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Degenerate higher-order scalar-tensor (DHOST) theories are considered the most general class of scalar-
tensor theories with an additional scalar field. DHOST theories modify the laws of gravity even at galaxy
clusters scale hence affecting the weak lensing, x-ray, and Sunyaev-Zel’dovich observables. We derive the
theoretical expression for the lensing convergence κ and the pressure profile P of clusters in the framework
of DHOST theories and quantify how much they deviate from their general relativity counterparts.
We argue that combined measurements of κ, P, and of the electron number density ne can constrain both
the cluster parameters and some effective parameters of the DHOST theory. We carry on a Fisher matrix
forecasts analysis to investigate whether this is indeed the case considering different scenarios for the
spatial resolution and errors on the measured quantities.
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I. INTRODUCTION

Cosmic acceleration may be intriguingly taken as first
evidence of a failure in our understanding of gravity. Rather
than relying on standard general relativity (GR), one could
then consider departure from it (see, e.g., [1]) as it is done in
scalar-tensor theories. In particular, the degenerate higher-
order scalar-tensor theory (hereafter, DHOST) represents
the most general scalar-tensor theory, including a propa-
gating scalar and two tensor degrees of freedom given
under the general covariance [2–6]. What makes DHOST
still more attractive is that a large number of modified
gravity (MG) models can be seen obtained as subcases of
the most general DHOST one. This holds true for the
Brans-Dicke theory [7], fðRÞ gravity [8,9], covariant
Galileon [10–12], Horndeski [13,14], transforming gravity
[15], and GLPV theory [16]). DHOST can, therefore, be
taken as a general framework to investigate the impact of
deviations from GR on observables at different scales.
The additional scalar degrees of freedom present in most

scalar-tensor theories often give rise to an effective fifth
force on the Solar System scale, which must be suppressed
in order to not spoil down the success of GR on such small
scales. A screening mechanism must be invoked such as the
Vainshtein screening [17–19] originating from the non-
linear self-interaction. Such screening, however, may fail

for the subset of DHOST models selecting by the condition
that the propagation of gravitational waves (GWs) happens
at the same speed as light [20–25].
The degeneracy of DHOST theory ensures the absence

of Ostrogradski instability at the action level. In addition,
one should check the positive kinetic energy (ghost
instability) and positive speed of propagation of the sound
speed of the scalar field (gradient instability). Both of these
ghost and gradient instability conditions can be applied on
the perturbed equation of motion level. Among the DHOST
classes, only the dubbed class-I survives from the gradient
instability. We refer to [2–6] for the details about the class
and subclasses of DHOST theory. Gradient instability of
DHOST theory is discussed in [26] and second-order ghost
stability conditions are extensively derived in the presence
and absence of matter in [27]. One should select the model
by specifying the free functions in order to apply those
stability conditions. We have discussed the application of
the stability conditions in Appendix C. In the effective field
theory (EFT) description of the DHOST class-I, six time
dependent functions ðαM; αB; αK; αT; αH; β1Þ have to be
assigned [26]. The nearly contemporary arrival of the GW
event GW170817 and of the light emitted by its electro-
magnetic counterpart GRB170817A puts the stringent
constraint jc2g=c2 − 1j≲ 10−15 [28,29], being ðcg; cÞ the
speed of GW and light, respectively. This can be translated
in a constraint on αT [30–41]. The possibility of GWs decay
to the dark energy suggests further constraint on the
DHOST parameters [42]. However, by studying the cos-
mological evolution, Arai et al. [27] showed that the impact
of the graviton decay constraint is very insignificant for the

*vincenzo.cardone@inaf.it
†purnendu.karmakar@pd.infn.it
‡marco.depetris@roma1.infn.it
§roberto.maoli@roma1.infn.it

PHYSICAL REVIEW D 103, 064065 (2021)

2470-0010=2021=103(6)=064065(25) 064065-1 © 2021 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.064065&domain=pdf&date_stamp=2021-03-25
https://doi.org/10.1103/PhysRevD.103.064065
https://doi.org/10.1103/PhysRevD.103.064065
https://doi.org/10.1103/PhysRevD.103.064065
https://doi.org/10.1103/PhysRevD.103.064065


slowly rolling DE field, as we discuss with some more
details later on. Motivated by these considerations, we will
henceforth concentrate on the DHOST theories passing the
constraints from the GW170817/GRB170817 event (see
Appendix A). These are characterized by the four free
functions P,Q, F, A3 (see Appendix A for their definition).
Furthermore, we also allow for departure of the effective
gravitational constant from the Newtonian one.
The two following ingredients are necessary to test any

gravity theory on astrophysical scales. First, we need an
observable which can be predicted by the theory given a set
of additional measurable quantities (e.g., the gas density
profile). Second, the theoretical prediction must be con-
trasted with its measured counterpart. Galaxy clusters are
ideal testing laboratories from this point of view because of
the variety of data which can be inferred from observations
in different wavebands. X-ray images allow to reconstruct
their gas (or intracluster medium, ICM) density profile
which can then be input to the hydrostatic equilibrium
equation (in the form predicted by the gravity theory) to
predict the pressure profile once a model for the dark halo is
assumed. The pressure profile can then be inferred from
Sunyaev-Zel’dovich (SZ) signal towards the clusters [43].
Indeed, the Compton parameter is proportional to the ICM
pressure along the line of sight making it possible to
constrain both the cluster parameters and the theory of
gravity.1 Moreover, the halo density profile can be further
constrained through shear measurements hence breaking
degeneracy among model parameters.
Motivated by the above qualitative sketch, we investigate

here which constraints can be put on the DHOST theories
parameters by jointly fitting the electron number density
neðrÞ measured from x-ray data, the pressure profile PðrÞ
inferred from SZ observations, and the lensing convergence
κðRÞ reconstructed from optical data. We employ what is
somewhat referred to as the backward method (see, e.g.,
[46]), i.e., we assume parametric models for neðrÞ and the
dark halo density profile ρðrÞ and compute the theoretical
convergence and pressure profiles. The model and DHOST
parameters are then constrained by fitting the ðκ; ne; PÞ
data.2 To determine the accuracy, which can be achieved by
this method, we perform a Fisher matrix forecast analysis
based on realistic assumptions for the signal-to-noise (S/N)
ratio of the data. We also investigate how the results depend

on the adopted observational specifics varying both the
sampling and the overall S/N ratio amplitude.
The plan of the paper is as follows. Section II describes

the deviations of the gravitational potentials from the GR
ones due to the adoption of DHOST theories. These results
are then used in Sec. III to compute the galaxy clusters
observables of interest for our aims and to show which
impact the corrections, due to the additional DHOST
contributions, have on them. A theoretical ICM pressure
profile is compared with the universal pressure profile,
usually adopted to model the SZ signal in clusters in
Sec. IV where we also present the sample we take as input
to the Fisher matrix analysis. The corresponding formalism
is given in Sec. V, while results are discussed in Sec. VI
before concluding in Sec. VII. Some supplementary
material is relegated to the appendix sections.

II. DHOST THEORIES IN THE
WEAK FIELD LIMIT

The Vainshtein screening mechanism operating in
DHOST theories3 prevents deviations from GR outside
the source but not within the source itself. On this scale, the
gravitational potentials are modified. In the weak field
limit, for a static spherically symmetric object, the modified
Newtonian potential (Φ) and curvature perturbation (Ψ)
indeed read [20–23]

dΦðrÞ
dr

¼ Geff
N Mð< rÞ

r2
þ Ξ1Geff

N
d2Mð< rÞ

dr2
; ð1Þ

dΨðrÞ
dr

¼ Geff
N Mð< rÞ

r2
þ Ξ2Geff

N

r
dMð< rÞ

dr

þ Ξ3Geff
N

d2Mð< rÞ
dr2

; ð2Þ

where Mð< rÞ is the total cumulative mass within the
radius r, Geff

N is the effective gravitational constant, and
the dimensionless coefficients ðΞ1;Ξ2;Ξ3Þ are related
to the value (at the system redshift) of the functions
entering the DHOST Lagrangian. In terms of the EFT
parameters, the effective gravitational constant reads

Geff
N ¼ ½16πFð1þ Ξ0Þ�−1

¼ ½8πðMDHOST
Pl Þ2ð1þ Ξ0Þ�−1

¼ γNGN=ð1 − αH − 3β1Þ ð3Þ

with

Ξ0 ¼ −ðαH þ 3β1Þ; ð4Þ

1See, also, [44,45] for the use of alternative cluster observables
which can be used to detect deviations from GR.

2It is worth noting that, while the convergence is directly
measured on 2Dmaps (with R the cylindrical radius), the pressure
profile PðrÞ is defined in the 3D space but obtained by
deprojecting what is measured on the 2D y maps. As such,
the convergence κ is less prone to assumptions about the intrinsic
symmetry properties of the system, while spherical symmetry is
implicitly assumed in the deprojection needed to infer the
measured pressure data. 3We refer the reader to Eqs. (A1) and (A2) for details.
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γN ¼
�

MPl

MDHOST
Pl

�
2

: ð5Þ

In Eq. (3), F is the coupling function between matter and
geometry so that it may be identified with the value of the
effective Planck mass in DHOST theories, MDHOST

Pl . This
can be conveniently related to the GR Planck mass so that
the final result can be put as in the third row of Eq. (3)
where we have introduced the new quantity γN.
It is worth noticing that γN and ðαH; β1Þ are related to

different aspects of the theory. Indeed, γN is set by the
background expansion, while ðαH; β1Þ determine the evo-
lution of perturbations. These EFT functions [20–23] also
set the amplitude of the non-Newtonian terms in Eqs. (1)
and (2) being

Ξ1 ¼ −
ðαH þ β1Þ2
2ðαH þ 2β1Þ

; ð6Þ

Ξ2 ¼ αH; ð7Þ

Ξ3 ¼ −
β1ðαH þ β1Þ
2ðαH þ 2β1Þ

: ð8Þ

Deviations from GR on the galaxy cluster scale can,
therefore, be given in terms of the three parameters
ðαH; β1; γNÞ which take values (0,0,1) in GR. It is worth
noting that ðαB; αK; αTÞ do not enter the modified gravity
potentials in the galaxy cluster scale. As such, it is not
necessary to specify them also because we do not need to
solve either the perturbative or background equations. On
the other hand, we rely on Eqs. (1) and (2) so that we can
only put constraints on the class of DHOST theories where
these parameters are non-null. For Horndeski models, one
has αH ¼ β1 ¼ 0, while γN can be different from the GR
value ðγN ¼ 1Þ. In the GLPV case, it is β1 ¼ 0, but
ðαH; γNÞ can deviate from the GR values. It is, however,
worth noticing that cluster observables can still be of
help for these models too. For instance, should the data
prefer ðαH; β1Þ ≠ ð0; 0Þ, both Horndeski and GLPVmodels
would be excluded. On the contrary, the detection of no
deviations from GR values would not allow to discriminate
between GR and Horndeski but would disfavor GLPV and
other classes of DHOST theories.
As an important remark, we stress that ðαH; β1; γNÞ

are not constants but actually functions of the redshift.
However, we can constrain them only at the cluster redshift
where they take a specific value which we do not know in
advance. From this point of view, there is no need to choose
a priori a functional expression for them as a function of z.
As a consequence, we do not need to solve the background
equations hence to specify the EFT functions determining
it. One must, nevertheless, take care of the fact that the
values of ðαH; β1; γNÞ are different for clusters at different z.
As such, the impact of the DHOST modifications to the

force law is not the same for objects with similar properties
(e.g., mass, size, and gas content) but different z. Moreover,
since most DHOST theories reduce to GR at high z in order
to be in agreement with cosmic microwave background
(CMB) data, one expects that the larger is z, it will be
challenging to detect deviations from GR force laws in
distant clusters. This has remarkable consequences for
the analysis we are interested in here. Since the DHOST
correction is redshift dependent, one should be careful
when stacking clusters based on z. Indeed, in doing that,
one is assuming that the variation of the parameters
ðαH; β1; γNÞ is negligible over the redshift range probed
by the clusters one is willing to stack. Whether such an
assumption is valid or not depends on the width of the
redshift bin and the particular class of DHOST theories
under investigation, which is a further point to be taken into
account when comparing to observations or inferring limits
on the theory itself.
An additional comment on γN is finally needed. Since

this is related to the background expansion, one could
have fixed its value once the modified Friedmann equa-
tions are solved. However, in order to solve the back-
ground equations, one must make a precise choice of the
DHOST model, while we want to be as general as
possible. Since, as yet stated above, for each cluster,
we only need the value of γN at its redshift, it is more
convenient to take this quantity as unknown so that there
is no need to pick up a particular DHOST model. In a
sense, γN is parametrizing our ignorance of what is the
background expansion.

III. GALAXY CLUSTERS OBSERVABLES

The modified force laws impact any observable on
galaxy cluster scales. However, the effect will be different
depending on which of the two potentials ðΦ;ΨÞ enters the
games. Indeed, this offers an intriguing opportunity to
break some degeneracy among astrophysical and DHOST
parameters so that in the following we will derive the
modified expressions for quantities which can be measured
from cluster observations in different frequency bands.

A. Mass profile

As a preliminary step, it is worth discussing which model
we are going to use for describing the cluster cumulative
mass profile since, as Eqs. (1) and (2) show, it plays a key
role. Ideally, we should include ICM, stars, and dark matter.
However, the stellar mass fraction is no larger than 10%
in the inner kpc to then degrade quickly, while the gas
contribution, although larger than the stars’ one, is still
subdominant. We can, therefore, identify the total mass
with the dark halo one hence modeling this component only
since it accounts for more than ∼85% of the total mass.
Following the standard approach, we model it with the
NFW profile whose density law is [47,48]
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ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

ð9Þ

with ρs a characteristic density and rs the radius where the
logarithmic slope s ¼ d ln ρ=d ln r takes the isothermal
value s ¼ −2. Under the assumption of spherical sym-
metry, the mass profile can be straightforwardly obtained
and it is conveniently rewritten as

Mð< rÞ ¼ MΔ
ln ð1þ cΔxÞ − cΔx=ð1þ cΔxÞ
ln ð1þ cΔÞ − cΔ=ð1þ cΔÞ

ð10Þ

with x ¼ r=RΔ, RΔ the radius in which the mean mass
density is Δ times the universe critical one ρcðzÞ at the halo
redshift z, cΔ ¼ RΔ=rs the halo concentration, and

MΔ ¼ 4

3
πΔρcðzÞR3

Δ: ð11Þ

Following common approach in the literature, we replace
ðρs; rsÞ with ðMΔ; cΔÞ as model parameters. Different
choices are possible for Δ. In particular, unless otherwise
stated, we will set Δ ¼ 200, and refer to MΔ as the halo
mass although formally the halo may expand beyond R200.
In x-ray and SZ studies, the choice Δ ¼ 500 is preferred
since typically data cover up to 1 − 2R500 (or 3R500 relying
on Planck measurements) so that one can estimate M500

rather than M200. Similarly, one can define a concentration
c500 ¼ R500=rs which can be found once the model
parameter c200 is set by solving4

5

2

�
c500
c200

�
3

¼ ln ð1þ c500Þ − c500=ð1þ c500Þ
ln ð1þ c200Þ − c200=ð1þ c200Þ

: ð12Þ

For later applications, it is convenient to write down the
first three derivatives of the mass profile. It is only a matter
of algebra to get

dMð< rÞ
dr

¼ M200

R200

c2200
ln ð1þ c200Þ − c200=ð1þ c200Þ

×
x

ð1þ c200xÞ2
; ð13Þ

d2Mð< rÞ
dr2

¼ M200

R2
200

c2200
ln ð1þ c200Þ − c200=ð1þ c200Þ

×
1 − c200x

ð1þ c200xÞ3
; ð14Þ

d3Mð< rÞ
dr3

¼ M200

R3
200

c2200
ln ð1þ c200Þ − c200=ð1þ c200Þ

×
2c200ðc200x − 2Þ
ð1þ c200xÞ4

: ð15Þ

It is worth noting that because of Eq. (11), M200 cancels
out from the ratio M200=R3

200 so that one could naively
infer that the third derivative of the mass profile could be
independent on the halo massM200. This is actually not the
case since the residual dependence on M200 is hidden into
x ¼ r=R200. Moreover, as we will see, one can postulate
that the mass-concentration relation c200 ¼ c200ðM200; zÞ,
which is found in GR based N-body simulations, also holds
in DHOST theories hence introducing a further dependence
on M200.

B. Lensing convergence profile

Gravitational lensing is able to probe the mass distribu-
tion along the line of sight. The deflection angle can be
expressed as the derivative of the effective lensing potential
integrated along the line of sight. For any metric theory, this
is given by

ΦlensðRÞ ¼
2

c2
DLS

DLDS

Z þ∞

−∞

ΦðR;lÞ þΨðR;lÞ
2

dl; ð16Þ

where ðR;lÞ are the usual cylindrical coordinates with l
the axis along the line of sight. In Eq. (16), ðDL;DS;DLSÞ
are the angular diameter distances from the observer to the
lens, the observer to the source, and between lens and
source, respectively, fixing the geometry of the system. For
a spherically symmetric lens, the convergence profile can
then be computed as

κðRÞ ¼ 1

c2
DLS

DLDS

Z þ∞

−∞
∇r

�
ΦðR;lÞ þ ΨðR;lÞ

2

�
dl; ð17Þ

where ∇r ¼ ∂2=∂r2 þ ð2=rÞ∂=∂r is the Laplacian with
respect to r ¼ ðR2 þ l2Þ1=2. Using the general Eqs. (1)
and (2), we get

∇rΦðrÞ ¼ Geff
N

r2
dMð< rÞ

dr
þ 2Ξ1Geff

N

r
d2Mð< rÞ

dr2

þ Ξ1Geff
N

d3Mð< rÞ
dr3

∇rΨðrÞ ¼
ð1þ Ξ2ÞGeff

N

r2
dMð< rÞ

dr

þ ðΞ2 þ 2Ξ3ÞGeff
N

r
d2Mð< rÞ

dr2

þ Ξ3Geff
N

d3Mð< rÞ
dr3

so that, using Eqs. (10)–(15) for the NFW profile, we get
4Hereafter, we will use ln xðlog xÞ to denote the natural (base

10) logarithm.
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∇rΦlens ¼
γNGNM200

R3
200

×
c2200

ln ð1þ c200Þ − c200=ð1þ c200Þ
1

xð1þ c200xÞ2

×

�
1þ αH

1þ c200x
−
αH þ β1

4

2 − 4c200x
ð1þ c200xÞ2

�
;

ð18Þ

where it is

ΦlensðR; zÞ ¼
ΦðR; zÞ þ ΨðR; zÞ

2
; ð19Þ

and we remind x ¼ r=R200, and we have explicitly intro-
duced the DHOST parameters ðαH; β1; γNÞ. Inserting
Eq. (18) into Eq. (17) and changing the integration variable
from l to ζ ¼ l=Rv, we finally get the following expres-
sion for the DHOST convergence:

κðRÞ ¼ γNΣ200

Σcrit

c2200K0ðξ;pÞ
ln ð1þ c200Þ − c200=ð1þ c200Þ

ð20Þ

with ξ¼R=R200, p ¼ fc200; αH; β1g, Σ200 ¼ M200=4πR2
200,

Σcrit ¼ c2DS=ð4πGNDLDLSÞ the critical surface density for
lensing, and

K0ðξ;pÞ ¼
Z

∞

−∞

Sðξ; ζ;pÞ
ðξ2 þ ζ2Þ1=2½1þ c200ðξ2 þ ζ2Þ1=2�2 dζ

ð21Þ

having defined

Sðξ; ζ;pÞ ¼ 1þ αH
1þ c200ðξ2 þ ζ2Þ1=2

−
αH þ β1

4

2 − 4c200ðξ2 þ ζ2Þ1=2
½1þ c200ðξ2 þ ζ2Þ1=2�2 : ð22Þ

Some comments are in order here. First, as a consistency
check, we note that setting ðαH; β1; γNÞ ¼ ð0; 0; 1Þ gives
back the GR result as expected. Second, we note that,
in the very inner regions (i.e., for r ≪ rs hence
c200ðξ2 þ ζ2Þ1=2 ≪ 1), it is

Sðξ; ζÞ ∼ 1 − ðαH − β1Þ=2

so that the net effect is to rescale the virial mass from M200

to M200½1 − ðαH − β1Þ=2�. In the opposite asymptotic limit
r ≫ rs (i.e., c200ðξ2 þ ζ2Þ1=2 ≫ 1), it is on the contrary,

Sðξ; ζÞ ∼ 1þ ð2αH − β1Þ=ðξ2 þ ζ2Þ1=2;

showing that the deviation from GR quickly fades away
hence making it harder to detect it. We, therefore, expect

that the convergence profile data will be more sensible
to the DHOST parameters in the intermediate region (i.e.,
R ∼ rsÞ where it is possible to both appreciate the correc-
tion and break the degeneracy between αH and β1 thanks to
the different scaling of the second and third term of Sðξ; ζÞ
in this regime. On the contrary, the γN parameter only
appears in the product γNM200=R2

200 ∝ γNM
1=3
200 so that its

effect could be absorbed by a naive rescaling of the halo
mass. However, the degeneracy is partially broken by the
fact thatM200 also indirectly enters through the dependence
of the concentration on mass.

C. Theoretical pressure profile

The other observable we will use as a constraint on
the DHOST and cluster parameters comes from observa-
tions of the SZ signal which allows to recover the
pressure profile. As hinted at in the Introduction, its
theoretical counterpart can be derived once models are
assumed for the halo mass profile and the electron number
density. Indeed, under the assumption of hydrostatic
equilibrium, one has

1

ρgasðrÞ
dPðrÞ
dr

¼ −
dΦðrÞ
dr

; ð23Þ

where the gas density profile can be conveniently related
to the electron number density neðrÞ as ρgasðrÞ ≃
1.8μmpneðrÞ ¼ meffneðrÞ with mp the proton mass and
μ the mean molecular weight. In order to be consistent with
the cluster catalog we will introduce later, we adopt the
double-β model [49] to set

n2eðrÞ
n201

¼
�
1þ

�
r
rc1

�
2
�
−3β

þ
�
n02
n01

�
2
�
1þ

�
r
rc2

�
2
�
−3β

ð24Þ

with ðβ; rc1; rc2; n01; n02Þ parameters to be inferred from
the fit of x-ray data. Using Eq. (1) for dΦðrÞ=dr and the
NFWmodel for the mass profile (under the assumption that
the dark halo is the main contributor to the total mass), one
can integrate Eq. (23) with the boundary condition that the
pressure vanishes at infinity to get

PðxÞ ¼ meffn01γN
1 − αH − 3β1

GNM200

R200

×

�
QGR

0 ðx; c200Þ −
ðαH þ β1Þ2
2ðαH þ 2β1Þ

QMG
0 ðx; c200Þ

�
;

ð25Þ

where we have defined
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QGR
0 ðx; c200Þ

¼
Z

∞

x

ln ð1þ c200x0Þ − c200x0=ð1þ c200x0Þ
x02½ln ð1þ c200Þ − c200=ð1þ c200Þ�

neðx0Þ
n01

dx0

ð26Þ

QMG
0 ðx; c200Þ

¼
Z

∞

x

c2200ð1 − c200x0Þð1þ c200x0Þ−3
ln ð1þ c200Þ − c200=ð1þ c200Þ

neðx0Þ
n01

dx0;

ð27Þ

where we have expressed the electron number density
in Eq. (24) in terms of the dimensionless variable x taking
as parameters ðxc1; xc2Þ ¼ ðrc1; rc2Þ=R200. Note that the
two integral functions QGR

0 and QMG
0 depend on the gas

density parameters too, but we have not explicitly
indicated them as an argument just to shorten the
notation.
It is worth stressing that the DHOST term in Eqs. (26)

and (27) depends on a combination of the ðαH; β1Þ
parameters other than the corresponding ones in the
WL related function Sðξ; ζÞ. Similarly, γN now enters
through the product γNM200=Rv ∝ γNM

2=3
200 which is again

different from what takes place with the convergence
profile. As a consequence, it is no more possible to
rescale the halo mass to compensate for a change in γN
since this would fix one observable at the cost of missing
the other. These considerations make us argue that a
joint use of the κðRÞ and PðrÞ profiles can break the
degeneracy among DHOST parameters hence better
constraining ðαH; β1; γNÞ.
A final consideration about the pressure profile in

Eq. (26) is in order here. To get it, we have adopted
the double-β model for the electron number density
profile neðrÞ. One could argue that all the previous works
using this expression have been performed under the
GR assumption so that we are extrapolating its validity
outside the framework where it has been tested. However,
one could consider the double-β model simply as an
empirical fitting function whose parameters must be
determined by matching observations in a given frame-
work. As such, there are no systematics induced by its
adoption. Moreover, in this exploratory work, we are
only interested in presenting the general formalism and
apply it under realistic conditions which are guaranteed
by the use of the double-β model for neðrÞ. Nothing
prevents the use of a different profile (such as, e.g., the
Vikhlinin one [50]) in future studies which will deal with
actual data.

D. Impact of DHOST deviations from GR

It is instructive to look at how much the modified
convergence and pressure profile deviate from their GR

counterparts.5 To this end, we must first set the halo and
electron density parameters which we do by choosing three
representative clusters from the sample we will introduce
later in Sec. IV. In particular, we select MACSJ0429,
MS1054, and MACSJ1423 since they are the objects with
the median values of the redshift, mass, and concentration,
respectively, fixing the mass, concentration, and double-β
model parameters as in Table I.
Since γN only scales up or down both the convergence

and the pressure theoretical profiles, understanding its
impact is actually trivial so that we prefer to just focus
on αH and β1. We, therefore, set γN ¼ 1 − αH − 3β1 so that
the effective gravitational constant equals the Newtonian
one. Note that, although arbitrary, this choice does not
affect the estimate of the impact of varying ðαH; β1Þ on the
lensing convergence and pressure profile. We will indeed
considerΔO=OGR withO a given observable, and the label
GR denoting the GR value. The parameter γN drops out
from the ratio so its value is not important. When plottingO
itself, one can simply rescale up or down the curves by
multiplying for the chosen γN value.
This is why we will first look at the impact of αH and β1

separately by setting one of them to zero and varying the
other over a fiducial range. This range is fixed by asking
that the corresponding DHOST theory fulfils some stability
criteria, and its background expansion is in good accor-
dance with the ΛCDM one. In this way we ensure that any
deviation from the GR convergence and pressure is due to
realistic DHOST models.

1. Lensing convergence

Let us first consider the convergence profile assuming
the source is at zs ¼ 2.0. In Fig. 1 we plot κðRÞ for different
αH values setting β1 ¼ 0. The sign of the difference with
respect to the GR convergence can be qualitatively under-
stood rewriting the function S of Eq. (22) as follows:

Sðx; αH; β1 ¼ 0Þ ¼ 1þ αH
1þ c200x

�
1 −

2ð1 − c200xÞ
1þ c200x

�
;

ð28Þ

where we have already set β1 ¼ 0. We thus find S > 1 for
x > xmin ¼ 1=ð3c200Þ if αH > 0 and vice versa. Noting that

5The results of this analysis depends on the assumed halo and
electron density profiles. Should we change one or both of these
two ingredients, the detailed shape of the curves shown in this
paragraph would be different. It is not our aim here to investigate
the dependence on the cluster modeling since this is a topic better
addressed fitting real data (which will be the subject of a
forthcoming work). We have, nevertheless, checked that the
scaling with ðαH; β1Þ of the observables of interest is qualitatively
the same. This is because such dependence is due to the way the
gravitational and lensing potentials are modified which is the
same no matter which halo and electron density profile is
adopted.
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S > 1 leads to an increase of the argument of the integral
giving the convergence κðRÞ, and considering that for
typical c200 values, xmin lies in the inner cluster regions
we, therefore, get that the DHOST convergence is larger
(smaller) than the GR one (so that Δκ=κGR is negative/
positive) for αH > 0 (< 0), consistent with the results in
Fig. 1. The deviation fades to zero as x increases because of
the multiplicative term ð1þ c200xÞ−1 with the rate of the
decrease depending on the cluster concentration. Note that

the dependence on c200 is less evident in these plots
since the three clusters we have chosen have quite
similar concentration, being c200 ¼ ð3.87; 3.38; 3.70Þ for
MACSJ0429, MS1054, and MACSJ1423, respectively.
Figure 2 highlights the impact of β1 when we set αH ¼ 0.

In this case, we simply get

Sðx; αH ¼ 0; β1Þ ¼ 1 −
β1ð1 − 2c200xÞ
2ð1þ c200xÞ2

ð29Þ

TABLE I. Input BOXSZ [51] cluster sample. We report the cluster id, the redshift, the halo mass and concentration for
Δ ¼ ð500; 200Þ, and the best fit parameters of the double-β profile.

Name z log ðM500=M⊙Þ c500 log ðM200=M⊙Þ c200 β log xc1 log xc2 log ðn01=cm−3Þ log ðn02=n0Þ
Abell2204 0.15 15.01 2.52 15.18 3.87 0.641 −2.07 −1.23 −0.64 −1.17
Abell383 0.19 14.67 2.71 14.83 4.14 0.601 −1.98 −1.33 −0.87 −0.84
Abell1423 0.21 14.94 2.53 15.10 3.89 0.497 −1.62 � � � −1.58 � � �
Abell209 0.21 15.10 2.43 15.27 3.75 0.586 −1.12 � � � −2.08 � � �
Abell963 0.21 14.83 2.59 14.99 3.98 0.663 −1.54 −1.00 −1.51 −0.58
Abell2261 0.22 15.16 2.39 15.33 3.69 0.581 −1.87 −1.35 −1.34 −0.45
Abell2219 0.23 15.28 2.32 15.45 3.59 0.682 −1.03 � � � −1.97 � � �
Abell267 0.23 14.82 2.59 14.98 3.97 0.639 −1.16 � � � −1.92 � � �
RXJ21296 0.24 14.89 2.54 15.05 3.91 0.548 −1.72 � � � −1.14 � � �
Abell1835 0.25 15.09 2.42 15.26 3.73 0.669 −1.86 −1.15 −0.85 −0.99
Abell697 0.28 15.23 2.32 15.40 3.59 0.639 −1.09 � � � −1.99 � � �
Abell611 0.29 14.87 2.52 15.03 3.88 0.597 −2.28 −1.30 −0.84 −0.87
MS2137 0.31 14.67 2.62 14.83 4.03 0.491 −2.03 � � � −0.94 � � �
MACSJ1931 0.35 15.00 2.41 15.16 3.72 0.689 −1.82 −1.12 −0.76 −1.09
AbellS1063 0.35 15.35 2.23 15.52 3.46 0.676 −1.74 −1.21 −1.46 −0.20
MACSJ1115 0.36 14.93 2.44 15.10 3.76 0.647 −1.70 −1.11 −1.04 −0.86
MACSJ1532 0.36 14.98 2.42 15.14 3.73 0.614 −1.70 � � � −0.91 � � �
Abell370 0.38 15.07 2.36 15.24 3.64 0.708 −0.89 � � � −2.24 � � �
ZWCL0024 0.39 14.64 2.59 14.80 3.97 0.453 −1.47 � � � −1.83 � � �
MACSJ1720 0.39 14.80 2.50 14.96 3.85 0.747 −1.68 −0.97 −1.06 −0.93
MACSJ0429 0.40 14.76 2.51 14.93 3.87 0.669 −1.80 −1.07 −0.87 −1.05
MACSJ2211 0.40 15.26 2.25 15.43 3.49 0.667 −1.30 � � � −1.50 � � �
MACSJ0416 0.42 14.96 2.39 15.13 3.69 1.104 −0.64 � � � −2.24 � � �
MACSJ0451 0.43 14.80 2.47 14.96 3.81 0.683 −0.99 � � � −1.98 � � �
MACSJ0417 0.44 15.34 2.19 15.52 3.40 0.709 −1.76 −0.85 −1.05 −1.13
MACSJ1206 0.44 15.28 2.22 15.46 3.44 0.722 −1.54 −0.98 −1.41 −0.60
MACSJ0329 0.45 14.90 2.41 15.06 3.72 0.749 −1.74 −0.93 −0.89 −1.16
MACSJ1347 0.45 15.34 2.19 15.51 3.40 0.661 −2.11 −1.41 −0.50 −0.82
MACSJ1311 0.49 14.59 2.55 14.75 3.92 0.925 −1.24 −0.76 −1.40 −0.75
MACSJ0257 0.50 14.93 2.36 15.10 3.65 0.584 −1.31 � � � −1.56 � � �
MACSJ0911 0.50 14.95 2.35 15.12 3.63 0.557 −1.07 � � � −2.08 � � �
MACSJ2214 0.50 15.12 2.27 15.29 3.51 0.600 −1.18 � � � −1.81 � � �
MACSJ0018 0.54 15.22 2.20 15.39 3.42 0.703 −1.59 −0.95 −1.79 −0.20
MACSJ1149 0.54 15.27 2.18 15.45 3.38 0.720 −0.85 � � � −2.17 � � �
MACSJ0717 0.55 15.40 2.11 15.57 3.29 1.003 −1.30 −0.66 −1.87 −0.33
MACSJ1423 0.55 14.82 2.39 14.99 3.69 0.556 −1.88 � � � −0.70 � � �
MACSJ0454 0.55 15.06 2.27 15.23 3.52 0.631 −1.09 � � � −1.75 � � �
MACSJ0025 0.58 14.88 2.34 15.05 3.62 0.878 −0.74 � � � −2.14 � � �
MS2053 0.58 14.48 2.55 14.64 3.92 0.604 −1.08 � � � −1.94 � � �
MACSJ0647 0.59 15.04 2.26 15.21 3.50 0.636 −1.17 � � � −1.69 � � �
MACSJ2129 0.59 15.03 2.27 15.20 3.51 0.620 −1.17 � � � −1.73 � � �
MACSJ0744 0.69 15.10 2.18 15.27 3.39 0.622 −1.76 −1.13 −1.06 −0.72
MS1054 0.83 14.95 2.17 15.13 3.38 1.168 −0.48 � � � −2.17 � � �
CLJ0152 0.83 14.89 2.20 15.07 3.41 1.717 −0.17 � � � −2.59 � � �
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so that SðxÞ − 1 changes its sign at xt ¼ 1=ð2c200Þ from
positive to negative or vice versa, depending on β1 being
positive or negative. As a consequence, Δκ=κGR has no
more monotonic behavior, which explains the profile of the
curves in Fig. 2. In Figs. 1 and 2, it is evident that β1 has a

smaller impact on the differences between GR and DHOST
lensing convergence profiles. However, one should also
take into account the different range allowed for the two
DHOST parameters with β1 spanning a smaller one. On the
contrary, Eq. (22) shows that β1 enters the second non-GR
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term only, while αH contributes two terms with opposite
signs. As a result, a change in β1 immediately affects the
convergence, while a variation of α is less evident because
the two terms partially compensate each other.
When we allow for both αH and β1 to change, the

resulting Δκ profile is qualitatively similar to the case with
β1 ¼ 0. This is a consequence of the first additional term in
Eq. (22), which typically dominates over the second one
where β1 enters. As a general comment, we, therefore,
conclude that the DHOST convergence κðRÞ may deviate
from its GR counterpart by order of 5–10% over the range
of radii probed by observational data. This hints at this
observable as a promising probe to constrain the DHOST
parameters ðαH; β1Þ.

2. Pressure profile

Let us now consider the pressure profile PðrÞ for the
same three representative clusters considered above.
Eq. (27) shows that ðαH; β1Þ only enter through the
combination Ξ1 as defined in Eq. (6) so that a clear
degeneracy among the two parameters exists. Figure 3
shows the pressure profiles and the deviations from the GR
case for different values of αH setting β1 ¼ 0. Note that we
scale the distance from the center with respect to R500

instead of R200 (with R500 ∼ 0.6R200) in order to look at the
relevant quantities over the range typically probed by actual
SZ observations.
The DHOST pressure profile turns out to be larger or

smaller than the GR one depending on the sign of αH being

positive or negative. Both the profile and the amplitude of
the deviation from GR are quite similar to those forΔκ=κGR
for β1 ¼ 0 although over a different radial range. This is not
surprising given that, in this setting, the corrective term
to the pressure has the same shape as the one for the
convergence being both proportional to ð1 − c200xÞ.
Actually, this result is not limited to the case β1 ¼ 0 but
rather to all those cases giving the same Ξ1 as the one used
to get Fig. 3. It is the presence of the second term in
Eq. (22), which only depends on αH to break the degen-
eracy, allowing to constrain both αH and β1 separately
instead of their combination in Ξ1 only.

IV. THEORETICAL VS UNIVERSAL
PRESSURE PROFILE

Equation (26) is derived from the hydrostatic equilibrium
equation under the assumptions of a double-β model for the
electron density and NFW for the dark halo mass density.
Although reasonable, both are aprioristic hypotheses so that
it is worth wondering how the resulting pressure profile
compares with observed ones. This comparison can be
carried out in the GR case since we are only interested in
checking whether the theoretical PðrÞ is reasonably in
agreement with what is observed rather than fitting actual
data. We can, therefore, set ðαH; β1; γNÞ ¼ ð0; 0; 1Þ for the
rest of this section.
To this end, we compute PðrÞ over the range

ð0.1; 1.5ÞR500 and fit it with the universal pressure profile
[52,53] given by
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PðrÞ ¼ P0P500

ðc500r=R500Þγ½1þ ðc500r=R500Þα�ðδ−γÞ=α
ð30Þ

with ðP0; α; δ; γÞ fitting parameters6 and P500 a redshift and
mass dependent normalization which, following [54], we
set as7

P500 ¼ 1.65 × 10−3
�

M500

3 × 1014h−170 M⊙

�2
3
þ0.12

E8=3ðzÞh270;

ð31Þ

with P500 in keV=cm3, h70 the Hubble constant H0 in units
of 70 km=s=Mpc, and E2ðzÞ ¼ ΩMð1þ zÞ3 þ ð1 −ΩMÞ
for the ΛCDM model we take as background for the
normalization of the parametric pressure profile (setting
ΩM ¼ 0.32 and H0 ¼ 67 km=s=Mpc in accordance with
Planck cosmological results [55]).
The QGR

0 ðrÞ function entering the theoretical pressure
profile in Eq. (26) depends on the values of the double-β
model parameters. For later applications, it is convenient to
reparametrize them as

fβ; rc1; rc2; n01; n02g
→ fβ; log xc1; log xc2; log n01; log ðn02=n01Þg ð32Þ

with xci ¼ rci=R200. To set these quantities, we consider
the cluster sample assembled by the BOXSZ project8 [51]
since this spans quite a wide range in both mass ð3.0 ≤
M500=1014 M⊙ ≤ 25Þ and redshift ð0.15 ≤ z ≤ 0.83Þ. We
convert the values of ðβ; rc1; rc2; n01; n02Þ in their paper to
the parameters in Eq. (32) after converting the reported
M500 into M200 under the assumption of the NFW model
and setting c200 according to the mass-concentration
relation in [56]. The parameters thus obtained are given
in Table I where a sign—is given for log xc2 and
log ðn02=n01Þ if the cluster is better fitted by a single-β
profile. Strictly speaking, the use of a mass-concentration
relation to set c200 before converting fromM500 toM200 and
set c200 implicitly assumes that Newtonian gravity holds
since theM200-c200 relation has been inferred from N-body
simulations under this framework. However, we here just
want to have realistic profiles for both the convergence and
the pressure which is what we indeed get in this way.

We use the parameters in Table I to generate the
theoretical pressure profile and fit it with Eq. (30) adjusting
the parameters ðP0; α; δÞ while keeping c500 to the input
value and fixing γ ¼ 0.31 as recommended in [54]. The
quality of the fit can be guessed computing

εrms ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	�
PUPðRÞ − PthðRÞ
PUPðRÞ þ PthðRÞ

�
2


;

s
ð33Þ

where PUPðRÞ and PthðRÞ are the universal profile and the
theoretical one, and the mean is taken over the range
ð0.1; 1.5ÞR500 sampled in steps of 0.01R500. For the 44
clusters in the sample, we find quite small εrms values with
εrms ¼ 2.06% as median and a 95%C.L. spanning the
range ð0.05; 5.23Þ%. Although these numbers tell us that
the universal pressure profile excellently fits the theoretical
one, they are not enough to judge whether the shapes are
realistic. We must rather compare the value of the fitting
parameters to those obtained fitting real clusters. To this
aim, we can rely on the values reported in [54] where the fit
has been performed for the subsample of 62 clusters with
SZ measurements from the early Planck data release. The
median, 68 and 95% C.L. of the best fit parameters to the
theoretical BOXSZ and observed Planck clusters are as
follows:

P0∶ 34þ29þ65
−18−22 vs 6.1þ9.5þ27.8

−3.0−4.6 ;

α∶ 0.81þ0.36þ1.06
−0.18−0.29 vs 1.24þ1.42þ4.32

−0.53−0.80 ;

δ∶ 3.23þ0.33þ0.93
−0.39−0.73 vs 3.99þ10.4þ11.0

−1.02−1.53 :

Although the ranges have a good overlap, we can, never-
theless, note that the typical P0 values for our sample are
definitely larger than those for Planck clusters. Moreover,
our α values are smaller, and we do not find systems with
extremely large δ values. These differences likely originate
by our choice of taking c500 fixed to the value inferred
from the mass-concentration relation. On the contrary, the
fit performed in [54] considers c500 as a parameter to be
optimized. In particular, also values smaller than 1 are
allowed so that one can get halos with c200 < 1 which,
although mathematically possible, it has no physical sense
given that one would get R200 < rs. As a consequence, the
two samples of clusters have a radically different distri-
bution of c500 values, the 95% CL ranges being (2.17,2.62)
vs (0.02,5.51). The correlation between c500 and the other
fit parameters then motivates the discrepancy between the
results for the Planck clusters and our theoretical pressure
profiles. This can be seen in Fig. 4 where we show the
distribution of the fit parameters for the two samples. As it
is evident, the Planck clusters cover a much larger range in
c500 including unrealistically small values. On the contrary,
c500 is fixed for the theoretical pressure hence spanning a
definitely smaller range because of the use of the mass-
concentration relation. However, over the c500 range in

6Note that, in the literature, δ in Eq. (30) is denoted as β, but we
have changed here the notation to avoid confusion with the β
parameter of the electron density profile.

7Note that the exponent of the mass term deviates from the
self-similar scaling 2=3 by an additional 0.12; this allows a better
match of the stacked profiles.

8We remove one object from the BOXSZ sample since it has an
anomalously large β (14.28 vs a typical value β ∼ 0.6Þ so that we
are left with 44 clusters.
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common between the two samples the ðP0; α; δÞ values
are comparable, our sample lacking systems with unusu-
ally large ðα; δÞ values which are needed to compensate
for the unrealistically small c500. This result shows that
our assumptions on the electron density and dark halo
mass profiles and the use of the hydrostatic equilibrium
equation generate theoretical pressure profiles which
share the same properties of a subsample of real clusters
detected by Planck. This is reassuring evidence that we
can rely on the present modeling to describe realistic
systems.
As a concluding remark, we want to stress again that

having derived such evidence under the GR assumption
does not prevent us from using it for constraining DHOST
models. In order to understand why, we anticipate that two
ingredients are needed in a Fisher matrix analysis, namely
the covariance of the data and the derivatives of the
observables with respect to the model and nuisance
parameters. In absence of real data, it is customary to
build the covariance based on a given model for a given set
of fiducial parameters. We will assume GR as fiducial so
that we need to show that the halo and gas density profile
modeling is realistic, which is what we have done here.
When moving to a non-GR fiducial, one should have
adopted a halo and gas density profile derived by fitting
simulations performed in the DHOST case. These are not
available at all, but we can still rely on the same modeling
since it gives rise to a covariance matrix which mimics a
realistic one. Once a model for generating the covariance
has been adopted, one then needs to use the same model for
computing the derivatives in order to be self-consistent.
This is why we are confident that having shown that the
assumed halo and gas density profiles lead to a pressure
profile consistent with the universal one is enough to
validate the following Fisher matrix analysis under both
GR and DHOST fiducials.

V. FISHER MATRIX FORECAST

The different ways the parameters ðαH; β1; γNÞ enter the
convergence and pressure profiles and the possibility to
constrain the electron density parameters through x-ray
measurements make it intriguing to wonder whether a joint

use of the three probes9 can significantly constrain DSHOT
theories. A quick way to investigate this issue is to rely on
Fisher matrix forecasts. Under the assumption that the
likelihood LðpÞ is Gaussian for a given observable O, one
can estimate the covariance matrix of the model parameters
p inverting the Fisher matrix, whose elements are given by

Fαβ ¼ −
	∂2 lnLðpÞ

∂pαpβ



¼ ∂DðpÞ

∂pα
C−1

obs
∂DðpÞ
∂pβ

; ð34Þ

where, in the second equality, we have used the Gaussian
approximation of the likelihood, and denoted withDðpÞ the
theoretical data vector (i.e., the vector whose elements are
the predicted values of the observable O estimated at the
position where data are available) and Cobs is the data
covariance matrix. Note that because of the ergodic
principle, we have replaced the spatial average with the
evaluation for the fiducial model parameters. If more than
one observable is available, and they are statistically
independent, then the total Fisher matrix is the sum of
those for each probe, while a prior on the model parameters
(from theoretical principle or other measurements) can be
added as a diagonal matrix with the inverse of variance as
diagonal elements. Finally, according to the Cramer-Rao
inequality, the best constraints one can obtain on the model
parameters p are given by the diagonal elements of the
inverse of the Fisher matrix, while off diagonal elements
can be used to quantify the correlation among parameters.

A. Convergence Fisher matrix

As a first probe, we consider the convergence profile κðRÞ
assuming that it is measured in NWL logarithmically equi-
spaced radial points over the angular range ðθmin; θmaxÞ.
Following common approach, we assume the errors on the
measurement are uncorrelated so that the error covariance
matrix is simply diagonal. The Fisher matrix elements are
then given by
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FIG. 4. Distribution of universal pressure profile parameters as inferred from the fit to the theoretical pressure profiles (blue) and to
Planck clusters (red). Note that we show logarithm to improve the dynamic range of the plots.

9Although the electron density profile does not depend on the
DHOST parameter, it helps to constrain the double-β model ones
hence indirectly improving the determination of ðαH; β1; γNÞ
thanks to the effective priors it imposes on the astrophysical ones.
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FWL
αβ ¼

XNWL

i¼1

1

σ2κðθiÞ
∂κðθiÞ
∂pα

∂κðθiÞ
∂pβ

; ð35Þ

where we remind the reader the relation θ ¼ R × ½ð206265=
60Þ=DLðzÞ� converts the linear distance R (in kpc) from
the center to the angular ones, θ (in arc min), given a
cosmological model for the estimate of the angular
diameter distance DLðzÞ. One can rearrange Eq. (35) as
follows:

FWL
αβ ¼

XNWL

i¼1

�
κðθiÞ
σκðθiÞ

�
2 1

κðθiÞ
∂κðθiÞ
∂pα

1

κðθiÞ
∂κðθiÞ
∂pβ

¼
XNWL

i¼1

ν2κðθiÞ
∂ ln κðθiÞ

∂pα

∂ ln κðθiÞ
∂pβ

; ð36Þ

where νκðθiÞ is the S/N ratio of the convergence measured
in the position θi. In order to approximately model this
quantity, we follow a method similar to the one in [57],
which we refer the reader to for details. Here, we only
sketch the procedure. We first compute the S/N ratio
including both the measurement error ϵκðθÞ and the
systematic floor due to the ellipticity intrinsic dispersion
(which we set as σe ¼ 0.22). This gives

νκðθÞ ¼
Wκκ∞ðθÞ
ϵκðθÞ

�
1þ

�
σe
ϵκ

�
2 1

2ngA

�
−1=2

; ð37Þ

where κ∞ is the convergence evaluated for a source at
infinity, and Wκ is a dilution factor accounting for the
redshift distribution of the sources. The term 2ngA down-
grades the systematic floor depending on the number of
sources which is computed using the number density ng
and area A of the circular corona centered on θ. We
consider that measurements will be performed by a
Euclid-like experiment [58] hence we adopt the Euclid
redshift distribution in [59] and set ng ¼ 30 gal=arc min2.
We use Eq. (37) to compute the S/N ratio for a large
number of ðθ; logM200; z; ϵ=κÞ values and then fit the
median results to get an approximate scaling of the S/N
ratio with the angular distance, the halo mass, and the
redshift.
We use this approximated relation as input to Eq. (36)

where we also fix ðθmin; θmaxÞ ¼ ð0.2; 10.2Þarc min for
all clusters, no matter their redshift. Note that actual
observations may probe a still larger angular range with
θmax ∼ 16 arc min for the CLASH sample [60], which
covers a similar redshift range as BOXSZ. We have
preferred to be conservative cutting the upper limit should
the clusters one finally adopts be smaller in angular size
than the CLASH ones.
For a given cluster, the model parameters can be split in

two groups. On one hand, we have the astrophysical ones

which are specific of that cluster. These are the halo mass10

logM200 and the concentration c200 of the NFW halo. We
avoid adding a prior on the concentration based on the
mass-concentration relation derived from N-body simula-
tions because it has been obtained postulating Newtonian
gravity.11 The remaining parameters are the DHOST ones
ðαH; β1; γNÞ, which are universal quantities but redshift
dependent. It is, therefore, important to stress that, although
we do not explicitly denote it to shorten the notation,
what the data are constraining are ðαH; β1; γNÞ at the
lensing cluster redshift z. As a consequence, one cannot
stack together all the clusters in a given sample so that
we compute Fisher matrix forecasts from individual con-
vergence profiles. For completeness, we report in
Appendix B. 1 the derivatives needed for the Fisher matrix
computation.

B. Pressure profile Fisher matrix

We assume to use the SZ data to sample the pressure
profile PðrÞ in the N SZ linearly spaced radial distance ri
from the cluster center over the range ðξmin; ξmaxÞR500.
Neglecting any correlation among the errors, the pressure
profile Fisher matrix may then be written as

FSZ
αβ ¼

XN SZ

i¼1

1

σ2PðriÞ
∂PðriÞ
∂pα

∂PðriÞ
∂pβ

¼
XN SZ

i¼1

ν2PðriÞ
∂ lnPðriÞ

∂pα

∂ lnPðriÞ
∂pβ

; ð38Þ

where we have made the same rearrangement of the terms
as for WL but for the SZ data denoting with νPðrÞ the S/N
ratio of pressure measurements.
Appendix B. 2 reports the relevant derivatives entering

the pressure Fisher matrix, while the S/N ratio is approxi-
mated as a function of the dimensionless distance ξ ¼
r=R500 and the mass logM500 using the pressure profile
inferred by SZ data of the X-COP sample [61]. It is worth
noting that the X-COP clusters span a comparable mass
range but at a much smaller redshift (z ≤ 0.09). Although
the SZ signal is independent on z, the precision on the
measurements can depend on the size of the cluster for a
given angular resolution of the instrument. As such, the S/N

10Following common practice, we use the logarithm of the halo
mass rather than the mass itself in order to explore a wider range
dealing with order unity quantities. Moreover, with an abuse of
notation, we denote with M200 the mass in solar units M⊙ so we
drop the M⊙ from log ðM200=M⊙Þ.

11Such a choice could look contradictory given that we have
used such a relation to set the concentration for the fiducial cluster
parameters. However, in that case, we were only interested in
obtaining realistic profiles and the use of the mass-concentration
relation ensured that this goal is achieved. When dealing with
actual data, one will not make any assumption on the c200-M200

relation so that we do not include it in our forecast.
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ratio for BOXSZ-like clusters could be different from what
we have inferred from the X-COP sample. To account for
this difference, we will introduce later a correction factor
which allows us to investigate the impact of deviations of
the actual νPðrÞ from the one assumed here.
The probed radial range is fixed based on the following

considerations. First, we remove the very inner part which
can be affected by deviations from hydrostatic equilibrium
so that we set ξmin ¼ 0.1 as conservative limit. We then
look at the radial extent of the BOXSZ data finding ξmax ¼
1.17 as the median value, 0.87 ≤ ξmax ≤ 1.81 as 68% CL.
We, therefore, compute the pressure Fisher matrix for three
different cases denoted as central, intermediate, and large
range with ξmax ¼ ð0.87; 1.17; 1.81Þ, respectively.
It is worth noting that the list of model parameters at play

now is definitely larger than for the convergence. While the
DHOST parameters ðαH; β1; γNÞ are still the same, there is
a larger number of astrophysical parameters to be margin-
alized over. Indeed, beside the halo mass logM200 and the
concentration c200 of the NFW halo, we now have to set
the parameters of the double-βmodel given in Eq. (32). The
total number of parameters is, therefore, 10 reducing to 8
for objects better fit by the single-β model. As a conse-
quence, we do not expect pressure data alone to be able to
put meaningful constraints on ðαH; β1; γNÞ, but they are,
nevertheless, of utmost importance thanks to the possibility
of breaking degeneracy.

C. Electron density Fisher matrix

The gas density plays a different role than convergence
and pressure in the present analysis. Indeed, we do not
compute it from a theoretical model but directly fit an
empirical profile to the electron density data as measured
from x-ray (hereafter XR) data. The corresponding Fisher
matrix may be simply computed as

FXR
αβ ¼

XN XR

i¼1

ν2eðriÞ
∂ ln neðriÞ

∂pα

∂ ln neðriÞ
∂pβ

; ð39Þ

where we have directly used the formulation with the S/N
ratio νeðrÞ highlighted, and the sum is over N XR measured
points linearly spaced over the range ðξmin; ξmaxÞR500. We
use the same ðξmin; ξmaxÞ values adopted for the pressure
Fisher matrix and still rely on X-COP data to infer the
electron density S/N ratio as a function of ξ and logM500.
It is worth noticing that the electron density does not

depend on the DHOST theory parameters so that x-ray data
are unable to directly constrain these quantities. They are,
nevertheless, of great help since they strongly constrain the
parameters which input the pressure profile.

D. Fiducial model parameters and Fisher matrix setup

In order to compute the Fisher matrix for each given
cluster, there are some parameters and choices that have to

be made. First, we need to set the cluster redshift z,
halo mass and concentration ðlogM200; c200Þ, and the
double-beta model parameters fβ; log xc1; log xc2; log n01;
log ðn02=n01ÞgÞ. These are taken from the values in
Table I which are then used as input to the convergence,
pressure, and electron density Fisher matrices which we
will hereafter refer to as WL, SZ, and XR, respectively. We
have, however, to set also the DHOST theory parameters
ðαH; β1; γNÞ. We will only consider models with GN

eff ¼ GN

hence setting γN ¼ 1 − αH − 3β1. We stress that this
assumption is only made to reduce the arbitrariness in
the choice of the fiducial DHOST parameters, but in the
analysis we do not impose it so that γN is still a quantity to
constrain.
We are left with the two parameters ðαH; β1Þ to set. The

first obvious choice is the GR one, i.e., ðαH; β1Þ ¼ ð0; 0Þ. In
this case, our analysis will tell us to which extent the data
are able to discriminate between GR and DHOST based on
how small are the constraints on ðαH; β1; γNÞ. It is also
interesting, however, to investigate how the constraints
change depending on the input fiducial. Indeed, some
choices of the parameters may strengthen or weaken the
deviations from GR hence making it easier or harder to spot
them and constraining the parameters themselves. For this
reason, we select other eight representative cases whose
labels and parameters are summarized in Table II. Let us
motivate their choice below. First class is obtained by
setting αH ¼ 0 so that it is

αH ¼ 0 → ðΞ1;Ξ2;Ξ3Þ ¼ ð−β1=4; 0;−β1=4Þ:

Being Ξ2 ¼ 0, only one of the two corrective terms to the
lensing convergence are present hence weakening the WL
constraining power. A similar effect is obtained for the
second class defined by the condition

β1 ¼ 0 → ðΞ1;Ξ2;Ξ3Þ ¼ ð−αH=2;−αH; 0Þ

so that it is now the second corrective term to convergence
to disappear.
The pressure profile stays the same as GR for DHOST

models with

αH ¼ −β1 → ðΞ1;Ξ2;Ξ3Þ ¼ ð0;−β1; 0Þ;

which minimizes the impact of deviations from GR also
for the convergence. On the contrary, both effects are
maximized if we set

αH ¼ −3β1 → ð2β1;−3β1;−2β1Þ;

which is the last class we consider.
For all cases, we have to choose a value for αH or β1.

Unfortunately, present day constraints on ðαH; β1; γNÞ are
still quite poor so that we must rather rely on theoretical
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motivations. In particular, Karmakar et al. (2019) have
recently carried out an extensive analysis to set theoretical
limits on the possible values of ðαH; β1Þ at different
redshifts. It turns out that, depending on z, ðαH; β1Þ can
only span a certain range. We choose the extreme values
over the redshift range spanned by our data hence setting
β1 ¼ �0.15 for the first, second, and fourth class of
models, and αH ¼ �0.25 for the third one. The models
thus obtained are labeled as in Table II.
Note that these models have been chosen to select some

representative cases, but we have not checked whether
the corresponding values of ðαH; β1Þ are excluded by other
cosmological data or theoretical motivations. This is
because we are here interested in exploring the potentiality
of the method so that it is worth considering all pos-
sible cases.
A further comment concerns the use of priors from

external constraints. One could, for instance, consider
the constraints coming from evading graviton decay
which gives A3 ¼ 0 [42]. Apparently, this would lead to
αH þ 2β1 ¼ 0 so that both Ξ1 and Ξ3 would diverge.
Actually, the constraint A3 ¼ 0 affects only αB and β1
with this latter having an effect on the cluster potential.
However, in [27], it has been shown that the impact of the
constraints of the graviton decay on β1 is very insignificant
for the slowly rolling DE field. Given that all our clusters
are in this regime, we can, therefore, neglect the constraint
from the graviton decay.
Additional priors on the model parameters could be

inferred from the stability conditions obtained from the
positive definite second-order perturbed Hamiltonian. As
detailed in Appendix C, such conditions also involve the
EFT functions ðαK; αBÞ which do not enter the observables
we are considering in the Fisher analysis [see Eq. (1) and
(2)]. In order to include them, we should first choose a
functional expression for ðαK;αBÞ. For keeping the general-
ity, we preferred not to apply the stability conditions prior
to our Fisher matrix analysis.
One can, nevertheless, wonder about the stability of the

models we have selected in Table II since it would be

useless to demonstrate that a method works for unphysical
cases. To this end, one could just show that there exists,
at least, a model assigned by a particular choice of the
ðαK; αB; αH; β1Þ functions which fulfils the stability con-
ditions and take the values in Table II at the cluster redshift.
As a first scenario, one could also assume that the back-
ground expansion is the same as for the ΛCDM model
in the designer approach used for fðRÞ theories. In
Appendix C, we will make some preliminary checks, but
we postpone a complete analysis to a future paper. We can,
however, anticipate that such an analysis makes us con-
fident that the fiducial models in Table II are physically
meaningful so it is worth exploring them.
We have now all the parameters which are necessary as

input to the computation of the WL, SZ, and XR Fisher
matrices. However, we still need to set some quantities
related to the observations. In particular, we must fix the
number of WL, SZ, and XR measured points, i.e.,
ðNWL;N SZ;N XRÞ. We set N XR ¼ 40 as a typical value
inferred from X-COP data, while we investigate cases with
10 and 20 points in the WL and SZ datasets, having set
NWL ¼ N SZ just to reduce the number of possible con-
figurations to explore. A cautionary remark is in order for
the S/N ratio of the different data. Although our scaling
relations are well motivated and based on actual data, it is,
nevertheless, worth wondering how the constraints change
with the S/N ratio itself. Since we have based our WL S/N
ratio on a Euclid-like experiment whose features are well
known, we do not change the WL S/N ratio, while we allow
for deviations of νPðrÞ and νeðrÞ from our assumptions. To
this end, we modify Eqs. (38) and (39) by the following
qualitative replacement:

νPðrÞ → BPνPðrÞ; νeðrÞ → BeνeðrÞ;

where ðBP;BeÞ change the amplitude of the S/N ratio but
not their radial profile (so that both S/N ratio profiles are
still decreasing function of the distance). This is a sim-
plifying assumption which guarantees enough flexibility
for the aims of the present work.

VI. RESULTS

We discuss below the constraints on the DHOST
parameters we get from the Fisher matrix forecasts with
the setup described above. We always marginalize over the
NFW flogM200; c200g and the double-β model fβ; log xc1;
log xc2; logn01; log ðn02=n01Þg parameters since we are
interested in constraining deviations from GR. We, there-
fore, report only the constraints on the parameters
ðαH; β1; γNÞ reminding the reader that these must be meant
as constraints on the values these three redshift dependent
functions take at the cluster z. We stress that, although we
set γN ¼ 1 − αH − 3β1 when fixing the fiducial, this con-
dition is not imposed in the Fisher matrix analysis where γN
is considered as an unknown quantity as would be in a real

TABLE II. DHOST fiducial models id, ðαH; β1Þ parameters,
and amplitudes of the terms setting deviations from GR. For all
cases, it is γN ¼ 1 − αH − 3β1.

id αH β1 Ξ1 Ξ2 Ξ3

GR 0.0 0.0 0.0 0.0 0.0
A0M 0.0 −0.15 0.0375 0.0 0.0375
A0P 0.0 0.15 −0.0375 0.0 −0.0375
B0M −0.25 0.0 0.125 −0.25 0.0
B0P 0.25 0.0 −0.125 0.25 0.0
D1M 0.15 −0.15 0.0 0.15 0.0
D1P −0.15 0.15 0.0 −0.15 0.0
D2M 0.45 −0.15 −0.30 0.45 0.30
D2P −0.45 0.15 0.30 −0.45 −0.30
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data analysis. We also remind the reader that, being that
the three datasets are independent, the total Fisher matrix
is just the sum of the three individual ones, i.e.,
Ftot ¼ FWL þ FSZ þ FXR. When investigating the depend-
ence of the results on the assumption about the data, wewill
look at the ratio of the constraints on each single parameter
with respect to those from an arbitrary chosen reference
case. This is obtained setting ðNWL;N SZ;N XRÞ ¼
ð10; 10; 40Þ, ðBP;BeÞ ¼ ð1.0; 1.0Þ and the intermediate
case for the radial range probed by SZ and x-ray data.

A. Fiducial GR

Let us first discuss the constraints on ðαH; β1; γNÞ when
GR is taken as fiducial. Not surprisingly, one gets almost
no constraints at all if only pressure data are used because
of the degeneracy among ðαH; β1Þ, which enter the deter-
mination of the observables only through their combination
in the parameter Ξ1 and the presence of up to 10 total
parameters. Lensing convergence, on the contrary, works
better thanks to the dependence on both Ξ2 and Ξ3 which
allows to partially break the ðαH; β1Þ degeneracy.
Moreover, the lower number of nuisance parameters (only
two) reduces overall the effect of marginalization. It is the
joint use of WL, SZ, and XR datasets which significantly
strengthen the constraints. Denoting with σðpμÞ the fore-
cast error on the parameter pμ and considering its distri-
bution over the cluster sample, we get for the median 68
and 95% CL

σðαHÞ ¼ 2.51; ð2.30; 2.71Þ; ð2.11; 3.00Þ;
σðβ1Þ ¼ 0.77; ð0.43; 1.35Þ; ð0.36; 2.13Þ;
σðγNÞ ¼ 5.85; ð4.70; 8.25Þ; ð4.23; 10.5Þ;

using lensing convergence only, which reduces to

σðαHÞ ¼ 1.35; ð1.15; 1.47Þ; ð1.09; 1.68Þ;
σðβ1Þ ¼ 0.22; ð0.18; 0.24Þ; ð0.17; 0.29Þ;
σðγNÞ ¼ 1.10; ð0.96; 1.23Þ; ð0.92; 1.40Þ;

when WLþ SZþ XR data are used. The improvement is
particularly evident for β1 and γN . The statistics for the ratio
σWSXðpμÞ=σWðpμÞ are as follows:

σWSZðαHÞ=σWðαHÞ ¼ 0.52; ð0.46; 0.57Þ; ð0.44; 0.60Þ;
σWSZðβ1Þ=σWðβ1Þ ¼ 0.26; ð0.14; 0.55Þ; ð0.11; 0.84Þ;
σWSZðγN=σWðγNÞ ¼ 0.18; ð0.12; 0.26Þ; ð0.10; 0.33Þ;

where σWðpμÞ and σWSXðpμÞ are the errors from WL only
and WLþ SZþ XR data.

From now on, we will only discuss the constraints
from WLþ SZþ XR data starting from Fig. 5 which
shows σðpμÞ for the reference case as a function of
halo redshift, mass, and concentration. Although larger
than the theoretical priors assumed in this work (i.e.,
−0.25 ≤ αH ≤ 0.25 and −0.15 ≤ β1 ≤ 0.15), the con-
straints we get are, nevertheless, remarkable. They are
definitely stronger than the ones obtained in [62] fitting the
convergence and electron density data only for a subset of
DHOST theories. Moreover, we are here able to constrain
γN , to which it is typically not included as a parameter
being hold fixed by the requirement Geff

N ¼ GN .
Figure 5 shows a clear correlation between the errors

and the cluster redshift pointing at high z systems as the
most efficient target to constrain the DHOST parameters.
This is likely related to our choice of holding fixed the
angular range for the WL data. The larger is z, the more one
is pushing data in the outer region R > R200. Although the
DHOST correction fades away with R, probing outer
regions allows to better constrain the halo mass logM200

hence breaking both the degeneracy with c200 and the
one with γN . The effect is then propagated on the other
parameters too, thus qualitatively explaining the anticorre-
lation between σðpμÞ and z. Such a qualitative argument,
however, should not be overrated since the observed trend
with z could also be a fake artifact of our choice of taking
fixed the number of radial bins with z. Since clusters at
higher z have a smaller angular size, taking the number of
bins fixed is possible only if we assume that the angular
resolution of the instrument is enough to achieve this goal
at all z. Whether this is the case or not depends on the
observational setup, a point that we do not address in this
forecasts analysis.
There is, on the contrary, no correlation with the halo

mass and concentration. Although it is true that increasing
more massive clusters have a better WL, SZ, and XR S/N
ratio, this is not sufficient to break any degeneracy among
parameters hence not contributing to improve the con-
straints, which explains the lack of correlation with
logM200. On the other hand, the c200 range probed by
our systems is probably too small to find a signature of
correlation with the concentration so that we invite the
reader to not overrate the no correlation in the right panel of
Fig. 5. We also remind the reader that we have used a
c200-M200 relation to set the fiducial value of the concen-
tration of BOXSZ clusters neglecting its scatter. Should we
have included it, the c200 range would have been wider, but
this would have asked to repeat the analysis for any
realization of c200 which is definitely too time consuming.
It is worth wondering how robust are the results with

respect to the assumptions on the data. This would also
allow to identify where efforts should be directed to
improve the constraining power of the WLþ SZþ XR
datasets. To this end, we first look at how the constraints
change when we change the radial range probed by SZ and
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XR data. Top panels in Fig. 6 show the ratio of the
constraints on ðαH:β1; γNÞ parameters with respect to the
reference case12 when we move to the central and large
range scenario. The most affected parameter is β1 with the
error increasing (decreasing) up to ∼20% ð∼15%Þ when
reducing (increasing) ξmax to 0.87 (1.81) from the fiducial
ξmax ¼ 1.17 case. This is likely related to the results in
Fig. 3 showing that the deviations of PðrÞ from its GR
counterpart are larger for larger ξ ¼ r=R500. However, it is
worth noting that the improvement obtained by increasing
the radial range probed by the data is actually not so large
with the typical decrease of σðβ1Þ being of order 5% at the
cost of a 55% increase of ξmax. We, therefore, argue that this
is not the most convenient way to improve the constraints.
On the contrary, increasing the angular resolution, i.e.,
using 20 instead of 10 points for both WL and SZ data, has
a major impact on the constraints. As bottom panels in
Fig. 6 show, the error improves by ∼15–20% for all the
DHOST parameters as a consequence of the larger number

of terms in the sum in Eqs. (36) and (38). Note that this
result could not have been easily anticipated since increas-
ing NWL reduces the WL S/N ratio because of the smaller
A in Eq. (37). We, nevertheless, find that the dominating
effect is the increased number of terms in the sum defining
the Fisher matrix elements. We, therefore, recommend a
finer sampling as a way to improve the constraints on
DHOST parameters.
Finally, we have also investigated how the constraints

depend on our assumption on the data S/N ratio by varying
ðBe;BPÞ, which scale up or down the amplitude of
νeðr=R500; logM500Þ and νPðr=R500; logM500Þ, respec-
tively. The results are shown in Fig. 7 where all the ratios
are taken with respect to the reference case, and we vary
only ðBe;BPÞ taking the radial range and sampling
unaltered. As a first case, we show in the top panels the
impact of Be degrading or boosting the electron density S/N
ratio by 50% (i.e., Be ¼ 0.5 or Be ¼ 1.5). The parameter
most affected by a degradation of the XR S/N ratio is
again β1. In order to understand why this happens, we
notice that β1 enters the correction to the convergence only
through the third term in Eq. (22) which is subdominant
compared to the first two. As a consequence, β1 is mainly
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FIG. 5. Forecast errors on ðαH; β1; γNÞ as a function of cluster redshift, mass, and concentration for the reference case and the GR
fiducial model.

12We plot the ratio as function of the redshift just to better
separate objects in the plot, but what matters here are just the
numbers on the y-axis.
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constrained by the pressure data. A degradation of the S/N
ratio of XR data worsens the constraints on the double-β
profile parameters hence weakening the constraining power
of the pressure data too. On the contrary, both αH and γN
are constrained by both WL and SZ so that they are less
affected by a weakening of the constraints from electron
density. This same argument also explains the results
shown in the second row panels of Fig. 7 where we set
back Be ¼ 1 but investigate the impact of varying BP to 0.5
or 1.5 from the fiducial value. However, a degradation of
the pressure S=N ratio impacts all the parameters since it
makes it harder to break the degeneracy present if one uses
WL data alone. Needless to say, degrading by 50%, both
XR and SZ data has a dramatic effect on the constraints
with the errors which increase by up to ∼ð27; 60; 20Þ% on
ðαH; β1; γNÞ. It is worth stressing, however, that such a
severe overestimate of the S/N ratio is quite unlikely.
Indeed, we have derived our S/N ratio scaling functions
based on up to date dataset spanning a similar mass range as
the BOXSZ cluster sample. The difference in redshift is not
critical, and the instrumental setup is well representative of
what can be achieved with present facilities. On the other
hand, it is also worth noticing that a sort of saturation takes
place when increasing the S/N ratio. Indeed, a 50% boost of
both the SZ and XR S/N ratio (corresponding to the red
points in the bottom panels of Fig. 7) causes a reduction of
the errors by a modest ∼ð5; 10; 5Þ% for ðαH; β1; γNÞ. This is
likely related to the choice of taking unaltered the WL S/N
ratio since it is this dataset to play the major role. As a
concluding remark, we can summarize the results of the
analysis of variation of the constraints with the different
observational quantities in a single take-home lesson. In
order to improve the constraints on the DHOST parameters,
the better strategy is to use the present setup in terms of S/N
ratio and radial range probed but increase the sampling of
the convergence and pressure profiles.

B. Varying the DHOST fiducial parameters

The above results rely on the assumption that the true
underlying model is GR so that they tell us how well the
data constrain deviations from GR itself. On the other hand,
it is also interesting to investigate whether DHOST theories

can be discriminated based on the values of their parameters.
We, therefore, here look at the relative constraints, i.e., we
compute σðj1þαHjÞ=j1þαHj, σðj1þ β1jÞ=j1þ β1j and
σðγNÞ=γN for the eight representative models listed
in Table II. Note that we use absolute values and add unity
to avoid any divergence of the ratios. We have computed the
constraints for all the configurations discussed in the
previous paragraph, but we are here interested only in
investigating how they change depending on the fiducial
DHOST parameters. This point turns out to be qualitatively
unaffected by the particular choice of the radial range, the
sampling, and the S/N ratio amplitude so that we report in
Table III only the constraints for the reference configuration.
As a general result, we find that the constraints for all

models other than GR are stronger than for the GR itself.
This is a naive consequence of the fact that it is easier
to spot a signature when it is present in the data. Indeed, for
all the DHOST fiducials at least one of the quantities
ðΞ1;Ξ2;Ξ3Þ is nonvanishing, while all of them are zero for
GR. As a consequence, data can constrain the amplitude
of the corresponding non-GR terms in the convergence
and/or pressure profiles which makes it easier to constrain
ðαH; β1; γNÞ.
This same consideration also helps to understand why

the worst constraints (apart from GR) are obtained for
the D1M and D1P cases. Indeed, for these models, it is
Ξ1 ¼ Ξ3 ¼ 0 so that the only deviation from GR is due to
the second term in Eq. (22) so that only the convergence
can detect the signature of the corresponding DHOST
models. A similar argument also applies for the D2M and
D2P fiducials. In these cases, however, all of the three
amplitude parameters ðΞ1;Ξ2;Ξ3Þ are nonvanishing, but Ξ2

and Ξ3 have opposite signs so that the two DHOST terms
almost cancel each other. The DHOST signal is then
present mainly in the pressure profile which is less
constraining than convergence. As an overall consequence,
the constraints on ðαH; β1; γNÞ are weakened as evident
from the larger σðpμÞ=j1þ pμj values.
On the contrary, the strongest constraints are obtained

when one of the two parameters ðαH; β1Þ is set to zero. This

TABLE III. Median 68% and 95% CL of σðpμÞ=j1þ pμj with pμ ¼ ðαH; β1; γNÞ for the representative DHOST models listed in
Table II assuming the reference configuration for the radial range, sampling, and S/N ratio of the WL, SZ, and XR data.

αH β1 γN

id med 68% CL 95% CL med 68% CL 95% CL med 68% CL 95% CL

GR 1.351 (1.148, 1.472) (1.094, 1.682) 0.218 (0.181, 0.244) (0.171, 0.287) 1.098 (0.962, 1.227) (0.917, 1.397)
A0M 0.359 (0.311, 0.444) (0.278, 0.470) 0.090 (0.084, 0.106) (0.077, 0.152) 0.184 (0.141, 0.223) (0.120, 0.244)
A0P 0.332 (0.255, 0.435) (0.222, 0.501) 0.026 (0.023, 0.031) (0.020, 0.040) 0.159 (0.116, 0.220) (0.097, 0.255)
B0M 0.295 (0.248, 0.395) (0.202, 0.439) 0.056 (0.051, 0.060) (0.047, 0.064) 0.119 (0.094, 0.153) (0.078, 0.188)
B0P 0.192 (0.142, 0.261) (0.127, 0.369) 0.037 (0.034, 0.044) (0.030, 0.063) 0.154 (0.113, 0.235) (0.097, 0.346)
D1M 1.006 (0.866, 1.204) (0.845, 1.448) 0.285 (0.237, 0.336) (0.227, 0.423) 0.396 (0.347, 0.475) (0.328, 0.569)
D1P 1.174 (1.022, 1.347) (1.003, 1.547) 0.107 (0.090, 0.121) (0.086, 0.149) 0.504 (0.446, 0.585) (0.438, 0.673)
D2M 0.618 (0.541, 0.702) (0.478, 0.742) 0.101 (0.092, 0.119) (0.086, 0.124) 0.422 (0.362, 0.483) (0.320, 0.508)
D2P 1.068 (0.864, 1.195) (0.765, 1.250) 0.063 (0.054, 0.078) (0.052, 0.079) 0.260 (0.220, 0.305) (0.191, 0.317)

CARDONE, KARMAKAR, DE PETRIS, and MAOLI PHYS. REV. D 103, 064065 (2021)

064065-18



is apparently in contradiction with what we have said about
the GR case. Actually, this is not since one has to look at the
values of ðΞ1;Ξ2;Ξ3Þ rather than to ðαH; β1Þ. In particular,
for models A0M and A0P, one gets Ξ2 ¼ 0 so that the
deviations from GR in the convergence profile are maxi-
mized since there is no more a compensation of the second
and third terms in Eq. (22). A similar argument also applies
to models B0M and B0P where it is now Ξ3 ¼ 0. The fact
that constraints are stronger for B0M and B0P rather than
A0M and A0P is finally related to the larger (absolute)
value of Ξ1 which makes it easier to detect the DHOST
signature in the pressure profile.

C. Constraints from joint use of more clusters

As already said, the DHOST parameters ðαH; β1; γNÞ are
actually functions of the redshift so that two clusters with
the same mass and concentration but different z experience
a different deviation from GR. As a consequence, one
cannot stack clusters with the same logM200 to increase the
lensing or the pressure signal hence the S/N ratio and then
decrease the error on the parameters of interest. However,
should ðαH; β1; γNÞ be slowly varying functions of z, one
can combine the constraints from all the clusters in a given
redshift bin. From the point of view of Fisher matrix
forecasts, this is obtained by first marginalizing over all
parameters other than the DHOST ones and then summing
up the marginalized Fisher matrices. Note that this is not
the same as stacking clusters in the same redshift bin and
performing a fit to the stacked data. On the contrary, one is
still fitting each single cluster data but then multiplying the
different likelihood functions after marginalizing over all
the astrophysical parameters.
To this end, we split the sample in four equipopulated

redshift bins13 with median redshifts (0.22,0.36,0.45,0.58),

each bin containing 11 cluster. We then compute the
constraints from the combined marginalized Fisher matri-
ces assuming the reference configuration for radial range,
sampling, and S/N ratio. The results thus obtained are
summarized in Table IV where we consider all the models
discussed before for the fiducial DHOST parameters.
Comparing the median values in Table III with the

constraints in Table IV, it is evident how joining clusters
dramatically improves the constraints. The errors on all
DHOST parameters are reduced by a factor ∼3 in the GR
case, while the improvement may differ depending on the
particular DHOST models chosen. In all cases, it is,
however, roughly comparable with N 1=2

c , N c being the
number of clusters in the bin. Increasing N c also helps in
reducing the width of the bins thus reducing the systematic
error related to the assumption that ðαH; β1; γNÞ are con-
stant within each redshift bin.
Table IV does not show a marked trend of the errors

decreasing with the median redshift of the bin, which
would have been expected based on what is shown in
Fig. 5. This is likely a consequence of having mixed
systems with different z so that the trend is smoothed out.14

However, it is worth noticing that a complete analysis of the
trend of σðpμÞ with z should ask for the solution of the
cosmological equation to get the values of ðαH; β1; γNÞ to
be used as fiducial for the Fisher matrix at each given z.
As we have said, indeed, the constraints get weaker as the
fiducial approaches GR. Since this is expected to happen as
z increases, two contrasting effects are at work. On one
hand, going to larger z with a fixed angular range for the
WL data helps to improve the constraints since one is
probing more and more into the region R > R200. On the
other hand, the fiducial approaches GR so that the DHOST
corrections become smaller which weaken the constraints.

TABLE IV. Relative errors σðpμÞ=j1þ pμj for pμ ¼ ðαH; β1; γNÞ joining together the constraints from all the clusters in the same
redshift bin. We consider all the DHOST models listed in Table II and set the observational setup as for the reference case. Note that,
different from Table III, the values here refer to the error as estimated by the joint fit to all the clusters in a single bin rather than the
median and 68% CL of the distribution of the errors from the fit to each single cluster.

id bin no. 1 bin no. 2 bin no. 3 bin no. 4

GR (0.437, 0.072, 0.364) (0.380, 0.059, 0.318) (0.365, 0.058, 0.302) (0.335, 0.053, 0.278)
A0M (0.100, 0.026, 0.050) (0.105, 0.025, 0.053) (0.093, 0.025, 0.044) (0.092, 0.025, 0.045)
A0P (0.083, 0.007, 0.041) (0.091, 0.007, 0.045) (0.077, 0.007, 0.036) (0.076, 0.007, 0.036)
B0M (0.072, 0.016, 0.029) (0.085, 0.015, 0.0345) (0.081, 0.015, 0.031) (0.078, 0.015, 0.030)
B0P (0.043, 0.011, 0.037) (0.050, 0.011, 0.042) (0.046, 0.010, 0.037) (0.045, 0.010, 0.036)
D1M (0.344, 0.096, 0.136) (0.288, 0.076, 0.115) (0.283, 0.076, 0.112) (0.259, 0.069, 0.102)
D1P (0.382, 0.035, 0.167) (0.334, 0.029, 0.147) (0.330, 0.029, 0.144) (0.305, 0.027, 0.133)
D2M (0.165, 0.028, 0.113) (0.188, 0.030, 0.128) (0.177, 0.029, 0.120) (0.165, 0.027, 0.111)
D2P (0.284, 0.018, 0.072) (0.313, 0.019, 0.080) (0.297, 0.018, 0.075) (0.270, 0.016, 0.068)

13Note that, in order to have the same number of clusters in
each bin, we have adjusted the bin widths. The bin limits turn out
to be (0.15,0.28), (0.29,0.40), (0.42,0.54), and (0.55,0.83). Apart
from the last one, all the bins have comparable widths due to the
almost uniform redshift distribution of the BOXSZ sample.

14This result could be surprising at first sight since taking the
median of the errors from the fit to the single clusters in each
redshift bin gives a trend with z. However, the constraints from
the joint fit we are considering here are not the median of the
constraints from single objects.
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Which effect is dominant depends on the specifics of the
DHOST model, but a case-by-case analysis is outside
our aims.

VII. CONCLUSIONS

The hunt for the responsible of the current cosmic speed
up is one of the most fascinating and yet hardest challenges
of present day cosmology. The landscape to be searched for
is made wider by the consideration that the accelerated
expansion may be taken as a first evidence for the need of a
more general theory of gravitation. DHOST theories are
ideal candidates from this point of view being able to
produce an accelerated expansion of the Universe without
violating the constraints from GWs and the stability and
ghost-free requirements. A Vainshtein-like screening pre-
vents fifth-force manifestation on the Solar System scale,
but modification to the gravitational potentials are still
possible on galaxy clusters scale. It is, therefore, possible to
look for signatures of DHOST theories in clusters’ observ-
able quantities such as the lensing convergence κðRÞ and
the pressure profile PðrÞ. We have here derived theoretical
expressions for both of them and investigated the impact of
the additional DHOST contributions. As a side result, we
have also shown that the theoretical pressure profile may be
well fitted by the empirical universal pressure profile with
parameters which cover the same regions in the parameter
space occupied by a subsample of Planck clusters.
It turns out that the deviations from GR depend on the

DHOST parameters in a different way for κðRÞ and PðrÞ
so that jointly fitting both quantities can help constrain
DHOST parameters ðαH; β1; γNÞ breaking degeneracy
among them. The addition of x-ray data on the electron
density do not constrain the DHOST parameters them-
selves but gives an indirect yet fundamental contribution by
constraining the electron density hence the astrophysical
parameters determining the shape of the pressure profile.
A Fisher matrix analysis has then been carried out in order
to quantify how strong these constraints are under various
assumptions on the observational setup. In particular, we
have both investigated whether observations can discrimi-
nate between GR and DHOST, and how well ðαH; β1; γNÞ
may be constrained for some representative choices of their
fiducial values.
When using individual clusters and setting the fiducial

model to GR, the constraints on ðαH; β1; γNÞ are definitely
improved by the joint use of the three probes with the errors
reducing by a factor of ∼ð2; 4; 5Þ with respect to those from
WL alone. The 68% CL are, however, still larger than the
theoretical priors one can obtain by asking that the back-
ground evolution is not too different from that for the
concordance ΛCDM model and that there are no ghosts or
instabilities. This is not surprising since the theoretical
requirements apply to the full evolutionary history, while
our results refer to the value of the parameters at the given
cluster redshift. However, the approach we present here is

not biased by any theoretical prejudice since it only relies on
the comparison with data. It should, therefore, be considered
as complementary to a theoretical analysis. On the other
hand, one could also try to combine the two methods adding
a prior on ðαH:β1; γNÞ informed by the theory requirements.
However, we argue against such a possibility since it makes
the likelihood far from Gaussian which is contrary to the
assumption underlying the Fisher matrix methodology.
One should rather perform a fit to mock data including
the theory requirements as hard priors in the Markov Chain
Monte Carlo sampling of the parameters space, a possibility
that we will explore in a future work.
A similar discussion qualitatively holds also when one

changes the fiducial values of ðαH; β1; γNÞ as we have
shown considering eight representative DHOST models.
The constraints, however, result to be stronger than in
the GR case, the strengthening being determined by the
values of ðΞ1;Ξ2;Ξ3Þ for the given model. This is a naive
consequence of the fact that these parameters set the
amplitude of the terms which make the convergence and
pressure profile for DHOST theories deviate from their GR
counterparts. For all models, however, what is of great help
is the joint analysis of more clusters in the same redshift bin
under the assumption that ðαH; β1; γNÞ are approximately
constant over the bin redshift range. This joint analysis,
indeed, improves the constraints by a factor ∼N 1=2

c with
respect to the median error from individual clusters. One
should, therefore, aim at assembling a large sample of
clusters to be split in narrow redshift bins in order to both
increase the accuracy on the parameters and make the
assumption of them being constant much more solid.
Supposing we want to probe the evolution of ðαH; β1; γNÞ
over the range zmin ≤ z ≤ zmax, the total number of clusters
should be N tot ≃ ðΔz=δzÞf2 with Δz ¼ zmax − zmin, δz the
bin width and f by how much we want to improve the
constraints. For ðzmin; zmaxÞ ¼ ð0.1; 0.9Þ, δz ¼ 0.05, f ¼ 5,
we get N tot ¼ 400, a factor 9 increase with respect to the
BOXSZ sample.
It is worth wondering how such a dataset should be

assembled, i.e., whether one must invest efforts in observ-
ing low or high redshift objects, select them according to
the mass, and investing time resources to improve the S/N
ratio or the sampling. We find that the errors on ðαH:β1; γNÞ
anticorrelate with the cluster redshift, i.e., the higher z, the
smaller σðpμÞ. Such a result is related to our choice of
measuring the convergence over a fixed angular range
ð0.2 ≤ θ=arc min ≤ 10.2Þ which makes the constraint on
logM200 for high z clusters better since one is pushing the
data in the R > R200 region. A reanalysis is, however,
needed to take into account the variation of ðαH; β1γNÞ with
z in order to check whether the fact that any DHOST theory
should reduce to GR at high z does not degrade the
constraints from objects in higher redshift bins.
Somewhat unexpectedly, we find that our reference

configuration with the electron density sampled with 40
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linearly spaced points over the range ð0.1; 1.17ÞR500 and
NWL ¼ N SZ ¼ 10 points to sample the convergence and
pressure profiles is nearly optimal. There is only a relatively
modest reduction of the errors on DHOST parameters if
one tries to push the upper limit of the pressure data to
1.81R500 or to boost the XR and SZ S/N ratio by a factor 1.5
with respect to the fiducial values we have assumed. The
most efficient way to reduce the errors turns out to be a
better angular resolution, i.e., doubling NWL and N SZ.
Although a mismatch in the estimate of the way S/N ratio
scales with distance and halo mass is possible, we are
confident that this result is quite robust. Indeed, we have
estimated the WL S/N ratio based on what is expected for a
Euclid-like setup, while the XR and SZ S/N ratio have been
estimated from real data. We, therefore, plan to investigate
the feasibility of such a hypothetical survey based on
simulated mock data to strengthen this preliminary result.
Aword of caution concerns, in particular, the possibility to
have NWL ¼ N SZ for all the clusters in the sample no
matter their redshift. While havingNWL ¼ 10 or 20 is quite
easy to achieve, some more efforts are needed to get the
same value for N SZ. Assuming to have an angular
resolution of ∼20 arcsec over the range ð0.1; 1.2ÞR500

and using the estimated values of the mass and redshift
for the BOXSZ clusters, we get N SZ ¼ 14 as median
value with trend in redshift from N SZ ¼ 30 at z ¼ 0.15 to
N SZ ¼ 7 at z ¼ 0.83 (with a scatter due to the dependence
on mass). Our choice N SZ ¼ 10 is, therefore, in between
the extreme cases, while getting N SZ ¼ 20 can indeed be
harder for the higher z clusters unless they are massive
enough to guarantee a large R500. Investigating how the
constraints change depending on the median and the
scatter of the N SZ distribution is outside our aims here,
but it is a point not to be forgotten in an analysis based on
mock data.
As a final remark, we want to come back to our adopted

strategy to use cluster data. Here, we have adopted the
backward approach using an empirical profile to fit the
electron density, the NFW model for the dark halo con-
vergence and the solution of the hydrostatic equilibrium
equation for the pressure profile. Although vastly used in
the literature, this method relies on a number of reasonable
yet aprioristic assumptions. A more empirically based
alternative is, actually, possible. One could, indeed, choose
phenomenological models for both the gas density and
the pressure profile (e.g., the Vikhlinin and the universal
profile, respectively), fit them to the x-ray and SZ data, and
then plug the results into the hydrostatic equilibrium
equation to derive a theoretical dark halo mass profile.
This could be later compared to the lensing convergence
data thus constraining both the cluster and DHOST
parameters. A forthcoming companion paper will present
the results of this method. We, nevertheless, anticipate that
choosing among them is more a matter of how much one
trusts the underlying assumptions of each method. A safer
option when dealing with real data would, therefore, be
to use both of them and compare the results as a
consistency test.

Being the largest bound structures in the Universe,
galaxy clusters have always been looked at as ideal
laboratories for testing the theory of gravitation. The
present work confirms that this is indeed the case for
DHOST models too.
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APPENDIX A: DHOST ACTION

The GW170817 event and the tiny delay in the arrival of
the signal from its electromagnetic counterpart has severely
restricted the class of viable DHOST theories. For the
surviving models, the action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ðA1Þ

where the integrand Lagrangian is given by

L ¼ PþQ□ϕþ FRþ A3ϕ
μϕνϕμν□ϕ

þ 48F2
X − 8ðF − XFXÞA3 − X2A2

3

8F
ϕμϕμνϕλϕ

λν

þ ð4FX þ XA3ÞA3

2F
ðϕμϕ

μνϕνÞ2 ðA2Þ

with ðP;Q; F; A3Þ arbitrary functions of the scalar field ϕ
and its kinetic energy X and the label denoting derivative
with respect to X. GR is recovered setting F ¼ 1=2κ with
κ ¼ 8πG=c4, and P ¼ Q ¼ A3 ¼ 0. In the general case,
one can adopt the EFT formalism [26] to express the
functions ðP;Q;F; A3Þ in terms of the time dependent
linear operators ðαT; αM;αK; αH; β1Þ. The constraints from
the GW170817 event forces to set αT ¼ 0, while only
ðαH; β1Þ enter the weak field limit causing the deviations of
ðΦ;ΨÞ potentials from their GR counterparts as shown in
Eqs. (1) and (2).

APPENDIX B: DERIVATIVES FOR FISHER
MATRIX COMPUTATION

We report below all the derivatives needed to compute
the convergence and pressure profile Fisher matrices. As a
general rule, all these derivatives ask for numerical inte-
gration. We have, however, checked that all the integrals are
quite stable so there are no numerical issues affecting the
estimate of the Fisher matrix.
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1. Lensing convergence

The parameters which the lensing convergence depends
on are flogM200; c200; γN; αH; β1g. The relevant derivatives
are quite straightforward to compute giving

∂ ln κðRÞ
∂ logM200

¼ ln 10
3

�
1 −

�
R
Rv

�
2 KξðR=Rv; c200; αH; β1Þ
K0ðR=Rv; c200; αH; β1Þ

�
;

ðB1Þ

∂ ln κðRÞ
∂c200 ¼ 2

c200
−

c200=ð1þ c200Þ2
ln ð1þ c200Þ − c200=ð1þ c200Þ

;

×
KcðR=Rv; c200; αH; β1Þ
K0ðR=Rv; c200; αH; β1Þ

; ðB2Þ

∂ ln κðRÞ
∂γN ¼ 1

γN
; ðB3Þ

∂ ln κðRÞ
∂αH ¼ 1

1 − αH − 3β1
þKαðR=Rv; c200; αH; β1Þ

K0ðR=Rv; c200; αH; β1Þ
;

ðB4Þ

∂ ln κðRÞ
∂αH ¼ 3

1 − αH − 3β1
þKβðR=Rv; c200; αH; β1Þ
K0ðR=Rv; c200; αH; β1Þ

:

ðB5Þ

Here we have defined the Kp functions above as

KpðR=Rv; c200;αH; β1Þ ¼
Z

∞

−∞
Spðy; c200; αH; β1Þdζ

ðB6Þ

with y ¼ ðξ2 þ ζ2Þ1=2 ¼ ðR2=R2
v þ z2=R2

vÞ1=2, and

S0ðy; c200;αH; β1Þ

¼ 2ð1 − β1Þ þ ð3αH þ β1 þ 4Þc200yþ 2c2200y
2

2yð1þ c200yÞ4
; ðB7Þ

Sξðy;c200;αH;β1Þ

¼ðβ1−1Þð1þ5c200yÞ−ð6αHþ2β1þ7Þc2200y2−3c3200y
3

y3ð1þc200yÞ5
;

ðB8Þ

Scðy; c200; αH; β1Þ

¼ ð3αH þ 9β1 − 4Þ − ð9αH þ 3β1 þ 8Þc200y − 4c2200y
2

2ð1þ c200yÞ5
;

ðB9Þ

Sαðy; c200; αH; β1Þ ¼
3c200

2ð1þ c200yÞ4
; ðB10Þ

Sβðy; c200; αH; β1Þ ¼
c200y − 2

2yð1þ c200yÞ4
: ðB11Þ

2. Pressure profile

Equation (26) shows that the pressure profile depends
on a large number of parameters. These are needed to fix
the cluster properties ðlogM200; c200Þ: the electron density
double-β profile ðβ; log xc1; log xc2; log n01; log ðn02=n01ÞÞ
and the DHOST quantities ðαH; β1; γNÞ. The derivatives,
with respect to these parameters, are computed below.
Let us first consider the halo mass for which we get

∂ lnPðrÞ
logM200

¼ ln 10
3

�
2 −

QGR
x ðr=R200Þ þQMG

x ðr=R200Þ
QGR

0 ðr=R200Þ þQMG
0 ðr=R200Þ

r
R200

�
;

ðB12Þ

where QGR
0 ðxÞ and QMG

0 ðxÞ are defined in Eqs. (26) and
(27), respectively, and QGR

x ðxÞ and QMG
x ðxÞ are their

derivatives with respect to x, which we compute numeri-
cally. It is worth noting that the derivative, with respect to
logM200, is the only one asking for numerical differ-
entiation, while all other cases ask for numerical integration
which is more stable. For c200, indeed, we get

∂ lnPðrÞ
∂c200 ¼ QGR

c ðr=R200Þ þQMG
c ðr=R200Þ

QGR
0 ðr=R200Þ þQMG

0 ðr=R200Þ
ðB13Þ

with

QGR
c ðxÞ ¼

�
c200=ð1þ c200Þ

ln ð1þ c200Þ − c200=ð1þ c200Þ
�
2

×
Z

∞

x

Cðx0; c200Þx0
ð1þ c200x0Þ2

ñeðx0Þdx0; ðB14Þ

QMG
c ðxÞ ¼

Z
∞

x

2c200Ξ1ð1 − c200x0Þ
ð1þ c200x0Þ4

ñeðx0Þdx0; ðB15Þ

having defined ñeðxÞ ¼ neðxÞ=n01, and

Cðx0; c200Þ ¼ 1 − ½ð1 − c−1200ð1þ c200Þ2 ln ð1þ c200Þ�x0:
ðB16Þ

Note that all the QGR
μ ðxÞ and QMG

μ ðxÞ defined above and
in the following also depend on c200, the double-β profile
parameters ðβ; log xc1; log xc2; log ðn02=n01ÞÞ, and ðαH:β1Þ
for the MG labeled quantities. We drop the dependence on
them just to shorten the notation.
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The derivatives with respect to the double-β profile
parameters are quite straightforward to compute, being
simply given by

∂ lnPðrÞ
∂ log n01 ¼ ln 10; ðB17Þ

∂ lnPðrÞ
∂pμ

¼ QGR
μ ðr=R200Þ þQMG

μ ðr=R200Þ
QGR

0 ðr=R200Þ þQMG
0 ðr=R200Þ

ðB18Þ

for pμ ∈ fβ; log xc1; log xc2; log f21g and

QGR
μ ðxÞ

¼
Z

∞

x

ln ð1þ c200x0 − c200x0=ð1þ c200x0Þ
ln ð1þ c200 − c200=ð1þ c200Þ

∂ñeðx0Þ
∂pμ

dx0;

ðB19Þ

QGR
μ ðxÞ ¼

Z
∞

x

c2200Ξ1ð1 − c200x0Þ
ð1þ c200x0Þ3

∂ñeðx0Þ
∂pμ

dx0: ðB20Þ

The derivatives of the rescaled electron density profile
ñeðxÞ, which also enter the XR Fisher matrix, are trivial to
compute so that we do not report them here.
Finally, we give below the derivatives with respect to the

DHOST parameters which are

∂ lnPðrÞ
∂αH ¼ 1

1 − αH − 3β1

−
QMG

0 ðxÞ
QGR

0 ðxÞ þQMG
0 ðxÞ

α2H þ 4αHβ1 þ 3β21
2ðαH þ 2β1Þ2

;

ðB21Þ

∂ lnPðrÞ
∂β1 ¼ 1

1−αH−3β1
−

QMG
0 ðxÞ

QGR
0 ðxÞþQMG

0 ðxÞ
β1ðαHþβ1Þ
2ðαHþ2β1Þ2

;

ðB22Þ

∂ lnPðrÞ
∂γN ¼ 1

1 − αH − 3β1
: ðB23Þ

Note that the derivatives with respect to ðαH; β1; γNÞ are all
equal to 1 for the GR fiducial.

APPENDIX C: STABILITY OF FIDUCIAL
MODELS

In the present work, our choice of ðαH; β1Þ for fiducial
models other than GR has been based on considerations
aiming at highlighting particular features of the way
DHOST theories can impact the gravitational potentials.
We have, however, not checked whether the models in
Table II were stable or not. Although we explained why we
made this choice, we here further speculate on this point
below with some more details.

In order for a DHOST model to fulfil stability conditions
in the presence of matter, it must be (see, e.g., [27]):

Aζ þ
ρM þ pM

ðMDHOST
Pl Þ2H2

3β1ð2þ 3c2Mβ1Þ
ð1þ αB − _β1=HÞ2 > 0; ðC1Þ

Bζ þ
ρM þ pM

ðMDHOST
Pl Þ2H2

�
1þ αH þ β1

1þ αB − _β1=H

�
2

> 0; ðC2Þ

with ðMDHOST
Pl Þ2 ¼ M2

Pl=γN , ðAζ; BζÞ given in Appendix C
of [27], ðρM; pM; cMÞ the matter energy density, pressure,
and sound speed, and dot denoting derivative with
respect to cosmic time. Setting pM ¼ cM ¼ 0 for dust
matter, Eq. (4) for MDHOST

Pl , and using the redshift as the
differentiation variable, Eqs. (C1) and (C2) can be finally
rewritten as

Ãζ > 0; B̃ζ < 0; ðC3Þ

with

Ãζ ¼
�
1þ αB þ ð1þ zÞ dβ1

dz

�
−2

×

�
αK þ 6α2B þ 6γNΩMðzÞ

×

�
3β1 þ ð1þ zÞEðzÞ dPAðzÞ

dz

��
; ðC4Þ

B̃ζ ¼
�
1 − γNð1þ zÞ2EðzÞ dPBðzÞ

dz

�

þ 3γNΩMðzÞ
�

1þ αH þ β1
1þ αB þ ð1þ zÞdβ1=dz

�
2

; ðC5Þ

with EðzÞ ¼ HðzÞ=H0, ΩMðzÞ ¼ ΩM0ð1þ zÞ3=E2ðzÞ, and
we have defined

PAðzÞ ¼
αBβ1EðzÞ
γNð1þ zÞ3 ; ðC6Þ

PBðzÞ ¼
1

γNð1þ zÞ2EðzÞ
1þ αH þ β1

ð1þ αBÞ=ð1þ zÞ þ dβ1=dz
:

ðC7Þ

We must, moreover, add the further condition

MDHOST
Pl > 0; ðC8Þ

which naively leads to γN > 0 that is always fulfilled by our
models given that we set γN ¼ 1 − αH − 3β1.
Note that we have not made any assumption on ðαK;αB;

αH; β1; γNÞ which are generic functions of the redshift z.
However, it is evident that two conditions on five functions
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still leaves a lot of freedom in choosing them. We should,
therefore, make some assumptions to check whether the
models in Table II can be stable.
To this end, we first set

E2ðzÞ ¼ E2
ΛCDMðzÞ ¼ ΩM0ð1þ zÞ3 þ ð1 −ΩM0Þ;

that is to say, we assume that the background expansion is
the same as ΛCDM which ensures us that the model
provides the observed accelerated expansion. Then, we set

αHðzÞ ¼ αHðzcÞ
�
1 −ΩMðzÞ
1 −ΩMðzcÞ

�
sH
;

β1ðzÞ ¼ βaðzcÞ
�
1 −ΩMðzÞ
1 − ΩMðzcÞ

�
sβ
;

where zc is the cluster redshift, and we can fix the value of
ðαH; β1Þ in z ¼ zc according to the models in Table II. Note
that the assumed dependence onΩMðzÞ ensures that, at very
large z, both αHðzÞ and β1ðzÞ vanish so that GR is restored
in the matter dominated era in agreement with CMB data.
For this same reason, we could adopt a similar expression
for γNðzÞ. However, in order to check the stability, we just
need to demonstrate that there is at least a class of DHOST
models which fulfills the conditions in (C3). We can,
therefore, limit our attention to the caseGeff=GN ¼ 1 hence
setting

γN ¼ 1 − αH − 3β1:

Looking at Eq. (C4), it is evident that the condition Ãζ > 0

can be recast as a condition on αKðzÞ, i.e.,

αKðzÞ > −6α2B −
6γNΩMðzÞ

1þ αH − 3β1

×

�
3β1 þ ð1þ zÞEðzÞ dPAðzÞ

dz

�
; ðC9Þ

which provides a lower limit for this quantity once we
have assigned αBðzÞ too. This latter must be chosen in such
a way that the condition B̃ζ < 0 is fulfilled too. However,
this latter condition is harder to treat since it involves also
the derivative of αB. Ideally, one could try to work out a
relation as

αBðzÞ < αmax
B ðzÞ; ðC10Þ

where αmax
B ðzÞ is found solving Bζ ¼ 0 for given ðsH; sβÞ

once ðαH; β1Þ at the cluster redshift have been set as in
Table II. One must then check that imposing the conditions
of (C9) and (C10) does not violate further constraints on
ðαK; αBÞ. Should this be the case, we can then be sure that
the models in Table II and the assumed scaling with z are
stable. On the opposite, one cannot conclude that the
models are not stable since it is possible that it has been
the choice of the slopes ðαH; β1Þ to be wrong or the power-
law scaling with ΩMðzÞ that needs to be replaced.
Exploring in detail all these possibilities is, however,
outside the aim of the present paper.
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