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1Departamento de Física, Universidad de Concepción, Casilla, 160-C Concepción, Chile
2Instituto de Ciencias Exactas y Naturales, Facultad de Ciencias, Universidad Arturo Prat,

Avenida Arturo Prat Chacón 2120, 1110939 Iquique, Chile

(Received 9 October 2020; accepted 23 February 2021; published 25 March 2021)

We present different Taub-NUT/bolt-anti de Sitter (AdS) solutions in a shift-symmetric sector of
Horndeski theory of gravity possessing nonminimal kinetic coupling of scalar fields to the Einstein tensor.
In four dimensions, we find locally and asymptotically locally AdS solutions possessing nontrivial scalar
field. In higher dimensions, analytical Taub-NUT/bolt-AdS p-branes and solitons are obtained, supported
by the existence of p Horndeski scalar fields with axionic profile. The thermodynamic properties are
studied through Euclidean methods and it is found that the first law of thermodynamics is satisfied.
Moreover, constraints on the parameter space of Horndeski gravity and NUT charge are obtained by
demanding positivity of the mass, entropy, and specific heat of the p-branes and soliton. We briefly
comment on future applications in holography.
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I. INTRODUCTION

Stationary nonsingular Euclidean solutions of the
Yang–Mills equations with finite action—also known as
instantons—are extremely important in quantum field
theories [1,2]. They represent nonperturbative effects at
the quantum level and they appear as the leading contri-
bution to physical observables. In the path integral for-
malism, instantons provide saddle points that can be used to
compute transition amplitudes between topologically
inequivalent vacua [3,4]. Their existence in Yang–Mills
theories implies a nontrivial structure of the vacuum, which
has observable effects at the quantum level [5,6].
The gravitational analog of instantons has attracted a lot

of interest because one would expect that they might play a
similar role in quantum gravity (for a review see [7]).
A particular class of metrics admitting such interpretation
is the Euclidean version of the one found by Taub and
Newman–Tamburino–Unti [8,9]—hereafter referred to as
Taub-NUT—whose possible observational signatures have
been studied in Refs. [10,11]. Their nontrivial topology is
characterized by a nonzero Pontryagin index that gives the
number of harmonic self-dual and anti–self-dual forms in
the middle dimension [12]. They are connected to the index

theorem of the Dirac operator [12] and they contribute to
the axial gravitational anomaly at the quantum level
[13,14]. When the Lorentzian signature and spherical base
manifold are considered, the presence of Misner strings (the
gravitational analog of the Dirac string) is usually avoided
by imposing periodicity on the time coordinate. This
condition, however, implies the presence of closed timelike
curves and one is usually left with their Euclidean counter-
part that is commonly interpreted as a gravitational instan-
ton. It is worth mentioning that the analytical continuation
of this spacetime with locally hyperbolic and flat base
manifolds admits nonsingular solutions without closed
timelike curves [15–17]. Additionally, the Kruskal exten-
sion can be obtained in Lorentzian signature by abandoning
the periodicity of the time coordinate [18]. In fact, recent
developments show that the resulting spacetime is geo-
desically complete, free from pathologies for free-falling
observers, and its extended phase thermodynamics is
absent of negative thermodynamic volume [19–21]; some-
thing that is not guaranteed in the Euclidean case [22,23].
An interesting application of Taub-NUT geometry is the

construction of the Kaluza–Klein monopole [24,25], which
has motivated different studies from theoretical physics to
differential geometry [26–29]. The Taub-bolt solution, on
the other hand, is endowed with a horizon and it resembles
Euclidean black holes [30]. Due to this, their thermo-
dynamic properties is an interesting and active research
area, ranging from their extended phase structure to holo-
graphic heat engines [21,22,31–35]. One of the most
remarkable properties of this space is the breakdown of
the area/entropy relation by the presence and nontrivial
contribution of Misner strings [36–38]. Additionally, the
magnetic charge of dyonic fields on Taub-Bolt spaces is
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found to be of topological quantum nature while the electric
charge is quantized similar as in the case of the Dirac
monopole [39]. Holographic aspects of spacetimes pos-
sessing NUT charge have been studied in the context of
Kerr/CFT correspondence for the Kerr–NUT–AdS black
holes [40–43]. Indeed, holographic fluids with nontrivial
vorticity can be described at the boundary by considering
bulk geometries with NUT charge [44–47]. Some Taub-
NUT/bolt solutions have been found beyond general
relativity (GR), for instance, in the low-energy limit of
string theory [48–51], in Lovelock gravity [52–56] and
beyond [57], in conformally coupled theories [58,59],
Chern–Simons modified gravity [60], and in gauge theories
of gravitation [61,62].
On the other hand, the low-energy limit of ultraviolet

completions of gravity theories [63–66] usually predicts
scalar fields in their particle spectrum [67,68] as well as
higher-curvature corrections to the action principle [69]. In
fact, the dimensional reduction of the latter also induce
scalar fields on the effective theory [70,71]. From the
viewpoint of AdS=CFT correspondence, scalar fields are
relevant when describing strongly coupled systems
[72–74], since they introduce new sources in the dual
quantum field theory at the boundary. They can be used to
describe holographic superconductors [75–77], as well as
mesons through the AdS/QCD program [78–80]. These
facts show that scalar fields play an important role in our
current description of nature.
In gravitation, the most general scalar-tensor theory in

four dimensions having similar features of GR, namely
diffeomorphism invariance and second-order field equa-
tions, is known as Horndeski’s theory of gravity [81].
Its space of solutions is endowed with hairy black holes
[82–86], boson stars [87], and neutron stars with polytropic
and realistic equations of state with and without rotation
[88,89]. In the context of holography, different aspects of
this theory have been explored, for instance, asymptotically
Lifshitz black holes with fractional critical exponent [90],
holographic entanglement entropy [91], and models with
spontaneous momentum dissipation [92–97], among others
[98,99]. Recently, holographic heat engines were analyzed
in Ref. [100], as well as complexity growth [101], and the
holographic AC charge transport [102]. The thermodynam-
ics of these solutions has been explored in Refs. [92,103]
and it has been shown that Euclidean methods do not yield
to the same result for the entropy when compared to the
Noether–Wald’s formalism [104] (see also Ref. [105]).
From a cosmological viewpoint, these theories produce the
accelerated expansion of the Universe without the cosmo-
logical constant problem (for a review see [106]) and a
particular sector is compatible with the constraints imposed
by multimessenger astronomy [107–114].
The aim of this work is to show that Taub-NUT/bolt-AdS

solutions also exist in a particular sector of Horndeski
gravity. To this end, we focus on the nonminimal derivative
coupling of the scalar field to the Einstein’s tensor and
found different solutions. First, we obtain the zero mode of

the Horndeski scalar propagating in a Taub-NUT back-
ground and show that their energy density vanishes at the
fixed points, while the norm of the conserved current
associated to the shift symmetry diverges. However, it is
well known that this condition can be removed by demand-
ing the radial component of the scalar current to vanish.
A finite scalar current on the horizon is a desirable
physical conditions even in absence of scalar field’s back-
reaction. Then, we consider their backreaction and demand
regularity of the conserved current at the fixed points. We
obtain a locally Euclidean AdS solution sourced by a self-
gravitating scalar field whose on-shell energy-momentum
tensor gravitates as a cosmological constant. The thermo-
dynamic properties of the solution are found through
Euclidean methods [115] by introducing proper counter-
terms that regularize the on-shell action [116]. Afterward,
we analyze the behavior of the metric near the one and
two-dimensional set of fixed points and solve the system
numerically to find asymptotically locally Euclidean AdS
solutions. We compute the mass of the numerical solution
analytically by evaluating the renormalized boundary
stress-energy tensor at infinity [117]. In higher dimensions,
we found Taub-NUT/bolt-AdS analytical p-branes by
considering a product space between the Hopf-fibered
Kähler space and Rp, supported by p nonminimally
coupled Horndeski scalars with axionic profile. We obtain
constraints on the parameter space by demanding positivity
on the entropy and specific heat.
The article is organized as follows: In Sec. II, we

describe the particular sector of Horndeski theory we are
interested in, together with their field equations. Section III
is devoted to give a brief review about the Taub-NUT/bolt
geometry and their regularity conditions. In Sec. III A, we
revisit the vacuum solution obtained for Horndeski theory
with a constant scalar field for the sake of completeness.
Then, in Sec. III B we solve analytically the zero mode
of the Horndeski scalar propagating in a Taub-NUT back-
ground. In Sec. III C we consider their backreaction and
present a locally Euclidean AdS space with nontrivial scalar
field and an asymptotically locally Euclidean AdS numeri-
cal solution, alongside their thermodynamic properties.
Next, in Sec. IV we present analytical Taub-NUT/bolt-
AdS p-branes and solitons by considering scalar fields with
axionic profile. Finally, in Sec. V we present the con-
clusions and final remarks.
Throughout this work we use the following conventions:

metric signature ð−;þ; � � � ;þÞ, the Riemann tensor is
defined as Rλ

ρμν ¼ ∂μΓλ
ρν þ…, the Ricci tensor is

Rμν ¼ Rλ
μλν, and the Ricci scalar R ¼ gμνRμν. Moreover,

the shorthand notation A½μν� ¼ 1
2
ðAμν − AνμÞ and AðμνÞ ¼

1
2
ðAμν þ AνμÞ will be used. We work mainly with Euclidean

signature, although the action in the next section is
given for the Lorentzian case. Thus, one should bear in
mind a global minus sign when computing the Euclidean
action.
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II. HORNDESKI THEORY OF GRAVITY

Horndeski theory of gravitation is described by the most
general action principle constructed out of the metric and a
scalar field that leads to second-order field equations [81].
It has the same symmetries as GR, namely, diffeomorphism
and local Lorentz invariance. In this work, we shall focus
on a specific shift-symmetric sector—also known as
covariant Galileons [118]—described by the nonminimally
coupled action principle [98,99]

I½gμν;ϕ� ¼ IH þ IGHY þ ICT; ð1Þ

where

IH¼
Z
V
dDx

ffiffiffiffiffiffi
−g

p �
κðR−2ΛÞ−1

2
ðαgμν−βGμνÞ∇μϕ∇νϕ

�

≡
Z
V
dDx

ffiffiffiffiffiffi
−g

p
LH; ð2Þ

IGHY ¼ 2κ

Z
∂V

dD−1
ffiffiffiffiffiffi
−h

p
K; ð3Þ

ICT ¼
Z
∂V

dD−1
ffiffiffiffiffiffi
−h

p
½ζ1 þ ζ2Rþ ζ3RμνRμν þ ζ4R2

þ ζ5Gþ ζ6hμν∇μϕ∇νϕþ ζ7hμν∇μ□ϕ∇νϕþ…�:
ð4Þ

Here, κ ¼ ð16πGÞ−1 is the gravitational constant, Gμν ¼
Rμν − 1

2
gμνR is the Einstein’s tensor, while α and β are

constants that control the canonical and nonminimal kinetic
terms of the scalar field, respectively. Moreover, hμν ¼
gμν − nμnν is the induced metric on the boundary ∂V, h its
determinant, and nμ is a spacelike unit normal vector
with nμnμ ¼ 1 and nμhμν ¼ 0. The extrinsic curvature
associated to these hypersurfaces can be expressed as
Kμν¼hλμ∇λnν, whose trace is K ¼ gμνKμν. Additionally,
G ¼ R2 − 4RμνRμν þRμνλρRμνλρ is the Gauss–Bonnet
term of the boundary, whose pieces Rμ

νλρ, Rμν ¼ Rλ
μλν,

and R ¼ gμνRμν represent the Riemann tensor, Ricci
tensor, and Ricci scalar associated to hμν, respectively,
that can be obtained from the Gauss–Codazzi equation and
contractions thereof.
The Gibbons–Hawking–York (GHY) term [115,119],

IGHY, is added such that the metric sector has a well-posed
variational principle with Dirichlet boundary conditions.
Indeed, the generalization of this term for scalar-tensor
theories of the Horndeski family was found in Ref. [120].
However, when a scalar field with radial dependence is
considered, the aforementioned generalization reduces
solely to the GHY term for the particular sector of
Horndeski theory we are interested in [98]. The counter-
term, ICT, is composed by the Emparan–Johnson–Myers

counterterm [116] and additional scalar terms proposed in
Ref. [99]. These terms are included to regularize the action
for configurations with locally AdS asymptotics and they
are relevant in the scheme of holographic renormalization.
Moreover, it has been recently shown that, in vacuum, it
coincides with the methods of Kounterterms when theWeyl
tensor vanishes at the boundary [121].1

The field equations derived from action (1) are obtained
by performing stationary variations with respect to the
metric and scalar field, giving

Eμν ≡Gμν þ Λgμν −
α

2κ
Tð1Þ
μν −

β

2κ
Tð2Þ
μν ¼ 0; ð5aÞ

E ≡∇μJμ ¼ 0; ð5bÞ

respectively, where

Tð1Þ
μν ¼ ∇μϕ∇νϕ −

1

2
gμν∇λϕ∇λϕ; ð6Þ

Tð2Þ
μν ¼ 1

2
∇μϕ∇νϕR−2∇λϕ∇ðμϕRλ

νÞ−∇λϕ∇ρϕRμλνρ

− ð∇μ∇λϕÞð∇ν∇λϕÞþ ð∇μ∇νϕÞ□ϕþ1

2
Gμν∇λϕ∇λϕ

−
1

2
gμν½ð□ϕÞ2− ð∇λ∇ρϕÞð∇λ∇ρϕÞ−2∇λϕ∇ρϕRλρ�;

ð7Þ

Jμ ¼ ðαgμν − βGμνÞ∇νϕ: ð8Þ

As mentioned in Sec. I, the space of solutions of this
theory has been widely explored in different contexts and a
plethora of analytical and numerical results have been
found. In this work, we are interested in Euclidean sta-
tionary configurations with regular scalar profile at the
fixed points. These solutions have not been considered in
the literature and they are relevant for their distinct
applications exposed in the Introduction. To this end, we
focus on Taub-NUT/bolt-AdS geometry to solve the field
equations (5). The main properties of the latter and
principal results are presented in the next section.

III. FOUR DIMENSIONAL EUCLIDEAN
TAUB-NUT/BOLT-AdS SOLUTIONS

In the following, we focus on the inhomogeneous
family of Euclidean metrics proposed in Ref. [123].2

1In GR, the method of topological renormalization also renders
the Euclidean on-shell action and Noether charges finite [122].

2Euclidean signature will introduce a global sign flip to the
action (1), leaving the field equations unaffected. This change,
however, should be taken into account when computing the
on-shell Euclidean action for thermodynamic purposes.
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They are constructed on complex line bundles over Kähler
manifolds as

ds2 ¼ fðrÞðdτ þ 2nAðkÞÞ2 þ
dr2

hðrÞ þ ðr2 − n2ÞdΣ2
ðkÞ; ð9Þ

where τ is the Euclidean time, n is the NUT charge, and
dΣ2

ðkÞ denotes the line element of the base manifold with
constant curvature k ¼ �1, 0, for spherical, hyperbolic,
and flat sections, respectively. These bundles are labeled by
the first Chern number at infinity which is related to
the NUT charge [36]. The Kähler potential AðkÞ for the
different base manifolds can be expressed as (see for
example Ref. [58])

AðkÞ ¼

8>><
>>:
cosθdφ when dΣ2

ðk¼1Þ ¼dθ2þsin2θdφ2;

1
2
ðθdφ−φdθÞ when dΣ2

ðk¼0Þ ¼dθ2þdφ2;

coshθdφ when dΣ2
ðk¼−1Þ ¼dθ2þsinh2θdφ2:

ð10Þ

The real fundamental form ΩðkÞ associated to the Kähler
metric of the basemanifold is defined throughΩðkÞ ¼ dAðkÞ.
Even though the line element dΣ2

ðk¼1Þ is locally isomorphic

to the one of CP1, the equivalence between CPp and S2p

does not hold for p ≥ 2, since no hyperspheres admit
Kähler structures in that case [124]. The magnetic part of
the Weyl tensor is turned on by NUT charge and the
latter is generically interpreted as the magnetic mass of
the geometry [53,125–127].
In order to have regular Euclidean hypersurfaces with

either zero or two-dimensional fixed point—also referred to
as nuts or bolts [25,30], respectively—, the following
conditions on the metric functions must met

For NUT∶ fðrÞjr¼n ¼ 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrÞh0ðrÞ

p
jr¼n ¼

4π

βτ
;

ð11aÞ

For bolt∶ fðrÞjr¼rb ¼ 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrÞh0ðrÞ

p
jr¼rb ¼

4π

βτ
;

ð11bÞ

as well as the vanishing of the metric function hðrÞ at the
fixed points. Here, prime denotes differentiation with
respect to r, βτ represents the period of the Euclidean
time, and the horizon of the Taub-bolt solution satisfies
rb > n. On the other hand, when k ¼ 1, unobservability of
Misner strings imposes that βτ ¼ 8πn. This condition,
when combined with the absence of conical singularity
ensured by the conditions (11), relates rb with the NUT
charge. For the sake of completeness, we review the
vacuum case of Horndeski theory (1) in the next section.

A. Vacuum case

It is instructive to analyze first the vacuum solution,
namely ϕðrÞ ¼ constant, such that the theory reduces to
GR. In this case, the Klein–Gordon equation is automati-
cally satisfied and the metric functions that solve the
Einstein’s field equations are

fðrÞ¼ hðrÞ

¼ k

�
r2þn2

r2−n2

�
−
2MGr
r2−n2

−
Λ
3

ðr4−6n2r2−3n4Þ
r2−n2

: ð12Þ

Here, M is an integration constant related to the mass, as it
can be obtained from the Euclidean on-shell action [116] or
by evaluating the regularized boundary stress-energy tensor
at infinity [117]. This metric reduces to the Schwarzschild-
AdS black hole with Euclidean signature in the limit n → 0.
For the Taub-NUT case, the regularity condition (11a)

implies that

MG ¼ knþ 4

3
Λn3; ð13Þ

and it is straightforward to read βτ ¼ 8πn=k. The case
k ¼ 0 leads to noncompactness of the Euclidean time,
while the case k ¼ −1 has a horizon before r ¼ n, in
contradiction with the NUT hypothesis. For k ¼ 1, the
space is topologically equivalent to R4 since it represents
the Hopf fibration of the Euclidean time over S2. In this
case, the Weyl tensor is globally self-dual and the solution
has zero mass when the Pontryagin density is added (see
Ref. [127]). Thus, it can be regarded as a ground state
labeled by the NUT charge, similar to self-dual instantons
in Yang–Mills theory [128].
In the Taub-bolt case, on the other hand, the solution

is endowed with a horizon at r ¼ rb > n [30] and the
regularity conditions (11b) imply that the integration
constant is fixed as

MG ¼ k
2rb

ðr2b þ n2Þ − Λðr4b − 6n2r2b − 3n4Þ
6rb

: ð14Þ

Here, however, the Weyl tensor is no longer globally self-
dual even without the cosmological constant. It is direct to
check that the period of the Euclidean time in this case is
given by

βτ ¼
4πrb

k − Λðr2b − n2Þ : ð15Þ

Additionally, when k ¼ 1, the unobservability of Misner
strings demands βτ ¼ 8πn which, in turn, impose a relation
between rb and n, that is

rb ¼ −
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Λn2ðΛn2 þ 1Þ

p
4Λn

: ð16Þ
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The condition rb > n must be met alongside the positivity
of the argument of the square root of Eq. (16). These two
restrictions impose a range of values for the NUT charge
such that the Taub-bolt solution exists.
In the next section, we obtain analytically the zero mode

of the Horndeski scalar propagating on the Taub-NUT/bolt
background by solving the Klein–Gordon equation for a
nonminimally coupled scalar field to the Einstein’s tensor.

B. Horndeski scalar zero mode
in the Taub-NUT background

In the test field limit, the scalar field’s zero mode with
radial profile, i.e., ϕ ¼ ϕðrÞ, satisfies a Klein–Gordon
equation (5b) on the Taub-NUT/bolt-AdS background
that is

αþ Λβ
r2 − n2

d
dr

½ðr2 − n2Þfϕ0� ¼ 0; ð17Þ

where f ¼ fðrÞ is given in Eq. (12). This equation admits
the first integral of motion

ϕ0ðrÞ ¼ μ

ðr2 − n2Þf ; ð18Þ

where μ is an integration constant.
The energy-momentum tensor of the Horndeski scalar

can be defined as Tμν ¼ αTð1Þ
μν þ βTð2Þ

μν . Projecting onto the
temporal component of the latter through the orthonormal
frame eμa, i.e., Tab ¼ eμaeνbTμν, the energy density of the
zero mode on the Taub-NUT-AdS background is given by

ρðrÞ ¼ T00

¼ f−1Ttt

¼ μ2

18fðr2 − n2Þ5
�
2½3r2 þ 2n2�½kðr2 þ n2Þ− 2GMr�

− ðr2 − n2Þ3 −Λ
3
ð9r6 − 41n2r4 − 33n4r2 − 15n6Þ

�
:

ð19Þ

It is straightforward to check that it vanishes at the zero or
two-dimensional fixed points, i.e., r → n or r → rb, for
nuts and bolts, respectively. Asymptotically, their energy-
momentum tensor behaves as the cosmological constant
since ρðrÞ ∼ −Λr2=3. However, the norm of the scalar
current given by Eq. (5b) is divergent at the fixed points. It
is well known that this problem can be circumvented by
demanding the vanishing of the radial component of the
current for a self-gravitating scalar field (see for instance
Ref. [82–84,129]).
In the following, we consider the backreaction of

Horndeski scalars to obtain analytical and numerical
solutions to the field equations (5) by imposing regularity
of the scalar current at the fixed points.

C. Taub-NUT/bolt solutions with self-gravitating
scalar field

In order to find Euclidean solutions with self-gravitating
scalar field, we focus on the particular case k ¼ 1 and
consider a radial ansatz ϕ ¼ ϕðrÞ. To ensure regularity of
scalar current’s norm at the fixed points, the restriction
Jr ¼ 0 must be met [129], that is,

Jr ¼ ðαgrr − βGrrÞϕ0 ¼ 0: ð20Þ
Thus, nontriviality of the scalar field demands a relation
between the metric functions that can be read from the
branch ðαgrr − βGrrÞ ¼ 0. This allows one to evade the no-
hair theorem of Ref. [130] and it relates the metric functions
according to

hðrÞ ¼ −
fffβn2 − ðr2 − n2Þ½β þ αðr2 − n2Þ�g

rβ½ðr2 − n2Þf0 þ rf� : ð21Þ

This condition automatically solves the Klein–Gordon
equation (5b). Then, Err ¼ 0 is solved by the scalar field

ϕ02ðrÞ¼−
2rκðr2−n2Þ2ðΛβþαÞ½ðr2−n2Þf0 þfr�
f½αðr2−n2Þ2þβðr2−n2Þ−βfn2�2 : ð22Þ

Replacing (21) and (22) into Ett ¼ 0, we obtain the master
equation for the remaining metric function fðrÞ as

0 ¼ ½fβn2 − ðr2 − n2Þðβ þ α½r2 − n2�Þ�½ðΛβ − αÞðr2 − n2Þ2 − 2βfr2 − n2ðf þ 1Þg�f00

− βn2½ðΛβ þ 3αÞðr2 − n2Þ2 þ 2βfr2 − n2ðf þ 1Þg�f02 þ 1

rðr2 − n2Þ ½2β
2n4ðn2 þ 7r2Þf2

− βn2ðr2 − n2ÞfðΛβ − 3αÞn4 þ ð4β − 8Λβr2 − 18αr2Þn2 þ ð7Λr4 þ 18r2Þβ þ 21αr4gf
þ ðr2 − n2ÞfΛβ2ð2r6 − n6 þ 4n4r2 − 5n2r4Þ − αn2ðΛβ − αÞðr2 − n2Þ3

þ β½3αð2r6 þ n6 − 3n2r4Þ þ 2βð2r4 − n4 − n2r2Þ�g�f0 þ 1

rðr2 − n2Þ2 ½8f
3β2n4r3

− 4n2βr3ðr2 − n2Þ½2Λβðr2 − n2Þ þ 3αðr2 − n2Þ þ 2β�f2 þ 2r3ðr2 − n2Þ3f2Λβ2 þ αðΛβ − αÞðr2 − n2Þgf�: ð23Þ
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This is a second-order nonlinear equation that is rather
challenging to solve analytically. In particular, when
n → 0, it is solved by the Euclidean version of the black
hole reported in Refs. [83,84]. When the NUT charge is
nonvanishing, further progress can be done numerically.
However, before presenting the numerical solutions, we
show the existence of a nontrivial scalar profile that
generates a locally Euclidean AdS ground state with an
effective curvature radius. This configuration is discussed
next.

1. Locally Euclidean Taub-NUT-AdS solution
with nontrivial scalar field

Although Eq. (23) looks challenging, it admits the
following analytical solution with a nontrivial scalar profile

fðrÞ ¼ r2 − n2

4n2
; ð24aÞ

hðrÞ ¼ ½r2 − n2�½3β þ 4αðr2 − n2Þ�
12βr2

; ð24bÞ

ϕðrÞ¼ϕ0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6κðΛβþαÞp

2α
ln ½3βþ4αðr2−n2Þ�; ð24cÞ

where ϕ0 is an integration constant that, by virtue of the
shift symmetry ϕ → ϕþ constant, can be set to zero
without loss of generality. Reality conditions on the scalar
field implies that Λβ þ α < 0. Moreover, it is direct to see
that this solution has a nut since it vanishes at r ¼ n and
the period of the Euclidean time is given by βτ ¼ 8πn.
Thus, their Hawking’s temperature is T ¼ ð8πnÞ−1. This
metric has ten Killing vectors and it is locally AdS4 with
Euclidean signature, whose Riemann tensor is

Rλρ
μν ¼ −

2α

3β
δλ½μδ

ρ
ν�: ð25Þ

The effective curvature radius can be read off from the last
expression as l−2

eff ¼ α
3β and it is direct to check that it has a

vanishing Pontryagin density. On the other hand, the stress-
energy tensor of the Horndeski scalar gravitates on-shell as
a cosmological constant, i.e.,

ðTð1Þ
μν þ Tð2Þ

μν Þjon-shell ¼
�
α

β
þ Λ

�
gμν: ð26Þ

This behavior renders the one of Ref. [86] and it generalizes
their scalar field’s configuration in presence of the NUT
charge.
The thermodynamics of this solution can be obtained

from the quantum statistical relation lnZ ≈ −I to lowest
order in the saddle-point approximation, where Z is the
partition function and I is the Euclidean on-shell action
[115]. The relevant quantity for computing the latter is the

Horndeski Lagrangian evaluated at the Taub-NUT
ansatz, i.e.,

LH ¼ κ

�
−
f00h
f

þ f02h
2f2

−
�
h0

2f
þ 2hr
fðr2 − n2Þ

�
f0 −

2h0r
r2 − n2

þ 2½ðr2 − n2Þð1 − hÞ − n2ðf − hÞ�
ðr2 − n2Þ2 − 2Λ

�
−
α

2
hϕ02

þ βhϕ02

2fðr2 − n2Þ
�
f0hr − f þ fhr2 þ f2n2

r2 − n2

�
: ð27Þ

To calculate the GHY term and the counterterms that
regularize solutions with local AdS asymptotics, the
extrinsic and intrinsic curvature scalars associated to a
space-like unit vector nμ are needed, which are

K ¼
ffiffiffi
h

p ½ðr2 − n2Þf0 þ 4fr�
2fðr2 − n2Þ ; ð28Þ

R ¼ 2½r2 − n2ð1þ fÞ�
ðr2 − n2Þ2 ; ð29Þ

respectively.
The higher-curvature contributions and scalar derivative

terms are subleading inD ¼ 4 for the asymptotic expansion
and they do not contribute in this case. Moreover, the
boundary Gauss–Bonnet term vanishes identically for
D ¼ 4 and it contributes only if D ≥ 5. The Euclidean
on-shell action evaluated at the solution (24) is finite
provided that the counterterms in Eq. (4) are chosen
such that

ζ1 ¼
2κðΛβ − αÞffiffiffiffiffiffiffiffi

3αβ
p and ζ2 ¼ −

κ
ffiffiffiffiffi
3β

p ðΛβ þ 3αÞ
2α3=2

: ð30Þ

These values of the parameters guarantee that the action is
finite as r → ∞. Thus, the regularized Euclidean action for
the solution (24) is

Ireg ¼
3πβðΛβ þ 2αÞ

2Gα2
: ð31Þ

The free energy, mass, entropy, and specific heat can be
obtained from this expression as

F ¼ β−1τ Ireg; M ¼ ∂Ireg
∂βτ ;

S ¼ βτ
∂Ireg
∂βτ − Ireg; C ¼ −βτ

∂S
∂βτ ; ð32Þ

respectively. Notice that the Euclidean action (31) does not
depend on the period of the Euclidean time. Therefore,
its thermodynamic mass M vanishes. Even more, since
the solution is locally AdS, its Weyl tensor vanishes
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identically. This implies that its mass is zero, similar to
what happens with the Taub-NUT solution in Einstein
gravity when the Gauss–Bonnet and Pontryagin densities
are included [127]. We interpret this configuration as a
ground state which is disconnected of global AdS by the
presence of a nontrivial stealth-like scalar field. Thus, if a
background subtraction prescription would have been used,
this solution may regularize the Euclidean action as
in Ref. [36].
On the other hand, it is well-known that the Misner string

contributes nontrivially to the entropy in spacetimes with
spherical section, as in the case under study here (see for
instance Ref. [37]). For the solution in Eq. (24), the entropy
arises purely from the Misner string, giving

S ¼ −
3πβðΛβ þ 2αÞ

2Gα2
: ð33Þ

One can notice that the entropy does not depend on the
period of the Euclidean time either. This implies that
the first law of thermodynamics is trivially satisfied and
the specific heat of this solution vanishes. The free energy is
proportional to the Hawking’s temperature as it can be seen
from F ¼ β−1τ Ireg. Thus, in order for the entropy to be
positive definite, the constraint Λβ þ 2α < 0 must be
met. Compatibility of the latter with real scalar fields
and the absence of ghosts implies that Λ < 0, β > 0, and
0 < α < −Λβ=2.
In the next section, we obtain Euclidean numerical

asymptotically locally AdS solutions with nontrivial scalar
profiles in Horndeski gravity. To this end, first we study
first series solution near the fixed points of nuts and bolts,
respectively.

2. Asymptotically locally Euclidean
AdS Taub-NUT/bolt solutions

In order to solve the system numerically, we need
to obtain initial values compatible with the field
equations. For NUT, the regularity conditions (11a) imply
that the metric function admits a series expansion near
r ¼ n as

fðrÞ ¼ f1½ðr − nÞ þ f2ðr − nÞ2 þ f3ðr − nÞ3
þ f4ðr − nÞ4 þ…�: ð34Þ

Inserting this expression into Eq. (23) an solving for each
order of (r − n), it is found that f1 is completely determined
by the field equations, giving f1 ¼ 1

2n. Moreover, every
coefficient fi with i ≥ 3 can be obtained recursively in
terms of f2 that remains as a free parameter. In GR, the
latter is related to the mass and, once the condition (11a) is
imposed, it is fixed in terms of the NUT charge. In this case,
f2 remains arbitrary even after the NUT condition.
Therefore, we conclude that this solution is endowed with

an additional free parameter: a scalar hair. On the other
hand, the values of the first coefficients are explicitly
given by

f3 ¼
1

48n2
½40Λn2 þ 30nf2 þ 9�½2nf2 − 1�; ð35Þ

f4 ¼
1

144β2n3
½160Λ2β2n4 − 128Λαβn4 þ 336Λβ2n3f2

− 64α2n4 þ 126β2n2f22

þ 12Λβ2n2 þ 9β2nf2 − 18β2�½2nf2 − 1�; ð36Þ

an so on. If f2 ¼ 1=ð2nÞ, all the coefficients fi vanishes for
i ≥ 3, and this solution reduces to the ground state
discussed in the previous section [cf. Eq. (24)]. Thus, in
order for the numerical solutions to deviate from Eq. (24)
while approaching to (25) asymptotically, f2 must be
subjected to the condition f2 ≠ 1=ð2nÞ. Additionally,
the period of the Euclidean time in this case is given by
βτ ¼ 8πn.
Then, we proceed to solve Eq. (23) numerically. First, we

notice that the master equation for fðrÞ is singular when
r ¼ n. Therefore, we introduce a regulator ϵ ≪ 1, such that
the initial conditions read

fðr ¼ nþ ϵÞ ¼ f1ðϵþ f2ϵ2 þ f3ϵ3 þ…Þ; ð37aÞ

f0ðr ¼ nþ ϵÞ ¼ f1ð1þ 2ϵf2 þ 3ϵ2f3 þ…Þ: ð37bÞ

We consider up to cubic order in ϵ to enhance numerical
precision. The metric functions and curvature invariants are
plotted in Figs. 1–3 for different values of f2, respectively.
For bolt, on the other hand, the metric function admits a

series expansion near the horizon r ¼ rb, with rb > n, as

fðrÞ ¼ f̄1½ðr − rbÞ þ f̄2ðr − rbÞ2 þ f̄3ðr − rbÞ3
þ f̄4ðr − rbÞ4 þ…�: ð38Þ

The absence of conical singularities expressed in terms of
the regularity conditions (11), relates the free parameter f̄1
with the period of the Euclidean time βτ through

f̄1 ¼
16π2βrb

β2τ ½αðr2b − n2Þ þ β� ; ð39Þ

where the solution of hðrÞ in Eq. (21) has been used.
Moreover, unobservability of Misner strings impose the
relation βτ ¼ 8πn for Taub-bolt, relating the parameter f̄1
with rb. Thus, the Hawking temperature of this solution is
T ¼ ð8πnÞ−1. Additionally, since α and β must be positive
for avoidance of instabilities [92] and for consistency with
solar system tests [131], we found that f̄1 > 0 by virtue
of rb > n.
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Analogous to the NUT case, inserting the series
expansion (38) into Eq. (23) and solving for each
order of ðr − rbÞ, we find that there is no additional
relation between rb and n, in contrast to GR and
theories with higher-curvature terms [52,54–57].

Moreover, every coefficient f̄i with i ≥ 2 is obtained
recursively in terms of f̄1, and therefore, completely
determined in terms of rb and the parameters of the theory.
The leading term is

f̄2 ¼
1

2rbðr2b − n2Þ½ðr2b − n2Þαþ β�½ðr2b − n2ÞðΛβ − αÞ − 2β� ½α
2n2ðr2b − n2Þ2

þ αβðr2b − n2Þ½n4Λþ 6r2b þ ð3 − Λr2b − 3rbf̄1Þn2�
þ β2½ðrbf̄1 þ 1ÞΛn4 − ðΛr3bf̄1 þ 3Λr2b þ 2rbf̄1 − 2Þn2 þ 2r4bΛþ 4r2b��; ð40Þ

and we do not include f̄i with i ≥ 3 for the sake of
simplicity, since they are cumbersome and not very
illuminating. The key point is that they are all determined
by rb and the parameters of the theory through f̄1
[cf. Eq. (39)]. Then, for bolt we solve numerically
Eq. (23) with initial conditions

fðr ¼ rbÞ ¼ 0 and f0ðr ¼ rbÞ ¼ f̄1; ð41Þ
for different values of f̄1. The numerical evolution of the
metric functions and curvature invariants are given in
Figs. 4–6 for different values of f̄1, respectively.
To obtain the mass of the solution, we need to know the

asymptotic behavior of the metric function fðrÞ. To this
end, we perform the series expansion

fðrÞ ¼ r2

l2
∞
þ μ∞ −

μ1
r
þ μ2

r2
þ μ3

r3
þ…; ð42Þ

as r → ∞. Replacing this expression into Eq. (21), we find
that hðrÞ ¼ r2=l2

eff þ… at large r, independent of the

FIG. 2. Numerical solution of ϕ0ðrÞ [cf. Eq. (22)] according to
the evolution of fðrÞ in Fig. 1. Recall, the energy-momentum
tensor of the scalar field gravitates as an effective cosmological
constant as r → ∞ since the system approaches asymptotically
locally to the Euclidean AdS space in Eq. (24).

FIG. 1. Numerical solution of Eq. (23) with α ¼ 4, β ¼ 1, Λ ¼ −10, n ¼ 1, and initial conditions (36). Here, we defined f̄ðrÞ ¼
fðrÞ l2effr2 and h̄ðrÞ ¼ hðrÞ l2

eff
r2 . The function f̄ðrÞ reaches different asymptotic values when varying f2, which is related to the fact that l∞

remains arbitrary in Eq. (42). On the other hand, asymptotically hðrÞ ¼ r2=l2
eff þ � � � for arbitrary values of l∞ and μ1, with l−2

eff ¼ α
3β.

Thus, h̄ðrÞ → 1 as r → ∞. The case f2 ¼ 0.5 represents the ground state given by Eq. (24).
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FIG. 4. Numerical solution of Eq. (23) with initial conditions (41). Here, we have used f̄ðrÞ ¼ fðrÞ l2effr2 , h̄ðrÞ ¼ hðrÞ l2effr2 , and f̄1 has
been defined in Eq. (39). The parameters of the theory have chosen as α ¼ 4, β ¼ 1, Λ ¼ −10, n ¼ 1, and therefore, 0 < f̄1 < 1=4.
Since rb > n, the upper bound of f̄1 is translated into rb → n and the lower one to rb → ∞. The distinct starting points of h̄ðrÞ are
related to the fact that the Taub-bolt radius rb → ∞ as f̄1 → 0, and r > rb.

FIG. 3. Curvature invariants for Taub-NUT with α ¼ 4, β ¼ 1, Λ ¼ −10, and n ¼ 1, using different values of f2. The case when
f2 ¼ 0.5 represents the ground state of Eq. (24a) and all the curvature invariants remain constant.
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value of l2
∞ (recall l−2

eff ¼ α
3β). Indeed, it yields asymptoti-

cally to the Riemann curvature of Eq. (25) for arbitrary
coefficients in the expansion (24a). Therefore, we conclude
that this solution is asymptotically locally AdS with
curvature radius l−2

eff ¼ α
3β and it generalizes the black hole

of Ref. [84] by introducing the NUT charge.

Then, we proceed to determine the coefficients of
Eq. (42) from the field equations. To do so, we insert
the expansion (42) into the master equation (23) and solve
for each order at large r. We find that l∞ and μ1 remain
arbitrary, while the other coefficients are fixed in terms of
the latter as

μ∞ ¼ −
1

αl2
∞ðΛβ − αÞ

�
9αβ þ 3Λβ2 þ αn2ðΛβ − αÞ − 12βn2ðΛβ þ 3αÞ

l2
∞

�
; ð43Þ

μ2 ¼ −
3β2

½αl∞ðΛβ − αÞ�2
�
ðΛβ þ αÞ2 − n2ð11Λ2β2 þ 46Λαβ þ 59α2Þ

l2
∞

þ 4n4ð7Λ2β2 þ 38Λαβ þ 55α2Þ
l4
∞

�
; ð44Þ

μ3 ¼ −
μ1n2

2

�
1 −

3βðΛβ þ 3αÞ
αl2

∞ðΛβ − αÞ
�
; ð45Þ

and so on, where Λβ − α ≠ 0. If the critical case, i.e.,
Λβ − α ¼ 0, would have been taken beforehand, the
system degenerates as shown in Ref. [86]. In contrast to
the solution of Ref. [84], here the presence of the NUT
avoids one to eliminate any of these free coefficients
through a redefinition of the Euclidean time as it can be
seen from the off-diagonal pieces of Eq. (9). However,
compatibility of the scalar field with asymptotically AdS
symmetry imposes an additional relation between the
parameters of the solution [132,133]. Since Taub-NUT/
bolt-AdS determines its own asymptotic behavior, we
conjecture that a similar relation should arise by demanding

boundary conditions for the scalar field compatible with the
asymptotic symmetries of Eq. (9).
Next, we employ the formalism of Balasubramanian–

Krauss [117] to compute the mass. The renormalized
boundary stress-energy tensor of Horndeski gravity was
obtained in Ref. [98] for asymptotically AdS planar black
holes coupled to scalar fields possessing radial dependence.
For the solution presented here, the base manifold has
spherical topology and the renormalized boundary stress-
energy tensor is

Tμν ¼ 2

�
κ þ β

4
∇λϕ∇λϕ

�
ðKhμν −KμνÞ

− 2ζ2

�
Rμν −

1

2
hμνR

�
þ ζ1hμν; ð46Þ

where the values of ζ1;2 are given in Eq. (30) and ϕ ¼ ϕðrÞ.
This expression is equivalent to the electric part of the Weyl
tensor in the pure gravity case [134,135] for asymptotically
AdS spacetimes. Moreover, it is covariant provided that the
intrinsic curvature tensor is expressed through contractions
of the Gauss–Codazzi equation as

Rμν ¼ Rμν − 2nλRλðμnνÞ þ Rλρnλnρnμnν − Rλμρνnλnρ

−KμλKλ
ν þKKμν: ð47Þ

We define the unit normal vector uμ that generates the flow
of Euclidean time in ∂V. The mass is obtained by
integrating Tμνuμξν over the codimension-2 boundary at
infinity, Σ, where ξμ is the Killing vector associated to
Euclidean time symmetry. This yields to3

FIG. 5. Numerical solution of ϕ0ðrÞ [c.f. Eq. (22)] for the bolt
case. As in Taub-NUT, the energy-momentum tensor of the scalar
field behaves as an effective cosmological constant at infinity
since the system approaches asymptotically locally to the
Euclidean AdS space in Eq. (24). Additionally, the distinct
starting points in this figure are related to the fact that the
Taub-bolt radius rb → ∞ as f̄1 → 0, and r > rb, similar to the
metric function h̄ðrÞ [cf. Fig 4].

3The minus sign on the right-hand side of the first equality
stem from the fact that we are working in Euclidean signature.
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M ¼ −
Z
Σ
d2x

ffiffiffi
σ

p
Tμνuμξν ¼ −

μ1l∞ðΛβ − αÞ
4G

ffiffiffiffiffiffiffiffi
3αβ

p ; ð48Þ

where σ is the determinant of the induced metric on Σ (for
details see [117]).
Some comments are in order. First, the mass of the

solution vanishes in the degenerated sector of the theory,
i.e., α ¼ Λβ (see Ref. [86]). Second, positivity of M when
μ1l∞ > 0, alongside the absence of ghosts (α > 0) is
guaranteed by reality of scalars fields in the asymptotic
region as long as Λ < 0 [see Eq. (24)]. Third, although the
series expansion of Taub-NUT and Taub-bolt solutions are
different near the fixed points, they have the same asymp-
totic behavior as r → ∞. The unobservability of Misner
strings, on the other hand, implies that the Hawking
temperature in both cases is T ¼ ð8πnÞ−1. Remarkably,
there is no relation whatsoever between the bolt radius and
the NUT charge, in contrast to GR and higher-curvature
theories. This stem from the fact that the metric functions
fðrÞ and hðrÞ are different for nontrivial scalar fields. Thus,

the solutions presented here have more free parameters than
in GR and higher-curvature gravity and we conclude that
this is evidence for scalar hair.
It is worth mentioning that one can match M with the

coefficients f2 and f̄1 by fitting the numerical solutions with
appropriate polynomials to read off the coefficients in the
asymptotic expansion (42). For bolt, we find thatM satisfies
a quadratic relation in terms of rb. For NUT, however, we
find that there exists a range in the parameter f2 where M
turns out to be negative. This can be avoided by restricting
1=2 < f2 ≲ 4.1 for the choice of parameters assumed in the
numerical integration (for instance see Fig. 1).
In the following, we explore higher-dimensional

p-branes and solitons with NUT charge in Horndeski
gravity supported by axionic fields.

IV. HIGHER-DIMENSIONAL TAUB-NUT/BOLT
BRANES AND SOLITONS WITH AXIONIC FIELDS

Axionic scalar fields have recently attracted a lot of
interest, since they can be used to construct homogeneous

FIG. 6. Curvature invariants for Taub-bolt with α ¼ 4, β ¼ 1, Λ ¼ −10, and n ¼ 1, using different values of f̄1. As explained in
Fig. 4, the different starting points are due to the fact that rb → ∞ as f̄1 → 0 and r > rb. The asymptotically locally AdS behavior of this
solution becomes evident from these plots.
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black strings in AdS [136]. These fields are characterized by
nontrivial dependence on the coordinates of the target space
and it has been shown that they might avoid the Gregory–
Laflamme instability at linear level [137], regardless the size
of the Schwarzschild-AdS black hole located on the brane
[138]. Axions support the existence of homogeneous AdS
black strings in Einstein–Gauss–Bonet gravity [139] and it
was shown that theymust possess particular kinetic coupling
in order for these solutions to exists. Rotating black strings in
Chern–Simons modified gravity [140] are supported by
axionic fields as well, representing the first analytic rotating
solution with contribution of the Cotton tensor [141] in such
a framework. Here, we extend these solutions by including
the NUT charge in the context of Horndeski theory.
In order to construct D ¼ 4þ p Taub-NUT/bolt-AdS

branes analyticall, we consider the action (1) nonminimally
coupled to p scalar fields ψ i with i ¼ 1;…; p, whose target
space is Rp, namely

ĨH½gμν;ψ i� ¼
Z
V
d4þpx

ffiffiffiffiffiffi
−g

p �
κðR − 2ΛÞ

−
1

2
ðαgμν − βGμνÞδij∇μψ

i∇νψ
j

�
; ð49Þ

where δij is the p-dimensional Kronecker delta. The field
equations for this system are similar to Eqs. (5), but with
additional scalar fields, i.e.,

Eμν ≡Gμν þ Λgμν −
α

2κ
T ð1Þ

μν −
β

2κ
T ð2Þ

μν ¼ 0; ð50aÞ

Ei ≡∇μJ
μ
i ¼ 0; ð50bÞ

where we have defined

T ð1Þ
μν ¼ δij

�
∇μψ

i∇νψ
j −

1

2
gμν∇λψ

i∇λψ j

�
; ð51Þ

T ð2Þ
μν ¼ δij

�
1

2
∇μψ

i∇νψ
jR − 2∇λψ

i∇ðμψ jRλ
νÞ

−∇λψ i∇ρψ jRμλνρ − ð∇μ∇λψ
iÞð∇ν∇λψ jÞ

þ ð∇μ∇νψ
iÞ□ψ j þ 1

2
Gμν∇λψ

i∇λψ j

−
1

2
gμν½ð□ψ iÞð□ψ jÞ − ð∇λ∇ρψ

iÞð∇λ∇ρψ jÞ

− 2∇λψ i∇ρψ jRλρ�
�
; ð52Þ

J μ
i ¼ ðαgμν − βGμνÞ∇νψ i: ð53Þ

To solve the field equations, we consider the product
space between the family of inhomogeneous Euclidean
metrics of Eq. (9) and Rp, written in local coordinates as

ds2 ¼ fðrÞðdτ þ 2nAðkÞÞ2 þ
dr2

hðrÞ þ ðr2 − n2ÞdΣ2
ðkÞ

þ δijdzidzj; ð54Þ

where the Kähler potential AðkÞ has been defined in
Eq. (10). Although this metric is homogeneous along the
coordinates zi, we do not impose translational symmetry on
the scalar fields along Rp, i.e., ψ i ¼ ψ iðr; ziÞ. The Klein–
Gordon equations (50b) are solved by scalar fields with
linear dependence on the coordinates that span the brane,
that is

ψ i ¼ λzi; ð55Þ

where λ is an integration constant usually referred to as
the axionic charge. Remarkably, the on-shell energy-
momentum tensors associated to the solution (55) has
the same isometries of the line element (54), despite the
linear dependence of the scalar fields on the local coor-
dinates of Rp. This is a consequence of the shift symmetry
in the scalar fields’ space and it can be seen as a Freund–
Rubin compactification [142] where the internal manifold
is flat and, instead of magnetic gauge fields, scalar fields
support their existence.
The ansatz (54) alongside the scalar profile (55) allows

one to decompose the field equation for the metric as

Eμ̄ ν̄ ¼
�
1 −

pβλ2

4κ

�
Gμ̄ ν̄ þ

�
Λþ pαλ2

4κ

�
gμ̄ ν̄ ¼ 0; ð56Þ

Eij ¼ −
1

2

�
1 −

ðp − 2Þβλ2
4κ

�
δijRþ

�
Λþ ðp − 2Þαλ2

4κ

�
δij

¼ 0; ð57Þ

where barred greek and latin characters denote components
of transverse and brane sections, respectively. Taking the
trace on both equations, i.e., gμ̄μ̄Eμ̄ν̄ ¼ 0 and δijEij ¼ 0,
one obtains

R ¼ 4½4Λκ þ pαλ2�
4κ − pβλ2

; ð58aÞ

R ¼ 2½4Λκ þ ðp − 2Þαλ2�
4κ − ðp − 2Þβλ2 : ð58bÞ

Compatibility of these two equations gives rise to a quartic
equation for the axionic charge whose solution, for p ≠ 2,
fixes the latter in terms of the parameters of the theory as4

4The case when p ¼ 2 fixes axionic charge according to
λ2 ¼ − 2κΛ

Λβþ2α.
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λ2�¼ 2κ

αβpðp−2Þ
h
αðpþ2Þ−Λβðp−4Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ðp−4Þ2Λ2þ2αβΛðp2−2pþ8Þþα2ðpþ2Þ2

q i
:

ð59Þ

Reality of the scalar fields impose conditions on the
parameters of the theory since λ2� > 0. Moreover, the
argument of the square root must be either positive or
zero. When positive, these conditions imply that α > 0,
Λ < 0, and that λ� must lie in the range provided in Table I
for different values of p. Here, for p ≠ 4, the parameter ρ�
has been defined as

−
Λρ�
α

¼ ðp2 − 2pþ 8Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ðp − 2Þpp

ðp − 4Þ2 : ð60Þ

When 4κ − pβλ2� ≠ 0, the transverse components of the
field equation for the metric can be cast into the form

Eμ̄ν̄ ¼ Gμ̄ν̄ þ Λeffgμ̄ν̄ ¼ 0; ð61Þ

which resembles Einstein–AdS equations with an effective
cosmological and gravitational constants given by

Λeff ¼
4κΛþ pαλ2�

4κeff
and κeff ¼ κ −

pβλ2�
4

; ð62Þ

respectively. The appearance of an effective Newton con-
stant is a consequence of the nonminimal coupling of the
scalar fields to the Einstein’s tensor in Horndeski theory.
Solving Eq. (61), one obtains that the metric functions are

fðrÞ ¼ hðrÞ

¼ k

�
r2 þ n2

r2 − n2

�
−
2MGeffr
r2 − n2

−
Λeff

3

ðr4 − 6n2r2 − 3n4Þ
r2 − n2

;

ð63Þ
where M is an integration constant and Geff can be read
from Eq. (62) as

Geff ¼
G

1 − 4πGpβλ2�
: ð64Þ

Regularity conditions (11) on the hypersurfaces at constant
zi, implies that the integration constant M is fixed accord-
ing to Eqs. (13) or (14), for nuts and bolts, respectively,
with the replacement ðG;ΛÞ → ðGeff ;ΛeffÞ. Moreover,
when k ¼ 1, the unobservability of Misner strings on the
transverse section implies that the period of Euclidean time
is fixed as βτ ¼ 8πn. This, in turn, impose a relation
between the radius of the Killing horizon and the NUT
charge according to Eq. (16) with an effective cosmological
constant dressed by scalar fields as (62).
To compute the thermodynamic properties of the sol-

ution with metric functions given in Eq. (63), we focus on
spherically symmetric transverse section, i.e., k ¼ 1. First,
we notice that the scalar fields with linear profile generate
an energy-momentum tensor that behaves as a cosmologi-
cal constant, producing an asymptotically locally Euclidean
AdS4 ×Rp space. Thus, the renormalized Euclidean action
is obtained when the counterterms (4) are chosen such that

ζ1 ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
−
Λeff

3

r
ð8κ þ pβλ2�Þ; ð65Þ

ζ2 ¼ −
1

8

ffiffiffiffiffiffiffiffiffiffiffiffi
−

3

Λeff

s
ð8κ − pβλ2�Þ; ð66Þ

respectively. Of course, this does not mean that the
counterterms depend on the integration constants of the
solution since, recall, λ2� is fixed on shell in terms of
the parameters of the theory and the dimensionality of
spacetime through Eq. (59). Thus, the renormalized
Euclidean action for the Taub-NUT/bolt-AdS p-brane with
axionic profile in Horndeski gravity is given by

Iren ¼
8πβτκeffV

3
ð3MGeff − 3n2rbΛeff þ r3bΛeffÞ; ð67Þ

where V is the volume of Rp. For bolt, we obtain that the
free energy, mass, entropy, and specific heat are

F bolt ¼
4πκeffV

rb

�
r2b þ n2 þ Λeff

3
ðr4b þ 3n4Þ

�
; ð68Þ

Mbolt¼
8πκeffV

rb

�
ðr2bþn2Þð1þn2ΛeffÞ−

Λeffr2b
3

ðr2b−3n2Þ
�
;

ð69Þ

Sbolt ¼
32π2nκeffV

r2bð1þ 4nrbΛeffÞ
½rbðr2b þ n2Þ

þ Λeffðr5b þ 12r2bn
3 þ 3rbn4 − 4n5Þ

þ 4Λ2
effn

3ðr4b þ 4r2bn
2 − n4Þ�; ð70Þ

TABLE I. Conditions on the parameters of Horndeski theory
for the existence of Taub-NUT/bolt-AdS p-branes in different
dimensions. Notice that the first case is allowed only when
λ2− > 0. The definition of ρ� is given in Eq. (60).

0 < p < 2 β > 0 λ2− > 0 � � �
2 < p < 4 0 < β < ρ− λ2− > 0 λ2þ > 0

p ¼ 4 0 < β < − 9α
8Λ λ2− > 0 λ2þ > 0

p > 4 0 < β < ρ− ∪ β > ρþ λ2− > 0 λ2þ > 0
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Cbolt ¼ −
64π2nκeffV

r3bð1þ 4nrbΛeffÞ3
½r2bðr2b þ n2Þ þ 2rbΛeffðr5b þ r4bnþ 16r2bn

3 þ 3rbn4 − 5n5Þ

þ 2nΛ2
effðrb þ nÞð3r6b − 3r5bnþ 12r4bn

2 þ 68r3bn
3 − 23r2bn

4 − 17rbn5 þ 8n6Þ
þ 16n4Λ3

effð5r6b þ 18r5bnþ 27r4bn
2 − 16r3bn

3 − 9r2bn
4 þ 6rbn5 þ n6Þ

þ 32rbn5Λ4
effð3r6b þ 21r4bn

2 − 11r2bn
4 þ 3n6Þ�; ð71Þ

respectively. The NUT case can be obtained by taking the
limit rb → n on these expressions, giving

F nut ¼ 8πnκeffV

�
1þ 2n2Λeff

3

�
; ð72Þ

Mnut ¼ 16πnκeffV

�
1þ 4

3
Λeffn2

�
; ð73Þ

Snut ¼ 64π2n2κeffVð1þ 2n2ΛeffÞ; ð74Þ

Cnut ¼ −128π2n2κeffVð1þ 4n2ΛeffÞ; ð75Þ

where the contribution of the Misner string in both cases
becomes evident. It is straightforward to check that the
mass density reproduces the result of Eqs. (13) and (14) for
nuts and bolts, respectively, by performing the substitution
ðG;ΛÞ → ðGeff ;ΛeffÞ. Moreover, we corroborated that
these expressions satisfy the first law of thermodynamics,
namely

dM ¼ TdS: ð76Þ

Notice that the axionic charge does not enter here since its
value is fixed on shell in terms of the parameters of the
theory. In order to have a positive mass, entropy, and
specific heat, the nut charge must satisfy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

4Λeff

s
< n <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2Λeff

s
: ð77Þ

Finally, we notice that a regular soliton can be obtained
for p ¼ 1, by performing a Wick rotation z → −it on the
metric (54), giving

ds2 ¼ −dt2 þ fðrÞðdχ þ 2nAðkÞÞ2 þ
dr2

fðrÞ þ ðr2 − n2ÞdΣ2
ðkÞ:

ð78Þ

Here, the metric function fðrÞ is given by Eq. (63) and it is
supported by a time-dependent scalar field ψ ¼ −λ�it,
whose reality condition implies that λ2� < 0 [cf. Eq. (59)].
Remarkably, we found that there exists region on the
parameter space where this condition is fulfilled for

α; β > 0, namely (i) λ2− < 0 for Λ > 0, and (ii) λ2þ < 0

for Λ ∈ R.
To compute the mass of the soliton, we first note that

there is no horizon associated to the timelike Killing vector
ξ ¼ ∂=∂t. Since entropy arises from obstructions to foli-
ating the spacetime with hypersurfaces of constant t due to
the presence of fixed points, it is direct to see that the
entropy of this regular soliton vanishes. Therefore, the mass
can be obtained by multiplying the Euclidean on-shell
action by the inverse of an arbitrary period of Euclidean
time, as a consequence of the Gibbs–Duhem relation
S ¼ βτM − Ireg [143,144]. In fact, it was shown that this
method coincides with the conserved charge associated to
the boundary stress-tensor of the Eguchi–Hanson soliton in
five-dimensional GR [145,146]. For k ¼ 1, the mass of the
soliton is

ℳnut ¼ 64π2n2κeff

�
1þ 2

3
n2Λeff

�
; ð79Þ

ℳbolt ¼
32π2nκeff

rb

�
r2b þ n2 þ n4Λeff þ

1

3
r3bΛeff

�
; ð80Þ

for nuts and bolts, respectively.
Some remarks are now in order. First, we notice that

there is no analog of these solutions in five-dimensional GR
with cosmological constant. This stem from the fact that the
compatibility of the field equations would demand the
vanishing of the latter, as it can be seen from Eq. (57). Thus,
the presence of scalar fields is crucial for its existence.
Second, this odd-dimensional solution can be interpreted
locally as the direct product between R and the Uð1Þ
fibration over a two-dimensional Kähler manifold.
Moreover, this configuration cannot be obtained from
the analytical continuation of the solutions presented in
Ref. [147] due to the absence of a warped factor in the
product space and, therefore, it represents a new
everywhere regular solution supported by Horndeski
scalars. Finally, we notice that when Λeff < 0 and
n >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3=ð2ΛeffÞ

p
, the mass of the NUT case is negative

and this solution has lower energy than Euclidean
AdS4 ×R. This result represents an additional example
of the one found in Ref. [146] where a soliton with less
energy than global AdS space was obtained.
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V. CONCLUSIONS AND FURTHER REMARKS

The Taub-NUT/bolt-AdS solutions bear a close resem-
blance with instantons in Yang–Mills theory. They re-
present regular stationary Euclidean configurations whose
vacuum is characterized by topologically inequivalent
sectors. For the NUT case, the Weyl tensor is globally
self dual; the latter being the AdS curvature for Einstein
spaces. Their distinct properties have been widely explored
and several applications in theoretical physics and differ-
ential geometry have emerged. In this work, we show their
existence in Horndeski gravity: the most general scalar-
tensor theory with second-order field equations.
To do so, we start by solving the Horndeski scalar’s zero

mode analytically on a Taub-NUT/bolt background. The
energy density in the test-field limit vanishes at the fixed
points, however, the norm of the scalar current becomes
divergent. To circumvent this problem, we take into
account their backreaction and impose regularity. This
condition implies that the radial component of the con-
served current vanishes and, to avoid the no-hair theorem of
Ref. [130], a relation between the metric functions arises.
The system reduces to Eq. (23), representing the master
equation of the metric function fðrÞ that we solve for nuts
and bolts.
First, a locally Euclidean AdS space with a nontrivial

scalar field is found, whose energy-momentum tensor
gravitates on shell as the cosmological constant. To obtain
the thermodynamic properties, we compute the Euclidean
on-shell action by adding proper counterterms [116] and
found that the mass and entropy are zero and constant,
respectively. This ground state cannot be obtained contin-
uously from global AdS, due to the presence of a stealthlike
scalar field.
Afterward, we solve the system numerically and found

asymptotically locally AdS solutions with NUT charge.
Performing series expansion near the fixed points, we
obtain precise conditions under which the numerical
solutions deviate from the locally AdS with self-gravitating
scalar field. The mass is obtained by integrating the
renormalized boundary stress-energy tensor over the boun-
dary at infinity [see Eq. (48)]. Reality of the scalar field and
positivity of the mass impose that β > −α=Λ and Λ < 0. It
is worth mentioning that the solutions presented here have
more free parameters than in GR, leading us to conclude the
presence of scalar hair.
In higher dimensions, we obtain a p-brane solution

described by the product space between the Hopf-fibered
Kählermanifold andRp, which is supported bypHorndeski

scalars with axionic profiles. The first law of thermody-
namics is satisfied and constraints on theNUTcharge appear
from the positivity of mass, entropy, and specific heat.
Moreover, there exists a particular region in the parameter
space that admits a solitonic solution obtained from the
analytical continuation of the coordinate that span the brane
with p ¼ 1. This everywhere regular configuration has zero
entropy, nontrivial mass, and its Uð1Þ fibration over the
Kähler manifold belongs to the transverse section.
Interesting questions remain open. For instance, it is well

known that scalar fields with axionic profile can be used to
construct holographic models with momentum relaxation
[92,148]. It is worth analyzing condensed matter systems
with vorticity from the AdS=CFT viewpoint, since it has
been conjectured to be the holographic dual of the NUT
charge. Moreover, studying the influence of the latter in the
holographic heat current is certainly valuable, since it can
be obtained directly from the Noether procedure as shown
in Ref. [98]. Additionally, the holographic two-point
function of dual quantum fields theories can computed
by introducing the NUT charge to describe quantum field
theories with vorticity, following the prescription of
Ref. [99]. On the other hand, the relation between the
electric part of the Weyl tensor and the boundary stress-
energy tensor has been explored for asymptotically AdS
spacetimes [134,135]. Since the Taub-NUT/bolt-AdS sol-
ution is asymptotically locally AdS and it has magnetic
components of the Weyl tensor, their relation to the
boundary stress-tensor is worth exploring. Finally, the
relation between holographic renormalization and
Kounterterms has been recently clarified in Ref. [121].
The role of the latter in regularizing the entropy of the
Misner string in spacetimes with AdS asymptotics is
relevant and we left this for a forthcoming publication.
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