is proportional to the
accretion rate, namely

α _M ð65Þ

for some value of α. This would imply that, for M87*, the
EHT could only detect ratios _E= _M that are greater than
10−1α. Regardless of the final value of the ratios _E= _M that
can be detected by the EHT for a specific astrophysical
system, the main message is that it will just represent an
upper bound. Given that our equations above show that this
ratio vanishes linearly with μ in the μ → 0 limit, it follows
that EHT observations cannot be used to discard suffi-
ciently compact objects; in other words, no matter the
sensitivity of the EHT, it is always possible to choose low
enough values of μ that will ensure compatibility with these
observations. Moreover, taking into more realistic models
accounting for additional phenomenological parameters
leads to even to bleaker scenarios [4]; for instance, even
reasonably small absorptions coefficients are enough to
strongly dampen the value of _E= _M.
Aside from these general observations, it is difficult to

obtain more precise constraints. Taking into account the
geometry of accretion disks, it is reasonable to assume that
the fraction of photons that escape and are captured by the
EHT is much greater than the fraction of photons accreted,
namely α ≫ 1. This would imply that current EHT obser-
vations cannot be used to extract meaningful constraints on
μ whenever the latter is less than Oð1Þ. This would be a
rephrasing of the statement that the EHT is mostly sensitive
to physical processes taking place around the photon
sphere, but cannot provide reliable information about

FIG. 14. _E= _M for different values of μ for Sgr A* (a ¼ 0.65),
for a slow rotating object (a ¼ 10−7) and for nonrotating object
(a ¼ 0), with probabilities estimated on the equatorial plane. The
values of μ are sampled with n ¼ 500 number of steps.

FIG. 13. _E= _M for different values of μ for Sgr A* (a ¼ 0.65), for a slow rotating object (a ¼ 10−7) and for nonrotating object (a ¼ 0).
The last case is solvable analytically [4]. In the left panel the values of μ are sampled with n ¼ 20 number of steps, while in the right
panel with n ¼ 500.
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processes taking place closer to the gravitational radius; see
[4] for a more detailed discussion. In any case, this is
certainly an interesting issue that deserves a separate and
thorough analysis.

V. CONCLUSIONS

In this paper, we have presented a detailed analysis of the
effect that rotation has on the geodesics around ultra-
compact horizonless objects. This has allowed us to extend
the arguments originally presented in [10–15], constraining
the properties of a hypothetical surface emitting electro-
magnetic radiation, to more realistic situations. The main
ingredient of our analysis is the evaluation of the fraction of
photons that escape to infinity when emitted isotropically
from a given point on the surface as a function of the
azimuthal angle with respect to the rotation axis of
symmetry. The main features of this escape probability
are as follows:

(i) The escape probability becomes increasingly aniso-
tropic, as a function of the azimuthal angle, as the
angular momentum increases. However, one has to
reach relatively high values of the angular momen-
tum for these anisotropies to become large (as
defined below).

(ii) The escape probability decreases towards the axis of
rotation and reaches its maximal value on the
equatorial plane, with the maximal value being a
monotonically increasing function with a. For the
equatorial value to increase at least by a factor of 2
one needs a≳ 0.9. On the other hand, the escape
probability dips below its nonrotating value in an
extended region around the poles.

These features have the following implications for the
conclusions that can be drawn for specific astronomical
sources:

(i) For values of the angular momentum below a ≃ 0.9,
the emission from the surface is nearly isotropic, even
in the presence of an anisotropic accretion disk. This

follows from the redistribution of light rays after
numerous cycles of emission and reabsorption after
being lensed back to the surface, which washes away
the initial angular dependence with which these light
rays were injected from the accretion disk.

(ii) For higher values of angular momentum, the
anisotropy in the emission from the surface and,
in particular, the fact that it becomes smaller around
the poles, makes necessary to consider the inclina-
tion of the source is needed in order to obtain reliable
constraints; depending on the value of the inclina-
tion, the corresponding constraints on the properties
of a hypothetical surface could become irrelevant.
Moreover, these anisotropies may have an important
effect on the onset of a steady state, which may even
be disrupted or delayed. Hence, additional analyses
are needed in order to understand whether the steady
state assumption remains reasonable in these sit-
uations.

It is interesting to point out that the two sources to which
the arguments of [10–15] have been applied, namely Sgr
A* [14] and M87* [15], present a very different behaviors.
For Sgr A*, estimations of the spin yield results around
between a ≃ 0.4 and a ≃ 0.7 [38–42], which makes this
source belong to the first category in the itemization above.
We have thus obtained reliable constraints on the radius of a
hypothetical surface, which are nevertheless not strong
enough to discard completely the existence of a surface (in
fact, depending on the phenomenological parameters con-
sidered explicitly, these constraints could become insig-
nificantly weak). On the other hand, recent estimations of
the spin of M87* [43] point to a much higher value a ≃ 0.9
and an inclination i ≃ 17 which implies that additional
analyses are needed in order to understand how rotation
impact these constraints and the underlying assumptions. In
other words, we can conclude that the spin of M87* is high
enough so that the argument based on spherical symmetry
cannot be blindly applied to this source.

APPENDIX: TABLES

In this Appendix we present several tables summarizing the numerical results of our analysis. Tables III–VIII appear here.

TABLE III. Numerical values of escape probability for μ ¼ 10−5.

θ ¼ 90 θ ¼ 60 θ ≃ 47 θ ¼ 45 θ ¼ 30 θ ¼ 1

a → 0 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5

a ¼ 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5

a ¼ 10−3 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5 1.6875 × 10−5

a ¼ 0.1 1.6955 × 10−5 1.6920 × 10−5 1.6890 × 10−5 1.6885 × 10−5 1.6845 × 10−5 1.6815 × 10−5

a ¼ 0.5 1.9355 × 10−5 1.8215 × 10−5 1.7255 × 10−5 1.7145 × 10−5 1.6150 × 10−5 1.5245 × 10−5

a ¼ 0.7 2.3265 × 10−5 2.0175 × 10−5 1.7775 × 10−5 1.7510 × 10−5 1.5215 × 10−5 1.3230 × 10−5

a ¼ 0.9 3.7402 × 10−5 2.9115 × 10−5 1.9295 × 10−5 1.8588 × 10−5 1.3036 × 10−5 9.1751 × 10−6

a ¼ 1 2.9204 × 10−1 1.9760 × 10−1 2.3345 × 10−5 5.3050 × 10−7 7.7200 × 10−10 2.9220 × 10−10
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TABLE IV. Numerical values of escape probability for μ ¼ 10−3.

θ ¼ π=2 θ ¼ π=3 θ ¼ π=4 θ ¼ π=6 θ ¼ 0.1

a → 0 1.6875 × 10−3 1.6875 × 10−3 1.6875 × 10−3 1.6875 × 10−3 1.6875 × 10−3

a ¼ 10−5 1.685 × 10−3 1.685 × 10−3 1.685 × 10−3 1.685 × 10−3 1.685 × 10−3

a ¼ 10−3 1.685 × 10−3 1.685 × 10−3 1.685 × 10−3 1.685 × 10−3 1.685 × 10−3

a ¼ 0.1 1.694 × 10−3 1.690 × 10−3 1.686 × 10−3 1.683 × 10−3 1.680 × 10−3

a ¼ 0.5 1.930 × 10−3 1.818 × 10−3 1.712 × 10−3 1.612 × 10−3 1.523 × 10−3

a ¼ 1 2.920 × 10−1 9.880 × 10−2 2.662 × 10−3 7.635 × 10−6 2.917 × 10−6

TABLE V. Numerical values of escape probability for μ ¼ 10−1.

θ ¼ π=2 θ ¼ π=3 θ ¼ π=4 θ ¼ π=6 θ ¼ 0.1

a → 0 1.6875 × 10−1 1.6875 × 10−1 1.6875 × 10−1 1.6875 × 10−1 1.6875 × 10−1

a ¼ 10−5 1.490 × 10−1 1.490 × 10−1 1.490 × 10−1 1.490 × 10−1 1.490 × 10−1

a ¼ 10−3 1.490 × 10−1 1.490 × 10−1 1.490 × 10−1 1.490 × 10−1 1.490 × 10−1

a ¼ 0.1 1.492 × 10−1 1.490 × 10−1 1.488 × 10−1 1.487 × 10−1 1.485 × 10−1

a ¼ 0.5 1.550 × 10−1 1.503 × 10−1 1.496 × 10−1 1.491 × 10−1 1.366 × 10−1

a ¼ 1 3.146 × 10−1 2.453 × 10−1 1.654 × 10−1 1.728 × 10−2 2.381 × 10−2

TABLE VI. Numerical values of total probability of photon escape from the surface at fixed r ¼ r⋆ for μ ¼ 10−5, with corresponding
uncertainties.

Total probability of photon escape
from surfaces at fixed r ¼ r⋆ Errors Percentage errors

a → 0 1.6875 × 10−5 0 0
a ¼ 10−5 1.687478 × 10−5 3.9 × 10−10 2.3 × 10−3%

a ¼ 10−3 1.687478 × 10−5 3.9 × 10−10 2.3 × 10−3%
a ¼ 0.1 1.690860 × 10−5 3.9 × 10−10 2.3 × 10−3%

a ¼ 0.3 1.719878 × 10−5 3.8 × 10−10 2.2 × 10−3%
a ¼ 0.5 1.791177 × 10−5 3.5 × 10−10 2.0 × 10−3%
a ¼ 0.7 1.955220 × 10−5 3.0 × 10−10 1.6 × 10−3%

a ¼ 0.9 2.547805 × 10−5 2.1 × 10−10 8.2 × 10−4%
a ¼ 0.998 1.445679 × 10−4 4.0 × 10−11 2.8 × 10−5%
a ¼ 1 1.577045255454194 × 10−1 1.1 × 10−15 6.7 × 10−13%

TABLE VII. Numerical values of total probability of photon escape from the surface at fixed r ¼ r⋆ for μ ¼ 10−3, with corresponding
uncertainties.

Total probability of photon escape
from surfaces at fixed r ¼ r⋆ Errors Percentage errors

a → 0 1.6875 × 10−3 0 0
a ¼ 10−5 1.685287 × 10−3 3.9 × 10−8 2.3 × 10−3%

a ¼ 10−3 1.685288 × 10−3 3.9 × 10−8 2.3 × 10−3%
a ¼ 0.1 1.688614 × 10−3 3.9 × 10−8 2.3 × 10−3%
a ¼ 0.3 1.717148 × 10−3 3.8 × 10−8 2.2 × 10−3%
a ¼ 0.5 1.787247 × 10−3 3.5 × 10−8 2.0 × 10−3%
a ¼ 0.7 1.948401 × 10−3 3.0 × 10−8 1.6 × 10−3%
a ¼ 0.9 2.528229 × 10−3 2.1 × 10−8 8.4 × 10−4%
a ¼ 0.998 1.275911 × 10−2 4.0 × 10−9 3.2 × 10−5%
a ¼ 1 1.56531384886 × 10−1 1.1 × 10−11 6.7 × 10−9%
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