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Accurate and efficient modeling of the dynamics of binary black holes (BBHs) is crucial to their
detection and parameter estimation through gravitational waves, with both LIGO/Virgo and LISA. General
BBH configurations will have misaligned spins and eccentric orbits, eccentricity being particularly relevant
at early times. Modeling these systems is both analytically and numerically challenging. Even though the
1.5 post-Newtonian (PN) order is Liouville integrable, numerical work has demonstrated chaos at 2PN
order, which impedes the existence of an analytic solution. In this article we revisit integrability at both
1.5PN and 2PN orders. At 1.5PN, we construct four (out of five) action integrals. At 2PN, we show that the
system is indeed integrable—but in a perturbative sense—by explicitly constructing five mutually
commuting constants of motion. Because of the KAM theorem, this is consistent with the past numerical
demonstration of chaos. Our method extends to higher PN orders, opening the door for a fully analytical
solution to the generic eccentric, spinning BBH problem.
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I. INTRODUCTION

To date, Advanced LIGO and Virgo have confidently
detected 50 gravitational-wave events [1–3], all of them
from compact binary mergers. Of these, at least 46 are due
to a binary black hole (BBH) system. Both detecting and
characterizing these systems relies on computing accurate
and efficient waveform templates. Present waveform mod-
els [4–6] are already rather sophisticated, including mod-
eling precession due to spin-orbit coupling; but typically,
the orbital motion is modeled as quasicircular, and the
precession is approximate (except for numerical relativity
surrogates [7]). The fact that most eccentricity should be
radiated away by the time of merger has been long known
[8,9]. Despite constraints on eccentricity [10], there have
been tentative claims that some LIGO events were highly
eccentric [11]. Moreover with the LISA mission [12,13]
on the horizon, eccentricity is expected to play a more
prominent role [14–16] and may be especially important for
multiband systems [17].
This brings us to the challenge of modeling “generic”

BBH systems: two BHs, with their spins misaligned from
the orbital angular momentum, in an eccentric orbit.
Eccentricity leads to apsidal precession, and spin-orbit
coupling leads to precession of both the spins and the

orbital plane. Such complicated nonlinear dynamics in a
high-dimensional phase space leads to the fear of chaos.
One ultimate goal of studying the BBH problem is to
produce rapid gravitational-wave predictions—and chaos
would obstruct the possibility of analytical waveforms.
Showing the integrability of the system and the existence of
action-angle variables opens the door to constructing a
closed-form analytical waveform model.
The study of chaos and integrability in the spinning,

eccentric BBH system has an interesting history [18–31].
We will recap some of the highlights below. Some of the
claims in the literature seem at odds with each other.
Besides our main results, we will also explain these
apparent contradictions and correct some misstatements
in the literature regarding integrability of the BBH system.
The generic BBH system, in Hamiltonian form, has long

been known to be integrable at the 1.5 post-Newtonian
(PN) order [32]. This comes from the Liouville-Arnold
theorem [33,34]: the ten-dimensional phase space has five
independent constants of motion, which all pairwise
commute under the Poisson bracket. This integrability
leads to the existence of an analytic solution [35]. At
2PN, Levin [18,19] performed numerical simulations and
concluded that the generic BBH system is chaotic.
Schnittman and Rasio [21] also simulated generic systems
at 2PN, and by measuring the Lyapunov exponent, found
either no chaos or weak chaos with a Lyapunov time which
was many times greater than the inspiral time. Soon after,
Cornish and Levin [22] found the Lyapunov and inspiral
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timescale could be comparable to each other, though they
warned that the Lyapunov time is coordinate dependent.
Hartl and Buonanno [24] performed a survey of generic
orbits, simulating them at 2PN (and including some PN
terms that previous authors had not). For the most part, they
found regular (i.e., nonchaotic) orbits, though they did
report chaos in some cases, which they reported to be
astrophysically disfavored. Though not discussed in any of
these works, the coexistence of regular and chaotic orbits in
phase space is a typical characteristic of a nearly integrable
system, proven in the Kolmogorov-Arnold-Moser (KAM)
theorem [33,34]. This applies to the second and higher PN
Hamiltonians, when treated as a perturbation to the
integrable 1.5PN Hamiltonian.
There have also been a number of analytical studies

of integrability. Damour [32] pointed out the additional
constants of motion, though did not emphasize that
they commute or that the generic BBH is integrable.
Königsdörffer and Gopakumar [25,36] suggested integra-
bility at higher PN order, by constructing an analytic solution
for two specific mass/spin configurations and removing all
spin terms in the Hamiltonian except for the leading order
spin-orbit interaction. Beyond the 1.5PN spin-orbit effect,
the next nontrivial effect on integrability is the spin-spin
interactions at 2PN, which is conjectured to source chaotic
behavior [18]. Let us also mention that some analytic work
[26–31] has discussed integrability by only counting the
number of constants of motion, which is not enough for the
Liouville-Arnold theorem: the constants must be mutually
commuting. For example, while each of the three compo-
nents Ji are constants, they do not commute with each other.
Along independent lines, a large body of literature has

been developed by taking advantage of orbit-averaging and
precession-averaging. The principle at work is that there is
a large separation of timescales, torb ≪ tprec ≪ trad; so the
orbital variables’ influence on precession dynamics may be
approximated by averaging, and similarly for precession-
averaging. Early post-Newtonian works invoking orbit-
averaging to study spin effects include [23,37,38], and
precession-averaging followed in [39,40]. An important
milestone was Racine’s discovery that a quantity L⃗ · S⃗0 (to
be introduced later) is constant under the Newtonian-orbit-
average of the 2PN equations of motion (EOMs), despite
not being constant under the full 2PN equations. We will
briefly comment on the relation of our results to the
averaged results.
In this paper, we study the problem of integrability at two

levels: we find the action variables at 1.5PN, and we show
integrability at 2PN. These are both part of the larger
program to eventually build analytical waveform models
for the generic spinning, eccentric BBH system. The known
integrability at 1.5PN implies the existence of action-angle
variables. We derive four (out of the five) action variables,
with the fourth one being in the form of a PN series. These
action variables are closely related to the Keplerian-like

parametrization for the generic system at 1.5PN recently
presented in Ref. [35] (that work omitted the 1PN orbital
terms from the Hamiltonian for simplicity, but the approach
will work with the 1PN terms included). We then proceed
to 2PN, where in the spirit of perturbation theory we add an
ansatz for PN corrections to the 1.5PN exactly commuting
constants, andwe solve for these corrections to find the 2PN-
valid constants. We work with the full 2PN Hamiltonian
rather than removing the spin-spin interaction. This shows
(via the Liouville-Arnold theorem to be discussed later) that
the generic BBH is integrable at 2PN, in the sense of
perturbation theory. That is, these 2PN constants only
mutually commute up to sufficiently high-order errors.
This also implies that the action variables can be pushed
to 2PN, so an analytical orbital solution is possible at this
order. We finally revisit the criteria for integrability by
analyzing the timescales for “constants” to vary when
evolved with the next order Hamiltonian. With this more
physical criterion, S⃗eff · L⃗ actually varies at the 1PN time-
scale, despite being a 1.5PN constant of motion. The 2PN
constants we construct only vary at 2.5PN order, justifying
that the BBH system is integrable at 2PN order.
The existence of these perturbative constants is not in

conflict with the presence of chaos in phase space. From the
KAM theorem, most invariant tori will remain unbroken
under a sufficiently small perturbation. Resonant tori will
be the first to break up into chaotic regions. Our constants
are applicable to unbroken tori, which according to
Ref. [24] fill the vast majority of phase space.
The layout of this paper is as follows. In Sec. II we

introduce preliminaries like post-Newtonian power count-
ing, Liouville integrability, the Hamiltonian phase space
and Poisson bracket structure for the BBH problem, and the
2PN Hamiltonian. In Sec. III, we compute four out of five
action variables up to 1.5PN by integrating along closed
loops on the invariant tori in phase space. In Sec. IV, we
give an algebraic definition of PN involution and integra-
bility. We then describe how to systematically construct
appropriate ansätze for corrections to add to constants of
motion, reducing the problem to linear algebra. Finally we
solve for the corrections and present the five approximate
constants of motion, which are in involution up to errors
that can be ignored at 2PN. In Sec. V, we present our
discussion, ideas for future work, and conclude.

II. THE SETUP

We start by describing the canonical variables and the
dynamical setup used to study eccentric binaries of black
holes with precessing spins in the PN approximation. The
BBH system under consideration is schematically dis-
played in Fig. 1, using its center-of-mass frame [41] to
define the separation vector R⃗≡ R⃗1 − R⃗2 and the linear
momenta P⃗≡ P⃗1 ¼ −P⃗2 of a binary of black holes with
masses m1 and m2. With these quantities, we build the
Newtonian orbital angular momentum L⃗≡ R⃗ × P⃗, and the
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total angular momentum J⃗ ≡ L⃗þ S⃗1 þ S⃗2 which includes
the BH spins S⃗1 and S⃗2. The individual BH masses are m1

and m2 and the total massM ≡m1 þm2. Additionally, the
reduced mass is given by μ≡m1m2=M and the symmetric
mass ratio ν≡ μ=M is a function of the reduced mass. The
constants σ1 ≡ 1þ 3m2=4m1 and σ2 ≡ 1þ 3m1=4m2 are
used to build the effective spin

S⃗eff ≡ σ1S⃗1 þ σ2S⃗2: ð1Þ

This should not be confused with other common spin
parameters used in the literature [32,38,42], namely the
projected effective spin χeff ≡ ðm1χ1 þm2χ2Þ=M, or the
combination S⃗0≡ð1þm2=m1ÞS⃗1þð1þm1=m2ÞS⃗2. Racine
found [38] that L⃗ · S⃗0 is conserved under the Newtonian-
orbit average of the 2PN equations of motion; we will
discuss this further in Sec. IV.
Even when our approach throughout this paper is purely

Hamiltonian, we may define a velocity v⃗≡ P⃗=μ since the
ratio v2=c2 is often used as a PN expansion parameter.
Latin indices i ¼ 1, 2, 3 denote the ith Cartesian compo-
nent of a vector, and we employ the Einstein summation
convention unless stated otherwise.
The spin angular momentum for a Kerr black hole

labeled A is

S⃗A ¼ χ⃗A
Gm2

A

c
; ð2Þ

where jχ⃗j ≤ 1 so that there are no naked singularities.
Notice the factor of 1=c, which affects the post-Newtonian
order of any terms containing spins; this will be detailed in
Secs. II A and II D.

A. Counting post-Newtonian orders

Post-Newtonian counting applies to any function y of
phase-space variables, which we expand as an asymptotic
series using a certain PN parameter x, i.e., y ¼ P

k ykx
k.

Depending on context, one of v, an orbital frequency ω, or
R is used as the expansion parameter. Specifically, from
Newtonian order, we may define x to be any of

x≡ v2

c2
;

�
GMω

c3

�
2=3

; or
GM
c2R

: ð3Þ

Since we have kept the powers of c explicitly, we can see
that any choice is equivalent to counting powers of c−2.
This latter observation is important when spins are
involved, since spin includes 1=c [see Eq. (2)] but does
not scale with v, ω, or R.
Let a phase-space function y be written in the form

y ¼ xm
X∞
k¼0

Ykxk: ð4Þ

In Eq. (4), Y0 ≠ 0 is the first nonvanishing term in the
expansion, and we would say that the term Yk is kPN orders
higher than Y0, or is of “relative kPN order.” For example,
when including spins in the total angular momentum,

J⃗ ¼ L⃗þ S⃗1 þ S⃗2 ¼ L⃗

�
1þO

�
v
c

��
; ð5Þ

we see that spins are 0.5PN orders higher than orbital
angular momentum.

B. Hamiltonian dynamics on a symplectic manifold

From now on, we will follow the Hamiltonian formu-
lation to study the BBH system; we will shortly review its
algebraic structure [33,34]. Hamiltonian dynamics takes
place on an (even-dimensional) symplectic manifold. A
smooth manifold equipped with a closed nondegenerate
differential two-form Ω (the symplectic form) is called a
symplectic manifold. The algebra of nonvanishing Poisson
brackets (PBs) between the phase-space variables
Ri; Pj; Si1, and Si2 is given by

fRi; Pjg ¼ δij and fSiA; SjBg ¼ δABϵ
ij
kSkA: ð6Þ

Notice that all brackets with spins preserve the norms jS⃗Aj,
so although the spin vectors are three-dimensional, each is
restricted to evolve on the surface of a two-sphere. This
makes the phase space a ten-dimensional manifold.
Time evolution under a Hamiltonian H of any phase-

space quantity fðQi;PiÞ is given by _f ¼ ff;Hg, whereQi,
Pi collectively denote canonical coordinates on phase
space. The standard rules of sum, product, anticommuta-
tivity, and chain rule make the PBs in Eq. (6) sufficient to

FIG. 1. Schematic setup of a precessing black hole binary.
Positions, velocities, and momenta are all defined as Newtonian
vectors built from the center of mass.
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evaluate the PB of any quantities built from Qi, Pi.
1 The

remainder of this section is for readers interested in the
symplectic structure, relevant to computing action-angle
variables, the subject of Sec. III.
Our symplectic manifold is the product of the six-

dimensional phase space of orbital dynamics, and two
two-dimensional spin phase spaces, each of which is an S2

(the only Sn that admits a symplectic structure). The
symplectic form is correspondingly a sum over the three
manifolds. Commonly, symplectic forms are presented in
Darboux coordinates,

Ω≡X
i

dPi ∧ dQi: ð7Þ

This is possible on the orbital phase space, which is a
cotangent space, T�R3, and admits the globally valid
canonical form Ωorb ¼ dPi ∧ dRi.
However, there is no globally valid Darboux coordinate

system on the two-sphere. The symplectic structure on the
S2 is unique up to scaling and is proportional to the
standard area element, Ωspin

ij ∝ ϵij; the normalization is
fixed to agree with Eq. (6). Thinking of the S2 as an
embedded submanifold in spin space, the inverse symplec-
tic form can be written as

ðΩ−1
spinÞij ¼ Skϵkij: ð8Þ

This representation should make it clear that the symplectic
form is SO(3) covariant. An equivalent representation
is Ωspin ¼ dSz ∧ dϕ, where ϕ is the azimuthal angle
of the spin about the z axis. The total symplectic form
is thus

Ω ¼ dPi ∧ dRi þ dS1z ∧ dϕ1 þ dS2z ∧ dϕ2: ð9Þ

As noted above, it is SO(3) covariant, which will be useful
in evaluating some action integrals. Finally let us note that
whileΩorb is c-independent,Ω−1

spin carries one power of spin
[seen in Eqs. (6) and (8)], and spin carries a power of 1=c.
Orbital and spin PBs thus change PN orders in different
ways, which will be important in Sec. IV.

C. Integrable systems

A 2n-dimensional Hamiltonian system is said to be
integrable in the Liouville sense if there exist n independent
phase-space functions Fi which are all mutually Poisson
commuting, fFi; Fjg ¼ 0. These functions are said to be

“in involution” [33,34,43].2 Bound systems that are inte-
grable admit a canonical transformation to a set of phase-
space coordinates called action-angle variables. The
evolution of such systems is trivial in action-angle varia-
bles, so there cannot be any chaos or phase-space mixing;
all bound orbits are multiply periodic. Action-angle vari-
ables are ideal for studying perturbations of integrable
systems. For our purposes, we would like to treat terms of
higher PN orders as a perturbation of an integrable system.
A level set of all the constants of motion must be an n-

dimensional torus Tn [33]. The actions J i can be found via
certain coordinate-independent integrals along n closed
loops restricted to the tori (holding constant each of the Fi).
If global Darboux coordinates are possible, the action
integrals are [33,34,43]

J k ¼
1

2π

I
Ck

X
i

PidQi: ð10Þ

Here Ck is the kth loop on the torus. The set of n loops must
be in different homotopy classes (more precisely, the
homotopy classes form an integer lattice Zn, and our n
loops’ homotopy classes must span the lattice). The one-
form integrand of Eq. (10) is a symplectic potential,
θ ¼ P

i PidQi, whose exterior derivative gives the sym-
plectic two-form, Ω ¼ dθ. Since Ω is closed, it is straight-
forward to show that the J k depend only on the homotopy
class, and not on the choice of loop in that class.
However, on some symplectic manifolds, including the

two-sphere,Ω is not an exact form,Ω ≠ dθ. This makes the
action integrals Eq. (10) ambiguous. One approach is to
make a global choice of how to “cap” the loops to another
reference loop, and thus perform integrals of Ω over two-
surfaces. This ambiguity is benign, as it will only shift the
action integrals by global constants.3

To complete the coordinate system, there will be n angle
variables ϕi which are conjugate, i.e., fϕi;J jg ¼ δij and
all other PBs vanishing. Each angle variable ϕi runs from
0 to 2π as one follows the flow d=dϕi ¼ f−;J ig generated
by its conjugate action. We will not construct the angle
variables in this work.

D. 2PN Hamiltonian with spins included

To write the Hamiltonian at different post-Newtonian
orders, we adopt the convention that HnPN stands for the
part of the Hamiltonian which is of nPN order relative to
the leading Newtonian order term (dubbed HN). The

1If computing PBs by hand, the following derived identities are
also useful: fLi; Ljg ¼ ϵijkLk; and, for any scalar function f,
ff; L⃗g ¼ P⃗ ×∇Pf þ R⃗ ×∇Rf, where the three-vector ∇Pf has
components ∂f=∂Pi, and similarly for ∇Rf.

2More precisely, the Liouville-Arnold theorem states that, on a
2n-dimensional symplectic manifold, if ∂tH ¼ 0 and there are n
independent phase-space functions Fi in mutual involution, and if
level sets of these functions form a compact and connected
manifold, then the system is integrable.

3We thank Samuel Lisi for discussion of the finer points of this
ambiguity.
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Hamiltonian up to 2PN of the BBH system in the center-of-
mass frame is

H ¼ HN þH1PN þH1.5PN þH2PN þOðc−5Þ; ð11Þ
where Oðc−5Þ represents corrections of order 2.5PN and
higher. To simplify we will use the scaled quantities
r⃗≡ R⃗=GM, p⃗≡ P⃗=μ, and the radial component of the
scaled momentum is r̂ · p⃗, with the implicit understanding
that the “hatted” version of any vector in this paper is the
corresponding unit vector. The vector p⃗ has units of
velocity, and 1=r has units of velocity squared, enabling
the easy reading of PN orders. The individual contributions
are [24,32,44–46]

HN ¼ μ

�
p2

2
−
1

r

�
; ð12Þ

H1PN ¼ μ

c2

�
1

8
ð3ν − 1Þp4 þ 1

2r2

−
1

2r
½ð3þ νÞp2 þ νðr̂ · p⃗Þ2�

�
; ð13Þ

H1.5PN ¼ 2G
c2R3

S⃗eff · L⃗; ð14Þ

H2PN ¼ μ

c4

�
−

1

4r3
ð1þ 3νÞ þ 1

16
ð1 − 5νþ 5ν2Þp6

þ 1

2r2
ð3νðr̂ · p⃗Þ2 þ ð5þ 8νÞp2Þ

þ 1

8r
½−3ν2ðr̂ · p⃗Þ4 − 2ν2ðr̂ · p⃗Þ2p2

þ ð5 − 20ν − 3ν2Þp4�
�
þHSS;2PN: ð15Þ

The 2PN spin-spin interaction is

HSS;2PN ¼ HS1S1 þHS2S2 þHS1S2; ð16Þ

HS1S1 ¼
G
c2

m2

2m1

Si1S
j
1∂i∂jR−1; ð17Þ

HS2S2 ¼
G
c2

m1

2m2

Si2S
j
2∂i∂jR−1; ð18Þ

HS1S2 ¼
G
c2

Si1S
j
2∂i∂jR−1; ð19Þ

where ∂i∂jR−1 ¼ ð3R̂iR̂j − δijÞ=R3 is symmetric and
trace-free.
Notice that since H1.5PN ∼Oðc−2SÞ and, as previously

mentioned, spin goes as S∼Oðc−1Þ, so indeed H1.5PN∼
Oðc−3Þ. Likewise, HSS;2PN ∼Oðc−2S2Þ ∼Oðc−4Þ, justify-
ing the claimed PN orders of these terms.

III. ACTION VARIABLES AT 1.5PN ORDER

To start, we will focus on integrability at 1.5PN,
truncating the Hamiltonian to

H ¼ HN þH1PN þH1.5PN þOðc−4Þ: ð20Þ

As has been known for many years now [32], truncating at
this order gives a ten-dimensional phase space with five
constants of motion Fi in mutual involution, namely, the set
fFig ¼ fH; J2; Jz; L2; S⃗eff · L⃗g. At this level, the involu-
tion is “exact,” for the associated PBs vanish exactly. This
involution can be verified by the Mathematica notebook
which accompanies this article [47], which makes use of
the xAct/xTensor suite [48,49].
This involution implies the existence of action-angle

variables. We will construct four out of five action variables
in this section. For each action variable J k, we will
consider a different loop Ck tangent to the five-torus given
by constancy of the five Fi and perform the (capped) loop
integral of Eq. (10).

A. Loops generated by J2; Jz; and L2

We find three of these loops by following the flow of the
generators J2; Jz, and L2. To demonstrate, let d=dλ1 ¼
f−; L2g be the vector field tangent to the flow generated by
L2. Notice that this flow makes R⃗ and P⃗ rigidly rotate about
the constant L̂, while the two S⃗A are not moved. Thus we
have (with V⃗ representing either R⃗ or P⃗)

dV⃗
dλ1

¼ fV⃗; L2g ¼ 2L⃗ × V⃗;
dS⃗A
dλ1

¼ 0: ð21Þ

As this is a rigid rotation, the phase-space flow will
complete one cycle as the parameter λ1 increases by
Δλ1 ¼ 2π=j2L⃗j. Similarly, let d=dλ2 ≡ f−; Jzg. This time
all vectors rotate rigidly about the ẑ axis,

dV⃗
dλ2

¼ ẑ × V⃗; ð22Þ

with V⃗ representing any of R⃗; P⃗, and S⃗A. After λ2 increases
by Δλ2 ¼ 2π, the spin and orbital phase-space variables
will close the loop. Third, with d=dλ3 ≡ f−; J2g, all
vectors rigidly rotate around the constant Ĵ,

dV⃗
dλ3

¼ 2J⃗ × V⃗; ð23Þ

with V⃗ again representing any of R⃗; P⃗, and S⃗A. The phase-
space flow under d=dλ3 closes after the parameter λ3
increases by Δλ3 ¼ 2π=j2J⃗j.
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All three of these flows can be treated with the same
method. Since the symplectic forms on orbital and spin
phase spaces simply add, we treat the orbital and spin
components one at a time and add the final results,

J ¼ J orb þ J spin; ð24Þ

J orb ≡ 1

2π

I
C

X
i

PidRi; ð25Þ

and similarly for the spin sector, except that the spin
integral is “capped” so as to become an area integral
of Ωspin.
We write d=dλ for any of the three flows and use n⃗ to

denote the fixed vector about which others rotate, n⃗ being
one of f2L⃗; ẑ; 2J⃗g. The loop closes after the parameter
change of Δλ ¼ 2π=jn⃗j. This is illustrated in Fig. 2. The
only exception is that the spin vectors are not moved by
d=dλ1, but since we break the action integral up as in
Eq. (24), this is simple to implement. First, when we
parametrize C using λ, the J orb integral becomes

J orb ¼ 1

2π

Z
Δλ

0

Pi
dRi

dλ
dλ ¼ 1

2π

Z
Δλ

0

P⃗ · ðn⃗ × R⃗Þdλ

¼ 1

2π

Z
Δλ

0

n⃗ · L⃗ dλ ¼ n̂ · L⃗: ð26Þ

The second equality comes from evaluating the flow
for dRi=dλ; the third equality comes from permuting the
triple product. The last equality arises since in all three
cases, L⃗ rigidly rotates around n⃗ (because R⃗ and P⃗ also
rigidly rotate around n⃗), so the dot product is constant
around the loop.
For the spin sector, we choose to cap each curve C by the

equatorial plane (in spin space); i.e., the oriented area
integral will be bounded between the SzA ¼ 0 plane and C.

One can show that this gives the same result as the ordinary
integral (for one of the two spins)

J spin
A ¼ 1

2π

I
SzAdϕA: ð27Þ

While this integral does not seem to be SO(3) covariant,
recall that the symplectic form does have this symmetry, as
seen in Eq. (8). To take advantage of this symmetry, we call
n̂ a new axis ẑ0, and instead compute 1

2π

H
Sz0Adϕ

0
A. Since

each S⃗A rigidly rotates around n̂, the integral in one spin
sector will simply be

J spin
A ¼ Sz0A ¼ n̂ · S⃗A: ð28Þ

Combining, we see for the generators J2 and Jz,

J ¼ n̂ · ðL⃗þ S⃗1 þ S⃗2Þ ¼ n̂ · J⃗: ð29Þ

Meanwhile, for L2, only the orbital sector contributes, and
we have J ¼ n̂ · L⃗. This gives us our first three action
integrals,

J 1 ¼ jJ⃗j; J 2 ¼ Jz; J 3 ¼ jL⃗j: ð30Þ

B. Loop in R-PR space

To compute a fourth action variable, we find a loop on
the five-torus (of constant values of the Fi mutually
commuting phase-space functions) in a plane parallel to
the R-PR plane. We will denote the constant values of the
Fi functions with overbars, i.e., taking the values
H ¼ Ē; L2 ¼ L̄2, and L · Seff . We define PR to be the
momentum conjugate to the radial separation R,

PR ≡ P⃗ · R̂: ð31Þ

To show how to construct this loop, we eliminate from the
1.5PN Hamiltonian all dependence except for R;PR, and
the values of constants. This starts from the definition of
L⃗ ¼ R⃗ × P⃗, to get

L2 ¼ R2P2 − ðP⃗ · R⃗Þ2; ð32Þ

P2 ¼ P2
R þ L̄2

R2
: ð33Þ

Replacing P2 using this relation will eliminate the angular
components of P⃗ from the 1.5PN Hamiltonian. To compact
the notation, we will again use the scaled variables r, p,
with pr ≡ PR=μ, and define the shorthand

FIG. 2. Configuring the integration paths for the action inte-
grals. Left panel: Orbital loops corresponding to different
equivalence classes while having the same topology. Right panel:
Spin integration area “capped” by the equatorial plane, in orange,
and the three-dimensional projection of the loop C in red. The
angle ϕ0 shown in the zoomed patch coincides with the azimuthal
angle ϕ in Fig. 1 when n̂ is parallel to ẑ.
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ek ≡ p2
r

2
þ L̄2

2μ2R2
; ð34Þ

which is the Newtonian kinetic energy per reduced mass (and also has units of v2). Then evaluating the 1.5PN Hamiltonian
on this torus, we find

Ē
μ
¼ ek −

1

r
þ 1

c2

�
1

2r2
− ðνþ 3Þ ek

r
−
νp2

r

2r
þ 1

2
ð3ν − 1Þe2k

�
þ 2G
c2μR3

L · Seff : ð35Þ

This equality demonstrates that we can solve for PRðRÞ in terms of R; Ē; L̄, and L · Seff—thus making a loop while staying
tangent to the torus. We solve for P2

R perturbatively in powers of 1=c2, finding

P2
R ¼ 2μĒ þ ð1 − 3νÞ

c2
Ē2 þ 2GMμ½μþ ð4 − νÞ Ē

c2�
R

þ ½−L̄2 þ ðGMμÞ2
c2 ðνþ 6Þ�
R2

−
μGðL̄2 þ 4L · SeffÞ

R3c2
þOðc−4Þ: ð36Þ

Here we have collected terms by powers of R−1, in anticipation of performing a Sommerfeld integral, following Damour
and Schäfer [41]. This momentum enters into the action integral, where the loop is restricted to the ðR;PRÞ plane,

J 4 ¼
1

2π

I
PRdR ¼ 2

2π

Z
Rmax

Rmin

�
Aþ 2B

R
þ C
R2

þ D
R3

�
1=2

dR; ð37Þ

where the coefficients A, B,C,D are constants along this loop, to be read directly from Eq. (36). The factor of 2 comes since
the loop runs from one turning point, Rmin, to the other, Rmax, and then back.
To evaluate this integral, we can use the results from Sec. 3 (or Appendix B) of [41]. The result is in terms of the torus

constants Ē; L̄, and L · Seff . We promote these back to their respective phase-space functions, giving

J 4 ¼ −LþGMμ3=2ffiffiffiffiffiffiffiffiffiffi
−2H

p þGM
c2

�
3GMμ2

L
þ

ffiffiffiffiffiffiffiffi
−H

p
μ1=2ðν − 15Þffiffiffiffiffi

32
p −

2Gμ3

L3
S⃗eff · L⃗

�
þOðc−4Þ: ð38Þ

Unlike the first three actions, the fourth action is not
“exact” at 1.5PN, but rather we have presented it as a PN
series, just as the radial action in Ref. [41]. This is
consistent with the 1.5PN Hamiltonian itself being a
truncated PN series.
The four action integrals we computed are functionally

independent, as can be seen by their different dependence
on the original mutually commuting phase-space functions
H; J2; Jz; L2, and S⃗eff · L⃗. This corresponds to their loops
(all of which are tangent to a torus) being in linearly
independent homology classes. The calculations for the
fifth action (both as a PN series and “exact” at the 1.5PN
order) are quite lengthy, so we will present them in
future work.
It is worth noting that at 1.5PN order, spin effects enter

the action integrals, as can easily be seen in Eqs. (30) and
(38). This is relevant to the method of torus-averaging,
which is used in canonical perturbation theory [34,50].
Since the actions depends on spin, it is easy to see that
torus-averaging will differ from orbit-averaging (over
Newtonian orbits) which has been used extensively in
the literature [23,37–40]. We expect torus-averaging to be
more accurate at 1PN and higher orders.

IV. INTEGRABILITY AT 2PN

The spirit of the post-Newtonian method is perturbation
theory in powers of 1=c, which opens the door for
canonical perturbation theory applied to Hamiltonian
dynamics. As the KAM theorem dictates [34,50], when
we add a small perturbation to an integrable system, and
this perturbation breaks integrability, the perturbed motion
is still multiply periodic and restricted to n-tori, except for
resonant tori where chaos ensues.4

We can take advantage of perturbation theory by treating
the 2PN system as a perturbation upon the 1.5PN
Hamiltonian. We find deformations to the 1.5PN constants
of motion such that the 2PN system is integrable in the
perturbative sense. This method can be pushed to higher
PN order, but here we only demonstrate it at the first order
where “exact” integrability is broken, namely at the 2PN
order. In Sec. IVA we explain what we mean by perturba-
tive integrability, and in Sec. IV B the method for finding

4The KAM theorem actually gives more precise estimates for
the ϵ dependence of the chaotic component of phase space; see
Ref. [34] for more details.
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the deformations to the constants. In Sec. IV C we give the
results for the deformed constants and discuss some subtle
issues in PN integrability in Sec. IV D.

A. Perturbative integrability

To make the definition of perturbative integrability
precise, we will introduce the “dominant PN order of”
symbol [−]. If a phase-space quantity is asymptotic to c−2m,
then it has dominant PN order m, i.e.,

f ∼ FðR; P; χÞc−2m ↔ ½f�≡m; ð39Þ
where FðR;P; χÞ is a c-independent phase-space function
and we employ the ∼ symbol of asymptotic analysis [51].
The algebra of formal power series tells us how [−]
interacts with multiplication, addition, and thus Poisson
brackets. Multiplication is simple,

½fg� ¼ ½f� þ ½g�: ð40Þ
When two phase-space functions have different dominant
orders, addition is also simple,

½f þ g� ¼ minð½f�; ½g�Þ if ½f� ≠ ½g�: ð41Þ

However, if f ∼ −g, then there will be a cancellation in the
dominant order of f þ g, and the dominant order of the sum
will be higher than minð½f�; ½g�Þ. Such a cancellation can
happen in Poisson brackets and is necessary for our
algebraic definition of perturbative integrability.
In perturbation theory, equalities only need to be

satisfied up to some sufficiently small error terms. Thus
for perturbative integrability, we will replace fFi; Fjg ¼ 0

with conditions fFi; Fjg ¼ Oðc−2pÞ, for some appropriate
PN orders p. If we want perturbative integrability at relative
qPN order, we know we want each fFi; Fjg to be at least a
factor of c−2ðqþ1=2Þ higher than some phase-space quantity,
but what is that quantity?
To answer this question, we define the function

DNCðf; gÞ which measures what would be the “expected”
dominant PN order of ff; gg if there was no cancellation in
the leading order (“dominant noncommutation”). This
expected order has two cases: corresponding to the leading
orders of f and g both contain a common spin vector or not.
This is because the (inverse) symplectic form for spins itself
carries a power of S and thus c−1 [see Eq. (8)]. Thus we
define

DNCðf; gÞ ¼
� ½f� þ ½g� − 1

2
; both f and g contain spin at dominant order;

½f� þ ½g�; otherwise:

Iff and g donot have cancellation at the leadingorder,we see
that DNCðf; gÞ ¼ ½ff; gg�. For example, DNCðRi; PiÞ ¼ 0,
but DNCðSiA; SjAÞ ¼ 1=2 for i ≠ j.
If ff; gg ¼ 0 exactly, then f and g are said to be in

involution up to infinite order. Otherwise we say that f and
g are in involution “up to qPN order” when the two
equivalent conditions hold,

ff; gg ∼Oðc−2ðDNCðf;gÞþqþ1
2
ÞÞ; ð42aÞ

½ff; gg� > DNCðf; gÞ þ q: ð42bÞ

As a consistency check, notice that for the previous
examples ðRi; PiÞ and ðSiA; SjAÞ with i ≠ j, each pair is
not in involution even at the leading (0PN) order, as would
be expected. Now we define a “qPN constant of motion” to
be a quantity which is in involution with the qPN
Hamiltonian up to at least qPN order. Finally, we define
qPN perturbative integrability in a 2n-dimensional phase
space when we have n independent phase-space functions
(including the qPN Hamiltonian) which are in mutual
involution up to at least qPN order. We will revisit this
definition further in Sec. IV D and see that it has a
shortcoming.

B. Method of finding deformations

We now construct perturbative constants of motion up to
2PN. Note that J2 and Jz always remain exact constants of
motion, at any order, for an SO(3)-invariant Hamiltonian.
Along with the Hamiltonian, they form a set of three
independent mutually commuting constants of motion. We
need to add two more quantities to this list to establish
integrability. We propose that the two required constants of
motion are perturbative deformations of the 1.5PN con-
stants of motion, L2 and S⃗eff · L⃗, namely

fL2 ¼ L2 þ δL2; ð43Þ

gSeff · L ¼ S⃗eff · L⃗þ δðS⃗eff · L⃗Þ; ð44Þ

where δL2 and δðS⃗eff · L⃗Þ are higher-PN corrections that we
must find. For every pair, we want involution up to 2PN
order [q ¼ 2 in Eq. (42)]. The dominant orders of each of

these functions are ½fL2� ¼ ½H� ¼ 0 and ½ gSeff · L� ¼ 1
2
.

Therefore, to satisfy 2PN perturbative integrability, we
require
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ffL2; Hg ∼Oðc−5Þ; ð45aÞ

f gSeff · L;Hg ∼Oðc−6Þ; ð45bÞ

f gSeff · L;fL2g ∼Oðc−6Þ; ð45cÞ

where H is the 2PN Hamiltonian.
Satisfying these integrability conditions amounts to

finding the deformations δL2 and δðS⃗eff · L⃗Þ, which both
proceed following the same approach. First, the PN orders
that are required to appear in a deformation are identified.
Then we construct an ansatz for the deformation out of
geometrical objects at these required PN orders times some
coefficients to be determined by Eqs. (45). This turns the
problem into a systematic enumerative algebra problem.
At first glance it may seem that this procedure is not

systematic, as there are an infinite number of terms that
could appear in such an ansatz at fixed PN order, but this is
not true. First, the only quantities that may appear are
geometric objects transforming covariantly under SO(3)
rigid rotations:

(i) the metric tensor δij (Kronecker delta),
(ii) Levi-Civita tensor (not the symbol) ϵijk,
(iii) the position vector R⃗, its norm R, and the unit radial

vector R̂≡ R⃗=R,
(iv) momentum vector P⃗, and
(v) spin vectors (S⃗1, S⃗2).

In practice, it is simpler to construct such ansätze from R̂
and powers of the scalar R, rather than considering R⃗.
SO(3) covariance requires that these objects automatically
commute with J2 and Jz. The types of terms allowed in a
deformation have the same tensorial character and parity
(scalar, pseudoscalar, vector, etc.) as the quantity being
corrected. While negative powers R−k can appear in PN
expressions, negative powers of P or S do not. Now, if we
choose a maximum operator order (number of tensors
multiplied together), there are only a finite number of
combinations that can be built at each PN order and
operator order. Now the problem is indeed enumerative:
if a solution is not found, increase the operator order and
try again.
Let us demonstrate by using fL2 as an example. First, we

determine the PN orders necessary for the ansatz of the
deformation δL2. Expanding Eq. (45a),

ffL2; Hg ¼ fL2; H2PNg þ fδL2; HNg
þ fδL2; H1PN þH1.5PN þH2PNg;

∼Oðc−5Þ: ð46Þ

The noncommutation in the first term on the right-hand side
is only with the spin-spin term, since L2 commutes with the
orbital part,

fL2; H2PNg ¼ fL2; HSS;2PNg
∼OðS2c−2Þ ∼Oðc−4Þ: ð47Þ

This is the dominant error that must be canceled by the
terms involving δL2, which we see must involve spins. The
bracket of δL2 with the Hamiltonian also follows PN
ordering and is dominated by fδL2; HNg, with the other
terms being higher PN. One must be careful to check what
happens with the spin terms, which potentially reduce PN
orders: for example, since δL2 has spins in its leading order,
fδL2; H1.5PNg is only 1PN order higher than fδL2; HNg,
rather than 1.5PN. Therefore this condition simplifies to

fL2; HSS;2PNg þ fδL2; HNg ¼ 0; ð48Þ

with the equality being exact. To satisfy this, δL2 will need
to contain two spin factors in the leading order, which by
inspection must be δL2 ∼OðS2c−2Þ.
To build an appropriateOðS2c−2Þ ansatz for δL2, we note

from Eq. (3) that a factor of 1=c2 should accompany either
two powers of p⃗≡ P⃗=μ or one power of 1=R, and any
number of powers of R̂. Since L2 is parity even, we will not
use ϵijk to construct the ansatz for δL2: an odd number of
ϵ’s makes a parity odd term, and an even number can be
written in terms of δij. This yields an ansatz containing
terms of the form

δL2 ⊃
�
1

c2
SiAS

j
BP

kPlR̂mR̂n|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
19 contractions

;
1

Rc2
SiAS

j
BR̂

kR̂l|fflfflfflfflfflffl{zfflfflfflfflfflffl}
6 contractions

�
: ð49Þ

Here we mean to take all possible contractions of the two
tensorial forms, where the indices ðA;BÞ label spins in the
same way as in Sec. II. This leads to 19 possible
contractions involving two factors of P⃗, and 6 contractions
without P⃗, giving us altogether 25 terms in our most
general ansatz for δL2. Since we are taking contractions, the
use of the metric tensor δij is implicit in our ansatz
construction. Our ansatz for δL2 then consists of a sum
of all these 25 terms with coefficients to be solved for
demanding that Eq. (48) be true.
One can employ similar lines of reasoning to construct

an ansatz for δðS⃗eff · L⃗Þ and solve for the coefficients so that
Eq. (45b) is satisfied, although it is a more complicated case
than for δL2. Instead of Eq. (48), this time we demand that
Eq. (57) be satisfied in the next section. Finally, there may
be additional constraints on the terms in the ansätze arising

from the requirement that the Poisson bracket ffL2; gSeff · Lg
must also vanish to the required order, Eq. (45c). That is how

we finally arrive at the desired fL2 and gSeff · L. We formed
sufficiently general ansätze using the AllContractions

and MakeAnsatz commands of the Mathematica package
xTras [52], which works in the xAct/xTensor suite [48,49].
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Our result may be verified by the Mathematica notebook
which accompanies this article [47].

C. The deformed constants

Following the above procedure to find a deformation to
L2, we write this deformation as

fL2 ¼ L2|{z}
0PN

þ δL2|{z}
2PN

: ð50Þ

For brevity we will define the symmetric tensor

hij ≡ pipj

2
−
rirj

r3
; ð51Þ

where we again used the scaled variables p⃗≡ P⃗=μ,
r ¼ R=GM. Notice that hij has units of v2 and that the
trace is

h≡ δijhij ¼ HN=μ: ð52Þ

Then we can write our deformation as

δL2 ¼ −2ν
c2

�
m2

m1

Si1S
j
1hij þ Si1S

j
2

�
hij − δij

h
2

�
þ ð1 ↔ 2Þ

�
:

ð53Þ

We are also free to add arbitrary constants times S21h=c
2

and S22h=c
2 without affecting integrability.

Proceeding similarly for S⃗eff · L⃗, we decompose the
deformation as

gSeff · L ¼ S⃗eff · L⃗|fflfflffl{zfflfflffl}
0PN

þ δ1ðS⃗eff · L⃗Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0.5PN

þ δ2ðS⃗eff · L⃗Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1.5PN

: ð54Þ

The two deformations are

δ1ðS⃗eff · L⃗Þ ¼
1

4
S⃗1 · S⃗2; ð55Þ

δ2ðS⃗eff · L⃗Þ ¼
1

c2

�
σ1

m2
2

M2
Si1S

j
1hij þ

1

8
ð3þ 2νÞSi1Sj2hij þ ð1 ↔ 2Þ

�
: ð56Þ

We are also free to add arbitrary constants times S21h=c
2; S22h=c

2, and ðS⃗1 · S⃗2Þh=c2 without affecting integrability. The
cancellations happen as

fS⃗eff · L⃗; HSS;2PNg|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
both orbital and spin PBs;
Oðc−4Þ and Oðc−5Þ

þ fδ1ðS⃗eff · L⃗Þ; H1.5PNg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
spin PBs;
Oðc−4Þ

þ fδ1ðS⃗eff · L⃗Þ; HSS;2PNg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
spin PBs;
Oðc−5Þ

þ fδ2ðS⃗eff · L⃗Þ; HNg|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
orbital PBs;
Oðc−4Þ

¼ 0; ð57Þ

with the equality being exact, where HSS;2PN is defined in
Eq. (16). Below every Poisson bracket, we indicate both the
PN orders arising and what kind of PBs (orbital or spin) are
needed to expand each term. With these corrections, we
have fulfilled the required level of commutation given in
Eqs. (45). In fact, we slightly exceeded this goal, achieving

ffL2; Hg ∼Oðc−6Þ; ð58aÞ

f gSeff · L;Hg ∼Oðc−6Þ; ð58bÞ

f gSeff · L;fL2g ∼Oðc−7Þ: ð58cÞ

Therefore, along with the 2PN Hamiltonian H; J2, and Jz,

the deformed constants fL2 and gSeff · L now form a set of
five independent, mutually commuting constants of motion

at 2PN order, thereby establishing the integrable nature of
the BBH system at this order.
It is worth comparing our results to the widely used

results based on orbit-averaging (over a Newtonian orbit)
[23,37–40]. Racine found [38] that the combination S⃗0 · L⃗
is conserved by what we call hd=dtiN , the Newtonian-orbit
average of the 2PN EOMs. Here S⃗0 ≡ ð1þm2=m1ÞS⃗1 þ
ð1þm1=m2ÞS⃗2 was introduced by Damour [32]. Two
comments are in order. First, S⃗0 · L⃗ differs at its leading
order from S⃗eff · L⃗ and therefore gSeff · L. Since spins and L⃗
are all constants at Newtonian order, applying the
Newtonian-orbit average to form hS⃗eff · L⃗iN ¼ S⃗eff · L⃗ does
not recover S⃗0 · L⃗. Second, as mentioned at the end of
Sec. III, a more accurate average is not over the Newtonian
orbit, but on the phase-space torus formed by level sets of
the five constants of motion. The torus-average will already
differ at 1PN order from the Newtonian-orbit average.
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We can confirm using the 2PN Hamiltonian and averaging
over the Newtonian orbit the two independent equalities,


d
dt

�
N
S⃗0 · L⃗ ¼ 0;



d
dt

S⃗0 · L⃗

�
N
¼ 0: ð59Þ

However, we should expect that the torus-average will
differ. More precisely, with the 2PN Hamiltonian and no
averaging,

d
dt

S⃗0 · L⃗ ¼ OðS2c−2Þ ¼ Oðc−4Þ: ð60Þ

Thus while Newtonian-orbit averaging gives a cancellation
of this leading order, we expect the more accurate torus
average to be nonzero at the order


d
dt

S⃗0 · L⃗

�
T
¼ Oðc−6Þ: ð61Þ

Notice this is the same level of conservation that we
achieved in Eq. (58b), but our result is valid instanta-
neously, that is, without resorting to averaging.

D. PN constancy and integrability revisited

Our algebraic definition of PN involution and integra-
bility introduced in Sec. IVA has a shortcoming. To
understand this, let us examine the timescales on which
phase-space quantities vary. For some quantity f, when
evolved with the full nPN Hamiltonian HnPN (not the nPN
contribution to the Hamiltonian), we can approximate the
timescale of variation with

TnðfÞ≡ f
ff;HnPNg : ð62Þ

For example, the orbital (or Newtonian) timescale is

TN ≡ T0ðRiÞ ≈
ffiffiffiffiffiffiffiffi
R3

GM

r
: ð63Þ

Now, with the algebraic definition of PN integrability given
in Sec. IVA, S⃗eff · L⃗ is a 1.5PN constant of motion. But let
us examine the timescale of its variation, in units of the
orbital time. We cannot use H1.5PN for this, since S⃗eff · L⃗
and H1.5PN commute. The timescale of variation is con-
trolled by the 2PN Hamiltonian, and one can check

T2ðS⃗eff · L⃗Þ ∼O
��

v
c

�
−3
TN

�
; ð64Þ

implying that S⃗eff · L⃗ varies on a timescale that is only
1.5PN longer than TN , rather than the expected 2PN orders
longer. Therefore, S⃗eff · L⃗ is not a 1.5PN constant from the

criterion of comparing timescales, and the BBH system
cannot yet be called integrable at 1.5PN order despite the
existence of five exactly commuting constants at this order.
The key point is that HnPN may sometimes induce

variations in a quantity f at a timescale which is only
ðn − 1=2ÞPN orders larger than TN , rather than nPN orders
larger. As was emphasized in Secs. II A, II B, and IVA, this
happens because of the factor of c−1 in spin and the form of
the spin Poisson bracket. Therefore, to establish if a quantity
is a constant of motion on an nPN timescale will generally
involve examining the ðnþ 1=2ÞPN Hamiltonian.
To conservatively satisfy the timescale analysis, we

revise the earlier definition of qPN constancy and integra-
bility by using the next order, ðqþ 1=2ÞPN, Hamiltonian,
instead of the qPN Hamiltonian. However, we only
introduce relative qPN corrections to our deformed con-
stants. We have checked that the five quantities H; Jz;

J2;fL2, and gSeff · L (H now being the 2.5PN Hamiltonian
[46]) are also in mutual involution up to 2PN according to
our revised definition, even though the last two quantities
were derived in Sec. IV B by only considering the 2PN
Hamiltonian. This calculation is also verified in the
Supplemental Material to this article [47]. In terms of
timescales, we now satisfy

T2.5ð gSeff · LÞ ∼O
��

v
c

�
−5
TN

�
: ð65Þ

Hence, we have established the integrable nature of the
BBH system at one PN order higher (2PN) than what
was earlier known (1PN) on the basis of timescale of
variation.

V. DISCUSSION

In this paper, we studied the problem of integrability at
two levels: 1.5PN and 2PN. At 1.5PN, where exact
integrability had already been known [32], we evaluated
four (out of five) action variables, with the fourth one being
a perturbative PN series. At 2PN order, by adding correc-
tions to the 1.5PN mutually commuting constants of
motion, we constructed 2PN perturbatively commuting
quantities. This proves the integrable nature of the BBH
system at 2PN in a perturbative sense. Our construction
required us to propose appropriate definitions of PN
involution and integrability. Proving perturbative integra-
bility at 2PN and higher is more delicate than at 1.5PN,
since the 1.5PN commutation does not require perturbation
theory. We presented a systematic method to find higher-
PN corrections to mutually commuting constants of
motion, forming an ansatz by enumerating possible tensor
expressions, turning the problem into linear algebra. We
therefore expect our method to be useful in extending
integrability to even higher PN orders.
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By now a large number of authors have studied the
problems of integrability or chaos in the BBH system in
post-Newtonian theory, either numerically or analytically.
Importantly, while Hartl and Buonanno [24] did find chaos
in the PN BBH system, they found it is only present in a
small component of phase space. The constants of motion
we have constructed apply to the invariant tori in the
nonchaotic regions of phase space, i.e., the majority of the
volume. This improves the outlook for using perturbative
integrability as a tool for generating highly accurate and
efficient waveform models.
To employ integrability for efficient waveform model-

ing, the current work will have to be extended in a number
of natural ways. We plan to present the exact (at 1.5PN)
fifth action variable and its PN expansion in a future article,
also yielding all the frequencies of the system in closed
form. Work still needs to be done toward finding the angle
variables. These action-angle variables are related to the
recent Keplerian-like solution for the eccentric, spinning
BBH system at 1.5PN [35]. These action-angle variables
can be pushed to 2PN order and beyond via perturbation
methods. This will fail for the small chaotic region of phase
space, and more care will be needed near resonances.
This opens the possibility to construct an analytic

waveform model for the completely generic system, with-
out needing to e.g., orbit-average [23,37,38], precession-
averaging [5,6,39,40], or expand in powers of eccentricity

[53,54]. As discussed at the end of Sec. IV C, we expect the
time derivatives of the orbit-averaged constants to have
errors at relative 2.5PN order, when averaged over the true
orbits, rather than over Newtonian orbits. This is the same
level of error in the time derivatives of our instantaneous
constants, i.e., without needing to average. We hope to see
our integrability results applied to future analytical wave-
form models such as the Phenom family.
A difficulty will arise at 2.5PN order, where the

dynamics are no longer conservative. Starting at this order,
the “constants” of motion will now vary with time. One
possible approach will be the formalism of nonconservative
classical dynamics [55–58], which has a Hamiltonian
version. Even if the nonconservative approach proves
difficult, the conservative sector of the dynamics can still
be pushed to higher PN order and the time evolution of the
constants imposed afterwards through order reduction.
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